Annales de l'institut Fourier

Karl Oeljeklaus
 Peter Pflug
 El Hassan Youssfi
 The Bergman kernel of the minimal ball and applications

Annales de l'institut Fourier, tome 47, n ${ }^{0} 3$ (1997), p. 915-928
http://www.numdam.org/item?id=AIF_1997__47_3_915_0
© Annales de l'institut Fourier, 1997, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE BERGMAN KERNEL OF THE MINIMAL BALL AND APPLICATIONS

by K. OELJEKLAUS, P. PFLUG \& E.H. YOUSSFI

1. Introduction.

Let \mathbb{B}_{*} be the domain in $\mathbb{C}^{n}, n \geq 2$, defined by

$$
\mathbb{B}_{*}:=\left\{z \in \mathbb{C}^{n}:|z|^{2}+|z \bullet z|<1\right\}
$$

where $z \bullet z:=\sum_{j=1}^{n} z_{j}^{2}$. This is the ball of radius $\frac{\sqrt{2}}{2}$ with respect to the norm

$$
N_{*}(z):=\sqrt{\frac{|z|^{2}+|z \bullet z|}{2}}, \quad z \in \mathbb{C}^{n} .
$$

The norm N_{*} was introduced by Hahn and Pflug [HP], and was shown to be the smallest norm in \mathbb{C}^{n} that extends the euclidean norm in \mathbb{R}^{n} under certain restrictions. The automorphism group of \mathbb{B}_{*} is compact and its identity component is $\operatorname{Aut}_{\mathcal{O}}^{0}\left(\mathbb{B}_{*}\right)=S^{1} \cdot S O(n, \mathbb{R})$, where the S^{1}-action is diagonal and the $S O(n, \mathbb{R})$-action is the matrix multiplication, see $[\mathrm{K}]$ or [OY]. This shows that for $n \geq 3$, the ball \mathbb{B}_{*} is not biholomorphic to any Reinhardt domain. For $n=2, \mathbb{B}_{*}$ is linearly biholomorphic to the Reinhardt triangle $\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|+\left|z_{2}\right|<1\right\}$.

The main purpose of this note is to establish the following

[^0]Theorem. - The Bergman kernel of \mathbb{B}_{*} is given by the formula

$$
\begin{aligned}
& K_{B_{*}}(z, w) \\
& =\frac{1}{n(n+1) V\left(B_{*}\right)} \frac{\sum_{j=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 j+1} X^{n-1-2 j} Y^{j}\left(2 n X-(n-2 j)\left[X^{2}-Y\right]\right)}{\left(X^{2}-Y\right)^{n+1}}
\end{aligned}
$$

where

$$
X=1-<z, w>, \text { and } Y=(z \bullet z) \overline{w \bullet w},
$$

and $V\left(\mathbb{B}_{*}\right)$ is the Lebesgue volume of \mathbb{B}_{*}.
In particular, when $n=2$, the Bergman kernel of \mathbb{B}_{*} is

$$
\begin{aligned}
& K_{\mathbb{B}_{*}}(z, w) \\
& \quad=\frac{2}{\pi^{2}} \frac{3(1-<z, w>)^{2}(1+<z, w>)+(z \bullet z) \overline{w \bullet w}(5-3<z, w>)}{\left((1-<z, w>)^{2}-(z \bullet z) \overline{w \bullet w}\right)^{3}} .
\end{aligned}
$$

It should be noted that for $n=2$ this formula can be obtained from the Bergman kernel of the above mentioned Reinhardt triangle whose Bergman kernel can be found in ([JP], p. 176).

Remark. - To the best of our knowledge, the domain \mathbb{B}_{*} is the first bounded domain in \mathbb{C}^{n} which is neither Reinhardt nor homogeneous, and for which we have an explicit formula for its Bergman kernel.

2. Preparatory results.

Let G be a semi-simple complex Lie group and K a maximal compact subgroup of G. Suppose that G acts irreducibly on a finite dimensional complex vector space E_{Λ} via a representation $\left(\Pi_{\Lambda}, E_{\Lambda}\right)$ with dominant weight Λ and dominant vector v_{Λ}. Assume further that E_{Λ} is furnished with a K-invariant hermitian scalar product $[\cdot, \cdot]$. If $G=K A N$ is the Iwasawa decomposition of G, let ϱ denote the sum of the roots associated with the complex decomposition in the Lie algebra \mathfrak{g} of G. If \mathfrak{a} is the Lie algebra of A, then we have the following orthogonal decomposition with respect to the Cartan-Killing form

$$
\mathfrak{a}=a_{\Lambda} \oplus a_{\Lambda}^{\perp}
$$

where a_{Λ} is the annihilator of Λ. If H_{0} is the unique vector in a_{Λ}^{\perp} such that $\Lambda\left(H_{0}\right)=1$, we set

$$
\begin{equation*}
\sigma:=2 \varrho\left(H_{0}\right) \tag{2.1}
\end{equation*}
$$

