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EXTENSION AND RESTRICTION
OF HOLOMORPHIC FUNCTIONS

by K. DIEDERICH and E. MAZZILLI

1. Introduction.

In [20] (see also [18]) T. Ohsawa and K. Takegoshi showed the
following result:

THEOREM 1.1. — Let D CC C71 be a bounded pseudoconvex domain,
^ : D — ^ R U { — o o } a plurisubharmonic function and A C C71 a complex
linear hyperplane. Put D' := D D A. Then there is a constant C depending
only on the diameter ofD such that for any function f € 0(D1) with

{ l/lV^-i < oo
J D '

there is a function F € 0(D) satisfying F\D' = / and

/ ^e-^dXn^C f ^e-^dXn-i.
JD JD'

Meanwhile, this fact has proved to be an extremely useful tool in
complex analysis and complex algebraic geometry (see, for instance, the
recent articles [5], [6], [7] and [21]).

There are many ways of generalizing the question of extending
holomorphic functions from submanifolds. Here, we will be interested in
the following two possibilities:

1) Replacing the I^-norm by Lp-norms for 2 ^ p $ oo.

Key words: Extension of holomorphic functions - A^-spaces - Weighted Bergman spaces
- Pseudoellipsoids.
Math. classification : 32F15 - 32A10 - 32A35 - 32H10 - 32D15.
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2) Introducing plurisubharmonic weight functions into these norms
and investigating their dependence on the geometry of QD.

Both questions will also be asked for complex submanifolds A of
higher codimension.

Many positive results concerning these questions can be found in
the literature. We mention, for instance, the articles [13], [I], [4], [2], the
book [14] and the articles [19], [12], [10], [9], [11]. A long time before
this development H. Skoda showed in [22], how deep theorems on division
and extension can be derived by refinements of the I^-theory for the <9-
equations.

In the case of question 1) the situation can be drastically different
from the spirit of the result of T. Ohsawa/K. Takegoshi, as has already
been shown in the article [17] by the second author (see also his thesis
[15] and [16]). In fact, the proofs of the present article use some of the
construction principles of [15] in an essential way. We will show, for
instance, that for any 2 < p ^ oo and any given e > 0 there is, for
any sufficiently large n, a pseudoconvex domain D CC C71 with smooth
polynomial boundary and an affine linear subspace A C C71 of sufficiently
large dimension and codimension, such that there is no extension operator
from HP{D') := LP(D') n 0{D') to f^+^D).

The main motivation for asking question 2) is the well-known obser-
vation (see also the above-mentioned literature), that in certain situations
there is a "regularity gain" for the holomorphic extension of holomorphic
functions from submanifolds. In fact, it has been tried to characterize this
gain in terms of the geometry of QD' and this should, in principle, be pos-
sible. However, in a certain sense it does not only depend on the Levi form
of QD. Namely, in this article we give an example of a pair (D, A) where A
has codimension 1 and the Levi form of OD is strongly positive definite in
all directions transverse to A at all points of QD', but, nevertheless, there
is essentially no gain for the extension of holomorphic Z^-functions from
D' to D.

An important question asked by several authors is, whether for any
bounded pseudoconvex domain D CC C71 with C°°-smooth boundary and
any affine hyperplane A with D' '.= D D A there is a plurisubharmonic
function ^ on D' such that one has for the restriction map r : 0(D) —^
0{D')

(1.1) r(H2(D))=H2(D/^).

(For notations see the next section.)
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We show in this paper, that this is in general not the case. In fact,
we will construct a pair (D^A) and functions / (E H2(D) and g G 0{D')
with \g\ ^ |^(/)| everywhere on D', such that, nevertheless, the function
g cannot be extended to a function in H2^). This shows, surprisingly
enough, that the Z^-holomorphic extendability of holomorphic functions
/ € 0{D') to D is not just a question of the size of /.

Acknowledgments: The work presented in this article was partly done,
while the second author was a research visitor at the "Sonderforschungs-
bereich Mathematik" of Bonn University. We thank this institution and
the DFG for supporting our project.

2. Notations and results.

For an open set U C C^ and a measurable function y : U —^ RU{—oo}
we define the Hilbert space

L2(£7, ̂  := L : U -^ C| / l^l'e-^ d\ < oo I

and put H2^^) := L2^^) D 0(U). Furthermore, for any real number
1 < q < oo, we use in this article the notation Hq(U) :== L9 (£7) H 0(U)
and, similarly, for q = oo, Hq(D) := L°°(D) U 0{D). (This should not be
confused with Hardy spaces).

