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EQUIDISTRIBUTION OF CUSP FORMS ON
PSL^Z)\PSL^R)

by Dmitri JAKOBSON

1. Introduction.

Let X be a compact Riemannian manifold with ergodic geodesic flow,
A the corresponding Laplace-Beltrami operator, (pj an orthonormal basis
of eigenfunction with eigenvalues 0 = \o < Ai ^ A2 ^ .... Let df^j denote
the probability measures |(^-|2 dv where dv is the volume form on X.
Shnirelman, Zeiditch and Colin de Verdiere ([Sn74], [Sn93], [Ze87], [CdV])
have proved that there exists a subsequence Aj^ of Xj of the full density
(i.e. #{k : jk < n} ~ n as n —^ oo) such that for every / G (7°°(X),
f f df^j^ — ^ f f d v . Zeiditch in [Ze92] extended that result to non-compact
X = P5'L2(Z)\E. He also proved that for every / e C§°(X) such that
f^fdv=0

(1) Y,\l fd^\2 «^ A/log A
X j ^ X J

(here (pj in the definition of dfij form a basis of the space of cusp forms -
I^-eigenfunctions of the hyperbolic Laplacian A on X).

In [LS] Luo and Sarnak proved (assuming that (pj-s are Hecke
eigenforms) the following

THEOREM 1. — Let f G C§°{X) and let f^ f dv = 0. Then

(2) ^\[fd^\2 «^ X1/2^
x^x J

for any e > 0.

Key words: Eisenstein series - Cusp forms - Wigner function - L-functions - Generalized
hypergeometric functions.
Math. classification: 81Q50 - 43A85 - 58C40.
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This improves (1) (proved for more general surfaces). Luo and Sarnak
also remark that the exponent 1/2 in (2) is the best possible.

Theorem 1 is proved without considering S * X = PSL^^PSL^R) =
r\G (unlike (1) which is a corollary of a statement about S*X) so it is nat-
ural to generalize the theorem to a statement about F\G, which we do in
this paper.

To formulate an analogue of Theorem 1 one has to "lift" the measures
dfjij on X to measures dujj on S*X. This is done as follows: given a pseudo-
differential operator A of order zero with symbol (JA-, one defines the Wigner
distribution dujj by

(3) {Aipj^j) = \ (JAd^r
Js*x

In the usual coordinates {(re, 2/, 0) : y > 0,0 ^ 0 < 2?r} of the Iwasawa
decomposition^ on SL^ (R) dujj is given (cf. [Ze91]) by

(4) ^ = (pj(z)uj{z,0)(kj, Uj ~ ^^,fe(^)e2^
fceZ

where the Liouville measure dw on Y\G is given by {dxdydO) /(27n/2),
where (pj,k{^) are "shifted" Maass cusp forms of weight 2k. (pj^e'2^0 is an
eigenfunctions of Casimir operator with the same eigenvalue Aj = 1/4 + r2

for every k. The Fourier expansion of (pj and ^j,fc-s was computed in [Ja94].

The Fourier expansion of (pj in {x^ y , 0) coordinates is given by

(5) ^(z) = ^c4S^)wo^(47^1nl^e^)'
n^O VH

where Aj = 1/4 4- rj, Wo,irj is a Whittaker function, e(n.r) denotes e27"^
and Cj(n) = c^(l)Aj(n) where Aj(n)-s are Hecke eigenvalues of ( p j .

The Fourier expansion of ^-^ for k > 0 (weight 2fc) is given by

(") ^(-)=(,®^I;<^^<-l» '̂
(-1)^(1/2 + ir,) ̂  Cj(|n|)__, . , , , , ,

+ p/i . . . J ^ -^^TV-fc,^ 47rny)e na-).r ^ - k + z r j ) ^ y|n|

(1) We use the same notation as in [Ja94], so that x 4- iy = z 6EI, the hyperbolic metric
is \dz\/y, A = y2(92/^x2 + B2/^2) and di; == dxdy/y2.
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Here W}z,iry is a Whittaker function and Cj(n)-s are as before.