Let \mathbb{M}^{*} be the intersection of the G-orbit of v_{Λ} and the unit ball in E_{Λ}.
In his work [Lo], Loeb proved that the Bergman kernel of the manifold \mathbb{M}^{*} with an invariant form on \mathbb{M}^{*} is given for $\zeta=\Pi_{\Lambda}\left(g_{1}\right) v_{\Lambda}, \eta=$ $\Pi_{\Lambda}\left(g_{2}\right) v_{\Lambda}, g_{1}, g_{2} \in G$, by

$$
\begin{equation*}
K_{\mathbb{M}^{*}}(\zeta, \eta)=\sum_{j=0}^{\infty}(2 j+\sigma) T_{\Lambda}(j)[\zeta, \eta]^{j}, \tag{2.2}
\end{equation*}
$$

where $T_{\Lambda}(j)$ is the dimension of the representation with dominant weight $j \Lambda$.

Here we consider the special case $G=S O(n+1, \mathbb{C})$ with its natural linear representation on the complex hermitian space ($\left.\mathbb{C}^{n+1},<\cdot,>\right)$, where Λ is the dominant weight associated to this representation and $v_{\Lambda}=\frac{\sqrt{2}}{2}(1, i, 0, \cdots, 0)$. The intersection of the G-orbit of v_{Λ} and the unit ball in \mathbb{C}^{n+1} is $\mathbb{M}^{*}=\mathbb{M} \backslash\{0\}$, where

$$
\mathbb{M}:=\left\{z=\left(z_{1}, \cdots, z_{n+1}\right) \in \mathbb{C}^{n+1}:|z|<1, z \bullet z=0\right\}
$$

Then by formula (2.2), we see that the Bergman kernel of \mathbb{M}^{*} with respect to an $S O(n+1, \mathbb{C})$-invariant form $\alpha(z) \wedge \overline{\alpha(z)}$ is given (up to a multiplicative constant) by

$$
\begin{equation*}
K_{\mathbb{M}^{*}}(\zeta, \eta)=\sum_{j=0}^{\infty}(2 j+\sigma) T_{\Lambda}(j)<\zeta, \eta>^{j} \tag{2.3}
\end{equation*}
$$

for $\zeta, \eta \in \mathbb{M}^{*}$.
Lemma 2.1. - If $\alpha(z)$ is an $S O(n+1, \mathbb{C})$-invariant nonzero n-form on \mathbb{M}^{*} (the invariant n-from α is unique up to a constant), then the Bergman kernel of \mathbb{M}^{*} with respect to the invariant form $\alpha(z) \wedge \overline{\alpha(z)}$ is given (up to a multiplicative constant) by

$$
\begin{aligned}
K_{\mathbb{M}^{*}}(\zeta, \eta) & =\frac{2(n+1)<\zeta, \eta>+2 n-2}{(1-<\zeta, \eta>)^{n+1}} \\
& =\frac{4 n}{(1-<\zeta, \eta>)^{n+1}}-\frac{2 n+2}{(1-<\zeta, \eta>)^{n}}
\end{aligned}
$$

for $\zeta, \eta \in \mathbb{M}^{*}$.
Proof. - Using the notations above, a calculation involving the Weyl character formula implies that

$$
T_{\Lambda}(j)=\frac{n+2 j-1}{n-1}\binom{n-2+j}{j}, \text { for all positive integers } j
$$

See ([FH], pp. 267-315). In addition, some computing shows that $\sigma=2 n-2$. See ([FH], pp. 399-414). The lemma now follows from (2.3).

Lemma 2.2. - The n-form on $(\mathbb{C} \backslash\{0\})^{n+1}$

$$
\widetilde{\alpha}(z):=\sum_{j=1}^{n+1} \frac{(-1)^{j-1}}{z_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n+1}
$$

induces by restriction an $S O(n+1, \mathbb{C})$-invariant and holomorphic n-form α on \mathbb{M}^{*}.

Proof. - Let $A \in S O(n+1, \mathbb{C}), z \in \mathbb{M}^{*}$ and set $w=A z$. Denote by $A_{j k}$ the $n \times n$ matrix obtained from A by deleting the j th row and the k th column. Since $A \in S O(n+1, \mathbb{C})$, Cramer's rule gives that

$$
\begin{equation*}
a_{j k}=(-1)^{k+j} \operatorname{det} A_{j k} \tag{2.4}
\end{equation*}
$$

