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ALEXANDER STRATIFICATIONS OF
CHARACTER VARIETIES

by Eriko HIRONAKA^

1. INTRODUCTION

Let X be homotopy equivalent to a finite CW complex and let F be
the fundamental group of X. One would like to derive geometric properties
of X from a finite presentation

(rci,... , X r :-RI, . . . ,Rs}

of r. Although the isomorphism problem is unsolvable for finite presenta-
tions, Fox calculus can be used to effectively compute invariants of F, up
to second commutator, from the presentation. In this paper, we study a
natural stratification of the character variety F of F, associated to Alexan-
der invariants, which we will call the Alexander stratification. We relate
properties of the stratification to properties of unbranched coverings of X
and to the existence of irrational pencils on X when X is a compact Kahler
manifold. Furthermore, we obtain obstructions for a group F to be the
fundamental group of a compact Kahler manifold.

This paper is organized as follows.

In section 2, we give properties of the Alexander stratification as
an invariant of arbitrary finitely presented groups. We begin with some
notation and basic definitions of Fox calculus in section 2.1. In section 2.2,
we relate the Alexander stratification to jumping loci for group cohomology
and in section 2.3 we translate the definitions to the language of coherent

(^ Research partially supported by NSERC grant OGP0170260.
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sheaves. This allows one to look at Fox calculus as a natural way to get
from a presentation of a group to a presentation of a canonically associated
coherent sheaf, as we show in section 2.4. Another way to view the Fox
calculus is geometrically, by looking at the CW complex associated to a
finitely generated group. We show how the first Betti number of finite
abelian coverings can be computed in terms of the Alexander strata in
section 2.5.

In section 3, we relate group theoretic properties to properties of the
Alexander stratification.

Of special interest to us in this paper are torsion translates of
connected algebraic subgroups ofF,we will call them rational planes, which
sit inside the Alexander strata. In section 4, we show how these rational
planes relate to geometric properties of X.

For example, in 4.1 we show that the first Betti number of finite
abelian coverings of X depends only on a finite number of rational planes
in the Alexander strata. This follows from a theorem of Laurent on the
location of torsion points on an algebraic subset of an affine torus. When X
is a compact Kahler manifold, we relate the rational planes to the existence
of irrational pencils on X or on a finite unbranched covering of X.

This gives a much weaker, but simpler version of a result proved by
Beauville [Be] and Arapura [Arl] which asserts that when X is a compact
Kahler manifold the first Alexander stratum is a finite union of rational
planes associated to the irrational pencils of X and of its finite coverings
(see 4.2).

Simpson in [Sim] shows that if X is a compact Kahler manifold, then
the Alexander strata for 7Ti(X) are all finite unions of rational planes. Since
the ideals defining the Alexander strata of a finitely presented group are
computable and rational planes are zero sets of binomial ideals, one can test
whether a group could not be the fundamental group of Kahler manifold
in a practical way: by computing ideals defining the Alexander strata and
showing that their radicals are not binomial ideals. In section 4.3 we use
the above line of reasoning to obtain an obstruction for a finitely presented
group of a certain form to be Kahler.

It gives me pleasure to thank Gerard Gonzalez-Sprinberg and the
Institut Fourier for their hospitality during June 1995 when I began work
on this paper. I would also like to thank the referee for helpful remarks,
including a suggestion for improving the example at the end of section 4.3.
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2. FOX CALCULUS AND ALEXANDER INVARIANTS

2.1. Notation.

For any group F, we denote by ab(F) the abelianization of F and

ab:F^ab(r)

the abelianization map. By Fr, we mean the free group x\,...,Xr on r
generators. For any ring A, we let Ay-(A) be the ring A[t^1,... ,t^1} of
Laurent polynomials. When the ring A is understood, we will write Ar
for A^(A).

