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COMPONENT GROUPS OF ABELIAN VARIETIES
AND GROTHENDIECICS DUALITY CONJECTURE

by Siegfried BOSCH

Let AK be an abelian variety over a field K which is the field
of fractions of a complete discrete valuation ring R. We write A^ for
its dual, A, A' for the associated Neron models, and (/>A, (J>A' for the
corresponding component groups. Grothendieck [12] has constructed a
pairing (J)A x ^>A' —^ Q/Z which represents the obstruction of extending
the Poincare bundle on AK x A^ as a biextension of A x A' by Gm. Thus,
the pairing reflects certain arithmetic properties of the duality between AK
and A^-; it is conjecturally perfect, a fact which has been established in
the case of semi-stable reduction and in the case where the residue field k
of K is perfect, except for infinite k if charJ^ > 0.

Recently, the structure of the component groups 0A? 4>A' has been
investigated more intensively: Lorenzini [15] has introduced two filtrations
on prime-to-p parts, p the residue characteristic, which then, in [8], were
generalized to all of 0A? ^A' 5 describing them more intrinsically by means of
uniformization theory in the sense of rigid geometry. In the present article
we show that, over a perfect residue field, the two filtrations are dual to
each other under Grothendieck's pairing, provided this pairing is perfect.

Using the same methods, we can also achieve a small progress on the
perfectness of Grothendieck's pairing itself. Again, in the case of a perfect
residue field A;, we show that it is perfect at least for abelian varieties
with potentially multiplicative reduction. More generally, one would like to
know that the pairing (J)A x ^A' —^ Q/Z is perfect as soon as the pairing
(f)B x (f)B' —> Q/Z on the corresponding abelian parts with potentially
good reduction is perfect. However, as it seems, our methods do not yield
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this result in full generality. We can verify it only in the case where the
toric parts TK, T^ of AK, A^ have multiplicative reduction (without any
restriction on the residue field A;), or where the component groups (^T, (f)T'
are torsion-free.

Let us give some indications on the techniques we are using. The
actual discussion of Grothendieck's pairing is started in Section 4. Working
in terms of sheaves for the etale or smooth topology, we look at the
isomorphism A'^ -^Ext^A^Gm^) given by the duality between AK
and A^. There is an associated isomorphism A! -^Ext^A, ̂ Grr^) on
the level of Neron models (j: SpecK —> SpecR is the canonical morphism),
as well as an induced monomorphism A70 —> Ext^A^m,^), where A70

is the identity component of A'. The latter (as well as the corresponding
morphism with A and A' interchanged) is an isomorphism if and only if
Grothendieck's pairing is perfect for AK and A^-; see 5.1. Thus, in order
to access the perfectness of the pairing, we must show that Ext^A, Gm,R)
is reduced to its identity component.

To do this, we use rigid uniformization and write AK as a quotient
EK/MK (in the sense of rigid X-groups), where EK is an extension of an
abelian variety BK with potentially good reduction by a torus TK, and
where MK C EK is a lattice; see [19] and [8], 1.2. Thus, the uniformization
of AK consists of short exact sequences

0 —>MK —^EK —>AK —> 0, 0 —> TK —>EK —>BK —> 0,

where all objects and morphisms exist in the algebraic category, except for
the morphism EK —> AK which is rigid analytic and not algebraic (unless
TK is trivial). Switching to associated Neron models, it is our strategy
to relate the sheaf Ext^A.Gm,^) to Ext^E.Gm,^), and the latter to
Ext^i^Gm,^)- Assuming that Ext^i^Gm,/?) coincides with its identity
component, we show in 5.3 that the same is true for Ext^A.Gni,!?)? at
least in the cases we are interested in. A similar approach is used in order
to establish the duality result 6.1 of the nitrations of component groups,
as mentioned above.

We do not want to hide the fact that there are several technical
problems, which have to be solved, before one can proceed as indicated.
In order to associate a morphism of Neron models E —> A to the rigid
morphism EK —> AK, we must change from ordinary Neron models of
-^-schemes to formal ones of rigid ^-groups, as introduced in [7]. For the
groups we are interested in, this is done by formal completion of ordinary
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Neron models along their special fibres, a process which, in general, will
destroy parts of the generic fibre. As we cannot afford such a defect in view
of the isomorphism A'-^Ext^A.^Gm,^), which we want to maintain,
we always add the original generic fibre to a formal Neron model. Writing
SR = (K,R), we arrive at the notion of SR-models. These are pairs of type
X = {XK, Xp), where XK is a rigid JC-space and XR an admissible formal
J?-scheme, together with an open immersion XR^K ̂  XK from the generic
fibre XR^K of XR into XK'

The theory of ^-models and of abelian sheaves on them is developed in
Section 1. Furthermore, in Section 2, we study torsors and extensions in this
setting, with the aim to transfer the isomorphism A' -^Ext^A^Gm,^)
from the algebraic to the SR-model category. Then, indeed, the morphism
EK —^ AK yields a morphism of associated Neron-St-models E —> A,
and thereby an induced morphism Ext^A.Gni,^) —> Ext^E'.Gm,^)
which is meaningful. Likewise, we get a morphism Ext^i^Gm,^) —>
Ext (£', Gm^) which, due to vanishing results on Horn and Ext1 sheaves
of tori in Section 3, is formally an isomorphism with respect to the etale
topology, at least in the cases we are interested in. We have then a formal
morphism Ext^A^m,^) —> Ext^B.Gni,^), which we can compare with
a similar one coming from uniformization data of the dual abelian variety
A^. This will settle the proof of 5.3.

1. Formal models and abelian sheaves.

If XK is a rigid J^-space with Neron model X, as introduced in
[7], 1.1, then the generic fibre of X is an open subspace of XK which,
in general, is different from XK- Thus, in most cases, it is impossible to
reconstruct XK from X. To remedy this, we set 3? = (K,R) and define a
new category Mod% of so-called SR-models as follows: The objects of Mod%
consist of all pairs X = {XK.XR), where XK is a rigid JC-space and Xn
an admissible formal J^-scheme, together with an open immersion of rigid
^C-spaces XR^K c-^ XK', the rigid J^-space XR^K is meant to be the generic
fibre of Xp. A morphism X —> Y between two such objects is a pair
^ = (^K^p) of morphisms (RK'-XK —^ YK, ^PR'-XR -^ Yp such that the
diagram

y ^R,K „

^R,K ———^ YR,K

I I
XK -^ YK
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is commutative. We call (p = (<^K^R) smooth (resp. etale) if both (^K
and (pp are smooth (resp. etale). In particular, we can consider the small
model smooth site over 9? (more precisely, over (SpK.SpfR)) or over any
other SR-model 5, and we can look at abelian sheaves on such a site. The
category Mod% is quite similar to the category of ^-models in the scheme
setting. For example, fibred products exist in Mods^; they are constructed
by taking the fibred product in each "component".

There is a canonical functor i: Forj? —> Mod% from the category of
admissible formal ^-schemes to the category of SR-models, which associates
to any admissible formal JP-scheme Xp the SR-model (XR^,XR). Writing
^~1(XK,XR) = Xp for any SR-model (XK^XR\ we may interpret i as a
morphism of sites, for example, from the small formal smooth site over R to
the small model smooth site over 3t. Similarly, we can consider the functor
j: RigK —> Mod% from the category of rigid J^-spaces to the category of 3t-
models, which associates to any rigid K -space XK the Sft-model (Xj<,0).
Again, we can set j~l(XK,Xp) = XK for any ^R-model (Xj<,Xs) and
thereby interpret j as a morphism of sites, for example, from the small rigid
smooth site over K to the small model smooth site over 9?. By definition,
both functors i and j are fully faithful.

