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QUADRATIC HARMONIC MORPHISMS
AND O-SYSTEMS

by Ye-Lin OU®)

1. Introduction.

A map p: (M™ g) — (N™ h) between two Riemannian manifolds is
called a harmonic map if the divergence of its differential vanishes. Such
maps are the extrema of the energy functional

1 2
3 /D |dep|

over compact domains D in M. For a detailed account of harmonic maps
we refer to [10], [11], [12] and the references therein.

Harmonic morphisms are a special subclass of harmonic maps which
preserve solutions of Laplace’s equation in the sense that, for any harmonic
function f:U — R, defined on an open subset U of N with ¢~1(U)
non-empty,

fop:p }(U)—R

is a harmonic function. In other words, ¢ pulls back germs of harmonic
functions on N to germs of harmonic functions on M. In the theory of
stochastic processes, harmonic morphisms ¢: (M, g) — (N, h) are found to
be Brownian path preserving mappings meaning that they map Brownian
motions on M to Brownian motions on N (see [6], [24]). It is well-known
(see [16], [23]) that a map between Riemannian manifolds is a harmonic
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morphism if and only if it is both a harmonic map and a horizontally
weakly conformal map. For a map ¢ : R™ — R"™ between Euclidean spaces,
with ¢(z) = (p(z),...,9"()), the harmonicity and horizontal weakly
conformality are equivalent to the following conditions, respectively:

m 82(,00‘
(1) 0x2 = 07
i=1 i
(2) 3 (')_(p‘ia_cpﬁ = \2(z)6%P a,f=1,2 n
i=1 axi awi b b b PR b
where (z1,...,%,) are the standard coordinates of R™.

In recent years, much work has been done in classifying and
constructing harmonic morphisms from certain model spaces to other
model spaces (see e.g. [1], 2], [3], [4], [5], [17], (18], [19], [20], [37], [38], [30],
[27] and [29]).

Concerning harmonic morphisms between Euclidean spaces, Baird [1]
has studied harmonic morphisms ¢:R™ — R"™ defined by homogeneous
polynomials of degree p. He has obtained a necessary condition on
the dimensions of the domain and the range spaces for such harmonic
morphisms to exist; he also gives a possible way to construct such
harmonic morphisms from a single polynomial. For quadratic harmonic
morphisms, i.e. harmonic morphisms defined by homogeneous polynomials
of degree 2, he proves (Theorem 7.2.7 in [1]) that an orthogonal
multiplication p:RP x R? — R”™ is a harmonic morphism if and only if
the dimensions p = ¢ = n and n = 1,2,4 or 8. It is well-known that the
standard multiplications of the real algebras of real, complex, quaternionic
and Cayley numbers are both orthogonal multiplications and harmonic
morphisms. Baird also shows that any Clifford system, i.e., an n-tuple
(Py,...,P,) of symmetric endomorphisms of R?™ satisfying

for i,j = 1,...,n, defines a quadratic harmonic morphism ¢:R?>™ — R"
by
®3) p(x) = (P X, X), ..., (P X, X)).

The author proves [27] that the “complete lift” (Definition 2.1 in [27])
of any quadratic harmonic morphism ¢:R™ — R™ is again a quadratic
harmonic morphism % : R?™ — R"; this provides a method of constructing
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new quadratic harmonic morphisms from given ones. In [30], a classification
of quadratic harmonic morphisms is given and it is also shown that any
umbilical quadratic harmonic morphism arises from a Clifford system.

In this paper, we solve completely the existence and the classification
problem for quadratic harmonic morphisms by introducing O-systems of
orthogonal transformations of the domain space. In Section 2 we recall
the first classification theorem obtained in [30], discuss a direct sum
construction of harmonic morphisms and establish a 1-1 correspondence
between equivalence classes of Clifford systems and umbilical quadratic
harmonic morphisms (Theorem 2.6). In Section 3 we introduce the notion
of O-systems and obtain a 1-1 correspondence between equivalence classes
of Clifford systems and that of O-systems (Theorem 3.4); In Section 4
we establish a 1-1 correspondence between O-systems and orthogonal
multiplications (Theorem 4.2). Putting these together and using the
Splitting Lemma (Lemma, 4.8), we obtain our main theorems (Theorems 4.6
and 4.10). Section 5 is devoted to the study of properties possessed by all
quadratic harmonic morphisms for fixed pairs of domain and range spaces
(including quadratic harmonic morphisms into R?, R3, R*, R5, R® and R?).
Among other things, we show that any quadratic harmonic morphism
arises from a single quadratic function (Theorem 5.2). Also we show
that we can generalise the Hopf construction to “domain-minimal” but
not “range-maximal” quadratic harmonic morphisms (Theorem 5.4), and
finally, quadratic harmonic morphisms in dimensions 2n to n or n + 1
(for n = 1,2,4,8) are shown to be equivalent to standard maps.

Applications of O-systems to classifying orthogonal multiplications
F(n,m;m) and to constructing isoparametric functions on, and minimal
submanifolds of, spheres will appear in the author’s paper [28].

2. Quadratic harmonic morphisms and Clifford systems.

We use O(R™) and S(R™) to denote the set of all orthogonal
endomorphisms and that of all symmetric endomorphisms of R™,
respectively. When the latter is viewed as a Euclidean space it is understood
to have the inner product defined by

(4) (A,B) = %tr(AB)

for any A, B € S(R™).
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A quadratic harmonic morphism ¢:R™ — R™ is an harmonic
morphism whose components are quadratic functions (i.e. homogeneous
polynomials of degree 2) in z1,...,zm,. We use Ha(m,n) to denote the set
of all quadratic harmonic morphisms ¢ : R™ — R™.

Let ¢ € Ha(m,n) with
o(X) = (X*A1, X, ..., Xt A, X).

We have proved (see [30]) that the component matrices A; have the same
rank which is always an even number which we call the @-rank of . The
quadratic harmonic morphism ¢ is said to be Q-nonsingular if Q-rank(p)
equals the domain dimension, otherwise ¢ is said to be Q-singular. We also
prove that the A; have the same spectrum which consists of pairs £\ of
eigenvalues and possibly 0. Then we obtained the following

CLASSIFICATION THEOREM (see [30]). — Let ¢ : R™ — R™ (m > n)
be a quadratic harmonic morphism.