The Fourier expansion of ^j,-fc, k > 0 (weight -2k) is given by

(-) ^'=(^^E•^^^)«(")

-^^S^--'4'1"1"'^-
The analogue of Theorem 1 can now be stated as follows:

THEOREM 2. — Let f be a finite sum of functions of even weight and
of compact support on T\G, and let Jpv^ / duj = 0. Then for every e > 0

(8) El/^12 «^ Al/2+£-
\j^\ J

Wigner distribution dujj is not a positive distribution. In some prob-
lems it is necessary to consider its positive counterpart which we shall call
dvj and which is defined by

(9) (a,̂ .) = (^,d^)

where cr^ is a Friedrichs symmetrization of a (cf. [Ze87], [Ze91]). One can
show ([Ze91], Prop. 3.8) that a - a^ is a symbol of order -1 + e for any
e > 0, so

K/,^,)-(/,da;,)| «, lA,!-172^

This implies that the estimate (8) also holds with cL^-s replaced by dvj-s.

Theorem 2 is proved by an approximation argument. It is necessary
to study the asymptotics of (/, dcjj) with / being an incomplete Eisenstein
series or Poincare series on F\G. Studying the asymptotics can be reduced
to estimating exponential sums by using Petersson-Kuznetsov trace for-
mula (cf. [LS]). Also, the bounds of Iwaniec and Hoffstein-Lockhart for
Fourier coefficients of cusp forms are used. The calculations for incomplete
Eisenstein series are similar to those in [Ja94], though the exposition is
simplified following [Ja95]. In the estimates in Propositions 1 and 2 we are
not able to make the constants grow polynomially with |fc| (the constants
grow exponentially in our calculations). This prevents us from proving (8)
for arbitrary function of compact support on PSL^C^)\PSL^(R).
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We end this section by recalling the Fourier expansions of Eisenstein
series of various weights computed in [Ja94]. The Fourier expansion of
E{z, 1/2 + it) (Eisenstein series of weight zero) is given by

(10) E(z,l/2+it) = 2/l/2+^+0(1/2+z^/1/2-^

+ 2^(1+2^) ̂  lnl-4+^t(7-2^t(l^l)^o^(47^|n|2/)e(^)

where ^s) == ^2s - l)/^), ^(s) = Tr-5/2!^)^), and where
a,(n)=^.

d\n

The Eisenstein series (of weight 2k, k > 0) E^{z, 1/2 + it) is given
by

(11) E-2^'1/2^) = ̂ ^^^^^-it

^i/2+u (-1)^(1/2 +it) ^^(lO / , < , , , / ,
• y ' 2r(5 + k + Wl + 2it) ̂  ——^—— W^Wn\y)e(nx)

(-1)^(1/2 +it) ^ In r̂.̂ dnl) „, / , , , , / ,
' 2r(| - fc+^(l+2rt) ̂  ——^—— W-.,«(47r|n|y)e(^).

An analogous calculation yields the expansion of .E^fc^, 1/2 + zt) (of
weight -2k, k > O):

(12) ^'l/2+^t) = r(,^t^^.)^2^^2-

^i/2+« (-1)^(1/2 +it) |n|̂ _^(|̂ |) . , , , . , ,
•v + 2r(j+fc+^(i+2zt) ̂ —^\—^"(^"lyM^)

(-1)^(1/2+rt) ^ H ĵ̂ M)... / , , , _ .
+ 2r(, - k + W + 2it) ̂  ——^~ ̂ M^Wnx).

2. Incomplete Eisenstein series.

In this section we shall estimate the expression (F^Ac^-), where
Fh(z,0) is the incomplete Eisenstein series.
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Given a function h € C°°{yQ^ oo) let

H(S) = r\(^-^
Jo y

be its Mellin transform.

The incomplete Eisenstein series (of weight —2k) corresponding to h
is defined by

^2ik0 r
(13) F^0) = —— \ H(s)E^s)ds.

2m J^(s)=si>l

We let

(14) \h^(y)\ < c^, ^0.

The estimate (2) has been proved for the incomplete Eisenstein series
of weight zero by Luo and Sarnak in [LS]. Here we shall prove

PROPOSITION 1. — Let Fh be an incomplete Eisenstein series of weight
2k ^ 0. Then

Y^\{F^dw,)\2 «^ C^CrjR1^
rj^R

for any e > 0 and R ̂  1.