Note also that for $z \in \mathbb{M}^{*}$ and $z_{j} \neq 0$, then

$$
\begin{equation*}
d z_{j}=-\sum_{l \neq j} \frac{z_{l}}{z_{j}} d z_{l} \quad \text { on } T_{z} \mathbb{M}^{*} \tag{2.5}
\end{equation*}
$$

where $T_{z} \mathbb{M}^{*}$ denotes the tangent space of \mathbb{M}^{*} at the point z. Denote by $A^{*} \alpha$ the pull-back of α. Then

$$
\begin{aligned}
\left(A^{*} \alpha\right)(z) & =\sum_{j=1}^{n+1} \frac{(-1)^{j-1}}{w_{j}} d w_{1} \wedge \cdots \wedge \widehat{d w_{j}} \wedge \cdots \wedge d w_{n+1} \\
& =\sum_{j=1}^{n+1} \frac{(-1)^{j-1}}{w_{j}} \sum_{k=1}^{n+1} \operatorname{det} A_{j k} d z_{1} \wedge \cdots \wedge \widehat{d z_{k}} \cdots \wedge d z_{n+1} \\
& =\sum_{k=1}^{n+1}(-1)^{k-1} \sum_{j=1}^{n+1} \frac{(-1)^{k+j}}{w_{j}} \operatorname{det} A_{j k} d z_{1} \wedge \cdots \wedge \widehat{d z_{k}} \wedge \cdots \wedge d z_{n+1}
\end{aligned}
$$

$$
\begin{aligned}
\text { by } \begin{aligned}
(2.4)= & \sum_{k=1}^{n+1}(-1)^{k-1} \sum_{j=1}^{n+1} \frac{a_{j k}}{w_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{k}} \wedge \cdots \wedge d z_{n+1} \\
\text { by }(2.5)= & \sum_{k=1}^{n+1}(-1)^{k} \sum_{j=1}^{n+1} \frac{a_{j k}}{w_{j}} d z_{1} \wedge \cdots \wedge d z_{j-1} \wedge \widehat{d z_{j}} \wedge\left(\sum_{l \neq j} \frac{z_{l}}{z_{j}} d z_{l}\right) \\
& \wedge d z_{j+1} \wedge \cdots \widehat{d z_{k}} \wedge \cdots \wedge d z_{n+1} \\
= & \sum_{k=1}^{n+1}(-1)^{k-1} \sum_{j=1}^{n+1}(-1)^{j-k} \frac{a_{j k}}{z_{j} w_{j}} z_{k} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n+1} \\
= & \sum_{j=1}^{n+1}\left(\frac{(-1)^{j-1}}{w_{j} z_{j}} \sum_{k=1}^{n+1} a_{j k} z_{k}\right) d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n+1} \\
= & \sum_{j=1}^{n+1}(-1)^{j-1} \frac{1}{z_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n+1}=\alpha(z)
\end{aligned}
\end{aligned}
$$

That the restriction of α to \mathbb{M}^{*} is holomorphic can be seen by evaluating the form α on the n-fold exterior power of the tangent space.

3. Proper holomorphic mappings from \mathbb{M} into \mathbb{C}^{n}.

Consider the projection $p r: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n}$ defined by

$$
\operatorname{pr}\left(z_{1}, \cdots, z_{n+1}\right):=\left(z_{1}, \cdots, z_{n}\right)
$$

The restriction $F:=\left.p r\right|_{\mathbb{M}}$ of $p r$ to \mathbb{M} gives a proper holomorphic mapping of degree 2 from \mathbb{M} onto \mathbb{B}_{*}. Let W be the branching locus of F and V the image of W under F. Denote by φ and ψ the two local inverses of F defined for $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{B}_{*} \backslash V$ by

$$
\begin{aligned}
& \varphi(z)=(z, i \sqrt{z \bullet z}) \\
& \psi(z)=(z,-i \sqrt{z \bullet z})
\end{aligned}
$$

Lemma 3.1. - If $\varphi:=\left(\varphi_{1}, \cdots, \varphi_{n+1}\right)$ and $\psi:=\left(\psi_{1}, \cdots, \psi_{n+1}\right)$ are the local inverses of F defined on $\mathbb{B}_{*} \backslash V$, then

$$
\begin{gather*}
\varphi^{*}(\alpha)=\frac{1+n}{i \sqrt{z \bullet z}}(-1)^{n} d z_{1} \wedge \cdots \wedge d z_{n} \tag{3.1}\\
\psi^{*}(\alpha)=\frac{1+n}{-i \sqrt{z \bullet z}}(-1)^{n} d z_{1} \wedge \cdots \wedge d z_{n} \tag{3.2}
\end{gather*}
$$

Proof. - The pull back of α under φ is

$$
\begin{aligned}
\varphi^{*}(\alpha) & =\sum_{j=1}^{n+1} \frac{(-1)^{j-1}}{w_{j}} d w_{1} \wedge \cdots \wedge \widehat{d w_{j}} \wedge \cdots \wedge d w_{n+1} \\
& =\sum_{j=1}^{n} \frac{(-1)^{j-1}}{w_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge d z_{n} \wedge d w_{n+1}+\frac{(-1)^{n}}{w_{n+1}} d z_{1} \wedge \cdots \wedge d z_{n}
\end{aligned}
$$