(I) If ¢ is Q-nonsingular, then m = 2k for some k € N and, with respect
to suitable orthogonal coordinates in R™, ¢ assumes the normal form

o - (8 Sxr(h B

0 B,-
t n—1
X (B,g_1 5 ')%)
where B;, D € GL(R, k) with D diagonal having the positive eigenvalues as
diagonal entries, and satisfy

DB; = B;D, B!B;=D?,
(6)

B{B; = —B!B; (G,7=1,...,n—1, i #j).

(II) Otherwise Q-rank(p) = 2k for some k, 0 < k < %m, and ¢ is
the composition of an orthogonal projection 7 : R™ — R?* followed by a
Q-nonsingular quadratic harmonic morphism ¢ : R?* — R”™.

It follows that any quadratic harmonic morphism from an odd-
dimensional space is the composition of an orthogonal projection followed by
a @-nonsingular quadratic harmonic morphism from an even-dimensional
space. Thus to study quadratic harmonic morphisms it suffices to consider
Q-nonsingular ones from even-dimensional spaces.
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DeFINITION 2.1. — Let (M,g) and (N,h) be two Riemannian
manifolds. Suppose that ¢ : M — R™ and ¥ : N — R" are two C*®
maps. Then the direct sum of ¢ and @ is a map

p®dP: M x N — R"
defined by

(p@P)(p,q) = v(p) +P(q)

where M x N is the product of M and N, endowed with the Riemannian
product metric G = (g, h).

PROPOSITION 2.2 (see [29]). — The direct sum of any two harmonic
morphisms is again a harmonic morphism. In particular, the direct sum of
two quadratic harmonic morphisms ¢ : R™ — R™, ¢ : R¢ — R™ with

o(X) = (X*A1X,..., X4, X), ¢(X)=(Y'BY,...,Y'B,Y)
is the quadratic harmonic morphism ¢ @ ¢ : R™*¢ — R™ given by

(p®)(X,Y) = (X'A1 X +Y'B1Y,..., X' A, X + Y'B,Y)

(e 8

x (T 5) (7))

For more results on the direct sum construction of harmonic
morphisms see [29)].

A quadratic harmonic morphism is said to be separable if it can
be written as the direct sum of two quadratic harmonic morphisms from
smaller dimensional domain spaces. Concerning the existence of quadratic
harmonic morphisms we note that, if there exists ¢ € Ha(m,n), then, by
projection, Ha(m, k) is not empty for 1 < k < mn; On the other hand, by
using the direct sum construction, we know that if Hy(m,n) is not empty
then neither is Ha(km,n) for k € N.

DEFINITION 2.3.

(i) A quadratic harmonic morphism ¢ : R™ — R" is said to be range-
maximal if for fixed m,n is the largest range dimension such that Ha(m,n)
is not empty; it is said to be domain-minimal if for fixed n, m is the smallest
domain dimension such that Ha(m,n) is not empty.
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(i) Two quadratic harmonic morphisms ¢,¢ € Ha(m,n) are said to
be domain-equivalent, denoted by ¢ £ ¢, if there exists an isometry G
in O(R™) such that ¢ = ¢ o G. They are said to be bi-equivalent, denoted
by ¢ kg ¢, if there exist isometries G € O(R™) and H € O(R") such
that p =H 'ogoG.

Clearly, if a quadratic harmonic morphism is domain-minimal then it
is not separable. Also, a domain-minimal quadratic harmonic morphism is
always @-nonsingular.

DEFINITION 2.4 (see, e.g. [15]).

(i) A (2m,n)-dimensional Clifford system is an n-tuple (Py,...,P,),
denoted by {P;} for short, of symmetric endomorphisms of R?™ satisfying

(7) PP+ PP, =26;1d  (i,j=1,...,n).

The set of all (2m, n)-dimensional Clifford systems is denoted by C(2m,n).

(ii) A representation of a Clifford system {P;} € C(2m,n) is an n-
tuple (A1,...,A,) of symmetric matrices such that, with respect to some
orthonormal basis in R*™, A; is the representation of P; (i = 1,...,n).
A Clifford system is sometimes specified by its representation as {A;}.

(iii) Let {P;} € C(2m,n) and {Q;} € C(2¢,n), then {P; ® Q;} is a
Clifford system on R2(™+9) the so-called direct sum of {P;} and {Q;}

(iv) A Clifford system {P;} € C(2m,n) is said to be irreducible if it is not
possible to write R?™ as a direct sum of two non-trivial subspaces which
are invariant under all P;.

(v) Two Clifford systems {P;},{Q:} € C(2m,n) are said to be alge-
braically equivalent, denoted by {P;} ~ {Q;}, if there exists A in
O(R?™) such that Q; = AP;A! for all i = 1,...,n. They are said to
be geometrically equivalent, denoted by {P;} & {Q;}, if there exists B
in O(span{Pi,...,P,}) C O(S(R?™)) such that {B(P;)} and {Q;} are
algebraically equivalent.

A quadratic harmonic morphism is said to be umbilical (see [30]) if all
the positive eigenvalues of one (and hence all) of its component matrices
are equal.

It follows from Baird [1] that any Clifford system {P;} € C(2m,n+1)
gives rise, by (3), to an umbilical quadratic harmonic morphism with
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positive eigenvalue 1. On the other hand, we know from [30] that,
up to a constant factor, any umbilical quadratic harmonic morphism
¢ € Hy(2m,n + 1) is domain-equivalent to one arising from a Clifford
system

® (5 2. 9 %))

n

where the 7; € O(R™) satisfy
(9) T:TJ+T;TZZ26”Id (G,5=1,...,n).