Finally, we denote for any integer l ^ p ^ n — I b y A p the complex
linear hyperplane

Ap :== [z € C^zi = • • • = Zp = 0} C C"

of codimension p.

Our main results are:

THEOREM 2.1. — Let n ̂  3 and 2 ^ q ^ oo. Then there is for any given
e > 0 a bounded pseudoconvex domain D C C71 with smooth real-analytic
boundary with Df := A\ r\D 7^ 0 and Ai intersects 9D transversally, such
that there is a function f G Hq(Df) which does not have a holomorphic
extension in the Banach space H^+4+£(D) (resp. in H6^~E(D) for q = oo).

Remark 2.2. — Notice, that, according to [8], the domain D of the
theorem necessarily is of finite type.
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When affine subspaces A of arbitrarily high dimension and codimen-
sion are admitted, the regularity bound in terms of Hq can get arbitrarily
close to 2, as the following result shows:

THEOREM 2.3. — Choose arbitrary integers p ^ 1 and 2 < q ^ oo.
Then there is for any e > 0 a pseudoconvex domain D CC C233"1"1 with
smooth polynomial boundary and a function f € Hq(Df), D' := D H Ap,
such that f does not have a holomorphic extension in H ip+4 ^(D) (resp.
H^^^D) for q = oo).

An immediate consequence of this is:

COROLLARY 2.4. — For each e > 0 there is a positive integer p and
a pseudoconvex domain D CC C2^"^1 with smooth polynomial boundary,
such that Ap intersects 9D transversally at all points of QD H Ap -^ 0 and
such that there is a holomorphic function f € H^^D'), D' := D D Ap, not
admitting an extension in H^^^D).

We, now, come to the question of the possible regularity gain, when
extending holomorphic functions from D/ = DnAi to D, when CQD^'I t) >
0 at all points z e QD' and for all vectors t € T^°9D transverse to Ai. If, in
this case, the boundary 9D is extendable in a pseudoconvex way of order 2
along 9D' ^ which one might expect at first (for the definition see [12] and
[10]), then there is always an extension with a "good" gain with respect
to L2-norms with weights ([10]). However, the following result shows, that
the situation can be quite bad:

THEOREM 2.5. — Let \ > 0 be a reaJ number. Then there is a
pseudoconvex domain D CC C3 with C°° -smooth boundary, such that
ZQ := (0,0,1) C 9D, T^°9D ={t= (ti,t2,0) € C3} and CSD^I) > 0 for
all t e T^QD with ti ^ 0, and a function / € H2(Df,-^\ogd(z,9D)),
such that, for any strictly positive numbers r, e € R the function f does
not admit an extension to H2^ H B(^o;r),—(^ — £)\ogd{z,9D)) (here
d(z, 9D) denotes the euclidean distance between z and 9D).

Let, again, -D CC C71 be a pseudoconvex domain such that D/ :=
D H Ai ^ 0. As in the introduction we denote by r : 0(D) —> 0{D') the
restriction map. We want to ask, whether the space r(H2(D)) always can
be characterized as -ff2^7, (p) with a suitable plurisubharmonic function (p
on D ' . Unfortunately, this is far from being true, because we have
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THEOREM 2.6. — There is a pseudoconvex domain D CC C3 with
smooth polynomial boundary and A\ intersecting 9D everywhere transver-
sally, such that the following holds:

There is a function f e H2^) and a function h e O(D') with
\h(z)\ ^ \f(z)\ for all z C D ' , such that h i r(H2(D)).

An immediate consequence of this obviously is

COROLLARY 2.7. — Let D be as in Theorem 2.6. Then there is no
positive measure dv on D' = D D Ai, such that

r(H2(D))=H2(Df,d^.

Remark 2.8. — If D CC C71 is pseudoconvex with smooth C2

boundary and such that D' := DnAi ^ 0 and Ai intersects QD everywhere
transversally, then there always exist plurisubharmonic functions (p on
D' r , such that r(H2(D)) C H2^',^). Namely, for instance, the function
(p := —2\ogd(z^9D) has this property.