But for $1 \leq j \leq n$

$$
\begin{aligned}
& \frac{(-1)^{j-1}}{z_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n} \wedge d \varphi_{n+1} \\
& =\frac{(-1)^{j-1}}{z_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n} \wedge\left(-\sum_{k=1}^{n} \frac{z_{k}}{w_{n+1}} d z_{k}\right) \\
& =\frac{(-1)^{j}}{w_{n+1}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n} \wedge d z_{j} \\
& =\frac{(-1)^{j+n-j}}{w_{n+1}} d z_{1} \wedge \cdots \wedge d z_{j} \wedge \cdots \wedge d z_{n} \\
& =(-1)^{n} \frac{d z_{1} \wedge \cdots \wedge d z_{n}}{w_{n+1}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\varphi^{*}(\alpha) & =\left(\frac{(-1)^{n}}{w_{n+1}}+(-1)^{n} \frac{n}{w_{n+1}}\right) d z_{1} \wedge \cdots \wedge d z_{n} \\
& =\frac{1+n}{w_{n+1}}(-1)^{n} d z_{1} \wedge \cdots \wedge d z_{n} \\
& =\frac{1+n}{i \sqrt{z \bullet z}}(-1)^{n} d z_{1} \wedge \cdots \wedge d z_{n}
\end{aligned}
$$

Similarily one has that

$$
\psi^{*}(\alpha)=\frac{1+n}{-i \sqrt{z \bullet z}}(-1)^{n} d z_{1} \wedge \cdots \wedge d z_{n}
$$

If $P_{\mathbb{M}^{*}}$ denotes the Bergman projection of \mathbb{M}^{*} with respect to the volume form $\alpha(z) \wedge \overline{\alpha(z)}$, and if $P_{\mathbb{B}_{*}}$ denotes the Bergman projection of \mathbb{B}_{*}, then we have the following transformation rule

Lemma 3.2. - If $\varphi:=\left(\varphi_{1}, \cdots, \varphi_{n+1}\right)$ and $\psi:=\left(\psi_{1}, \cdots, \psi_{n+1}\right)$ are the local inverses of F defined locally on $\mathbb{B}_{*} \backslash V$, then

$$
P_{\mathbb{M}^{*}}\left(z_{n+1}(h \circ F)\right)(z)=z_{n+1}\left(\left(P_{\mathbb{B}_{*}} h\right) \circ F\right)(z)
$$

for all $h \in L^{2}\left(\mathbb{B}_{*}\right)$, where V is the image of the branching locus of F.

Proof. - First observe that the lemma holds for all holomorphic functions $h \in L^{2}\left(\mathbb{B}_{*}\right)$. Indeed, by virtue of Lemma 3.1 we have that

$$
\begin{aligned}
& \int_{\mathbb{M}^{*}}\left|z_{n+1}(h \circ F)(z)\right|^{2} \alpha(z) \wedge \overline{\alpha(z)} \\
&= \int_{\mathbb{M}^{*} \backslash W}\left|\left(z_{n+1}(h \circ F)\right)(z)\right|^{2} \alpha(z) \wedge \overline{\alpha(z)} \\
&= \int_{\mathbb{B}_{*} \backslash V}\left|\varphi_{n+1}(w) h(w)\right|^{2} \varphi^{*}(\alpha)(w) \wedge \varphi^{*}(\bar{\alpha})(w) \\
&+\int_{\mathbb{B}_{*} \backslash V}\left|\psi_{n+1}(w) h(w)\right|^{2} \psi^{*}(\alpha)(w) \wedge \psi^{*}(\bar{\alpha})(w) \\
&= 2(n+1)^{2} \int_{\mathbb{B}_{*} \backslash V}|h(w)|^{2} d v(w)<+\infty
\end{aligned}
$$

Thus $z_{n+1}(h \circ F)(z) \in L^{2}\left(\mathbb{M}^{*}, \alpha(z) \wedge \overline{\alpha(z)}\right)$.
Next let $f \in L^{2}\left(\mathbb{M}^{*}, \alpha(z) \wedge \overline{\alpha(z)}\right)$ be a holomorphic function, and let g be an element of the space $\mathcal{C}_{0}^{\infty}\left(\mathbb{B}_{*} \backslash V\right)$ of all C^{∞}-function with compact support in $\mathbb{B}_{*} \backslash V$. Then

$$
\left.\begin{array}{l}
\int_{\mathbb{M}^{*}} f(z) \overline{z_{n+1}\left(\frac{\partial g}{\partial w_{j}} \circ F\right)(z) \alpha(z) \wedge \overline{\alpha(z)}} \\
=(n+1)^{2}\left[\int_{\mathbb{B}_{*}} \frac{(f \circ \varphi)(w)}{\varphi_{n+1}(w)} \frac{\partial g}{\partial w_{j}}(w)\right.
\end{array} d v(w)+\int_{\mathbb{B}_{*}} \frac{(f \circ \psi)(w)}{\psi_{n+1}(w)} \frac{\partial g}{\partial w_{j}}(w) d v(w)\right] .
$$

so that by integration by parts we obtain that

$$
P_{\mathbb{M}}\left(z_{n+1}\left(\frac{\partial g}{\partial w_{j}} \circ F\right)\right)=0, \text { for all } j=1, \cdots, n
$$

Since the space

$$
\mathcal{H}:=\left\{\frac{\partial g}{\partial w_{j}}: g \in \mathcal{C}_{0}^{\infty}\left(\mathbb{B}_{*} \backslash V\right)\right\}
$$

is dense in the orthogonal complement in $L^{2}\left(\mathbb{B}_{*}\right)$ of the subspace $L_{h}^{2}\left(\mathbb{B}_{*}\right)$ of all square integrable holomorphic functions on \mathbb{B}_{*}, the lemma follows.