Remark 2.5. — Note that an umbilical quadratic harmonic morphism
with positive eigenvalue A can always be normalized, by multiplication by a
scalar, to have positive eigenvalue 1. Thus the study of umbilical quadratic
harmonic morphisms reduces to the study of umbilical quadratic harmonic
morphisms with positive eigenvalue 1.

Let H}(2m,n) denote the subset of Hy(2m,n) consisting of all
umbilical quadratic harmonic morphisms with positive eigenvalue 1. Then,
as we have seen from the above, we have a map

(10) F: C(2m,n) — H}(2m,n)
with F({P;}) defined by (3).
THEOREM 2.6. — Let F' be the map defined by (10). Then
(i) {Pi} & {Q:} ifand only if F({P:}) & F({Q:});
(ii) {P;} £ {Q:} if and only if F({P,}) & F({Q:});
(iii) F preserves the direct sum operations in the following sense:
(11) F({Q:® Ri}) £ F{Q:}) ® F({R:}),

and hence F preserves reducibility in the sense that {P;} is irreducible if
and only if F({P;}) is an umbilical quadratic harmonic morphism which is
not separable.

Proof. — Claim (i) is obviously true. For (ii) we first note that when
S(R™) is viewed as a Euclidean space with the inner product defined
by Equation (4), then any {P;} € C(2m,n) becomes an orthonormal
set. Thus span{P,...,P,} can be identified with R™ provided with the
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standard inner product, and hence O(span{P;, ..., P,}) = O(R"). Now let
B(P,) = a! P;. Then it is easy to see that B € O(span{P}, ..., P,}) if and
only if (a?) € O(R™). It is routine to check that { B(P;)} is indeed a Clifford
system € C(2m,n). By definition, we have

F({B(Pi)})(X) = ((B(PI)X’ X)a ceey <B(Pn)X’X>)
= (a](P; X, X),...,d} (P; X, X))
— H ' oP({P})(X).

where H = (a!)~! € O(R"). By Definition 2.4, {P;} £ {Q;} if and only if
{B(P;)} ~ {Q}, which, by (i), is equivalent to F({B(P;)}) L F({Q:}), i.e.,
F({Qi}) = H ' oF({P;}) o G for some G € O(R™), which means exactly
that F({P;}) L F({Q:}). This ends the proof of (ii).

Now we prove (iii), by using 1) of Lemma 3.3. It is easy to check that
Equation (11) holds for any {Q;} € C(2k,n) and {R;} € C(2¢,n). Now
suppose that { P;} € C(2m, n) is irreducible, we are to prove that F({P;}) is
an umbilical quadratic harmonic morphism which is not separable. Suppose

otherwise. Then we would have F({P;}) g p1 ® 3, where both ¢; and 2
must be umbilical quadratic harmonic morphisms with positive eigenvalue 1
since F'({P;}) is of this kind. It follows from [30] (Theorem 3.3) that there

exist {Q;} € C(2k,n) and {R;} € C(2¢,n) such thant F({Q;}) £ o1 and
F({R:}) & 2. But then we would have

F({PY) L o1 @ p2 L F({Qi}) ® F({R:}) £ F({Q:i ® R:}).

This means that {P;} ~ {Q;®R;}, which is impossible since { P, } is assumed
to be irreducible. On the other hand, it is obviously true that if F({F;})
is an unseparable umbilical quadratic harmonic morphism then {P;} is
irreducible. Thus we obtain (iii), which completes the proof of the theorem.

3. O-systems and Clifford system.

DEFINITION 3.1.

(i) An (m,n)-dimensional O-system is an n-tuple (11,...,T,) denoted
by {7;} for short, of orthogonal endomorphisms of R™ satisfying

(12) tiry+rin =26;1d (5,5 =1,...,n).

The set of all (m,n)-dimensional O-systems is denoted by O(m,n).
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(if) A representation of an O-system {7;} € O(m,n) is an n-tuple
(a1,...,a,) of orthogonal matrices such that, with respect to some
orthonormal basis in R™, a; is the representation of 7; fori =1,...,n. An
O-system is sometimes specified by its representation as {a;}.

(iii) Let {o;} € O(m,n) and {r;} € O(¢,n), then {o; ®T;} is an O-system
on R™*+¢ | the so-called direct sum of {0;} and {r;}.

(iv) An O-system {o;} € O(m,n) is said to be irreducible if it is not
possible to write R™ as a direct sum of two non-trivial subspaces which are
invariant under all o;.

(v) Two O-systems {o;}, {ri} € O(m,n) are said to be algebraically
equivalent, denoted by {o;} ~ {r;}, if there exists 8,p € O(R™) such
that T, = Qo;pt. They are said to be geometrically equivalent, denoted
by {o:} & {n}, if {f/(0;)} and {r;} are algebraically equivalent for some
(f7) € O(R™.

Remark 3.2. — We remark that n-tuple {7;} of orthogonal
endomorphisms satisfying

TiTj+TjTi=—26ide (i,j=1,...,n)

and n-tuples {ax} of skew symmetric endomorphisms satisfying Equa-
tion (12) have been used (see e.g., [22], [8], [31], [15]) to study the represen-
tations of Clifford algebras.

For examples, we know (see Lemma 24 in [31]) that there exists a biject
ive correspondence between the set of equivalence classes of (n — 1)-tuples
{ar} of skew symmetric endomorphisms of R™ satisfying Equation (12)
and the set of orthogonal equivalence classes of representations R(C,—1, *)
of the Clifford algebra C,,_;.

On the other hand, there is a classical result of Radon, Hurwitz and
Eckmann’s (see e.g., [8]) saying that there exist (o(m) — 1)-tuples of skew
symmetric and orthogonal endomorphisms of R™ satisfying Equation (12).
In contrast, our results (see Theorem 4.5) claims the existence of range-
maximal (m,o(m))-dimensional O-systems which means that there exist
o(m)-tuples of orthogonal endomorphisms of R™ satisfying Equation (12).

LEMMA 3.3.