Proof of Proposition 1. — We shall prove the proposition for functions
of weight —2A;, k > 0. The proof for functions of weight 2k is analogous.

Using the formulas (3) and (13), we can "unfold" the expression
(Fh.cLJj) and get

(F^,) = —— ( H{s)ds I E^s)^(z)^(z) ̂ .
27TZ JsR(s)=si Jr\E V2

Using the Fourier expansions (12), (5) and (6), we can change variables,
integrate out x and get

<16' ^L..,ff<•'-(^^(gc^S)!)7.t<••r.'
where Cj(n)-s are Hecke eigenvalues and I^(s,t) is denned by

n^ FW ^ ^-2 r Wk,it(u) , W,k,it(u) 1 ,(i6) ^ w^u)u [r^TIT^) + r(i/2^kTiT)\ du-
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This integral was evaluated in [Ja94], but here we will evaluate it differ-
ently^, simplifying the calculations later.

We shall consider a more general integral

F0^ f W^a(y) W^ic
/o ' [ r(l/2 + k + ia) r(l/2 - k + ia)

h7\ F ̂ \ w^^ , ly-^) 1 w ( ^(17) / V p/i / Q L . L . - ^ + pTTTo—TT~\ yy 0,2/3 (?/) a^.7o [_i (1/2 +/c + za) 1 (1/2 — k + %o;) J

Let

(18) F ( k a y ) - \ wk^ + w-^^\i.o) r ^ ^ u L ^ y ) — -r_r ( l / 2+A:+za ) r ( l /2 -A;+m)J

be the expression from (17). To evaluate the integral (16) we shall write
the expression (18) as a combination of .ftT-Bessel functions and the formula
[GR], p. 693.

Using the formula [MOS], p. 431

(19) { (a - ix)~^(b + ix^e^dx
J—00

v+t.i-1 y(b-a)

= 7 n / 2 e^^L wv—^-1-"-^ ̂ v + ̂ )I»(a+6)-^ 2 ' 2

we can get the following integral representation for the Whittaker function:
(20)

TT7- / \ __»/y /»00 / 1 \ ——1/2——10: / I /Ft • \ kWk,iaW _ y_l f^^x2} /V2_^\ „
r ( l /2+fc+za) ~ 27r y-oc V 4 7 V l / 2 + ^ y

for every k € Z (here we used the formula H^m^) = Wk,-ia(y))'
With a different choice of parameters in (19), we can write

Wr. • ,(n} .,-ia-l /-oo / - « \ -1/2-ia-lf2l) Wo,-zg-i[y) _ y__ / / _l 2 \ ixy ^
(21) r ( l / 2+Z+za ) - 27r y _ ^ ^ 4 + a ; ; e da;-

We introduce the following notation:

p2) "=l/4+I '.e•<=(^±S).
where

/ l / 2 -n \ - r /1 /2+^^1 . .
= ±arccos ———— , St -——— = cos(fc0).^ y 5 " ^ 1/2 - za;

(2) As in [Ja95].
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It follows that

(23) cos(k0) = r , f - l + 1 )
\ 2U}

where Tk is a Chebyshev polynomial of the first kind.

Using the well-known property of Chebyshev polynomials

Tn(-x) = (-irTn{x)

and the formula [MOS], p. 257

Tn{x) = F^-n^y—^\

(where F is the Gauss hypergeometric function), we can rewrite (23) as
(24)

^(-^i) = '-l'i^t(l-^) = ^kF{-k•k•ly^-

Accordingly, using the formulas (20), (21) and (24), we can write

(25} F(k a v} - 1( 1^ V (-fc)' Wl V 1 ^o.-.a-tfa)(25) ^k,a,y) - 2(-1) ^ (1/2), 4^! r(l/2 +1 + ia)

where (x)i is defined by

(26) (x)i = x(x+l)...{x-^-l-l); (x)o == 1.