Note that Ay. (A) is canonically isomorphic to the group ring A[ab(F^)]
by the map tz»—» ab(a^). Let ab also denote the map

ab:F^^A^(A)

given by composing the abelianization map with the injection

ab(F^) -^ A[ab(F^)] ^ A^(A).

A finite presentation of a group F can be written in two ways.

• One is by (Fr:U), where K C Fr is a finite subset. Then F is
isomorphic to the quotient group

r = F r / N ( n ) ^
where N(1V) is the normal subgroup of Fr generated by K.

• The other is by a sequence of homomorphisms

F _0 F q ^ rJ^s ——^ ^r ——^ i 5

where q is onto and the normalization of the image of '0 is the kernel of q.

Let P be the group of characters of F. Then F has the structure
of an algebraic group with coordinate ring C[ab(r)]. (One can verify
this by noting that the closed points in Spec(C[ab(r)]) correspond to
homomorphisms from ab(F) to C*.) A presentation {Fr '.K) of r gives an
embedding of F in Fr.

The latter can be canonically identified with the affine torus (C*)7'
as follows. To a character p € Fr we identify the point (p(rci) , . . . ,p{xr))
in (C*)7'. The image of F in (C*)7' is the zero set of the subset of A^(C)
defined by

{abQR) - I ' . R e U} C C[ab(F^)] ^ A^(C).
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Given any homomorphism, a: F' -> F between two finitely presented
groups, let a: r —> P be the map given by composition. Let

aab : ab(F) -^ ab(r')

be the map canonically induced by a and let

a*:C[ab(r)] ——C[ab(r)]

be the linear extension of Oab. Then it is easy to verify that a is an algebraic
morphism and a* is the corresponding map on coordinate rings:

a*(/)(p)=/(a(p)),
f o r m e r and / G C[ab(r')].

In [Fox], Fox develops a calculus to compute invariants, originally
discovered by Alexander, of finitely presented groups. The calculus can be
defined as follows: fix r and, for i = 1,..., r, let

Di:Fr-^ArW

be the map given by

Di(^)=SiJ and Di(fg)=Di(f)+^b(f)Di(g).

The map

D=(DI, . . . ,AQ:F,——ArW

is called the Fox derivative and the Di are called the i-th partials. Now let r
be a group with finite presentation

(F^:U)
and let q: Fr -^ F be the quotient map. The Alexander matrix of F is
the r x s matrix of partials

M(F,,7Z)=[(g)*A(fi,)].

For any p € P, let M(Fr, %)(p) be the r x s complex matrix given by
evaluation on p and define

Vi(F) = {p e r I mnkM(Fr, U)(p) < r - i } .

These are subvarieties of F defined by the ideals of (r - i) x (r - i) minors
ofM(Fr,n).
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We will call the nested sequence of algebraic subsets

r D Y i ( r ) D . . . D K ( r )
the Alexander stratification of F.

One can check that the Tietze transformations on group presentations
give different Alexander matrices, but don't effect the Vz(F). Hence the
Alexander stratification is independent of the presentation. Later in
section 2.4 (Corollary 2.4.3) we will prove the independence by other
methods.

2.2. Jumping loci for group cohomology.

For any group F, let C^F,?) be the set of crossed homomorphisms
f : r —^ C satisfying

f{gi92)=f(gi)+p(gi)f{92).

Then C^F,?) is a vector space over C. Note that for any / € C^F,?),
/CO-o.

Here are two elementary lemmas, which will be useful throughout the
paper.

LEMMA 2.2.1. — Let a : F' —> F be a homomorphism of groups and let
p e F . Then right composition by a defines a vector space homomorphism

r^c^r.^-^c^F'.s^)).

Proof. — Take any / G (^(F, p). Then, for ^i, g^ G F',

Ta(/)(^2)=/(^to))
= /(^lMp2))

=/(a(^))+p(a(^i))/(a(^))
=^,(/)(^)+S(p)(^)(^,(/))(^).