1) Let {A,} and {B.} be representations of {P,} and {Q.}
respectively. Then the direct sum {P; & Q;} has a representation of the
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form

) (T 2)}

2) Let {a;} and {b;} be representations of {7;} and {o;} respectively,
Then the direct sum {7; ® 0;} has a representation of the form

09 {(5 )}

3) A Clifford system {P,} (resp. an O-system {7;}) is reducible if and
only if it has a non-trivial representation of the form (13) (resp. (14)).

Proof. — The proof of the lemma is trivial and is omitted. O

It can be checked that any Clifford system {P,} € C(2m,n + 1) is
algebraically equivalent to one given by Equation (8), which is uniquely
associated to an n-tuple {7;} of orthogonal endomorphisms satisfying (9).
Thus every Clifford system {P,} € C(2m, n+1) corresponds to an O-system
{m:} € O(m,n), and hence we have a surjective map

(15) f: C(2m,n+1) — O(m,n).
TuEOREM 3.4. — Let f be the map defined by (15). Then
1) f induces a bijective correspondence,
f1:C2m,n+ 1)/~ — O(m,n)/~,
2) f preserves the direct sum operations in the following sense:

(16) f({Qa ® Ra}) = f({Qa}) ® f({Ra})

and hence f preserves reducibility in the sense that {P,} is irreducible if
and only if f({P,} is irreducible.

Proof. — For 1), it is evident that f induces an onto map
fi: C2m,n+1)/~ — O(m,n)/~.
It remains to prove that f; is 1-1. To this end, suppose that

A({Pa}) = [{m}] = £ ({Qa}) = [{o:}].

Then we have {;} ~ {0;}. Thus there exists §,p € O(R™) such that
Ti=00;pt foralli=1,...,n.
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Now one can check that

_ 0 0 2m 0 Ti t 0 ag;
A= (0 p) € O(R?™) and that A(Tit O)A - (02 ’ )
which means that {P,} and {Q,} are algebraically equivalent, and hence

[{Pa}] = [{Qa}]

For the first statement of 2), we can check that

In 0 0 0 0 0 7 0

a 0 Ie 0 0 0 0 0 g;

{QeoBa}™>3 o o _. 0 |'|# 0 0 o
o 0o o -5/ \o o0 0

Thus, by definition of f and 1), we obtain Equation (16), which together
with 1) gives the second statement of 2). This completes the proof of the
theorem. 0

Combining (i) of Theorem 2.6 and 1) of Theorem 3.4, we have the
following

CoROLLARY 3.5. — There exist the following 1-1 correspondences:
a 1-1 a 1-1 1 d
O(m,n)/~ — C(2m,n+ 1)/~ — Hy;(2m,n + 1)/~.

ProposITION 3.6. — Let {7;} € O(m,n) be an O-system. Then
(a) {r}} is also an O-system in O(m,n).

(b) Any subset consisting of k elements of {r;} forms an (m,k)-
dimensional O-system.

Proof. — The proof is a straightforward checking of the defining
Equation (12) and is omitted. m|

Remark 3.7. — It follows from Proposition 3.6 that if O(m,n) is
empty then so is O(m,n + p) for all p > 1. On the other hand, by the
direct sum operation, if O(m,n) is not empty then neither is O(km,n)
for k > 2. Therefore it is meaningful to put the qualifiers “range-maximal”
and “domain-minimal” before a Clifford system and an O-system in a
similar way as they are used in Definition 2.3.

ProrosiTiON 3.8. — For n > 2 and k € N, the set O(2k + 1,n) is
empty. Geometrically, there exists no QQ-nonsingular umbilical quadratic
harmonic morphisms ¢ : R¥*+2 — R"*! for n > 2.
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Proof. — By Remark 3.7, we need only to show that O(2k + 1,2) is
empty. In fact, if there were {7, 2} € O(2k + 1,2), then we would have
71,72 € O(R?**+1) satisfying 7fm, = —7471. It follows that

dety x detp = (—1)2"+1 det 9 x det ; = —det 7 x det 7

and hence det 71 = 0 or det 75 = 0 which contradict the fact that 71,7 are
orthogonal. O

4. O-systems and orthogonal multiplications.

DErFINITION 4.1. — An orthogonal multiplication is an R-bilinear map
@ RP x R? — R™ with

s o)l = llll > llyll

for allx € RP, y € R?. We use F(p,q,n) to denote the set of all orthogonal
multiplications p : RP x R? — R™.

Though the existence of orthogonal multiplications is a purely
algebraic problem it is closely related to the existence of interesting
geometric objects such as vector fields on spheres and harmonic maps
into spheres:

Fact A (see [22]): If there exists an orthogonal multiplication
u € F(n,m;m) then there exist (n — 1) linearly independent vector fields
on §™1,

Fact B (see [11]): For any orthogonal multiplication p € F(p, g;n) the
restriction of y provides a harmonic map SP~! x $97! — §"~1. If p = ¢ the
Hopf construction

(17) H(z,y) = (I=lI”> — vl 2p(z,y)) : R? x R? — R

provides a harmonic map S~ — §".

With regard to quadratic harmonic morphisms, Baird has proved
(see [1], Theorem 7.2.7) that an orthogonal multiplication p € F(p, q,n) is
a harmonic morphism if and only if the dimensions p =¢=nandn =1, 2,
4or 8.

Now we give a link between O-systems and orthogonal multiplica-
tions as
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THEOREM 4.2. — There exists a 1-1 correspondence between O(m,n)
and F(n,m;m). The correspondence is given by {7;} — u. with

(18) p"r(x3y) = wiu'l’(eiay) = xi/"“r(y)s

where T = z'e; and {e;} is the standard basis for R™.

Proof. — It is an elementary fact from linear algebra that there is
a 1-1 correspondence, given by (18), between the set of n-tuples {r;} of
linear endomorphisms of R™ and that of bilinear maps p:R™ x R™ — R™.
It remains to show that {r;} is an O-system if and only if the corresponding
147 is an orthogonal multiplication. To this end, we first note the following
two facts:

(I} A linear transformation 7:R™ — R™ is orthogonal if and only if 7
sends S™! into S™ 1.