Finally, using the formulas (25), Wo^(y) = ^ / ( y / 7 r ) K ^ ( y / 2 ) and
[GR], p. 693, we can evaluate the integral (17). It is equal to
(27)
4^+l(-l)fc ^______{-k)i (k)i______/2;+2Z+2+za+^\

^ z ^ ( | ) ^ ^ ! ^ ( ^ 4 - ^ + ^ a ) ^ ^ + 2 + 0 '< 2 )

/ ^ + 2 Z + 2 + m - z / ? \ / ^ + 2 - z a + z / 3 \ / z > + 2 - z a - z / 3 \
V 2 ) \ 2 ; ^ 2 ) '

Remark. — The integral (17) can be evaluated as above if the second
indices of Whittaker functions in (17) are not purely imaginary. We have
not derived the general versions of the formulas (25) and (27) since we are
not using the general versions here.
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Substituting the parameters from I^(s, rj) into (17), we find that the
integral (16) is equal to

4«-i(-i)<T(j)r(j-^) ̂  (-fc);(fchr(j+pr(j+?+»r,)
' ' ^ ^ (^r(s+l)T^+l+ir,)l\ •

It is convenient for later calculations to rewrite the above formula as

^ 45-l(-l)fc^2(j)^(j-^r,)^(j+^-) / -fc' ̂  j' j + ̂
(29) ————^)r(j+^)————4F3^ .,|,|+n,
where 4^3 is a (terminating, Saalschiitzian) generalized hypergeometric
series of the unit argument defined by

fx,y,z,-k\ ^ fx,y,z,-k \ ̂  v^ {-k)i (x)i (y)i (z)i
4 ' V u^^w ) 4 ' V u^^w ' ) ^ {u)i (v)i (w)i l\

and where {x)i is defined by (26).

Applying the transformation formula for terminating Saalschiitzian
hypergeometric functions twice [Sl], 4.3.5.1 and making the obvious sim-
plifications, we can write

/ x, y, z, -k \ ̂  (v - z)k (w - z)k ^ ( u-x,u-y,z,-k \
4 3 ^ u,v,w ) {v)k {w)k 4 ^ ^ u . l - v + z - k . l - w + z - k j

^ (u + v - z - x)k {u + w - z - x)k y f u-x,y,u-z,-k \
(v)k (w)k \u^u-\- v — x — z^u-{- w — x — z )

Substituting the function 4^3 from (29) into the above formula, we get a
new expression for this function:

„„, (l-»)t(J->t)t f1——^'1——^ -"•„*,-*'

W (.)»(,+..). 4F3^ i-.,j,j-,.,

Note that 4^3 in (30) is defined when 5=1, since the factors divisible
by 1 — 5 in the expression

(1/2 - s/2)j
(1-^

(coming from the "top" and the "bottom" arguments of 4^3) cancel each
other. This proves that

(31) ^(l,r,) = 0
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(since (1 - s)k = 0 when 5=1 , hence in front of ̂  in (30) is equal to
zero, while 4^3 itself is well-defined at s = I)/3)

Denote by

L{(pj^^j,s)

the infinite sum in (15).

We shift the contour of integration from 9t(s) = «i > 1 to ^(s) = 1/2.
The function L{(pj (g) ^-,5) has a simple pole at s = 1 (cf. [LS]), while the
expression I ^ ( s , rj) has a simple zero there (cf. (31)). Accordingly, we don't
pass through any poles when we shift the integration contour.

Using the Cauchy's inequality and formula (28), we can estimate
\(Fh,diJj)\2 by a constant multiple of

(32) / \H(s)\ \ds\ (^+l) |r(1 +^.)|2 fc ("^ wl

•7(1/2) 2 \^ ( ^ ) Z ^ !

L.'̂ "^^.'"'1 '̂̂ .?^:?^^""2^-
It is easy to show using the definition of the Mellin transform that

(33) '"O1 « .(.-D.^-^l)-

Also, it has been shown in [LS] that

(34) ^ cosh^y ̂  ̂  ̂  ̂  + iu^ « R2+e '"i11^
rj^R v •̂

for every e > 0.

To prove Proposition 1, it suffices to sum the expression (32) for
R < TJ ^ 2jR (also denoted by rj ~ R). Using formula (33) we can estimate

/ \H{s)\ \ds\ « C2,2.
.7(1/2)

^ ^ Formula (31) could be proven easier, but the expression (30) makes it easier to
estimate lim I^(s, t ) / ( s - l ) and can be used ([Ja95]) to simplify some of the calculations

in [Ja94].
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We need to estimate the second integral in (32). We estimate the expres-
sions

(35) ^ /
r^R^^R/10

and

(36) V /
y,^^)^/10

separately.