In the present paper, we consider exclusively, unless stated otherwise,
the small smooth sites over SR, J?, or K^ referring to them simply as the
model site over SR, the formal site over R, or the rig-id site over K. Dealing
with abelian sheaves, we use [1] as a general reference in order to define
the functors ^,^*,^*,^*.

LEMMA 1.1. — (i) Both, i^ and %*, are exact, and we have fi^T = F
for any sheaf T on the formal site over R.

(ii) j^ is left exact, j* is exact, and we have j^J^^F) = T for any sheaf
F on the rigid site over K.

Proof. — Let us start with assertion (i). As always, ̂  is left exact. It is
right exact, because for any SR-model (L^, Up) in the model site over 3? and
any covering (U^n of Up in the formal site over R, the pairs (U1^ ̂ , ̂ )n?
together with (UK^ 0) form a covering of (UK, Up). On the other hand, z*
is right exact by general reasons. That it is also left exact, follows from
the equation i*G(Up) = G{UR^K'> Up)^ where Up belongs to the formal site
over R and Q is any sheaf on the model site over SR. Since

i^WUp) = WU^K, Up) = ̂ ([/^),

for any sheaf F on the formal site over R, we see Vi^T = T.
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Concerning assertion (ii), j^ is left exact and j* is right exact by
general reasons. Furthermore, j* is right exact since we have J*G(UK) =
G(UK. 0) for any UK in the rigid site over K and any abelian sheaf Q on
the model site over SR. Finally, if F is a sheaf on the rigid site over K^ we
get

J*J*W^) = WUK. 0) = ^(UK)

and, thus, j*j^ = F. n

The functors %* and j* will be referred to as restriction to the
formal, resp. rig-id parts. Since we have, in a compatible way, descent of
morphisms on the rigid part (see [8], 3.3) as well as on the formal part,
it follows that any object X = (XK^XR) in Mod% with XK being quasi-
separated gives rise to a sheaf on the model site over 3?, namely to the
sheaf S i—> Hom%(6', X). Thus, Neron models can be defined in the usual
way using the functor j^. However, in this setting, the formation of Neron
models does not abandon the original generic fibre. If XK is a rigid K -space
with Neron model XR in the sense of [7], 1.1, then (XK^XR) is the Neron
model of XK in the sense of models in Mod%.

As an example we may consider the Neron model j*Gm,j< of the
multiplicative group Gm,x- It inserts into an exact sequence

0 — Gn^ — J.G^K — ̂  — 0,

where Gm^ = (Gm.K^m.R) is the "multiplicative group" over SK, consist-
ing of the rigid multiplicative group Gm,K over K and the formal multi-
plicative group Gm,R over R.

LEMMA 1.2. — Let T be an abelian sheaf on the model site over SR.
Then F = 0 is equivalent to VT = 0 and ^T = 0.

Proof. — The only-if-part is trivial. So assume VF = 0 as well as
yj: ^ 0^ g^ ^ ̂  object (UK^UR) in the model site over Sft. Then
^{UR^K.UR) = 0 and f(UK,0) = 0. Since (UK,Up) is covered by
(UR^K. Up) and (UK. 0), we get F(UK. Up) =0. D

2. Torsors and extensions.

We begin with a lemma on torsors in the rigid category; torsors are
always meant with respect to the fppf-topology.
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LEMMA 2.1. — XK be a rigid K-space and EK a Gm,K~torsor on it.
Then EK is trivial locally with respect to the Zariski topology on XK ̂
and, thus, representable by a rigid K -space.

Proof. — By its definition, the torsor EK is locally trivial with respect
to the fppf-topology and, hence, becomes trivial after applying a local fppf-
cover ZK —^ XK as base change. As we are dealing with Gm-torsors, we may
view EK x XK ^K ~>' ZK as an invertible sheaf on ZK i which is equipped
with a descent datum with respect to ZK —> XK' Due to 0. Gabber's
version of faithfully flat descent for coherent modules on rigid spaces, see
[18], 1.9, this module descends to a coherent Xj<-module which, by the
usual argument, is an invertible sheaf again. The latter can be interpreted as
a line bundle on XK and, as such, must be isomorphic to EK- In particular,
EK is representable. n

LEMMA 2.2. — Let X be an '3t-model, and let i^j be as in Section 1.

(i) Any Gm^-torsor over X is locally trivial with respect to the Zariski
topology.

(ii) Any i ̂ -torsor over X is locally trivial with respect to the etale
topology. Moreover, any such torsor is trivial if X is smooth over St.

(111) Any j^Gm,K~torsor over X is locally trivial with respect to the
Zariski topology, provided X is smooth over SR.

In particular, in cases (i) and (Hi) the corresponding torsors are
representable^.

Proof. — We start with assertion (i). If E is a Gm,%-torsor over X,
we can restrict it to the rigid part as well as to the formal part, thereby
obtaining a Gm,^-torsor EK over XK and a Gm,j?-torsor Ep over Xp.
Both are locally trivial with respect to the Zariski topology and, thus,
representable; cf. 2.1 as far as EK is concerned. Thinking in terms of
coherent (locally free) modules, it follows from descent arguments that
EK is compatible with the restriction E^ K • From this we see that E is
locally trivial with respect to the Zariski topology on X, and we are done.

Next, considering case (ii), let us look at an z^Z-torsor E. Since the
restriction of%^Z to the rigid part is trivial, EK must coincide with XK- On

W To unify our language, we talk about the Zariski topology on XK and thereby mean
the classical rigid Grothendieck topology.
^2) As z*Z is not representable by an 9^-model, we cannot expect the representability of
i^Z-torsors in case (ii).
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the other hand, using fppf-descent on the formal level, E^ as a Z-torsor,
is locally trivial with respect to the etale topology, and it follows that E is
locally trivial with respect to the etale topology on X. Now, assume that
X is smooth over SR. Then the small etale site on Xp is equivalent to the
small etale site of its reduction (use for example [4], 1.4), and we see by
[12], VIII, 5.1, that the restriction of E to the formal level is trivial. Hence
E is trivial already over X.

To verify assertion (hi), consider a ^Gm,K-torsor E over X. Then
the quotient -E/Gm,sft is an %>i<Z-torsor over X and, hence, trivial by (ii).
Thus, -K/Gm,% decomposes into different "components" isomorphic to X,
and each part of -E, lying over such a component may be viewed as a Gm,sR-
torsor. The latter is locally trivial with respect to the Zariski topology by
(i), and we see that E itself is locally trivial with respect to the Zariski
topology. D

The preceding results say that, for torsors of the above type, the
choice of the topology is not critical; the fppf-topology can be replaced by
the Zariski or, at worst, the etale topology.

In the following we fix a smooth SR-model S = (Sj<, SR) in the sense
of Section 1, which we will use as a base object. By an 6'-model X we
mean a relative ^-model over 6'; i. e., a morphism X —> S in the sense
of SR-models. Furthermore, an S'-group is meant to be an 5'-model with a
group structure relatively over S.