(II) A bilinear map p:R™ x R™ — R™ is an orthogonal multiplication if
and only if x sends S x §™ ! into ™1,

Now suppose that {7;} € O(m,n). Then z'r; is orthogonal for any
(z,...,2") € S"! since

(19) (z'r;)(ztn;)t = 2:(:1:")2 Id= inxj (rirj +1jm) =1d.
i=1 it

Therefore, for any z‘e; € S*~* and y € S™~! we have
(20) - (2, 9| = |2*m(w)]| = || (=" ) (W)]| = 1.

From this and (I1) it follows that ., is an orthogonal multiplication.
Conversely, if p, is an orthogonal multiplication then by (II), Equation (20)
holds for any z’e; € S ! and y € S™ 1. Thus, by (I) z’r; is orthogonal
for any (z!,...,2") € S ! and especially, 7; are orthogonal. It also follows
that Equation (19) holds for arbitrary (z!,...,z") € S"!, which implies
that 7fm; + 7fr; = 0 for 4,5 = 1,...,n and i # j. Thus {r;} € O(m,n)
which ends the proof of the theorem.

Remark 4.3. — Tt is known (Smith [34]; see also Eells and Ratto [13])
that there is a 1-1 correspondence between F'(p, g;n) and the set of totally
geodesic embeddings of SP7! into Op,q, the Stiefel manifold of orthogonal
g-frames in n-space with suitable normalization. In particular, there is a 1-1
correspondence between F'(n, m;m) and geodesic (n — 1)-spheres in O(R™).

By combining Theorem 4.2 and Corollary 3.5 we can easily establish
the following
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ProprosiTiION 4.4. — To any umbilical quadratic harmonic mor-
phism ¢ € H%(2m,n + 1) is associated an orthogonal multiplication
po € F(n,m;m).

Now we are ready to give the following existence theorem for Clifford
systems and O-systems.
THEOREM 4.5.

A) Let o(m) = 2° + 8d for any m € N, uniquely written as
m=(2r+1)2°4  (0<rd, 0<c<3).

Then there exist range-maximal (m,o(m))-dimensional O-systems, and
hence range-maximal (2m, o(m) + 1)-dimensional Clifford systems.

B) For any n € N there exist domain-minimal (2m(n),n + 1)-
dimensional Clifford systems, and hence domain-minimal (m(n),n)-
dimensional O-systems for and only for the (m(n),n) values listed in
Table 1.

n 1 2 3 45 6 7 8 ... n+8
mn) 1 2 3 4 5 6 7 8 ... 16m(n)
Table 1

Proof. — From Theorem 4.2 we know that there exists an (m,n)-
dimensional O-system if and only if there exists an orthogonal multiplication
u € F(n,m;m). Now the existence of range-maximal O-systems follows
from a classical result of Hurwitz [21] (see also Radon [33] and Eckmann [9])
that for any m € N, uniquely written as m = (2r + 1)2¢t4¢ (where 7,d > 0
and 0 < ¢ < 3), there exist orthogonal multiplication u € F(n,m;m) for
n = o(m) = 2° + 8d which is also the largest number possible for such
orthogonal multiplication to exist. The existence of range-maximal Clifford
systems then follows from Theorem 3.4. Thus we obtain A).

For B), we note that a Clifford system or an O-system is domain-
minimal if and only if it is irreducible. It follows from [15] that (2m(n), n+1)-
dimensional irreducible Clifford systems exist precisely for the values of
(m(n),n) listed in Table 1. Again the relation between Clifford systems and
O-systems (Theorem 3.4) gives the existence of domain-minimal O-systems,
which completes the proof of the theorem.
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THEOREM 4.6 (Existence of umbilical quadratic harmonic morphisms).

(a) Let o(m) = 2°+ 8d for any m € N, uniquely written as
m = (2r+1)2°*t44, Then there exist range-maximal Q-nonsingular umbilical
quadratic harmonic morphisms ¢ : R?™ — Re(m)+1,

(b) For any n € N there exist domain-minimal Q-nonsingular umbilical
quadratic harmonic morphisms ¢ : R2™™ — R for and only for the
(m(n),n) values listed in Table 1.

(¢) Other Q-nonsingular umbilical quadratic harmonic morphisms into
R™*! exist precisely in the cases R%*™(?) — R**1 with k > 2, where they
are domain-equivalent to a direct sum of some domain-minimal umbilical
quadratic harmonic morphism ¢ : R2™(") — Rn+1,

Proof. — Using Theorem 4.5 and the map (10) we obtain
statements (a) and (b) immediately. For (c), first note, as in Section 2,
that from [30] that any Q-nonsingular umbilical quadratic harmonic
morphism ¢ is domain-equivalent to Apg for ¢ given by a Clifford system
{P;} € C(2km(n),n + 1). It is known (see e.g. [15]) that any Clifford
system is algebraically equivalent to a direct sum of irreducible ones. Thus,
according to Table 1, any Clifford system {P;} € C(2km(n),n + 1) is
algebraically equivalent to {P} @ ... ® PF} where {P?*} € C(2m(n),+1)
is irreducible for all « = 1,...,k. By using Theorem 2.6 we see that
©o L F{P}}@®...® F({PF}), which gives (c) and hence we obtain the
theorem.

As an immediate consequence, we have

COROLLARY 4.7. — Let ¢ : R?™ — R™ be a Q-nonsingular umbilical
quadratic harmonic morphism. Then either

(a) ¢ is domain-minimal, in which case, ¢ 2 Ao for o € Hy(2m,n)
given by an irreducible Clifford system, or

(b) ¢ L M1 @ -+ ® i), where all p; € Hy(2¢,n) (with kf = m) are

domain-minimal.

Now we give a splitting lemma which will give the existence of general
quadratic harmonic morphisms.

LEMMA 4.8 (The Splitting Lemma). — Let ¢ : R*™ — R™ be a
Q-nonsingular quadratic harmonic morphism. Then either

(i) ¢ is umbilical, or
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(ii) ¢ is domain-equivalent to a direct sum of Q-nonsingular umbilical
quadratic harmonic morphisms.