3. Cauchy type estimates.

The domains the existence of which is claimed in our theorems are
almost always biholomorphic images of pseudoellipsoids. It is, therefore,
useful for us to introduce the following notations fixed throughout this
article. For any N G IN, N ^ 2, and any n ^ 2 we denote by DN the
following pseudoellipsoid:
(3.1)

f n N 1 }

DN '= \z € C71 : pN{z) := \z^ + |^|2 + Y, |^|2^1 - 1 < 0 Y
[ ^ }

For any e ' > 0 small enough the circle

(3.2) S^) := L = (e^ e16,0,.... 0,1 - e^ : 6 € [0,27r] I

is then contained in DN and is close to the boundary point ZQ :=
(0,. . . ,0,1).
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Furthermore, if p ^ 1 is an integer we write
(3.3)

{ P 2p+l ^
D^ := z e C2^1: p^(z) := ̂  l.,!2^ + ̂  |.,|2 -1 < o \.

j=l j=p+l

In this case, for e' > 0 small enough, the torus
(3.4)

5p(^) := L € C2^ : ^=^2^e%01,...,^2^e^0^0,...,0,l-p^)l

of real dimension p is contained in D^,p close to the boundary point
^o=(0 , . . . , 0 , l ) .

As an important technical tool for the proofs we will need Cauchy
type estimates for the values of functions in Hq(DN) resp. 7 (̂1 ,̂) on
S^) resp. Sp(e/). Here comes the first:

LEMMA 3.1. — For any N ^ 2 there is a constant CN > 0 such that
one has for all 2 ^ q < oo and all functions f € Hq(DN) the estimate

1/^)1 ^ ̂ ll/IL^^c^)4"^
for all z € S '̂), e' > 0 sufficiency smaJJ.

Proof. — We use the Henkin-Ramirez integral formulas with weight
factors as established by B. Berndtsson and M. Andersson in [3]. (The use
of the usual Cauchy estimates on suitable polydiscs also would be possible.)
They give for any function / e Hq(DN) a representation of the form

(3-5) f(z)= ( /(C)P(C^)
J^DN

for all z C DN. Here

( - //-\ \ 71+1 / / 1 \ 7l\
/q fi\ -p//- ^ ____________PN[Q \ ( ̂ , ( 1 \ \w ^= (^(o,.-c)+^(c)J r^rMo)}

From the Holder inequalities we, hence, get

(3.7) \ f ( z ) \ ^ ( { |/(C)|^A(C)yf / \P^z)\^d\((:)} q .
\JDN / \JDN )
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We consider for a sufficiently small radius r > 0 the ball B := B(zo, r) and

choose a constant C > 0 such that \——\ > C for all C e B. If £:' > 0 is
oQn

small enough, we have S ^e') C B{zo, . ) . Hence it follows from (3.5) and
(3.6), that there is a constant K > 0, such that

/ \P^z)\^d\((:)^K[ \r^z)\^d\(Q
JDN JDNHB

for all z € S^e ' ) . On the other hand, the classical way of estimating Cauchy-
Fantappie kernels of the form (3.6) gives the abbreviation

P(C,^) :=pN(z) - MC) + l̂ i - Cil2^1

n-1

+ E ̂ 2N+1 + l<2l2 + Î ^N^), Z - C)|
J=3

the inequality
T-rn-1 i> \2N+1-2

(3.8) p(C,.)|<^11^^——.

With the triangle inequality |Ci| < ICi-^il+l^il one obtains for all z € S(e/)
the estimate

(3.9) ^(c^)i^^[p(c^r
with a := — ^ -i (3+ n "̂  ) • ^or integrating this inequality we make the
following Henkin type change of variables:

' HI = Ci - ̂ i
(3.10) < :

^n-l := Cn-1 — ^n-1

. Un = PN(C) + Zlm<^ (C), 2; - C).

With this the result follows easily. D

We now formulate the necessary Cauchy estimate for the domains
DN,P''

LEMMA 3.2. — Let N ^ 2 and p ^ 1 be integers. Then there is a
constant (7/v,p > 0, such that one has for all 2 ^ q < oo and all functions
f e Hq{DN,p) the estimate

_ 2 ± 2 _ p

1/^)1 ^CN,p\\f\\L^D^d(z^D^p) q ^
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for all z e Sp(e/) and all e ' > 0 sufficiently small.