Using (34), (33) and Stirling's formula, we can bound both the sum
in (35) and the sum in (36) by C^-R1"^. This implies that for any e > 0,

^ \(F^cLJj)\2 <^ C2,2C7,7 R1^
Tj^R

finishing the proof of Proposition 1. Q

3. Incomplete Poincare series.

In this section we estimate the expressions (P/i,yn,do^) (where
Ph,m(^,0) is the incomplete Poincare series defined below) and finish the
proof of Theorem 2.

Let h e C°°(yo, oo) be as in the definition of the incomplete Eisenstein
series. For m e Z, the incomplete Poincare series Ph,m,-2k = Pm^k of weight
-2k are defined (in the usual coordinates {x,y,0)) by

(37) Pm,2k{z^) = e2^6 ^ h(y(^z)) (e^))^ e{mx^z))
7eroo\r

where r = PSL^Z),

r ! f 1 m^
r00 = {1,0 J^- [ V o i

and e^{z) = (cz + d)/\cz + d\ for

/* *\
"y = ( I
' \c d •
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For m = 0, Pm,2k becomes the incomplete Eisenstein series of the same
weight.

Theorem 2 has been proved for the incomplete Poincare series of
weight zero by Luo and Sarnak in [LS]. We shall prove

PROPOSITION 2. — Let P-m,2k be an incomplete Poincare series of
weight -2k -^ 0. Then

Y, \{Pm,2k^,)\2 «^ ^(C^o+CJ^) R1^

rj<^R

for any e > 0, m ̂  0 and R ^ 1.

Proof. — We shall prove the proposition for k > 0, m > 0 only; the
proofs in other cases are analogous. The proof will be by induction on k.

After "unfolding" (Pm,'2k^d^j) we get the expression

/ h(y)^^k(z)^j(z)e(rnx) -^.
Jr^\m T/r^\m

If we use the formulas (5) and (6) and integrate out x the last expression
becomes

{-l)kr(-+irj)^cj{n)cj(n+m) / > 0 0 - , ,,_, , , , .dy
r^t+ir;)^'^^ i W^n,)W^,Wn^)y)^fn\n-\-m} Jo

Cj(n}cj(-^r^+irj) ^ Cj(n)cj(n+m)
T^-k+ir,) ^ ^\n(n+m)\

n^—m

( W^ir, ̂ 7r\n\y)Wo^ (47r|n + m\y) ̂ .
Jo y

We shall only consider even cusp forms (i.e. Cj{—n) = c^(n)); the
calculations for odd cusp forms are similar. After using the formula Cj(n) =
Cj(l)\j(n) and the property

A,(p)A,(g) = ^ \,(pq/d2)
d\(p,q)

and after making a change of variables in the last integral we get

(38) 47^-1)^(1/2+n,Wl)V Y c^+lm/d)
^^/.V^Tn^
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r(l/2 + k • sgn(l) + irj)

rW^^y)W^(y l+^h h(———\ d-u,.
JQ \ Id I/ \47r\ld\ ) y2

Our proof of Proposition 2 for k ̂  0 will follow the proof of the same result
for k = 0 in [LS] making the modifications needed for k -^ 0.

As in [LS] we remark that by dyadic partition it suffices to estimate
(38) for rj ~ R and / ~ L, L > 0. Also, it is easy to show that it suffices to
consider dL ^ AR (for a sufficiently large A) and m < R. One can easily
show that the square of the integral in (38) is

(39) «., C^f^ |^,Q/)|V^ f^ l̂ .sgnd),.,^!2^^

where e > 0 is small. We shall estimate (39) for I > 0 only; the estimates
for ( < 0 are similar.

Define
/»00 7

I^s) = j ITV^^IV^.

Then
p2/c /9^

Jo(r5s) = STrH^^7^^^2-^-

Also, using [Ze91], 3.15.3 (which relates 4 and 4-i) we find that for k > 0

(4^) Ik(r^) «,,, r2^-!^).