Thus, T^(/) is in ^(F'.S^)). D

LEMMA 2.2.2. — Let g , x G F and let f 6 ^(F.p), for any p G F.
Then

/(^-1) = /(^)(1 - PW) + P(P)/(^)-
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Proof. — This statement is easy to check by expanding the left hand
side and noting that

/Qr1)= -^r1/^),
for any g G F. D

Let

Ui(T) = {p 6 F | dimC^r,/?) > z}.

This defines a nested sequence

r D £ / o ( r ) D £ / i ( r ) D . - - .
In section 2.4 (Corollary 2.4.3), we will show that Ui(T) = ^(F), for
all i e N. Define, for p C F,

Bi(r, p) = { / : r -^ C | /(^) = (p(^) - l)c for some constant c 6 C}.

Then Bi(r, p) is a subspace of C^F, p). Define

^l(^,p)=c71(^,p)/Bl(^,p).
This is the ^r5^ cohomology group of Y with respect to the representation p.
For^eZ+,let

Wi(T) = {p C r | dim^^r,^) > z}.

We will call the Wi(T) the jumping loci for the first cohomology of F. This
defines a nested sequence

r = ^ o ( r ) D ^ i ( r ) D - - - .

• If p = 1 is the identity character in F, then p(g) = 1, for all g e F.
Thus, B^r,/?) = {0}. Also, (^(r, i) is the set of all homomorphisms from
r to C and is isomorphic to the abelianization of F tensored with C. Thus,

dim^r, i) = dimC^r, I) = d,

where d is the rank of the abelianization of r.

• If p ^ 1, then -B^r, p) is isomorphic to the field of constants C, so

dimC\r,p) = dim If ̂ r,/?) + 1.

We have thus shown the following.
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LEMMA 2.2.3. — The jumping loci Wi(F) and the nested sequence
Ui(T) are related as follows:

fW) for^d,
% v / l^ ( r )U{i} fori=d.

Remark. — The jumping loci could also have been denned using
the cohomology of local systems. Let X be a topological space homotopy
equivalent to a finite CW complex with 7Ti(X) = F. Let X —> X be the
universal cover of X. Then for each p C r, each g C F acts on X x C by its
action as covering automorphism on X and by multiplication by p(g) on C.
This defines a local system Cp —^ X over X. Then Wi(T) is the jumping
loci for the rank of the cohomology group ^(X^Cp) with coefficients in
the local system Cp.

2.3. Coherent sheaves over the character variety.

Let r be a finitely presented group and let C^r,?^ be the dual
space of C^r,/?). We will construct sheaves C^F) and (^(ry over P
whose stalks are C^r,?) and C^r,/?)^ respectively. Then, the jumping
loci Ui(T) defined in the previous section, are just the jumping loci for the
dimensions of stalks ofC^F) and (^(F^.

This just gives a translation of the previous section into the language
of sheaves, but using this language we will show that a presentation
for r induces a presentation of (^(F^ as a coherent sheaf such that the
presentation map on sheaves is essentially the Alexander matrix.

We start by constructing ^(Fr) for free groups.

LEMMA 2.3.1. — For any r and p € F^ C^Fy.? ?) is isomorphic to C7',
and has a basis given by (a^)p, where

{ x i ) p ( x j ) =6 i j .

Proof. — By the product rule, elements of C^^Fr^p) only depend on
what happens to the generators of Fr. Since there are no relations on Fr, any
choice of values on the basis elements determines an element of C^^Frip).

D

Let

Er= |j C\F^p)
peFr.
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be the trivial C^vector bundle over Fr whose fiber over p € Fr is ̂ (Fr, p).
For each generator Xi of F^, define

(Xi}:Fr———^,

by (xi){p) = (xi)p. The maps (a- i ) , . . . , (xr) are global sections of Er
over Fy-. Let (^(Fr) be the corresponding sheaf of sections of the bundle

Er —— Fr.