Proof. — The proof of this lemma is exactly parallel to the proof of
Lemma 3.1. For brevity we now use the definition

p^o^-pM-^o+Ei^-^i2^1
j=i

2p

+ ^ loF+iim^o^-OI.
J=p+l

Estimate (3.8) becomes

H P ^\2N+1-2
\v(c z\\ < r\r _ îî l____TO^C7^ [p(^)]2p+2

where p always means p N , p ' Together with the estimates |<^| ^ IC.^^jl+l^jl
we get for all z C Sp{e')

|p(c^)i^^c^[p(c^r
with a = ———[ [p + 2 + ^p). By integration using again the change of
variables (3.10), we obtain the desired estimate. D

For the proof of Theorem 2.5 we will need the following third version
of Cauchy estimates:

LEMMA 3.3. — Put for any integer k ^ 2

Dk := {z € C3 : |^i|2 + l^l2' + |^|2 - 1 < 0}

and ZQ := (0,0,1). Let \ > 0 be a real number. Then there is a constant
Cq > 0 such that for all sufficiently small numbers r, e' > 0 and a2i functions
h e H2^ H B(^o, y*), -xlogc^, ac^)) the estimate

1^)1 ^ ̂ ll^ll^^nB^^^-xlog^^))^^3^^

holds for all z on the circle S(e') := {z = (0,£'Ae^, 1 - (22^ + 1)^) : 0 e
[0,27T]}.
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Proof. — For e1 > 0 sufficiently small and any point z = (zi, ^2, z^) G
5'(£'), we consider the polydisc

(3.11) ^ := { C : ICil ^ ^'1/2, IC2 - ̂ 2| ^ e^, |C3 - z,\ ̂  e'} .

Then Vz C -Dfe ^l -S(^o; ̂ ) ^d from the Cauchy mean value inequality we
get

(3.12) '^^voHpj/ md^

for all z C S '̂) and for all h C 0(Dk). If we take h € ^(Afe Fl
-0(^0^)5 -X^g^^^fc))? we get by applying the Holder inequality to
(3.12)

1/1(201 ^ ̂ voKPJ11^11^^05^^'-^1^^^^))

which implies the lemma. D

4. The relevant examples.

In this section we construct the examples of domains D and holomor-
phic functions h on D' = D H Ap needed for the proofs of the theorems. At
the same time we will investigate in a series of lemmas the growth behavior
of possible holomorphic extensions of the functions h to D. In fact, more
precisely, the domains D of the theorems will be certain biholomorphic im-
ages of pseudoellipsoids. In this section we will, as in the previous section,
only consider the relevant pseudoellipsoids D. They, then, will have to be
intersected by suitable complex manifolds V C C"' and we will construct
the required holomorphic functions on D' := D Fl V and investigate the
growth behavior of their possible holomorphic extensions on the circles as
considered in Lemmas 3.1, 3.2 and 3.3.

At first we show

LEMMA 4.1. — Let N ^ 2 be an integer and define the domain DN
as in (3.1). Put

VN^{z^Cn'.ZN +^2=0}.
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Furthermore, let 2 < q ^ oo be any real number and
^N-1

fN(z) := —————1 N - 1 , 2 -
(l-^)^-^

Then VN intersects QDN everywhere transversally and /jv ^ Hq(D^)
where D^ := DN H Viv. Furthermore, there is no holomorphic extension
F e O(DN) of / N , such that, for some e > 0 there exists a constant C > 0,
such that one has for an e' > 0 sufficiently small and all z € ^(s:') the
inequality

(4.1) \F(z)\ ̂  C^Z^DN)'^'^^^.

Proof. — We leave the verification of the fact, that VN and ()DN in-
tersect everywhere transversally, to the reader. For estimating the function
fpf we use, that according to (3.1)

(4.2) 1 - \znf^ = -p(z) + Izil2^ + |^|2 + E l^l2^1-
J=3

Hence, on D^i with Xn = Re 2^ and ^/yi = Im Zn the estimate holds

[ oJV+l o ^
(4.3) 1-Xn^C -p(z)+\z,\2 +|^|2+|^|j.

Restricting this to D^ := DN n VN gives

(4.4) 1 - Xn ̂  C[-p(z) + |^i l2^ + |̂ |]

with, possibly, a new constant C > 0. If we plug these estimates into the
definition of the function f^, we get for f^ on D^
(4.5)

1/^)1 < C^-^—————————l-——————, = ——————c——————,.
w (-p(z) + \z^ + \yn\)9 (-?(.) + \z^ + lyJ)9

So, in order to show, that /jv € H9^'^), we have to verify the integrability
of

(4.6) ———————c——————2
(-p(z) +1^+1^1)



EXTENSION AND RESTRICTION OF HOLOMORPHIC FUNCTIONS 1089

over the domain D'^. This follows, if one observes, that after integrat-
ing over the variable z\ at first, it remains to see, that the integral of

a——————————— with respect to the real coordinates — p ( z ) and yn is
(-p(^)+|^|)2-^
finite, which, obviously is the case. After that the integration over the re-
maining variables is trivial.