PROPOSITION 2.3. — Let B be a smooth S-group. Then the functor j*
induces an equivalence between extensions ofB by j^Gm,K ^d extensions
O{BK byG^K'

Proof. — We follow the argumentation in [12], VIII, 6.5 and 6.6.
First, let us verify that the functor induced by j* on j+Gm,j<-torsors is
fully faithful. So we have to show for ^Gm,j<-torsors E and F on B that
the restriction Hom(j^, F) —> Hom(£^<, Fj<) is bijective. Forgetting about
the group structure of B and applying 2.2, it is enough to consider the case
where E and F are trivial. Then we must know that the restriction map
r(B^j^Gm p ) —^ r(-Sj<5 Gm K) is bijective. However, this is a consequence
of the Neron mapping property for j^Gm,K-

It remains to show that each Gm,j<-torsor over BK is induced by
a ^*Gm,j<-torsor over B or, what is enough up to push-out, by a Gm,%-
torsor over B. Again, we forget about the group structure of B. As we may
assume Bp^^ = ^Ki we may identify B as well as torsors over it with their
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underlying admissible formal ^-schemes. Now start with a Gni,x-torsor
EK over BK, and interpret it as a coherent locally free Bj<-module. If B
is affine, we can apply [10], 21.6.11. Namely, since B is smooth over R, its
ring of global sections is regular by [13], 4.4, and we see that EK extends
to a locally free B-module E. Prom this it follows that, in the general case,
there exists an open cover (2^) of B such that EK trivializes with respect
to the cover (BJ^) of B K ' As H^(B,T} = 0 due to the smoothness of
B, we can find generators fi of EK\Bi m such a way that fif-~1 extends

K J
to a section on Bi H Bj, for all z,^'; use the Neron mapping property for
J*Gm,K' Consequently, EK extends to a coherent locally free 5-module £1,
as claimed, n

PROPOSITION 2.4. — For a smooth rigid K-group BK we write
Ext(Bj<, Gm,j<) for the group of extensions, in the sense of rigid K-groups,
of BK by Gm^, as well as Ext^B^Gm,^) for the corresponding Ext1

group in the setting of sheaves on the small rigid smooth site over K. Then
the canonical map

Ext(^.Gn^) — Ext^^.G^),

which associates to any extension

0 —— G^K — EK — BK — 0

the class of
BK

I
EK —^ BK

in Ext^^.Gm,^) = Hom^rived^^m^tl]), is an isomorphism. The
same is true for smooth rigid groups over any smooth rigid base SK instead
ofK.

Similarly, for any smooth S-group B in Mod^, the canonical map

Ext(B,^Gn^) ——Ext\BJ^K)

is bijective.

Proof. — Use [12], VII, 3.2.5, in conjunction with the representability
results 2.1 and 2.2. n

The proposition says that we need not make a difference between
extensions in the sense of group objects and of homological algebra.
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Therefore we will switch between both notions in the following without
mentioning this explicitly.

We want to derive another consequence from 2.2.

PROPOSITION 2.5. — Let B be a smooth S-group. Then, by restriction
to special fibres (which is indicated by an index k), we get isomorphisms
between groups of extensions

Ext(B, ̂ Z) -̂ > Ext(B^ Z^) -^ Ext(jBfc, Z,,) ̂  Ext(<^ Z)

where (J)B is the group of components of BR.

Proof. — For any Eft-model U there are canonical bijections

Hom((7, ̂ Z) ̂  Hom(^, ZjQ ̂ 4 Hom(^, Z^).

Since z^Z-torsors on B are trivial by 2.2 (ii) and the same is true for Z^-
torsors on Bk by [12], VIII, 5.1, it follows that the map Ext(B, z^Z) ̂  Ext
(Bfe,Zfe) is bijective. Furthermore, Ext(Bfc,Zfc) <-^Ext(<^B,Z) is bijective
by [12], VIII, 5.5. n

Finally, let us point out that, again due to [12], VII, 3.2.5, the Ext
groups in 2.5 can canonically be identified with the corresponding Ext1

groups. In the subsequent sections we will also use the sheaf Ext; note that
for abelian sheaves T^ Q^ the presheaf U i—> Ext^^l^/,^^) induces the
sheaf Ext1 (^7,^), since injectives are preserved under restriction.

3. Computation of some Hom and Ext groups.

We start by a technical lemma, which frequently allows us to reduce
problems on free Galois modules MK to those satisfying ^(J.M^) = 0,
where I means the inertia subgroup of the absolute Galois group of K.

LEMMA 3.1. — Let MK be an elate K-group scheme which becomes
isomorphic to a free Z-module of finite rank after separable extension of
K. Then there is an exact sequence

0 —>MK —>M^ —>M^ —> 0

of K-groups of the same type where, in addition, H1^!, M^) = R^j^M^ =
0 and M~j^ is invariant under the inertia group I.
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Proof. — We follow the ideas of [22], 2.13, and [8], 4.4. Thinking
in terms of Galois modules, assume that MK becomes constant over a
Galois extension L / K with Galois group G, and let M~^ = Ind^Mz,)
be the induced module of ML; it satisfies Rlj^M^ = ^(J.M^) = 0
by [8], 4.4 and its proof. Furthermore, there is a canonical injection
MK ^ M^+. Now set M^~ = M^/MK, as well as M^ = (M^-)7,
and let M^ c M~^ be the inverse image of M^. Then we have an exact
sequence 0 —> MK —> M^ —> N^ —> 0, where M^ is as required and
satisfies Jf^J.M^) = 0, since M^ is invariant under I . Now look at the
commutative diagram

W)7 — H\I^MK) — H^I^M^) — H1(I^M„)=0

(M^-)7 —. H^I^MK) —— H\I^M^)=Q

whose rows are parts of long exact cohomology sequences with respect
to the J-cohomology. It implies ^(I.M^) = 0 and thus, by [8], 4.4,
Rlj„M^ = 0 so that we are done. n

LEMMA 3.2. — Consider an etale K-group scheme MK as in 3.1, and
let M be its Neron model. Then:

(i) T = Hom(M, j^G^x) is the Neron model O^TK = HomfM^. Gm,^),
the torus with group of characters MK'

(ii) The canonical map HomfM. G^?Q —> Hom(M,^Gm,j<) is a
monomorphism and identifies Hom(M, Gm,%) with the subgroup T^r C T
corresponding to the torsion subgroup of (for.

Proof. — The first assertion is obvious from the mapping property
of Neron models. To derive the second one, let us use the abbreviation
T00 = Hom(M,Gm^). By its definition, T00 equals the part of T ' where
all characters in MK take integral invertible values. In particular, we have
T° C T00, and T00 contains the subgroup Tfor of T. As we might interpret
%*r°° as the formal Neron model of a quasi-compact open subgroup of TK
and as such Neron models are quasi-compact themselves, see [7], 1.2, we
can conclude that T00 must coincide with Tfor. D

LEMMA 3.3. — Let NK be a torsion-free etale K-group scheme of finite
type, which is invariant under the inertia group I . Then Ext1 (TV, T} = 0
for the Neron model N ofNK and any abelian sheafF on the small smooth
site over SR.
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Proof. — We may assume that R is strictly henselian and, hence,
that NK and N are constant. So we need only to consider the case
where N = Zs^. As the functor T \—> HomfZsp,^) is an equivalence of
sheaves on the site we are considering, this functor is exact. Consequently,
Ext^Zsft.Gn^^O. D

LEMMA 3.4. — Let TK be a torus with Neron model T. Then the
following hold:

(i) z*Hom(r,G^)=0.