Proof. — Let ¢:R?™ — R™ be a Q-nonsingular quadratic harmonic
morphism. We will prove the lemma by checking the following two cases:

Case I. All the positive eigenvalues Ay, ..., Ay, are distinct.

Cramm 1. — For n > 3, there exists no Q-nonsingular quadratic
harmonic morphism ¢ : R?™ — R™ with all positive eigenvalues distinct.

Proof of Claim 1. — Since the composition of a quadratic harmonic
morphism with distinct positive eigenvalues followed by a projection is
again a quadratic harmonic morphism of this kind, it is enough to do the
proof for the case R?™ — R3. Suppose otherwise, if there were a quadratic
harmonic morphism of this kind, then by the Classification Theorem, ¢
would be given by (5) where

A1 0 ... 0
0 A

@y D=|. . , By = (b), By = (V) € GL(R,m)
0 0 ... Am

and satisfy Equation (6). Now from the first equation of (6) we know
that B; must be of diagonal form

o0 .0
0 b, ... 0
B, =1 . 2 . .
0 0 b
But then the third equation of (6) says that bj;b%; = 0 for j = 1,...,m.

This implies that either b}; = 0 or b%; = 0, which is impossible since B; for
i = 1,2 is non-singular. This ends the proof of Claim 1.

CLAamM 2. — Any Q-nonsingular quadratic harmonic morphism
¢ : R?™ — R? with all positive eigenvalues distinct is domain-equivalent to
a direct sum of umbilical ones.

Proof of Claim 2. — We know from [30] that any @-nonsingular
quadratic harmonic morphism ¢ :R?™ — R? is domain-equivalent to the
normal form

(22) w(x) = (x4 —OD)X’Xt(];){ 0)%)
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where D and B; are as in (21) and satisfy Equation (6). From Equation (6)
and the hypothesis on A}s we deduce that B; must be diagonal form

A 0 .. 0

0 X ... 0
B, = . . .

0 0 ... £

Inserting this into (22), we have

U(X) = (2] —ahpa) + -+ Am(al, — 23,),
+ 2)\1(121.1‘m+1 +..- £ 2>\mzmx2m)~

It is easy to check that

d . d
p~¥~ Ao ® - @ Ao,

where g :R? = C — R? = C with ¢o(z) = 2% which is clearly umbilical.
Thus we obtain Claim 2. Combining Claim 1 and 2 we see that the lemma
is true for Case I.

Case II: ¢ has some equal positive eigenvalues.

Without loss of generality, we may assume that the positive
eigenvalues satisfy \; = --- = Ay # Ay (where £k < £ < m). By the
Classification Theorem, we know that ¢ Ly given by the normal form (5)
with B; for i = 1,...,n — 1, D € GL(R,m) satisfying (6). Now using
Equation (6) and the hypothesis on A;s we can check that B; must take
the form

b; 0 .
B, = =1.....n—
¢ (0 Ci)’ ! ’ ’ 1,

where b; € GL(R, k), ¢; € GL(R, m — k). Writing

(Il,...,ZL‘k,%'k.{.l,-..,CL‘m,mm_}_l,.-.,.’L'm+k,xm+k+1,---,$2m,)
N e? NS - 4 -~ <\ ~~ -

X1 X2 X3 X4

as (X3, X2, X3, X4), we can check that after an orthogonal change of the
coordinates of the form

X1 I, 0 0 0 Y;
Xo| [0 0 Inx O Y,
Xs| |0 I, 0 0 Ys |’
X4 0 0 0 Inx Y,
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we have
V(YY) = p1(Y1,Y2) + ¥1(Y3,Ys),

ie, U2 o ® U, with pr:R* — R™ and ¥;:R2™%) _ R" both
quadratic maps. By using Theorem 1.5 in [30] and the fact that ¥(Y) is
a @-nonsingular quadratic harmonic morphism we can prove that both ¢,
and ¥, are @-nonsingular quadratic harmonic morphisms with ¢; umbilical
since Ap,...,Ag are supposed to be equal. Now the same process applies
to ¥; and so on until we obtain, for all umbilical ¢4, ..., ¢,

d - d
p~U N~ B D ;.

Therefore, we have seen from Case I and Case II that either ¢ is
umbilical or, ¢ is domain-equivalent to a direct sum of @-nonsingular
umbilical ones. This ends the proof of the lemma.

Recalling that a domain-minimal quadratic harmonic morphism is
always @-nonsingular and not separable, we see immediately, from the
Splitting Lemma, the following

COROLLARY 4.9. — Any domain-minimal quadratic harmonic mor-
phism ¢ : R?™ — R™ is umbilical.

From the Splitting Lemma and Theorem 4.6 we obtain the following
existence theorem for general quadratic harmonic morphisms.

TueEOREM 4.10. — Given n € N, Q-nonsingular quadratic harmonic
morphisms to R™*! exist precisely in the cases R?*™(") — R**! for k € N,
and m(n) depending on n given by Table 1. Furthermore

(I) Ifk = 1, then ¢ is domain-minimal and hence umbilical, and ¢ 2 Apo
for o € Hy(2m(n),n + 1). Otherwise

(II) ¢ is domain-equivalent to a direct sum of k domain-minimal
quadratic harmonic morphisms, i.e.,

(23) 0~ A1 @ ® Meis
for ; € Hi(2m(n),n + 1), given by irreducible Clifford systems.

Remark 4.11. — Note that Ay, ..., \; in (23) are the distinct positive
eigenvalues of ¢. If we allow some but not all of them to be zero then
our results include also @-singular cases. Thus Equation (23) gives, up

to domain-equivalence, a general form for quadratic harmonic morphisms
R2km(n) — R+l
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COROLLARY 4.12. — Let ¢ : R2¥™(?) _, R"*1 be a quadratic harmonic
morphism. Then

(i) For n # 0mod4, there is just one bi-equivalence class of domain-
minimal quadratic harmonic morphisms ¢ : R%*™") — R+l given by
A1po®- - - DAk, where g : R2m(n) —, R**+! is a domain-minimal quadratic
harmonic morphism given by an irreducible Clifford system.