For the remaining part of the lemma we argue by contradiction.
Namely, let us suppose, that there is a constant C > 0 and a holomorphic
extension F e O(DN) of /N\D^ such that (4.1) holds on S^) for a certain
e > 0. Since the function z^ + z^ vanishes to first order on VN, we can
factorize F as

(4.7) F(z) = ————l^——^-1 + (^ + z,)a^z))
(l-.^)-27r+5

with a holomorphic function a\ on Dpi- Plugging this into (4.1) for any
point z € S ( e ' ) gives the estimate
(4.8)

1 -T-[^~l+^Na^) ^(-p^))-^1-^^'
TCT-+77

.JV,

(l-Zn)^^

for all e ' > 0 sufficiently small and all z € S(ef) with a (possibly different)
constant C > 0. This gives for the same e' and z the inequality

(4.9) ^-+a,(z) ^C^f'^.
Zl

Since the holomorphic disc A(^) := {z = (2:1,0,... ,0,1 - e ' ) : \z^\ ^
^•^m-^ Q ^)^ ^g g^ from Cauchy's theorem

(4.10) I := I ai(^)cbi =0.
Js(e')

On the other hand, we have

1= / - — c ^ i + / ( — + a i ( 2 Q ) cbi.
J s ^ ' ) ^1 J s i e ' ) V^l /

The first term being —2m and the second term according to (4.9) O^),
this is a contradiction to (4.10), if e ' > 0 is taken small enough. D
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Next we consider the domains D^,p as defined in (3.3). We show

LEMMA 4.2. — Let N ^ 2 and p^ 1 be integers and e/ > 0. Define the
pseudoellipsoid DN,? CC C2^1 as in (3.3) and the torus Sp(e') C Dpf^p as
in (3.4). Put

VN,p := [z e C2^1: ̂  +^+i = . . . = ̂  +^ = 0}

D^ p := DN,P H Viv,p and for 2 ^ g < oo

.N-1 N-l2.1 • • • • • 2.p
fN,p(z) := ———•- p(N-l) . 2 '

(l-^+l)^-^

Then /^,p ^ ^(^N,0) an^ /^p ^oels n0^ ̂ aye a11 extension F € 0(DN,p),
such that for an e > 0 and a suitable constant C > 0 the estimate

P(N-1) 2.P(N-1)
(4.11) iF^I^Cd^BD^) 2^ ^s^ 1^

holds on SN,?^) for all e' > 0 sufficiently small.

Proof. — The proof is parallel to the proof of Lemma 4.1. The
transversality of Viv,p and 9DN,p can again easily be verified. Instead of
the estimate (4.3) we, now, have

P 2p

(4.12) l-XN,p^C -/)N,p(-^)+^|^•|2w+l+ ̂  l^+l^p+ll

.»=! ;»=P+1

Restricting this to D'^{ gives

(4.13) l-X2p+i^C -pN,p{z)+^\Zj\2N+\y2p+l\
.?=!

such that fN,p\D'ff^p satisfies the estimate

C(4.14) \fN,p(z)\ ̂
(-PN,p(z)+EP,=l\^2N+\y2p+l\)

Hence, fN,p € ^(D^p) as above.

r
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We, now, suppose, that there is a holomorphic extension F of
fN,p\D^ to DN,P satisfying for some e > 0 the inequality (4.11) on the
torus Sp^e') for all e' > 0 sufficiently small. We have the representation

_____( ^N-1 ^N-1 , V^ ( ^ N i ^ \ - (^\
_1) ., i z! ' " Z p -^ Z^^k+ZP+k)ak{z)F(z)=

k=l(l-Z2p+l)~

with holomorphic functions a^ on D^^p. By putting this into (4.11) the
following estimate on Sp{e/) follows after a few calculations

(4.15) 1 v^ afc(^) rf^6"^^
-—z+2^n^~^ ^ c { £ ) '^ . . . z 1 /-^r[P ^N^ ^ ^illj=i^

3^k

We, next, observe, that for e1 > 0 small enough and T] := {e')2 +1 the whole
solid torus

Tp^) := {z =(77Cl,...,7^,0,...,0,l-p^C2p+l: |0| ̂ IVj =!,...,?}

is contained in DN,?' Hence, since in the denominator of the fcth term of
the sum the factor Zk is missing, we get from Cauchy's theorem