(ii) y^Ext^r.Gni,^) == 0, provided we know either that TK has mul-
tiplicative reduction or that the residue field k of K is perfect; r* means
restriction to the etale topology on St.

Proof. — The group NK of characters of TK is an etale J^-group
scheme. Thus, it is enough to compute z*Hom(T, Gm,sft) with respect to
the etale topology on 3?. Assuming the valuation ring R strictly henselian,
we just have to show Hom(T, Gm,%) = 0. To do this, let us first consider
the case where TK is split over K. Each character \K ^ NK(K) defines
a morphism \: TK —^ Gm,K and, hence, a morphism of Neron models
^: T —> J^G^K- To the latter we can associate the morphism <^: 0r —^ ^
between component groups. It is more or less trivial that the resulting map
NK{K) —> Hom(<^r,Z) is an isomorphism.

If we start with a morphism \:T —> Gm,%, its rigid part \K is in
NK{K\ and the associated morphism \'.T —> j*Gm,j< satisfies ̂  = 0.
But then \ itself must be trivial. So Hom(T, Gm,g?) is trivial, which settles
the case of a split torus TK-

Assume now that TK is not necessarily split. Viewing its group of
characters NK as an etale K-gvo\ip scheme, we write NK,I for the maximal
Z-free quotient which is invariant under the inertia group I which, in our
case, coincides with the absolute Galois group of K. Then there is an exact
sequence

0 —— NK —— NK —— NK^I —— 0
of torsion-free etale X-group schemes such that Nj^ C N K , the subgroup
of J-invariants, is trivial. Looking at the associated sequence of tori

0 —— TK,J —— TK —— TK —— 0,

we get an exact sequence of Neron models

0 —>Ti —>T —>f —^0;
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note that R^^i = 0 due to [8], 4.2, as TK,I is split over K. Then we
apply Hom(-,Gni,%) to the latter sequence and obtain an isomorphism

Hom(r, G^) -^ Hom(r, Gn^),

since Hom(rj,Gm^) is trivial by what we have shown above. However,
the torus TK does not admit a non-trivial character over K, since N1 is
trivial. Consequently, Kom{f,G^) and, hence, Hom(T, G^) must be
trivial, which had to be shown.

Next we want to show that ^Exi^T, Gn^) is trivial. To do this, we
assume R to be strictly henselian again and show first that Ext^r.Gm,^)
as the formal part of this group is trivial. Applying 3.1, we choose an exact
sequence of etale K-groMp schemes without torsion

0 —— NK —— A^ —— N^ —— 0,

where ^(J.M^) = 0 and N^ is invariant under I . Attached to it is an
exact sequence of tori

0 —— ̂  —— ̂  —— TK —> 0,

which gives rise to an exact sequence of associated Neron models

0 —>T° —>T^ —>T —>0

by [8], 4.2, since TJ^ is split. So we get an exact sequence

Homcr6,^) -^ Ext^r.G^) -^ Ext^r^G^),
where Hom^.Gni,^) = 0 as we have seen. Hence, it is enough to show
Ext (T^Gm^) = 0 or, more specifically, that any extension of smooth
SR-groups

0 —— G^SR — H — T® — 0
is split.

Let us fix such an extension and look at its rigid part

(*) o — G^K — HK — r^ — o,
which is an extension of smooth rigid JT-groups. We claim that it is
algebraizable and that HK is a torus. To verify this, we might replace
K by a finite separable extension field and thereby assume that T^ is split.
Furthermore, we might choose a split lattice VK of maximal rank in T?

K
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and lift it to a V^-linearization of HK^ viewing the latter as a line bundle
on TJt. Such a line bundle is trivial, as is shown in the proof of [3], 4.5.
Hence, there is an isomorphism of rigid ^-spaces HK -^ Gm,j< x T^. Since
invertible sections on tori are the same in the rigid and the algebraic sense,
it follows that the group structure on HK is algebraic. But then, as an
extension of a torus by a torus, HK must be a torus itself; cf. [II], exp. IX,
prop. 8.2.

We want to show that, in fact, the sequence of tori (*) splits over the
field we started with. To do this, look at the associated sequence of groups
of characters, viewed as etale group schemes over K:

0 —— N^ —— NK —— ZK —— 0.

Taking invariants under the inertia group J, we get an exact sequence

0 -^ N^ -^ Nj, -^ ZK -^ 0,

due to the fact that ̂ (J, N^) = 0. But then NK —> ^K admits a section
which is compatible with the action of I and, consequently, the sequence
(*) above is split.

Now let us look at the following commutative diagram of ^-groups:

0 —— G^SR —— H —^ T9 —— 0
I [ ^ I I

o — J.G^K — J.HK -^ r® — o.

The first row is just the extension we started with and whose triviality
has to be shown, whereas the second one is the sequence of Neron models
associated to (*); i. e., the sequence of Neron models associated to the rigid
part of the first row. The vertical maps exist due to the Neron mapping
property, and i is a monomorphism. The second row is split exact, since the
same is true for the sequence (*). So there is a section e: r° —> J ^ H K of '0,
which is unique up to a character r® —> J'*Gm,j<. Switching to component
groups, we get the diagram

0 —. 0 —. (̂  -^-> (t>Te —> 0

I U ^ I I
0 —> Z —> ^J^HK ——^ ^r® —^ 0

where (f)^ is an isomorphism and, hence, 0^ an injection. There are now two
sections of <^: (I)^HK —^ ^r®? namely the section <^=. induced from e and
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the map ̂  o <^1. Both differ by a homomorphism (f)\: ̂ ye —> Z. If the
canonical map

N^ —.Hom((^r©,Z)

is bijective, we can conclude that (f)\ is induced from a character A C N^.
Changing the section e by means of A, we may assume (fee = ̂  o ^-1.
Then ^ maps 0y© into (^(</)jf), and we see that e factors through H.
This means that H^ as a Gm,sR-extension of T®, is split and, hence, trivial.
So the formal part of ^Ext^r^Gm,^) is trivial, provided the canonical
map N^ —> Hom(^r©, Z) is bijective. In fact, the bijectivity of this map
follows from [22], 2.4, if the residue field k of K is perfect. If, on the other
hand, TK is known to have multiplicative reduction, we certainly can set
rj| = TK and get the same assertion for trivial reasons.

Finally, as Gm,j<-extensions of T^ split always over finite sepa-
rable extensions of K, as shown above, we see that the rigid part of
^Ext^r^Gn^) is trivial and, hence, that ^Ext^r^Gm^) = 0 by
1.2. ' D

4. Review of Grothendieck's pairing.

We start by looking at a scheme situation, writing %:SpecA; —>
Spec R and j: Spec K —> Spec R for the obvious morphisms. Let AK be an
abelian variety over K with dual A^. Denote by A, A' the corresponding
Neron models and by (^A? ^>A' their component groups. There is a canonical
pairing

(*) <^A 0Z <t>A' ——> Q/Z,

introduced by Grothendieck in [12], IX, 1.2, which represents the obstruc-
tion of extending the Poincare bundle on AK x A^ to a biextension of A x A7

by Gm,j?. Conjecturally, the pairing is perfect, and this conjecture has been
established in many important cases by contributions of Grothendieck [12],
Artin-Mazur (unpublished), Begueri [2], and McCallum [16]: if AK has
semi-stable reduction or, otherwise, if the residue field k is perfect, except
for infinite k in the equal characteristic p > 0 case. A state of art proof
in the semi-stable reduction case has recently been given by Werner [21].
In conjunction with [9], it settles the compatibility between Grothendieck's
pairing and the monodromy pairing which was left to the reader in [12].
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To recall the definition of Grothendieck's pairing, observe that, due
to [12], VII, 3.7.5, the canonical exact sequence

0 —^ G^R —> j*Gm,x —> i^ —> 0,

with j*Gm,j< denoting the classical Neron model of the multiplicative group
Gm,j<r; gives rise to an exact sequence

Biext^A.A^Gm^) —. Biext^A.A'^Gn^) —> Biext^A.A'^Z).