The module Mr of global sections of C^^Fr) is a free A^-module of
rank r, generated by (a;i),. . . , {xr), and ^(Fr) is the sheaf associated to
Mr (in the sense of [Ha], p. 110).

Fix a presentation

T? ^ s F _JL r^s ——> ^r ——^ 1 ?

of r. This induces maps on character varieties
q ^ ih ^-^.r ——— Fr —-— F.

(C*)7' (C*)5.

Let C^Fr-)? and C^F^r be the pullbacks of C1^) and C^Fs) over F.
These are the sheafs associated to the modules:

M,(F) = Mr 0c[ab(^)] c[ab(r)] ^ c^r)]',
M,(r) = M, 0c[ab(^)] C[ab(r)] ^ C^b^)]',

respectively.

Let

T^:^^)?—^^^)?
be the homomorphism of sheaves defined by composing sections by ^. For
any p C r, the stalk of (^(.Fr)? over p is given by (^(J^, ̂ (p)). Since q o ̂
is the trivial map, the stalk ofC^Fs)? over p is given by C^Fs, 1). For any
p e r , the map on stalks determined by T^ is the map

(T^C'1^,^))^^1^,!)
defined by (T^,)p(f) = f o -if,.

Let Mr(Fr,'R.) be the sub C[ab(r)]-module of M,.(F) given by the
kernel of the map

Mr(T) ——^ M,(F), f^g^(foTp)^g.
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Let C^r) be the kernel of 7^,. That is, (^(r) is the sheaf associated
toMr(Fr,7Z).

LEMMA 2.3.2. — The stalk ofC^r) over p e F is isomorphic to
^(r,p).

Proof. — We need to show that the kernel of {T^)p is isomorphic to
C^r.^.Let

(T,),:Cl(r^)—.Cl{F^q(p))

be the homomorphism given by composing with q as in Lemma 2.2.1. Since q
is surjective, it follows that (Tq)p is injective. The composition T^ o (Tq)p is
right composition by '0 o g, which is trivial, so the image of (Tq)p lies in the
kernel of ^. Now suppose, / G C^Fy? q(p)) is in the kernel of ^. Then / is
trivial on ^(Fs). Since q(p) is trivial on ^(^s), Lemma 2.2.2 implies that /
is trivial on the normalization of ^(Fs) in Fr. Thus, / induces a map from T
to C which is twisted by p. D

LEMMA 2.3.3. — Let a : F ' —^ T be a homomorphism of groups and
let a : r —> P be the corresponding morphism on character varieties. Let
C(T) and C(r') be the sheaves associated to F and F' and let C(r')r be
the pullback ofC(^/) over P. Then the map 7^ : C(T) -^ C^r denned by
composing sections by a is a homomorphism of sheaves.

Proof. — The statement follows from Lemma 2.2.1. D

COROLLARY 2.3.4. — There are exact sequences of sheaves

O^^r)-^1^ ^C^F^r

and

C\Fs)r r^ C\Fr)r — ^(IT -^ 0.

We have seen that the modules of holomorphic sections ofC^^) and
(^(Fs) are freely generated over C[ab(F)] of ranks r and s, respectively.
Similarly, the dual sheaves ^{FrY and (^(Fs^ are freely generated. This
gives (^(r^ the structure of a coherent sheaf. In section 2.4 we will show
that the Alexander Matrix gives a presentation for global sections ofC1 (F)^
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2.4. Jumping loci and the Alexander stratification.

In this section, we show that for a given group F, the jumping
loci Ui(T) defined in 2.2 is the same as the Alexander stratification V^(r).