Lemma 3.3. - If φ and ψ are as before, then

$$
\begin{gathered}
z_{n+1} K_{\mathbb{B}_{*}}(F(z), w)=(n+1)^{2}\left[\frac{K_{\mathbb{M}^{*}}(z, \varphi(w))}{\overline{\varphi_{n+1}(w)}}+\frac{K_{\mathbb{M}^{*}}(z, \psi(w))}{\overline{\psi_{n+1}(w)}}\right], \\
z \in \mathbb{M}^{*}, w \in \mathbb{B}_{*}
\end{gathered}
$$

Proof. - Let $w \in \mathbb{B}_{*} \backslash V$ and let $r>0$ be chosen so small that $w+r \Delta^{n} \subset \mathbb{B}_{*} \backslash V$, where Δ is the unit disc in \mathbb{C}. By Remark 6.1.4 in [JP],
there is a \mathcal{C}^{∞}-function $u: \mathbb{C}^{n} \rightarrow[0,+\infty)$ with compact support in $w+r \Delta^{n}$ such that

$$
P_{\mathbb{B}_{*}} u=K_{\mathbb{B}_{*}}(\cdot, w) .
$$

By virtue of Lemma 3.2 we see that for $z \in \mathbb{M}^{*}$,

$$
\begin{aligned}
z_{n+1} K_{\mathbb{B}_{*}} & (F(z), w)=z_{n+1}\left(P_{\mathbb{B}_{*}} u\right)(F(z))=P_{\mathbb{M}^{*}}\left(z_{n+1}(u \circ F)(z)\right) \\
& =\int_{\mathbb{M}^{*}} \zeta_{n+1}(u \circ F)(\zeta) K_{\mathbb{M}^{*}}(z, \zeta) \alpha(\zeta) \wedge \overline{\alpha(\zeta)} \\
& =(n+1)^{2} \int_{\mathbb{B}_{*}} u(\eta)\left[\frac{K_{\mathbb{M}^{*}}(z, \varphi(\eta))}{\overline{\varphi_{n+1}(\eta)}}+\frac{K_{\mathbb{M}^{*}}(z, \psi(\eta))}{\overline{\psi_{n+1}(\eta)}}\right] d v(\eta) \\
& =(n+1)^{2}\left(\frac{K_{\mathbb{M}^{*}}(z, \varphi(w))}{\overline{\varphi_{n+1}(w)}}+\frac{K_{\mathbb{M}^{*}}(z, \psi(w))}{\overline{\psi_{n+1}(w)}}\right)
\end{aligned}
$$

and the lemma is proved.

4. Proof of the main result.

Proof of the theorem. - For $z, w \in \mathbb{B}_{*} \backslash V$, set

$$
\left\{\begin{array}{l}
s:=1-<z, w>, \quad t:=\varphi_{n+1}(z) \overline{\varphi_{n+1}(w)} \\
x:=<z, w>+t \quad \text { and } y:=<z, w>-t .
\end{array}\right.
$$

Then using the notations in the main theorem we have $X=s$ and $Y=t^{2}$. By Lemma 2.1 we see that for some positive constant C we have

$$
\begin{aligned}
& K_{\mathbb{M}^{*}}(\varphi(z), \varphi(w))=C\left(\frac{4 n}{(1-x)^{n+1}}-\frac{2 n+2}{(1-x)^{n}}\right) \\
& K_{\mathbb{M}^{*}}(\varphi(z), \psi(w))=C\left(\frac{4 n}{(1-y)^{n+1}}-\frac{2 n+2}{(1-y)^{n}}\right),
\end{aligned}
$$

so that by Lemma 3.3 we obtain that

$$
\begin{aligned}
K_{\mathbb{B}_{*}}(z, w) & =4 C(n+1)^{2} \frac{f(x)-f(y)}{x-y}, \text { where } \\
f(u) & =\frac{2 n}{(1-u)^{n+1}}-\frac{n+1}{(1-u)^{n}} .
\end{aligned}
$$

On the other hand,

$$
\frac{f(x)-f(y)}{x-y}=n \frac{(s+t)^{n+1}-(s-t)^{n+1}}{t\left(s^{2}-t^{2}\right)^{n+1}}-\frac{n+1}{2} \frac{(s+t)^{n}-(s-t)^{n}}{t\left(s^{2}-t^{2}\right)^{n}}
$$

and

$$
\begin{aligned}
\frac{(s+t)^{n+1}-(s-t)^{n+1}}{t}= & \frac{(s+t)^{n+1}-s^{n+1}}{t}+\frac{(s-t)^{n+1}-s^{n+1}}{-t} \\
= & \sum_{j=1}^{n+1}\binom{n+1}{j} s^{n+1-j} t^{j-1} \\
& +\sum_{j=1}^{n+1}\binom{n+1}{j} s^{n+1-j}(-t)^{j-1} \\
= & \sum_{j=1}^{n+1}\binom{n+1}{j} s^{n+1-j}\left[t^{j-1}+(-t)^{j-1}\right] \\
= & \sum_{k=0}^{n}\binom{n+1}{k+1} s^{n-k}\left[t^{k}+(-t)^{k}\right] \\
= & 2 \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1} s^{n-2 k} t^{2 k} .
\end{aligned}
$$