Now, using (39), (40) (with r = r,), Stirling's formula, [Kuz], 2.29 and (38)
we can show that if we consider only the terms with I ~ L in (38) then

E K^n,2 ,̂)|2 «,,. C^L2R£

^-R )^L

for any e > 0. Hence (as in [LS]) we can assume that L > R1/2 and
m < L2/3.

Expressing h(y) in terms of its Mellin transform H(s), we can rewrite
the integral in (38) as

^^»,?'i•^9•-•Ivt••r-(!"lv°-(•'l+^)^
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which in turn is equal to

H(s)j_fl±liy /
2m \ 27T ) ysR(,)>i M8 ds

979

(41) r y^W^W^ (y l+ ^|) dy.
JO v "a 1 /

Denote the second integral in (41) by A^(s) (where we have sup-
pressed the dependence on 7j, m, Z, d). When A: = 0, the integral becomes

2 Fy^K^K^Ay l+^ | ) dy
TT ^/n \ fc(Z 1 /

which was evaluated in [LS]. The integral in the formula above is equal to

(42) y-3r(i±|''2)r(^"2)(l+mW

^-(1-^-(,^^)2)
2\ -s/2-irj2rm fm\ .

d^+T(dIJ dT-
If we evaluate Ai(«), we can evaluate Ak(s) for every A; using (42)

and the following well-known relation between Whittaker functions

Wk^i,it(2y) = (-2fc+22/)Ty^(2z/)-(^+(A:-l/2)2)^-l^(22/)

resulting in

(43) A^i{s) = -2kAk(s) + 2Ak(s + 1) - [(A: - 1/2)2 + r]}Ak-^s).

Using the standard properties of ^f-Bessel and Whittaker functions
([GR], 8.486.13 and [GR], 9.234.3) we see that

H^, (2y) = ̂  [y^K^ {y) - ̂ '(l^ + ir,)K^ {y) + y^K^i (y)}.

Substituting into the expression for Ai(s) we get

(44) Ai(s) = Ao(s + 1) - (1/2 + irj)Ao(s) + ^J^B^s)

where

(45) B(s) = F y^^WK^ ^1+^1) ^.
Jo v va 1/
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Using the formulas [GR], 6.576.4 and the integral representation [GR],
9.111 of the hypergeometric function, we may write -B(s) as

(46) B(s) = V-2 (l + y r(s/2 - zr,)F(5/2 + 1 + ir,)

/^(i-^ri.2^.^^2)^—^.
Jo \ dl \ dl / /

We now estimate (38) for k ^ 1. For k = 1 we estimate three terms in
(44) separately; for k ^ 2 we do the same for (43). We shall also multiply
the expressions in (38) and (44) by the ratio ofr-factors coming from (38).
We start with the second term in (44); it contributes

r(l/2+zr,)(l/24-z7,)AoQQ _ , / .
r(3/2+^-) ~ Ao{8)

so the estimates can proceed exactly as for k = 0.

Similarly, the contribution of the third term in (38) is

r(l/2+zr,)Afc_iQO ^k-l/^+ir^k-W+rj})
r(k-l/2+irj) ' r (A;+3/2+z^)

The first factor in (47) was estimated by the induction assumption for A;-1;
since the absolute value of the second factor is always less then 1, the same
estimate works for (47).

We now see that by induction and the previous remarks one only
needs to estimate the terms Ao(.s + k) and B{s + k) for k ^ 1 to prove
Proposition 2.

We proceed to estimate the contribution (in (38)) of the terms of
the type Ao(s + k). Taking into account the ratio of F-factors in (38), we
see that the estimates need to be made for Ao(s + k ) / ( l / 2 + irj)k. The
estimates proceed similarly to those in [LS], namely, by shifting the line
of integration in (41) to ?ft{s) = e where 0 < e < 1 and using Cauchy's
inequality. To that end, we evaluate the integral

(48) [\r(l - r)](^)/2-i dr = ^2^+fc)/2)Jo r(s + k)
using the formula [GR], 3.191.3.
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One can now show that it suffices to prove the following analogue of
the estimate (37) of [LS] (we tried to make our notation similar to that of
(37) in [LS]):