(i) For n = 0mod 4, there are 2¥~! bi-equivalence classes.

Proof. — From [15], we know that there exists only one algebraic
equivalent class in C(2m(n),n+ 1) for n Z mod 4, and two for n = 0 mod 4.
The statement (i) now follows from Theorem 4.10 and Remark 4.11.
For statement (ii) we first note (see [15]) that two algebraically different
irreducible Clifford systems differ only by a minus sign before one, say
the last, of their elements. Correspondingly, two domain-minimal quadratic
harmonic morphism Agp; and Ays from two different domain-equivalent
classes differ only by a minus sign before, say, the last component functions.
Therefore, in constructing direct sum of the form A\jp; @ - - - & Appy with
fixed k-tuple (Ag,...,\x), we get 2 possibilities, of which, half can be
obtained from the other by an orthogonal change of the coordinates in the
range space as one can check. Thus (ii) follows, which completes the proof
of the corollary.

5. Properties of quadratic harmonic morphisms.

DeFINITION 5.1. — Let (M, g) be a simply-connected space form (i.e.,
either Euclidean sphere S™, Euclidean space R™ or hyperbolic space H™.
A smooth function f : M — R is called isoparametric if

|df@)|* = ¥1(f(2), Af(z)=Ts(f(=)),
for some smooth functions ¥1, ¥, : R — R.

Such functions were introduced by Cartan [7] in 1938. Their
description on Euclidean space and hyperbolic space is relatively trivial,
but on the sphere they are rich in geometry. More recent studies on such

functions have been made in [15], [25], [26], [31], [32], [35], [36].

It is well-known that all isoparametric functions f: S™ ! — R arise
from the restriction of a homogeneous polynomial F':R™ — R of degree p



706 YE-LIN OU

with
(24) |AF|? = p?|l|*~2,
(25) AF = ¢||z||P~2.

where ¢ = 0 if the multiplicities of the distinct principal curvatures are
equal.

Suppose we are given a homogeneous polynomial F:R™ — R of
degree p with ¢ = 0 satisfying (24) and (25). Given any A € O(R™), we
define G:R™ — R by putting G = F o A. Then G is also a polynomial
satisfying (24) and (25). Baird noted that if A € O(R™) can be so chosen
that (VGx,VFx) =0 for any X € R™, then ¢ = (F, Q) gives a nontrivial
harmonic morphism defined by homogeneous polynomials of degree p. This
provides a possible way to construct polynomial harmonic morphisms from
a single homogeneous polynomial. However, this method fails in a case
of homogeneous degree 4 polynomial harmonic morphism R® — R? (see
Theorem 8.3.5 in [1]). We shall prove that this method works for any
quadratic harmonic morphisms.

THEOREM 5.2. — Any quadratic harmonic morphism ¢ : RZkm(n) _,
R™*+! arises from a single quadratic function F : R2*™(") _, R of the form
F =XMFy® - & M\Fy, where \; > 0 are constants with at least one not
zero, and Fy : R2™(") L R,

Fo(wl7"‘:$2m) =x%+.-.+wfn_$fn+1 _..._xgm.
That is, if we write ¢ = (¢*,...,0"*1), then ¢! = F, ¢* = F o G; for
i=2,...,n+ 1 for some G; € O(R*™(n),

Proof. — Note that if Gy,...,Gr € O(R>™™) then G, & --- ® Gx
is an element of O(R?*™(™)). On the other hand, we have seen from
Theorem 4.10 that a quadratic harmonic morphism exists precisely in the
case @ : R2F™() _, R7+1 where we have

<P"i/\1$01€9-“€9/\k</’k,

for domain-minimal ¢; € Hi(2m(n),n + 1), given by irreducible Clifford
systems. Thus it suffices to show the following

CLamM. — Any domain-minimal ; € Hy(2m(n),n + 1), arises from
the single quadratic function Fy.
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Proof of Claim. — It follows from Corollary 4.9 and the Classification
Theorem that

o 2 (Xt(I"’ _Om)X, XtAlX,...,XtAnX),

0
where, by the Rank Lemma in [30], the component matrices A; have the
same rank, the same index and the same spectrum as (I(')n (} ) does.
—im

Therefore from the theory of real quadratic forms we know that there exist
G¢ € O(R?™™) such that

QD.?:<P,}°G?:FOOG? (a:2,...,n+1),
which ends the proof of the claim.

Example 5.3. — We can check that ¢ :R8 — R3 given by
¢ = (222 + 222 + 323 + 323 — 2% — 22§ — 322 — 3x2,
4z1z5 + 4z976 + 62378 — 6477,
— 4126 + 42225 + 62327 + 62478)
is a quadratic harmonic morphism. Let F' = 2Fy @ 3Fp with

.4 2.2 .2 2
Fy:R* — R, Fy(zy,...,24) =27 + 25 — 25 — 2J.

We can further check that ¢ arises from F' since
' =F, ¢*=Fo(G1®Gz), ¢’=Fo(G,®Gs)

1
for, with Kk = —
V2

k 0 k O
0 k 0 &
G = -k 0 k 0]
0 -k 0 &
(/c 0 0 —&
0  k O
G2 = 0 - & 0]’
k 0 0 &
k 0 0 &k
0 k -k O
Gs = 0 k k O
¥/ﬁ 0 0 «

are elements of O(R?).
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Ferus, Karcher and Miinzner have noted in [15] that some Clifford
systems can be extended, by adding one member, to be a Clifford system
with one more range-dimension. Our next theorem gives the conditions
on the range-extendability of Clifford systems, O-systems and quadratic
harmonic morphisms.

THEOREM 5.4. — Any domain-minimal quadratic harmonic mor-
phisms (resp. Clifford systems, or O-systems) which are not range-maximal
can be extended, by adding component functions (resp. system members),
to be a range-maximal one.

Proof. — By Corollary 4.9, any domain-minimal quadratic harmonic
morphism ¢ : R?™(™) — R"*1 is Q-nonsingular and umbilical, and hence it
arises from a single quadratic function AF, for Fp:R?™(™) — R,

_ .2 2 2 2
Fo(z1,.. - Zom) =27+ -+ Ty, — Ty — - — Tg,.