Similarily we have that

$$
\frac{(s+t)^{n}-(s-t)^{n}}{t}=2 \sum_{k=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 k+1} s^{n-1-2 k} t^{2 k}
$$

Therefore,

$$
\begin{aligned}
& \frac{f(x)-f(y)}{x-y}=\frac{2 n \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1} s^{n-2 k} t^{2 k}}{\left(s^{2}-t^{2}\right)^{n+1}} \\
&-(n+1) \frac{\sum_{k=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2 k+1} s^{n-1-2 k} t^{2 k}}{\left(s^{2}-t^{2}\right)^{n}}
\end{aligned}
$$

But $\binom{n}{2 k+1}=\frac{n-2 k}{n+1}\binom{n+1}{2 k+1}$. Thus

$$
\begin{aligned}
& \frac{f(x)-f(y)}{x-y}=\frac{2 n \sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1} s^{n-2 k} t^{2 k}}{\left(s^{2}-t^{2}\right)^{n+1}} \\
&-\frac{\sum_{k=0}^{\left[\frac{n-1}{2}\right]}(n-2 k)\binom{n+1}{2 k+1} s^{n-1-2 k} t^{2 k}\left(s^{2}-t^{2}\right)}{\left(s^{2}-t^{2}\right)^{n+1}}
\end{aligned}
$$

$$
=\frac{\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1} s^{n-1-2 k} t^{2 k}\left[2 n s-(n-2 k)\left(s^{2}-t^{2}\right)\right]}{\left(s^{2}-t^{2}\right)^{n+1}}
$$

It follows that
$K_{\mathbb{B}_{*}}(z, w)$

$$
=4 C(n+1)^{2} \frac{\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n+1}{2 k+1} X^{n-1-2 k} Y^{k}\left[2 n X-(n-2 k)\left(X^{2}-Y\right)\right]}{\left(X^{2}-Y\right)^{n+1}}
$$

where X and Y are as in the statement of the theorem. To compute the constant we use the formula

$$
1=\int_{\mathbb{B}_{*}} K_{\mathbb{B}_{*}}(0, w) d V(w)
$$

5. Applications.

Theorem 5.1. - Let $D \subset \mathbf{C}^{n}$ be a pseudoconvex domain with C^{2}-boundary and let $f: D \rightarrow \mathbb{B}_{*}$ be a proper holomorphic mapping. Then $A_{f} \subset V(f)$ where

$$
A=A_{f}:=\{z \in D: f(z) \bullet f(z)=0\}, V(f):=\left\{z \in D: \operatorname{det} f^{\prime}(z)=0\right\}
$$

Proof. - Observe that A is an analytic subset of D. Assume that there exists a point $a \in A$ with $\operatorname{det} f^{\prime}(a) \neq 0$. To get a contradiction it suffices to show that:

$$
\text { if } z^{\nu} \in A, z^{\nu} \rightarrow z^{0} \in \partial D, \text { then } \operatorname{det} f^{\prime}\left(z^{\nu}\right) \rightarrow 0
$$

We choose a ball $B\left(z^{0}, s\right), 0<\eta<1$ so that $\eta(n+2)>n+1$, and a defining function r of $D \cap B\left(z^{0}, s\right)$ such that $\widetilde{r}:=-(-r)^{\eta}$ is plurisubharmonic on $D \cap B\left(z^{0}, s\right)$; this can be achieved using a result of Diederich-Fornaess [DF]. Moreover, we may assume that $f\left(z^{\nu}\right) \rightarrow w^{0} \in$ $\mathbb{H} \cap \partial \mathbb{B}_{*}$, where $\mathbb{H}:=\left\{\zeta \in \mathbb{C}^{n}: \zeta \bullet \zeta=0\right\}$.