Due to [12], VIII, 6.7, restriction to the generic fibre yields an isomorphism

Biextl(A,A/;^G^l,^)^^Biextl(AJ<,A^;G^K),

and there is a canonical isomorphism

Biext^A, A'; ̂ Z) -^ Biext^A, ^A'; Z)

by [12], VIII, 5.6 and 5.10. Furthermore, using the exact sequence obtained
from dividing Q by Z, we get an isomorphism

Biext^A, <^A'\ Z) ̂ - Biext°(^A, <t>A'\ W) = Hom(^A ^z ^A/, Q/Z).

Thus, starting with the element ofBiext^A, A'; j'*Gm,j<) which corresponds
to the Poincare bundle on AK x A^-, its image in Biext^A.A'^+Z)
corresponds to a morphism <^A ^z ^A' —^ Q/Z which, by definition, is
Grothendieck's pairing of component groups.

Of course, the pairing may also be written in the form of a homo-
morphism (J)A' —> Hom^(^4,0/Z) of sheaves with respect to the smooth
(or etale) topology on R. We claim that there is a commutative diagram
of sheaves with respect to the smooth topology,

A' -^ Ext^Aj^x)
I I

^A' —^ ^Ext^A^) ^— z*Hom(^A,Q/Z)

with the pairing homomorphism occurring in the lower row. To define the
map in the first row, we look at the isomorphism A^ -^Ext^A^, Gni,2<);
given by the duality between AK and A^-, and take its direct image under
j; it is of the desired type since .^Ext^A^.Gm,^) = Ext^A.j^Gm,^) by
[12], VIII, 6.6. The first vertical map is, of course, the projection of A' onto
its component group, whereas the second one is induced from the projection
J*Gm,j< —> z*Z, using the fact that Ext^A.^Z) = ^Ext^A,^) by [12],
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VIII, 5.5 and 5.9 (these results extend to the smooth topology). Finally,
that the diagram is commutative, at least with respect to the etale topology,
follows from [12], VIII, 7.3.4. But then, since the points with values in etale
extensions of R are schematically dense in A', the diagram is commutative
also with respect to the smooth topology.

In terms of the above diagram, Grothendieck's conjecture on the
pairing (*) being perfect is equivalent to the bijectivity of the map

(**) <t>A' ——Ext^^Z),

and of the corresponding one with A and A' interchanged. Furthermore,
for any subgroup ^ C <^A? th^ kernel of

(I)A' —^Ext^^Z) —^Ext^Z)

is the orthogonal complement of i? under the pairing (*).

Let us switch now to rigid JC-spaces and their St-models; the mor-
phisms i and j are as in Section 1. Then, due to the well-known properties
of the rigid GAGA-functor, see [14], due to the representability of G^K-
torsors, see 2.1, and due to the cohomological characterization of group
extensions, see 2.4, the duality isomorphism A^ -^Ext^Aj^Gm,^) car-
ries over to an isomorphism of sheaves in the rigid category. In fact, if we
restrict this map to the etale topology on K^ both isomorphisms, in the
algebraic and the rigid sense, coincide. Using 2.3, it follows that the above
isomorphism extends to an isomorphism A' -^Ext^A^Gm,^), where
now A and A', as well as j^Gm,K are the Neron SR-models of Aj<, A^-, and
Gm K- Furthermore, just as in the scheme case, there is a canonical isomor-
phism Ext^A^Z) -^^Ext^^Z), see 2.5, which we also might write
in the form of an isomorphism ^Ext^A^Z) -^Ext^^Z) by 1.1. In
the following we will simplify our notation by not explicitly mentioning ^
on the level of component groups and their Ext -groups.

PROPOSITION 4.1. — There is a canonical commutative diagram

A' ^ Ext^Aj.Gn^)
[ I
^ —, Ext^^Z)

of sheaves on the small model smooth site over SR, with the pairing
morphism (^) occurring at the bottom place. It is commutative and, if
restricted to the small etale site over Sft, coincides with the corresponding
one in the scheme case.



COMPONENT GROUPS OF ABELIAN VARIETIES 1273

Proof. — The diagram coincides with the one we have in the scheme
case if we restrict to the etale topology. In particular, the diagram is
commutative with respect to the etale topology. As the points with values
in etale extensions of 3? are schematically dense in A', the diagram is
commutative also with respect to the smooth topology, n

5. Criteria for perfect ness of the pairing.

We can enlarge the diagram of 4.1 to get a diagram with exact
columns as follows:

0 Hom(A,^Z) == 0
I I

A'o _^ Ext^A.Gn^)

I [
A7 -^ Ext^A.^Gn^)
I I

(I>A' —— Ext^A^) ^- Hom(^A,Q/Z)

Of course, A'0 is the identity component of A', and we have Hom(A, %+Z) =
0, since the formal part of A consists of only finitely many connected com-
ponents. Thus, the map A'0 —> Ext^A.Gm,^) exists and is a monomor-
phism. There is the following criterion:

PROPOSITION 5.1. — Grothendieck's pairing (J)A x (J)A' —^ Q/Z
is perfect if and only if A'0 —> Ext^A.Gm,^) and the corresponding
morphism with A and A' interchanged are isomorphisms.

Proof. — The morphisms

A'0 -^ Ext^A.G^), A° -^ Ext^A'.Gn^)

are bijective if and only if the maps

(f>A' —> Hom(^A, Q/Z), (f)A —> Hom(<^, Q/Z)

obtained from Grothendieck's pairing are injective; thus, if and only if this
pairing is non-degenerate on both sides and, hence, perfect. D

Next, let

0 —— MK —— EK —— AK —— 0, 0 —— MK —— EK —— AK —— 0
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be the uniformizations of Aj<, A'^ in the sense of [8], 1.2, and

0 —— TK —— EK —— BK — 0, 0 — TK — E^ — BK — 0

the associated Raynaud extensions exhibiting EK 5 E'^ as semi-abelian
group schemes.

PROPOSITION 5.2. — Assume that the pairings (f)A x 4>A' —^ Q?/^ and
0B x ^B' —)> Q/^ ^G perfect, and consider the following canonical maps:

Ext^A.Gn^) ——Ext^.Gn^) —Ext^B.Gn^).

Then, restricting sheaves to formal parts and to the etale topology and
assuming that k is perfect or TK has multiplicative reduction, the left map
is an epimorphism and the right map is an isomorphism. More precisely,
there is a canonical commutative diagram

0 —> T'nE^ —> E/0=A/0 —> B'° —> 0
I I

Ext^A.Gn^) — Ext^.Gn^)

with an exact upper row and the vertical maps being canonical identifica-
tions in the sense above.