On the other hand, any domain-minimal and range-maximal quadratic
harmonic morphism ¢:R?™ — Re(™+1 algo arises from the quadratic
function AFp. Thus if n < o(m) we can add some component functions of
the form AFp o G* until we get a range-maximal one. This proves the result
for quadratic harmonic morphisms. The corresponding results for Clifford
systems and O-systems follow from the relationships (Theorems 2.6 and 3.4)
between quadratic harmonic morphisms, Clifford systems and O-systems.

Note that the quadratic harmonic morphism in Example 5.3 is not
domain-minimal. Though it is not range-maximal either, it cannot be
extended to be a range-maximal one as one can check easily. On the other
hand, the standard multiplication of complex numbers is neither domain-
minimal nor range-maximal. But, as we will see from the following remark
that it can be extended to be a range-maximal one.

Remark 5.5. — Theorem 5.4 gives a method of constructing quadratic
harmonic morphisms from some given ones. It is interesting to note that
this construction includes the Hopf construction maps of the standard
multiplication p, : R?" — R™ (n = 1, 2, 4 or 8) of real, complex, quaternionic
and Cayley numbers as special cases: For example for n = 4, we know that
the standard multiplications are quadratic harmonic morphisms, they are
also domain-minimal but not range-maximal. Therefore, by Theorem 5.4,
they can be extended, by adding one component function to be range-
maximal one as

H(z,y) = (llz|* = lyll*, 2pn(z, 9))
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which is exactly the Hopf construction map. It can be further checked
that in the above cases there are at most two possible ways of adding one
component function in doing the extension.

THEOREM 5.6. — Forn = 1, 4 or 8, any quadratic harmonic morphism
¢ € Ha(2n,n) is domain-equivalent to a constant multiple of the standard
multiplications of the real algebras of real, quaternionic and Cayley numbers
respectively.

Proof. — We first note that in all three cases in question, ¢ is
domain-minimal and hence @-nonsingular and umbilical. Therefore, by (a)

of Corollary 4.6, ¢ g Apg for g € H%(2n, n) given by an irreducible Clifford
system {P;} € C(2n,n) which, in all three cases, belongs to exactly one
algebraically equivalent class (see [15]). On the other hand, it is known
(see Baird [1] Theorem 7.2.7) that the standard multiplications of the real
algebras of real, quaternionic and Cayley numbers are, respectively, in the
class. Thus we obtain the theorem.

ProrosiTioN 5.7. — For n = 1, 2, 4 or 8, any quadratic harmonic
morphism ¢ € Hy(2n,n + 1) is bi-equivalent to a constant multiple of the
Hopf construction map in the corresponding cases, and therefore, @ restricts
to harmonic morphism S**~' — S™()), where S™()\) denotes the Euclidean
sphere of radius .

Proof. — Case n = 1 is trivial. For n = 2 the results have been
obtained in [30], where all quadratic harmonic morphisms ¢ € Hy(4,3)
are determined explicitly and are proved to be domain-equivalent to a
constant multiple of the Hopf construction map. Now we give a proof which
treats all four cases. Note that in all these cases, any quadratic harmonic
morphism ¢ is domain-minimal (see Theorem 4.6) and hence Q-nonsingular

and umbilical. Therefore, ¢ 4 Ao, for ¢ given by an irreducible Clifford
system {P;} € C(2n,n + 1). Now the first half of the statement in the
proposition follows from Proposition 2.6 and the fact (see [15]) that there
exists exactly one geometric equivalence classes in these cases. The second
half of the statement is trivial and is omitted.

Remark 5.8. — From Proposition 5.7 it follows that any quadratic
harmonic morphism ¢:R?™ — R"™*! (n = 1,2,4 or 8) restricts to a
composition of the classical Hopf fibration followed by a homothety. Thus,
in a sense, Proposition 5.7 generalizes part of a result of Eells and Yiu
(see [14]) which says that if ¢: S™ — S™ is the restriction of a homogeneous
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polynomial harmonic morphism @ : R™*! — R"®*!. Then ¢ is isometric to
the classical Hopf fibration.

Remark 5.9. — Concerning quadratic harmonic morphisms between
spheres we know (see [14]) that a quadratic map ¢: S™ — S™ is a harmonic
morphism if and only if it is isometric to one of the classical Hopf fibrations
§=1 _, Q" forn=1,2,4 or 8.

From Corollary 3.5 and Proposition 4.4 we see that any umbilical
¢ € Hj(2m,n + 1) is associated with an orthogonal multiplication
ke € F(n,m;m) by

(26) p— {Pa} - {Ti} — Hep-

It is interesting to note that the Hopf construction maps of the standard
multiplications of the real algebras of real, complex, quaternionic and
Cayley numbers are the only umbilical quadratic harmonic morphisms
which correspond to orthogonal multiplicatio ns that are also harmonic
morphisms.

PROPOSITION 5.10. — Let ¢ € Hy(2m,n+1), and let p, € F(n,m;m)
be the corresponding orthogonal multiplication via (26). Then p, is a
harmonic morphism if and only if ¢ is bi-equivalent to the Hopf construction
maps of the standard multiplication of real, complex, quaternionic or Cayley
numbers.

Proof. — From Baird [1] it follows that, an orthogonal multiplication
te € F(n,m;m) is a harmonic morphism if and only if n = m =1,2,4 or 8.
This implies that ¢ € H;(Qn, n+1) for n = 1,2,4 or 8 which, together with
Proposition 5.7, gives the required results.

It is easily checked that any umbilical quadratic harmonic morphism
R? — R? is domain-equivalent to @ (z) = 22 :R? = C — R? = C. By using

Corollary 4.11 we obtain the following

THEOREM 5.11. — Any quadratic harmonic morphism ¢ : R™ — R?
is domain-equivalent to

M2Z 4+ 022 CF S C

where k = [%m], and \; >0 fori =1,...,k with at least one not zero.
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