Assuming that f is a mapping with multiplicity m, we know by Pinchuk [Pi2] that

$$
m K_{D}(z, z) \geq\left|\operatorname{det} f^{\prime}(z)\right|^{2} K_{\mathbb{B}_{*}}(f(z), f(z)), z \in D
$$

It is well known that $K_{D}(z, z) \leq C_{1} \operatorname{dist}(z, \partial D)^{-(n+1)}, z \in D$. Hence we get

$$
\left|\operatorname{det} f^{\prime}(z)\right|^{2} \leq C_{2}\left(K_{\mathbb{B}_{*}}(f(z), f(z))\right)^{-1} \operatorname{dist}(z, \partial D)^{-(n+1)} .
$$

Now we apply the theorem to obtain that

$$
\left|\operatorname{det} f^{\prime}\left(z^{\nu}\right)\right|^{2} \leq C_{3}\left(1-\left|f\left(z^{\nu}\right)\right|^{2}\right)^{n+2} / \operatorname{dist}\left(z^{\nu}, \partial D\right)^{n+1}, \nu \gg 1 .
$$

Fix $s^{\prime}<s$ and define on D the following function:

$$
v(z):=\left\{\begin{array}{l}
\max \left\{\widetilde{r}(z),\left|z-z^{0}\right|^{2}-s^{2}\right\} \text { if } z \in D \cap \overline{B\left(z^{0}, s^{\prime}\right)}, \\
\left|z-z^{0}\right|^{2}-{s^{\prime}}^{2}, \text { if } z \in D \backslash B\left(z^{0}, s^{\prime}\right)
\end{array}\right.
$$

It is clear that v is plurisubharmonic on D and that $v(z)=\widetilde{r}(z)$ for $z \in D \cap B\left(z^{0}, s^{\prime \prime}\right), 0<s^{\prime \prime}<s^{\prime}$ sufficiently small.

For $w \in \mathbb{B}_{*}$ we put $\rho(w):=\max \{v(z): z \in D, f(z)=w\}$. Obviously, ρ is plurisubharmonic on \mathbb{B}_{*}. In particular, for $\nu \gg 1$ we have $\rho\left(f\left(z^{\nu}\right)\right) \geq v\left(z^{\nu}\right)=\widetilde{r}\left(z^{\nu}\right)$.

Exploiting that \mathbb{B}_{*} is balanced and the Hopf-Lemma on $\mathbb{H} \cap \mathbb{B}_{*}$ leads to the following estimate: $\rho\left(f\left(z^{\nu}\right)\right) \leq C_{4}\left(\left|f\left(z^{\nu}\right)\right|^{2}-1\right), \nu \gg 1 ; C_{4}>0$ independent of z^{ν}. Therefore

$$
\left|\operatorname{det} f^{\prime}\left(z^{\nu}\right)\right|^{2} \leq C_{5}\left(-r\left(z^{\nu}\right)\right)^{\eta(n+2)} / \operatorname{dist}\left(z^{\nu}, \partial D\right)^{n+1} \rightarrow 0, \text { if } \nu \rightarrow \infty
$$

which leads to that contradiction we mentioned at the beginning of the proof.

Corollary 5.2. - There are no unbranched proper holomorphic mappings from D onto \mathbb{B}_{*} for any bounded pseudoconvex domain with a C^{2} - boundary; in particular, such a D is never biholomorphically equivalent to \mathbb{B}_{*}.

Moreover, if D is assumed to be strongly pseudoconvex we get even more:

Theorem 5.3. - Let $D \subset \mathbb{C}^{n}$ be a strongly pseudoconvex domain with C^{2}-boundary. If $f: D \rightarrow \mathbb{B}_{*}$ is a proper holomorphic mapping, then $A=V(f)$.

Proof. - Assume the inclusion $V(f) \subset A$ is not correct. Then, by the maximum principle, there is a sequence $z^{\nu} \in V(f), z^{\nu} \rightarrow z^{0} \in \partial D$ such that $\left|f\left(z^{\nu}\right) \bullet f\left(z^{\nu}\right)\right|>C>0$. Without loss of generality we assume that $f\left(z^{\nu}\right) \rightarrow w^{0}$. Since $\left|w^{0} \bullet w^{0}\right|>0$ we conclude that w^{0} is a strongly pseudoconvex boundary point of \mathbb{B}_{*}. By Theorem 3 of [Ber] there is a neighborhood $U=U\left(z^{0}\right)$ such that f extends to a continuous mapping on $U \cap \bar{D}$. Then using Theorem 3^{\prime} of [Pi1] we obtain that $f \in C^{1}(\bar{D} \cap U)$. Finally using Theorem 1 of [Pi2] we finally get the contradiction to the fact that $z^{0} \in \overline{V(f)}$.

We recall that a bounded domain Ω is said to satisfy condition (Q) if the Bergman projection of Ω maps $C_{0}^{\infty}(\Omega)$ into the space $\mathcal{O}(\bar{\Omega})$ of all holomorphic functions on a neighborhood of $\bar{\Omega}$. It was proved recently in [Th] that Ω satisfies condition Q is if and only if that for every compact subset L of Ω, there is an open neighborhood $U=U(L)$ of $\bar{\Omega}$ such that the Bergman kernel $K_{\Omega}(z, w)$ of Ω extends to be holomorphic on U as a function of z for each $w \in L$, and K_{Ω} is continuous on $U \times L$.