Proof. — Using the perfectness of the pairings, there are canonical
maps

A^^Ext^A.G^) —Ext^Gn^) ̂  Ext^B.G^) ̂ B'0.

Furthermore, the Raynaud extension of AK gives rise to an exact sequence
of Neron models

0 —>T —> E —> B —>0,

since R^J^TK = 0 by [8], 4.2, and, hence, to an exact sequence

Hom(r,Gn^) ^Ext^B.Gn^) ——ExI^G^) —ExI^G^).

So, using 3.4, it follows that Ext^B.Gni,^) —> Ext^.Gm^) is an
isomorphism, at least if restricted to the etale topology on formal parts.
Thus, all in all, the above sequence of maps yields a morphism z*A'° —>
FB'0, if we restrict to the etale topology on formal parts.

On the other hand, the uniformization theory of A'^ yields canonical
maps

A'0 — E'° — B70
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where the left one is bijective on formal parts by [8], 2.3. As E ' —> B' and,
hence by [8], 4.8, also E ' ^ —> B'0 are epimorphisms, the above sequence
of maps yields an epimorphism z*A'° —> z*B'° with kernel T" D A'0. But
then, going through the duality theory of [3], Sect. 6, one can realize that
the map coincides with the preceding one. Thus, we are done. n

Using the idea of 5.2, we can derive the perfectness of Grothendieck's
pairing in certain situations.

THEOREM 5.3. — Assume that the pairing (/)B x ̂ p ' —^ Q/Z is perfect
and, furthermore, that one of the following conditions is satisfied:

(i) TK and T^ have multiplicative reduction.

(ii) k is perfect, and the component groups <I)T, ^T' are torsion-free.

(m) k is perfect, and the abelian parts with potentially good reduction
BK, B'K are trivial.

Then the pairing (J)A x ^A' —^ Q/^ is perfect.
To prepare the proof, let us consider an exact sequence

0 —> MK —>M~K —> MK —> 0

as in 3.1. Then we define E~^ via the diagram

0 —— MK —— EK —— AK —— 0
i I I

0 — MK — EK —— AK — 0

where the lower row is the push-out of the upper one with respect to the
injection MK —^ M^. Since R^j^M^ = 0, the lower row gives rise to an
exact sequence of associated Neron models

0 —,M+ —> E^ —> A —>0
which we will use.

LEMMA 5.4. — There is a commutative diagram
rn^O eo ^ rp/O Oi° ^ ^Q

I I [
Hom(M+,Gn^) -^ Hom(M,Gn )̂ Ext^A.G^)

[ I I
Hom(M+,j,G^^) ——. Hom(M,̂ Gn,̂ ) ̂  Ext^Aj.G^)

r® r A'
with the following properties:
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(i) WritingT^ for the Neron model of the torus TJ^ = Hom(M^, Gm,j<),
all vertical maps are canonical inclusions. In fact, Hom(M, Cm %) equals the
subgroup oiT' corresponding to the torsion part of(^T'-

(ii) e and £tor ^re induced from the monomorphism M ^-> M^~, whereas
e° is the map between identity components; e is an epimorphism if the
residue field k of K is perfect.

(in) a is the map obtained from the uniformization theory of A^, and
a° is its restriction to identity components.

(iv) The composition a^ = a o e is the map occurring in the long
Ext sequence associated to the above short exact sequence involving M'^,
E^~, and A. The same holds for a^ = a o dor, viewed as a map to
Ext^A.Gn^).

Proof. — For assertion (i) we refer to 3.2. So let us look at the
remaining ones. The map

a^Hon^M^Gn^) ——Ext^Aj.Gn^)

induced from the long Ext sequence associated the short exact sequence
involving M"^, ^+, and A, has as rigid part a map

a^:Hom(M^,Gn^) —Ext^A^G^)

so that we can write a"1" = j*a^; use 2.3. As the formation of long exact
cohomology sequences is compatible with restriction to rigid parts, we may
interpret o^ as being obtained from the long exact cohomology sequence
associated to

0 —, M^ —>E~^ —>AK —> 0.

In a similar way, writing AK as a quotient of EK by MK-, we get a morphism

aj<:Hom(Mj<,Gn^) ——Ext^A^Gn^).

Comparing both long exact cohomology sequences, it follows that a~^ must
factor through OK via CK- However, OK is well-known. Namely, using the
identifications HomfM^, Gm,j<) = T^ and Ext^A^, Gm,x) = A^, we can
view it as the canonical map T'^ —> A'^ obtained from the uniformization
theory of A'^. To justify this, one has to realize that the connecting
homomorphism a^ associates to any homomorphism XK'-MK —> Gm,j<,
say over any rigid base SK-) the push-out of

0 —> MK —> EK —> AK —> 0
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under XK and that we may interpret the latter as an 6^-valued point of
A^. On the other hand, using the duality theory of [3], in particular, 4.12
and 6.8, one has to observe that the same push-out is obtained, when we
take the image of XK under the map T^ —> A'^.

The map OK has a Neron model a: T ' —> A', and it follows that a^
factors through a via e. The latter map is surjective. Namely, the exact
sequence

0 —> MK —>MK —> MK —^ 0

gives rise to an exact sequence of tori

O-^-^-^—.O

and to an exact sequence of Neron models

0 —> T° —> r® —>T' —> 0,

since ̂ j^ = 0 by [8], 4.2. Thus, 5, which coincides with T® —> T', is
surjective. This settles the assertions of the lemma, n

Now let us do the proof of 5.3. Starting out from the uniformization

0 —> MK —> EK —> AK —> 0

of AK, we choose an exact sequence

0 —> MK —> MK —> M~^ —> 0

as in 3.1 and look at the exact sequence

0 -^ M^ -^ E^ —. AK -^ 0

obtained from the above one via push-out with respect to MK —> M^.
In the case, where the tori TK, T^ have multiplicative reduction, we set
M^ = MK and EK = E K ' This works, as MK, the group of characters of
r^, becomes constant over an unramified extension of K, so that we must
have ^(I.MK) = 0; cf. [8], 4.4. Switching to Neron models, the above
exact sequence yields an exact sequence

0 —> M+ —> E^ —> A —> 0,

as well as the following part of the corresponding long Ext sequence:

Hom(M+,G^) —Ext^A.G^) ——Ext^+.Gn^).
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Writing T® for the Neron model of the torus T^ = Hom(M^,Gm y\ we
know from [22], 2.7, that the component group (^re is torsion-free. Hence,
using 3.2, it follows that HomfM^Gm ») can be identified with the identity
component T90 of T9. Moreover, if 7^ is the torus part of £^, we know
from 5.4 that T90 —> A'0 ̂  Ext1 (A, Gni,%) factors through the canonical
map T'° —> A'0 via a map £°: T90 —> T'0; the latter is an epimorphism
by [8], 4.8, since the corresponding map e'.T® —> T ' is an epimorphism.
Thus, writing T'0 again for the common image of r®° and T ' 0 in A°, we
arrive at canonical monomorphisms

A^/r'0 ^Ext^A.G^/r'0 ^Ext^^+.Gn,^) —Ext^G^),

which, with respect to the etale topology on formal parts, we may continue
by the inverse of the isomorphism Ext^i^Gm^) ^— B'0 of 5.2. The
composition is surjective by 5.2.