For any group F, there is an exact bilinear pairing

(cr),xc\r,p)^c
where

(cr)^ = cr/{^2 - gi - p(gi)92 \ 91,92 e r},
and the pairing is given by

bJ]=W
The pairing determines a C-linear map

^[r},:(cr)^c\r^p)\
where, for g <E (CT)p and / C C^r.p),

^[r]p(/)(^)=bJ]=/(^.
LEMMA 2.4.1. — Let a : F' —^ r be a group homomorphism. For each

p e r , we have a commutative diagram

(en,,,,) t""'"". c"(r',a(ri)-

1 ° » I"'(cr%—*[^l^—— c^r^r

where T^ is the dual map to Ta : C1^, p) -> C^r, S(;o)).

Proof. — For g € (CF')^(p) and / e C'^F,/)), the pairing [ , ] gives

[ff,T»(/)] = T,(/)(ff) = /(a(ff)) = [a(ff),/]. D

Let M,' be the global holomorphic sections ofC^.F,.)^ Define

$: CFr —> M^

by

$(a-,) = {^}v,

^(9182) = ̂ (ffi) + ab(^i)$(g2) for 51,52 £ -Fr,
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where

(x^:Cl(F^p)^C

is given by

^W^)p)=6^.

Define, for any p e Fr and g e CFr, with image g? in (CF^)p,

^p{9p)=^p(g)(p)eCl(F^p)\

where

WW) = f{g)
for all / e G1^,/?). Then ̂  = ^[Fr}p.

Since My^ is generated freely by the global sections

{xzy,...,{xrY
as a Ay.(C)-module, we can identify M^ with Ay.(C)r. Thus, the map <1> is
the extension of the Fox derivative

D:Fr ——^ArW

in the obvious way to C[Fr] —^ A^(C)r.

Let VrW be the sub Ay-module of Ay(C)r spanned by ^(7^). For
p € r, let Py(7^)(p) be the subspace of C7' spanned by the vectors obtained
by evaluating the r-tuples of functions in <I>(7^) at p.

LEMMA 2.4.2. — Let (Fr : K) be a presentation for T. For each p e F,
the dimension or'G^r, p) is given by

r-dim(P,(7Z)(p)).

Proof. — Let

F -^F -^rJ. s r J - r ' 1

be the sequence of maps determined by the presentation. Then, for each
p e r, by Corollary 2.3.4, there is an exact sequence

C\F^ -^ C^F^q^Y X C\r,pr -. 0.
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By Lemma 2.4.1, the following diagram commutes:

(CF.), -^^ C^lY

^1 17^
(CF^^^C^F^qWy

4 k^ ^[r]p ^(CT) ————— c^r,^.
Thus,

dimG^r.p) = dimG1^,^)) - dim (image (7^)).

Since ^[Psil is onto

image(7^) = image(^[Fs]i o 7^) = image (<^[F^(p) o -0).

For any p, C^-F^ ^(p)) is isomorphic to C7'. Putting this together, we have

dimC^r.p) = r - dim^[F^]^)(7Z) = r - dimP^(7Z)(p). D

COROLLARY 2.4.3. — For any finitely-presented group F, the jumping
loci Ui(T) for the cohomology of F is the same as the Alexander
stratification Vi(T).

2.5. Abelian coverings of finite CW complexes.

In this section we explain the Fox calculus and Alexander stratification
in terms of finite abelian coverings of a finite CW complex. The relations
between homology of coverings of a K(r, 1) and the group cohomology of F
are well known (see, for example, [Br]). The results of this section come
from looking at Fox calculus from this point of view.

Let X be a finite CW complex and let F = TT^(X). Suppose F
has presentation given by ( r r i , . . . , Xr : RI, . . . , Rs)- Then X is homotopy
equivalent to a CW complex with cell decomposition whose tail end is
given by

• • • D S 2 D S i DSo,

where So consists of a point P, Si is a bouquet of r oriented circles S1 joined
at P. Identify F with 7Ti(Si) so that each Xi is the positively oriented loop
around the z-th circle. Each Ri defines a homotopy class of map from S1

to Si. The 2-skeleton Ss is the union of s disks attached along their
boundaries to Si by maps in the homotopy class defined by J?i , . . . , Rs.
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Let a: T —^ G be any epimorphism of F to a finite abelian group G.
Let TQ : Xa —^Xbe the regular unbranched covering determined by a with
G acting as group of covering automorphisms.