Lemma 5.4. - The ball \mathbb{B}_{*} satisfies condition (Q).
Proof. - For $z, w \in \mathbb{B}_{*}$, we have

$$
\begin{aligned}
\left|(1-<z, w>)^{2}-(z \bullet z) \overline{(w \bullet w)}\right| & \geq\left|1-<z, w>\left.\right|^{2}-|z \bullet z|\right| w \bullet w \mid \\
& \geq(1-|z||w|)^{2}-|z \bullet z||w \bullet w| \\
& \geq(1-|z||w|-\sqrt{|z \bullet z|} \sqrt{|w \bullet w|})^{2} \\
& \geq\left(1-\sqrt{|z|^{2}+|z \bullet z|} \sqrt{|w|^{2}+|w \bullet w|}\right)^{2}
\end{aligned}
$$

where the last inequality holds because of Cauchy-Schwarz's inequality. Therefore for some positive constant C we have

$$
\left|K_{\mathbb{B}_{*}}(z, w)\right| \leq \frac{C}{\left(1-\sqrt{|z|^{2}+|z \bullet z|} \sqrt{|w|^{2}+|w \bullet w|}\right)^{2 n+4}}, \text { for all } z, w \in \mathbb{B}_{*}
$$

This shows that \mathbb{B}_{*} satisfies condition (Q).
Theorem 5.5. - Let $D \subset \mathbb{C}^{n}$ be an arbitrary bounded circular domain which contains the origin.
(1) If $f: \mathbb{B}_{*} \rightarrow D$ is a proper holomorphic mapping, then f extends holomorphically to a neighborhood of $\overline{\mathbb{B}_{*}}$.
(2) If D is smooth then there is no proper holomorphic mapping from \mathbb{B}_{*} into D.

Proof. - Since, by Lemma 5.4, \mathbb{B}_{*} satisfies condition Q, part (1) of the theorem becomes a consequence of Theorem 2 of [Bel]. To see that part (2) of theorem holds, it is enough to notice that if there is proper holomorphic mapping $f: \mathbb{B}_{*} \rightarrow D$, and if ϱ is a defining function of D, then $\varrho \circ f$ is a defining function for \mathbb{B}_{*}, which will imply that \mathbb{B}_{*} is smooth and thus leads to a contradiction.

Theorem 5.6. - Let L be a compact subset of \mathbb{B}_{*} and let ζ be a boundary point of \mathbb{B}_{*}. Then every holomorphic function f in a
neighborhood of L is the uniform limit of functions in the complex span of the functions

$$
\frac{\partial}{\partial \zeta^{\beta}} K_{\mathbb{B}_{*}}(., \zeta), \quad \beta \in \mathbb{N}_{0}^{n}
$$

Proof. - Since \mathbb{B}_{*} is a Runge domain and satisfies condition (Q) the proposition follows from Theorem 2.5 of [Th].

BIBLIOGRAPHY

[Bel] S. Bell, Proper holomorphic mappings between circular domains, Comment. Math. Helv., 57 (1982), 532-538.
[Ber] F. Berteloot, Attraction des disques analytiques et hölderienne d'applications holomorphes propres, Banach Center Publications, 31 (1995), 91-98.
[DF] K. Diederich and J.E. Fornaess, Pseudoconvex Domains: Bounded Strictly Plurisubharmonic Exhaustion Functions, Inventiones Math., 39 (1977), 129141.
[FH] W. Fulton \& J. Harris, Representation theory, Graduate Texts in Math., Springer-Verlag, 1991.
[HP] K.T. Hahn \& P. Pflug, On a minimal complex norm that extends the euclidean norm, Monatsh. Math., 105 (1988), 107-112.
[JP] M. Jarnicki \& P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993.
[Ki] K.T. Kim, Automorphism groups of certain domains in \mathbb{C}^{n} with singular boundary, Pacific J. Math., 151 (1991), 54-64.
[Le] J.J. Loeb, Les noyaux de Bergman et Szegö pour des domaines strictement pseudo-convexes généralisent la boule, Publicationes Math., 36 (1992), 65-72.
[OY] K. Oeljeklaus \& E.H. Youssfi, Proper holomorphic mappings and related automorphism groups, J. Geom. Anal., to appear.
[Pi1] S. Pinchuk, Scaling method and holomorphic mappings, Proc. Symposia in Pure Math., Part 1, 52 (1991).
[Pi2] S. Pinchuk, On proper holomorphic mappings on strictly pseudoconvex domains, Sib. Math. J., 15 (1974).
[Th] A. Thomas, Uniform extendability of the Bergman kernel, Illinois J. Math., 39 (1995), 598-605.

Manuscrit reçu le 18 septembre 1996, accepté le 20 décembre 1996.
K. OELJKLAUS \& E.H. YOUSSFI, Université de Provence
Centre de Mathématiques et d'Informatique 39 rue F. Joliot-Curie
13453 Marseille Cedex 13 (France).
karloelj@gyptis.univ-mrs.fr
youssfi@gyptis.univ-mrs.fr
P. PFLUG,

Universität Oldenburg
Fachbereich Mathematik
Postfach 2503
26111 Oldenburg (Allemagne).
PFLUG@mathematik.uni-oldenburg.de

[^0]: Key words: Bergman kernel - Minimal ball - Proper holomorphic mapping. Math. classification: 32H10-32H35.