The main problem is now to get information on the map

TiExt^+.G^) —Ext^.G^).

If it is injective on the image of Ext^A.Gm^/r'0, the map A^/T'0 ̂
Ext1 (A, Gm^)/r'° must be bijective, and we see that A'0 ̂  Ext1 (A, Gm,%)
is bijective so that we are done. So let us go through the cases listed in 5.3.
First, if TK and T^ have multiplicative reduction, we can set M^ = MK
and E^~ = E. Then r is the identity, and the desired assertion follows.

Next, let us assume that k is perfect and that the torsion parts
of (J)T and (f)T' are trivial. Then the cohomology groups H^^I^MK) and
^(J.M^) are trivial by [22], 2.19, and we can set M^ = MK and
E~^ = EK again. A more direct argument works as follows. Choose a finite
Galois extension L / K such that AK and A'^ acquire semi-stable reduction
over L. Then the epimorphism E^ —> A^ induces an isomorphism
E^° -^ A^° on the parts corresponding to identity components of Neron
models over the valuation ring of L; cf. [8], 2.3. By Galois descent on
the rigid level, the epimorphism E^ —> A^ induces an isomorphism
E^°° -^ Aj^00 between quasi-compact open subgroups which occur as
descended forms of E^° and A^°. In particular, the morphism E ' —> A'
between Neron models restricts to an isomorphism E'00 —> A700 of open
subgroups, which can be interpreted as the Neron models of E^°° and
A^-00. Furthermore, it follows that E"00 c Ef is the subgroup corresponding
to the torsion subgroup of ( J ) E ' - Now, using an argument of base change,
we see that Ext^A^m,^), as a subgroup of A'0, must be contained in



COMPONENT GROUPS OF ABELIAN VARIETIES 1279

A'00. Since the kernel of E'00 —> B/ is precisely T ' H ̂ '°°, and since <^
is torsion-free, this kernel reduces to T"°. From this it follows that the map
Ext^A.Gm^O/r'0 —> B'0 is injective, and we see that Ext^A.Gni,^)
must coincide with A'0.

It remains to discuss the case where BK, B^ are trivial and, hence,
EK, EK coincide with the tori TK, T^. From the commutative diagram

0 —— MK —— TK —— AK —— 0
i i i

0 —> MK —> TK —> AK —> 0

we obtain an exact sequence

0 —— TK —— T^ —— MK —— 0

and, using [8], 4.2, an exact sequence of Neron models

0 —> T —> T^ —>M~ —> 0.

As Ext^M'.Gm,^) is trivial by 3.3, it follows that the canonical map

Ext1 (T^, G^) -^ Ext1 (T, G^)

is injective. Thus, also in this case, the desired assertion follows, n

^ Remark 5.5. — The above proof, in particular, the second argument
we have given for establishing 5.3 (ii), shows that the assertion of 5.3
extends to the case where the kernels of the maps (J)T —^ (f>E ^d
(f>T' —^ ^E' are as big as possible; i.e., contain the full torsion parts of
(J)T^ resp. ( ^ T ' - I11 other cases, a better knowledge of these kernels should
make it possible to derive the assertion of 5.3 in more general situations.

6. Duality of the natural filtrations.

We continue to consider an abelian variety AK over K and its dual
A^-, as well as the corresponding Neron models A, A' and their component
groups 0A? ^ A ' - As before, let

0 -^ MK —> EK —> AK —> 0, 0 —> MK —^ EK —>AK —> 0

be the uniformizations of AK, A^ in the sense of [8], 1.2, and

0 —— TK —— EK —— BK —— 0, 0 —— TK —— EK —— BK —— 0
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the exact sequences exhibiting EK, E^ as semi-abelian group schemes. Also
we will need the exact sequences

0 —— MK —— MK —— MI^K —— 0, 0 —— M'K —— MK —— M'^K —— 0,

where Mj^, M^ are the biggest free quotients of MK, M^ which are fixed
by the inertia subgroup I of the absolute Galois group of K. The groups
Mi^K.M'i K give rise to subtori Tj^ ̂  TK and T^ ̂  7^, and we can
consider the quotients EK = EK/MK and E'^ = E ^ / M ' ^ . Switching to
Neron models and their component groups, we have then a commutative
diagram

0 —> (f)Ti —> (f)T —^ ())E —^ (f>E
T T T T
0 ——> (^tor ——> <^,tor ——^ ^E,tor ——^ ^E

where the vertical maps are inclusions of torsion subgroups. We may take
now images in 0A, which we indicate by a bar . As 0^ = (^A, see [8], 5.4,
we thereby get the nitrations

S : 0 —> ~(f>^ —> 0y —y ~4>E —^ 0A
T _ T _ T _ T

9 : ° ——' ^T,tor ——^ ^E,tor ——> ^E^tor ——^ ^A

of [8], section 5, which were called the S- and 9-filtrations and which
correspond to Lorenzini's nitrations [15] on prime-to-p parts (p the residue
characteristic oiK). Of course, there are corresponding '-nitrations for 0A7.

As in the previous section we require in the following that the residue
field k is perfect, or that the tori TK, T^ have multiplicative reduction.

THEOREM 6.1. — Assume that Grothendieck's pairings (J)A x (J)A' —>
Q/Z and 0a x ^B' —> Q/Z are perfect. Then the ^-filtration on (J)A is the
orthogonal of the Q-filtration on (f)A1, and vice versa.

We will split the proof of 6.1 into several pieces. As the dual of A^
coincides with AK, and the pairing is assumed to be perfect, it is enough
to show the following assertions:

(6.1.1) 0jv is the orthogonal complement of^^or-

(6.1.2) (f)^ is the orthogonal complement of<^,^..

(6.1.3) (f)T',tor is tne orthogonal complement of<^.
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Let us start with the verification of assertion (6.1.1). We choose an
exact sequence

0 —> MK —>MK —>MK —> 0

as in 3.1 and define E^ via the diagram

0 —> MK —> EK —> AK —> 0
i i I

0 —— M^ —— EK —— AK —— 0

where the lower row is the push-out of the upper one via the injection
MK —)> M^. Then, since R^j^M^ = 0, the lower row gives rise to an
exact sequence of associated Neron models

0 —>M~^~ —>E^~ —>A —>0

which we will use in the following. From the exact sequence

0 —> EK —>EK —>MK —> 0

we get an exact sequence

0 —> E —> E^ —>M< —> 0,

where M< denotes the cokernel of the map between Neron models E —>
-E^; one can show that '^A^ is a subgroup of finite index in z*M~.

LEMMA 6.2. — The group Ext^M^^Gm,^) is trivial. Hence, the
canonical map Ext^E'^^Gm,^) —^ Ext1^, 7'^Gm^) is injective.