Our aim is to show how Fox calculus can be used to compute the first
Betti number of Xa. Choose a basepoint IP 6 r^^P). For each z-chain
a € T^i and g € G', let ga be the the component of its preimage which passes
through gP. For each generating %-cell in S^, there are exactly G copies of
isomorphic cells in its preimage. Thus Xa has a cell decomposition

• • • 3 ̂ 2,0 D S^Q; D So,oo

where the %-cells in S^o; are given by the set

[go-: g G G, a i-ce\\ in E^}.

With this notation if a attaches to S^_i^ according to the homotopy class
of mapping f :9a —> S^_i, where 9a is the boundary of a, then ga attaches
to I^-i^ by the map / /: 9ga —> S^_i^ lifting / at the basepoint gP.

Let Ci be the z-chains on X and let Q^ be the ^-chains on X^. Then
there is a commutative diagram for the chain complexes for X and Xa'.

S'2,0. <5l,a 6

" ' —f C'2,Q ————^ Ct^a ————^ CO,Q ————^ ^

' <5 " 6 '. . . —>. ^ ———)> (7^ ———>. (7o^

where the map e is the augmentation map

^Z^^)) = Z^^-
^GG geG

Let (^i)o:,. . . , {xr)a be the elements of C\^ given by lifting x\^..., Xr,
considered as loops on Si, to 1-chains on Si^ with basepoint IP. Then C\^a
can be identified with C^G]7', with basis { . r i ) , . . . , (xr) and (7o,a can be
identified with C[G], where each g e G corresponds to ^P.

The above commutative diagram can be rewritten as

• • • -^ ZIG]' ^211^ Z[G]7' -^^ Z[G] —^

(1)
09 Ol7S 'yr 1
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For any finite set 5, let |5'| denote its order. The map e is surjective, so we
have the formula

(2) h(Xa) = nullity(<?i,J - rank^a)
=(r-l)|G|+l-rank(^),

where b\(Xa) is the rank of ker<5i^/image(($2,a) and is the rank
of .Hi(Xo;;Z). We will rewrite this formula in terms of the Alexander
stratification.

LEMMA 2.5.1. — The map 6\ a is given by

^a(i^fi(Xi)a)=i>^fiW-l).

i=l i=l

Proof. — It's enough to notice that the lift of Xi to C\^ at the
basepoint IP has end point Qa*(ti)P. D

We will now relate the map ^2,0 with the Fox derivative.

Recall that Ei equals a bouquet of r circles /\rS1. Let r: Cr —>• Ar*^1

be the universal abelian covering. Then Cr is a lattice on r generators with
ab{Fr) acting as covering automorphisms. The vertices of the lattice can be
identified with oh(Fr). Let Ka = ker(a o q) c Fr and let Ka be its image
in ob(Fr). Then Si a == Cr/Ka and we have a commutative diagram

r r)a . vLr —————> ^l,a

[- 1"4, 4,

/\rS1 ====== Si

where r]a '.Cr —> Si^ is the quotient map. Let (?7a)* '.C\{Cr) —> C'i(Si a)
be the induced map on one chains. Then identifying C\{Cr} with Z^b^y.)]7'
and Ci(Ei,J with Z[G}^ we have (^)* = (<£)'.