(4.16) ^y 't——{±,dz,^...^dz,=Q.
JSr{e'),^[\.[j=lz3

On the other hand, we can split

T — f ^zl A ' ' ' A ^P(4.17) I = - f
Js^e'Sp^) ^ ' " Z p

r ( 1 ^ ak(z)
+ET^V ^A...Ad.,J s ^ ) { ^ ' " z p ^n^=i^fc=l ^^=1^

J/A;\ j/A;
The first integral is —(2^)^, whereas, according to estimate (4.15), the
second integral is O^')5). Choosing e/ > 0 sufficiently small, for e > 0
fixed, this becomes a contradiction. D

For the proof of Theorem 2.5 we need
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LEMMA 4.3. — Let for k ^ 2 the domain Dk and the circle 5(£') be
denned as in Lemma 3.3, put ZQ := (0,0,1) € 9Dk, let \ > 0 be given and
define

( y : = { ^ e c 3 : ̂ 1+^=0}
(4.18) D^:=Dk^V

f^ •'= ———^t—————•
(1-^)2 '2 log (^-1)

Then / € H2(D^-^\ogd(z,9Dk)) and, for any r > 0 and e > 0 smaJJ
enough, the function f\D^ does not allow an extension h C 0(DkC}B(zo, r))
satisfying the estimate

(4.19) \h(z)\ ^ Cd^QDkY^^^

for all z e S^) and e' > 0 sufficiently small.

Proof. — We have the inequality

(4.20) 1-x^ C[-p(z) + |^i |2 + 1̂  + bsl]

on Dfe, and, hence,

(4.21) i -^^GJ-p^+l^ l '+ l^ l ]

on D^. From it it follows by the same arguments as used in the proof of
Lemma 4.1, that / G H2(D^). Let us, now, assume, that h is a holomorphic
extension of f\D^ satisfying the estimate (4.19). Then we can factorize h
as

h(z) == ————3————————(z2 + (zj + ^i)ai(z))
( l-^)2+tlog(^-l)

with a holomorphic function a\ on Dk r\B(zQ, r). A small calculation using
(4.19) and (4.20) gives

(4.22) -L+a^) ^ Ce^^oge'.
^2

On the other hand, we have

r ( i r ( i \0= / a i (z)^2=- / — c b 2 + / — + a i ( ^ ) dz2.
</5(£/) J^^) ^2 J^^7) V^ /
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The first integral on the right is -2m, whereas the second integral is
according to (4.22) just O^log). This is a contradiction, if e' is chosen
small enough. Q

Almost a special case of Lemma 4.2 is the following statement needed
for the proof of Theorem 2.6.

LEMMA 4.4. — Let q > 1 be an integer and D := [z e C3 : p(z) :=
kil^+l^+I^P-KO}.?^

V:={zeC3'.z^Z2=0}

and

f(z) := ——1——, and g(z) := —z——.
(1-^3)2 (1-^3)5

Then V and 9D intersect transversally, f e H2^), g e H00^), and the
function h := g ' f \ D ' e 0{D') does not allow an extension F € 0(D), such
that for a suitable constant C > 0

(4.23) \F(z)\ ^ Cd^QDY^^

for all z € S{e') := {z = (^e^,0,l - £') : 0 € [0,27r]} for a71 £' > 0
sufficiently small.

Proof. — The proof of this lemma is just a simplified version of the
proof of Lemma 4.2 with p = 1 and q instead of 2N+1. We, therefore, omit
it. D

5. Proofs of the theorems.

We, now, come to the proofs of the theorems of section 2. Most of
them follow easily by combining lemmas from sections 3 and 4.

Proof of Theorem 2.1. — Let 2 ^ q < oo and e > 0 be given. We
choose a pseudoellipsoid DN as in (3.1) (specifying the number N a little
bit later) and define S^) for 6:' > 0 by (3.2). Furthermore, VN and /N are
taken as in Lemma 4.1 and D^ = D N n VN. Hence, /^ e Hq(DI^). Let us,
now, suppose, that fpf has an extension F e H^^^D^). Then we get
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from Lemma 3.1, that there is a constant CN > 0, such that F satisfies the
estimate

(5.1) \F{z}\ < CN\\F\\^^d(z,9D^~^'