Proof. — We show that the canonical map

Ext^M-j.G^) —Ext^M^G^)

is an epimorphism. As Ext^M'^Gm,^) is trivial by 3.3, this is enough.
So consider a ^Gm, ̂ -extension ^< of M<. Then, by 2.3, its rigid part
gives rise to a j^Gm,K-extension H of M~ which prolongs f^, and we are
done. D

In order to verify assertion (6.1.1), let us look at the following
commutative diagram whose maps we think to be restricted to formal parts
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and to the etale topology:

Ext1 (A, Gn^) —— Ext1 (E, Gn,^) —— 0
i i

Hom(M,j,G,n,x) -°-^ Extl(A,^G^K)^Extl(E,^Gn,,2<)
i Jl i

^, -^ Exti^Z) -^ Ext^.Z)
JL i
0 0

All maps are the canonical ones, including a, which we have introduced in
5.4. The first row is exact due to 5.2. Using 5.4 and 6.2, we see from the
exact sequence

Hom(M+,̂ GH,,K) ——Ext^A.^Gn^) ——Ext^+.^G^K)

that also the second row is exact. Furthermore, the columns are exact, and
an easy diagram chase shows that also the third row is exact. But then
assertion (6.1.1) is clear from the following statement:

LEMMA 6.3. — AE tor C A be the open subgroup corresponding to
the subgroup <^ ^or c ^Ai a^id £'tor C E the open subgroup corresponding
to the torsion subgroup (J)E,\,OT C (f)E- Consider the commutative diagrams

A ^- A^tor Ext^A^) ^ Ext^^or^)

T T b [ [ c

E ^ Efor Ext^.Z) -^ Ext^^tonZ)

where the nght one is obtained from the left by applying Ext^', z*Z); use
2.5. Then c is an isomorphism, and d is a monomorphism. In particular,
ker a = ker b.

Proof. — First, c is an isomorphism since the canonical map
0£?,tor —> ^E tor l s an isomorphism. To show that d is a monomorphism, it
is enough to mention that (^E/^E^or ^ an etale A:-group scheme, torsion-free
and finitely generated, n

Next, let us concentrate on assertion (6.1.2). The exact sequence

0 —— MI^K —— EK —— AK —— 0

gives rise to an exact sequence of associated Neron models

0 —> Mi —> E —> A —^0,
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due to the fact that MI^K is invariant under the inertia group I and,
hence, that ^J^MI^K = 0 by [8], 4.4. Similarly as before, we consider
the commutative diagram

Hom(Mj,̂ Gn,̂ ) -°̂  Ext^A.^Gn^) -^ Ext^^G^)

^ ^ , ^ '
^ ^ Ext^A^) —^ Ext^.Z)

where the first row is the long Ext sequence for j^Gm,K associated to the
above short exact sequence. Again, we can identify the map a with the
canonical map T[ —> A' so that we obtain the map (pa in the second row.
In order to show that the second row is exact, we look at the exact sequence

Ext^A.Gn^) —Ext^.Gn^) —Ext^Mj.Gn^).

As Ext^M^Gm^) is trivial by 3.3, the left map is an epimorphism, and
we can conclude that the lower row of the above diagram is exact. But
then, similarly as before, the assertion of (6.1.2) follows from the following
statement:

LEMMA 6.4. — Let A^ ̂  C Abe the open subgroup corresponding to
the subgroup 0^or c ^A? and £'tor C E the open subgroup corresponding
to the torsion subgroup 0^ ̂  C (j)^. Consider the commutative diagrams

A ^ A^ Ext^Z) -^ Ext^^.Z)
T T b [ [ c
E ^- E,^ Ext^.Z) ——^ Ext^^.Z)

d '

where the right one is obtained from the left by applying Ext^-, ̂ Z); use
2.5. Then c is an isomorphism, and d is a monomorphism. In particular,
ker a = ker b.

The proof is the same as the one of 6.3. D

It remains to verify assertion (6.1.3). To do this we introduce the
biggest submodule Mj^ c MK, which is fixed by the inertia group J, and
consider the corresponding exact sequence

0 —> MK —>MK —>MK —> 0,

as well as the associated exact sequence of tori

0 -^ TK -^ T'K -^ T'K -^ 0.
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We claim:

LEMMA 6.5. — The map of component groups </)y, —> <^/ corre-
sponding to the injection t^ —> T^ maps <^v surjectively onto ^r^tor,
the torsion part of ( / ) T ' .

Proof. — The problem is trivial if T^ has multiplicative reduction.
So we may assume that k is perfect. First note that the component group
^>jv is a torsion group, since t ' must have a quasi-compact Neron model
by [6], 10.2.1. There is an exact sequence of Neron models

0 —> t' —> T' —> T'1 —> 0

by [8], 4.2, and, hence, an exact sequence of component groups

<^jv —> (f)T' —^ (f)^'1 —^ 0

by [8], 4.9. As ̂ 'i == Hom(M^,Z) by [22], 1.1, this group is torsion-free,
and the assertion of 6.5 follows, n

Now, fix an exact sequence

0 —> MK —>M^ —>M^ —> 0

as in 3.1 with H^[I,M~^} = 0 and M~^ invariant under I . Writing
EK = E K / M J ^ , we can consider the exact sequence

0 —> MK —> EK —> AK —> 0

and its push-out

0 -^ M^ —. E^ -^ AK -^ 0

with respect to MK —> M^. As in the proof of (6.1.2), we get an exact
sequence of Neron models

0 —^M+ —>E~^ —>A —>0

and an associated long Ext sequence, part of which occurs as the first row
of the following commutative diagram:

Hom(M+,^G^) ^ Ext^A.^G^) ^ Ext^+.^G^)

^ £ II , [ r

Hom(M,j,Gni,x) -°-^ Ext^A.^G^x) ̂  Ext^E.nG^^
I I I

<^,tor -^ Ext1^^) -^ Ext^^.Z)
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The left upper square exists by an argument as the one used in the proof
of 5.4.

LEMMA 6.6. — (i) e is an epimorphism, f is a monomorphism.
(ii) The rows of the diagram are exact.

Proof. — That e is an epimorphism follows as in the proof of 5.4.
To see that f is a monomorphism, we can proceed as in 6.2. Then, as
the first row of the diagram is exact, the same is true for the middle one.
Furthermore, by the usual argumentation, we can show that also the last
row is exact, provided we know that the canonical map

A'0 =Extl(A,G^) —Ext^Gn^)

is an epimorphism on formal parts, when restricted to the etale topology.
To verify this fact, we use 5.2 and look at the commutative diagram with
exact rows

0 -^ rnA70 -^ A'0 -^ Ext^.G^) -^ 0
I l r i '

Hon^M^Gn^) — Ext^Gn^) — Ext^G^sp).

As the component group of T ' 1 = Rom(M1.j.Grr. ?<) does not have
torsion, the epimorphism T ' —> T ' 1 must map T' D A'0 into the identity
component T'70, so that the left vertical map really exists. Using [8], 4.8,
we see that it is, in fact, an epimorphism. Then a diagram chase shows that
the middle vertical map is an epimorphism, too. D

Now similarly as before, we can finish the proof of (6.1.3) by estab-
lishing the following assertion:

LEMMA 6.7. — Let AE C A be the open subgroup corresponding to
the subgroup <^ c <^A. Then E —> A factors through AE. Consider the
commutative diagrams

A ^ AE Ext^A.Z) -a-^ Ext^^.Z)
T T b [ [ c

E == E Ext^.Z) == Ext^.Z)

where the right one is obtained from the left one by applying Ext^-, ̂ Z);
use 2.5. Then c is an isomorphism. In particular, kera = kerb.

Proof. — As we have an exact sequence 0 —> M —> E —> A and
as M1 —> M is a formal isomorphism, also E = E/M1 —> E / M = AE is
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a formal isomorphism. Thus, the induced map on component groups is an
isomorphism, and it follows that c is an isomorphism. D
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