2

(49) ]C Y,W^^^/d)f^r,) < mR^L
TJ^R l^L

where Vj(n) is given by

Vj{n)cosh7rrj/2 = Cj(n),

f{l^rj) is defined by

l+m/(dl) y^
f(m,d,l,r,rj) =5 ' 5 ' 3 ) ~ Vl+2Tm/(dO+r[m/(dO]2

and finally 0,1 = a^(m, d, r, s) is given by

, , ,, 2rm /m^2^-(s+ fc)/2[" 2rm ( m \ 2T
[ l+^-+T(di)Ja ^ = r ll+^-+T(di) I

If (49) is proved, one makes the estimates (needed in the proof of
Proposition 2) for Ao(s + k) by using (48), Stirling formula, (33) and by
integrating separately for ^(s) ^ R/10 and ^s(s) ^ R/10 (as Luo and
Sarnak do in [LS])/4) The proof of (49) is a straightforward modification
of the proof of (37) in [LS] (cf. pp. 225-227).

It remains to estimate the terms B{s+k) appearing in (38) for k ^ 1.
Taking F-factors from (38), we see that the estimates need to be made for
B(s + k ) / ( l / 2 + %7^)fc+i. The estimates proceed as those for Ao{s + k), by
shifting the line of integration in (41) to ^(s) = e where 0 < e <e 1 and
using Cauchy's inequality. Evaluating the r-integral gives

(50) / l lT^+fc)/2- lrl-T^S+^/2- ldT = n^+fcV^r^+fc^+i)Jo r ( s+A;+ i )
From the formula (46) that it now suffices to prove (49); the only

changing definition is that of ai:

. , f. 2rm /m^t-^)/2-^a l = r h-dT-^h)
(4) The constant CJ ^ in the statement of Proposition 2 comes from that integration.
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The proof (49) for B(s + k) is an appropriate modification of the proof of
its counterpart for Ao(s+A;). The remaining estimates are made using (50),
Stirling formula, (33) and by integrating separately for ^(s) ^ R/10 and
Q(s) ^ R/10. This finishes the proof of Proposition 2. D

We can now use the results of Propositions 1 and 2 to prove Theorem
2. It suffices to prove the theorem for functions of a fixed even nonzero
weight (the result for weight zero were proved in [LS] and the general
result follows easily). The proof proceeds as in [LS], §4. Namely, we first
decompose X = PSL^)\W = \JCj into neighborhoods of the cusp,

3
elliptic points and the neighborhoods not containing elliptic fixed points.
We choose a partition of unity subordinate to the decomposition.

Consider a smooth function F on X of weight -2k ^ 0; without loss
of generality we may assume that F is supported in a single neighborhood
C. Denote by C the lift of C into the fundamental domain in IHI and by /
the Foo-periodic function of weight -2k coinciding with F in C. Let W = 1
if C doesn't have elliptic vertices, and let it be the order of the stabilizer
otherwise. Then (compare [LS] (38))

(51) F{z) = ^7 E /(^X^))^
7eroo\r

where e^{z) was defined in (37).

Expanding / into the Fourier series
00

/OO = ^ hm(y)e(mx)
m=—oo

we see from (51) that F can be expressed,

(^) F{z) = ^ F^)+^p^)
\ m/O

as a sum of the incomplete Eisenstein series FQ = F^o and the incomplete
Poincare series Pm = Phm °f weight -2k. Also, the proofs of the estimates
for the decay (in m) of hm-s and their derivatives proceed exactly as in
[LS] (§4) via integration by parts.

Now, (52) implies

W(F^d^) = (Fo,^.)+^(P^,^).
m^O
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As in [LS] we use Cauchy's inequality with weight am > 0, o;o = 1 to write

(53) |(F ,̂)|2 « fc—) (l^o^^p+^a^KP^^,)-,a^;|- « 1 ^ — — ) {^dij^+^a^P^d^Y2

v Q/m / l rn^O
\ ^TTl I \\ m "v / \ m^O

Theorem 2 is proved (as Theorem 1 in [LS]) by summing (53) over
rj ^ R, putting am = (H + I)372 and using the estimates of Propositions
1 and 2. Q
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