6(7for all z G S ( e ' ) and all e' > 0 sufficiently small, with q := —— + e. On
g + 4

the other hand we know from Lemma 4.1, that there cannot be an e > 0
and a constant C > 0, for which the extension F would satisfy (4.1) for all
z € S(e/) with e' > 0 sufficiently small. Hence, it follows, that the extension
F is impossible, if q and N are such, that the inequality

3 n-2 jv-1 2 i N-l , -
(5.2) d(z,9DN) q ̂  ^d(z,9DN) -27r 9 ^ 2 1 ^ ^ I £

is satisfied for all z € S(e/) with s7 > 0 sufficiently small. A small calculation
shows, however, that (5.2) holds, if

0 i Tl-2

(5.3) < ? > , , 3+^1 , 2 / 1 . N-l \ '
2 ' q \2N ' 21^T)2 ' g ^2N '

But

(5.4) ^^+,=^+,

Therefore, (5.3) is satisfied, if only TV has been chosen sufficiently large.
This shows, that the extension F C Hq(DN) is impossible.

In order to deduce Theorem 2.1 from this, we just have to observe,
that

f^:=^+^2
(5.5) i ^* := z,

[^*:=^Vj=3,...,n

is an algebraic biholomorphism of C71 onto itself and turns the situation
constructed here into the desired one.

We, still, should mention, that we excluded for pratical reasons the
case q = oo in these arguments. However, if they are properly changed,
they carry over also to this case. D

We, next, come to the

Proof of Theorem 2.3. — The argument is completely parallel to the
proof of Theorem 2.1. Instead of the pseudoellipsoids DN we, now, use
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the pseudoellipsoids DN,? as defined in (3.3) with the corresponding tori
Sp(e/) from (3.4). We assume again for practical reasons 2 ^ q < oo, use
the varieties VN,? and functions f^.p from Lemma 4.2 (specifying again N
later), such that f^^p ^ Hq(D^^). We assume that the function fN,p\D'^^

has an extension F € Hq(DN,p) with q := —v——— + e and want to
show, that this leads to a contradiction in case N is chosen suitably large.
Comparing Lemmas 3.2 and 4.2, we see, that this contradiction is reached,
if we can show, that for such N the inequality

p+2+2^
(5.6) q >

J+t-P(^+^1)

holds (this follows in total analogy to (5.3)). Since, however,

(5.7) 9=1^^
2 -r q

(5.6) can, indeed, be realized by choosing N sufficiently large.

In order to finish the proof of Theorem 2.3, we just have to observe,
that VN,R again can be linearized by an algebraic biholomorphism of C2^"^1.

D

Corollary 2.4 is a direct consequence of Theorem 2.3. We, therefore,
can now come to the

Proof of Theorem 2.5. — We define

( D := L € C3 : p(z) := |zi|2 + e • e"W + |^|2 - 1 < ol

^ y^ec^i+zj-o}
D9 := D n v.

The domain D is pseudoconvex with C°°-smooth boundary, ZQ :=
(0,0,1) G 9D, V 3 ZQ intersects 9D transversally everywhere, CQD^Q, t) >
0 for all t = (ti, ^25 0) with t\ -^ 0, and, from the inequality

(5.9) l-X3^c[-p(z)+\z^+\y3\]

on -D, it follows in complete analogy to the proof of Lemma 3.1, that the
function

z2

f^ := —————^———————
(l-^)^2 log (^3-1)
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(see also Lemma 4.3) satisfies / G H2(D^—\\ogd(z,9D)). We assume,
that for the given e > 0 and some r > 0 this function has an extension
h € H2^ H B(zo, r), -(\ - e) log d(z, 9D)) and observe at first, that for all
k ^ 2 the domain ̂  as defined in Lemma 3.3 lies in D with ZQ = (0,0,1) €
9D H <9Dfc. Hence, fa € ft2^ H B(zo, r), -(x - ̂ ) logd(^, 9^)). We, now
use the same strategy as in the previous proofs, this time by comparing
Lemmas 3.3 and 4.3. We obtain, that, for the given e > 0, the extension h
is impossible, namely cannot be in ^I2{Dk^}B(zQ^ r), —(\—e) log d{z, ODk)),
if k can be chosen such that

3 1 X e 3 \ 1
~ 2 ~ 2 k ~ 2 + ~ 2 > ~ 2 ~ ~ 2 ^ 2 k '

4
This inequality, however, can easily be satisfied by choosing k > -. Of
course, the variety V can again be linearized and turned into Ai by a
global algebraic change of coordinates, thus generating the situation desired
in Theorem 2.5. D

It only remains to give the

Proof of Theorem 2.6. — We define for q := 2^, N ^ 2, the domain
D, the variety V, the circle S^) and the functions /, g, h as in Lemma 4.4.
Furthermore, D' := D H V. After multiplying g with a suitable constant
c > 0 we may assume that \g\ < 1 on D', such that \h\ < \f\ on D ' . Since
/ € H2(D)^ we can apply to it Lemma 3.2 for q = 2 (namely, -D = JDjy^p,
i f p = = l ) . I f we assume, that h\D' admits an extensions F G ^(D), we,
therefore, get the estimate

(5.10) \F{z)\ ̂  C\\F\\^d^QD)~^

for all z € S{e/) and all e' > 0 sufficiently small. On the other hand, it
follows from Lemma 4.4, that no estimate of the following form can hold
with some e > 0

(5.11) \F(z)\ ̂  Cd(z,QDY^^£

for all z G S(e/) and all e/ > 0 sufficiently small. Comparing these
inequalities it follows, that the extension F € H2(D) cannot exist, if only
q > 4, in other words, N > 2. Finally, V can again be turned into A\ by a
global algebraic biholomorphism. This proves the theorem. D
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6. An open question.

Let D CC C71 be a C°°-smooth pseudoconvex domain, ZQ C 9D.
Let, furthermore, H C C71 be a complex hyperplane which is transverse to
T^°9D. We put H ' := H D T^°9D, hence, dimJT = n - 1.

DEFINITION 6.1. — The domain D is called transversally strictly
pseudoconvex with respect to H at ZQ, if

Ww t) > o w e r^SD \ H ' .

As briefly mentioned already in section 2 before Theorem 2.5, the
following fact holds true:

Suppose, V is a closed complex submanifold of a neighborhood U of
zo, dim V = n - 1, ZQ € V, and such that T^V = ft. Put D' := P H ^f. If,
in this situation, 9D is extendable of order 2 in a pseudoconvex way along
9D' near ZQ (see [10] together with [19]), then we have

THEOREM 6.2. — Let \ > 1 be a real number. Then there is a
(small) radius r > 0 and a constant C > 0, such that any function f C
H2(Df,-x^ogd(z,9D)) has an extension F € ^(D, -{\-Y)\ogd(z,9D))
with |[-F'||2 ^ C'H/l l i? where || • ||i is the I^-norm on D' with weight
—\ log d(z, &D) and |[ • ||2 is the L^-norm on D with weight —(^ —
l)\ogd(z,9D).

It is not known, whether pseudoconvex extendability of order 2 is also
necessary for having such a gain in the extension from D/ to D. Therefore,
we give the

DEFINITION 6.3. — Let D CC C" be a pseudoconvex domain with C°°-
smooth boundary, ZQ € 9D, V a closed complex submanifold of a neighbor-
hood U of ZQ, ZQ e V and V intersecting 9D at ZQ transversally. Suppose,
furthermore, that D is transversally strictly pseudoconvex with respect to
H := TZ^QD. Then we call V of good type, if there is a constant C > 0 and
a (small) radius r > 0, such that any function f € ^(jD', —\\ogd(z^ 9D))
has an extension F e H2{D,-{x - l)\ogd(z,9D)) with \\F\\^ ^ C\\f\\z,
where || • |[i is the L2-norm on D' with weight —%logd(z,9D) and || • ||2 is
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the L2-norm on D with weight —(\ — 1) logd(^, 9D). Furthermore, we say
in this situation that the triple { D ^ Z Q ^ H ) admits a hypersurface of good
type.

In Theorem 2.5 we have shown, that not every hypersurface V
intersecting the smooth pseudoconvex domain D CC C71 at ZQ G 9D D V
transversally and such that D is transversally strictly pseudoconvex with
respect to H := Tzo9D, is necessarily of good type. In fact, we have shown,
that in some sense it can be arbitrarily bad. On the other hand, it easily can
be shown, that in the example of the domain D from (5.8) the hypersurface
AI itself is of good type, allthough it has the same tangent space at ZQ as
the hypersurface V of (5.8). - This suggests the following very important
open

Question: Suppose, that -D CC C71 is smooth, pseudoconvex, ZQ € 9D.
Let H C T^°9D be a linear subspace of dimension n — 1, such that D is
transversally strictly pseudoconvex with respect to H. Does in this situation
the triple ( D ^ Z Q ^ H ) always admit a hypersurface of good type?
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