Choose IP e T-^P). Let C^(Cr} be the 1-chains on Cr. Let
(a:i),..., {xr) be the lifts of a;i , . . . ,a;y to C\{Cr) at the base point IP.
This determines an identification of C\{Cr) with A(Z)r and determines a
choice of homotopy lifting map t: TTi(Ei) —^ C-t(Cr)-

LEMMA 2.5.2. — The identifications Fr = 71-1 (Si) and Ar(Z) =
C\(Cr)^ make the following diagram commute:

7Ti(Si) ——^ Wr)

Fr —D— A,(Z).
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Proof. — By definition, both maps £ and D send Xi to (a^), for
i = 1,..., r. We have left to check products. Let /, g € Fr, be thought of as
loops on /\rS1. Then the lift of / has endpoint ab(/). Therefore,

^)=^(/)+ab(/)^).

Since these rules are the same as those for the Fox derivative map, the
maps must be the same. D

COROLLARY 2.5.3. — Let F be a finitely presented group with
presentation (Fr : TV). Let a : T —> G be an epimorphism to a finite
abelian group G. Let M(Fr,'R)a be the matrix M(Fr,H) with q^ applied
to all the entries. Then

f>2,a

C'2,Q ——————————————^ CI,Q

II M(I^,7Z)a II
Z[G]5 —————— Z[Gr.

Proof. — Let (7 i , . . . ,<Ts be the s disks generating the 2-cells C^.
For each i = 1,..., s and g € G, let gai denote the lift of Oi at gP. Let
J?i, . . . , Rs be the elements of 72.. By Lemma 2.5.2, the boundary 9(Ti maps
to D(Ri) in C\{Cr). Thus, the boundary of gai equals gD{Ri), and for
^i,... ,^ eZ[G],

^,2(^>^) =^>IW.
z=l %==!

This is the same as the application of M(Fr, 7^)o; on the s-tuple (^i, . . . , gs).
D

We now give a formula for the first Betti number b-\_(Xa) in terms of
the Alexander stratification in the case where G is finite. Tensor the top
row in diagram (1) by C. Then the action of G on C[G'] diagonalizes to get

C[G]-(DC[G],,
pCG

where C[G]p is a one-dimensional subspace of C[G] and g € G acts on C[G}p
by multiplication by p(g).

The top row of diagram (1) becomes

© C[G]^ ̂  ® C[G]^ -^ © C[G]p — C.
pCG pCG pCG
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The map ^,2 considered as a matrix M(Fr,K)a, as in Lemma 2.5.3,
decomposes into blocks

M(F,,7Z),=(])M(F,,7Z),(p),
p€G

where, ifM(F^TZ)^ = [fij], then M(^,7Z)^(p) = [fij{p)}. We thus have
the following formula for the rank of M(Fr, K)oc''

(3) rank(M(F,,7Z),) = ̂  rank (M(F,, %),(?)).
pCG

Recall that the Alexander stratification Vi(T) was defined to be the
zero set in F of the (r - i) x (r - z) ideals of M(Fy, K). For any p C G,

M(F^HUP) = M(F,,7Z)(a(p)) = M(F,,7Z)(^(p)),

since 5(/)(p) = /(S(p)) and qM)(p) = /(^(p)). We thus have the
following lemma.

LEMMA 2.5.4.

For p G G, S(p) e Y,(r) if and only jfrank(M(F^, 7Z)a(p)) < r - i.

For each i = 0 , . . . , r -1, let XVz(r) be the indicator function for Vi(T).
Then, for p e G, we have

(4) rank(M(F,, %),(?)) = r - ̂ Xy^(S(p)).
i=0

LEMMA 2.5.5. — For the special character 1,

rank(M(F,, %),(!))= r - 6i(X)

ajidrank(M(Fr,7^)o;(T)) = r ifand only ifT = {T} andT hasnonontrivial
abelian quotients.

Proof. — The group G acts trivially on A^ ̂ . Thus, in the commutative
diagram

M(^,7^(T) <^(T)
A5 - ———————> A7' - —————)> A -

a, 1 a, 1 Q!, 1

(0s ——62—— (cy ——^—— c
the vertical arrows are isomorphisms. We thus have

rank {M(Fr, %)»(!)) = rank(^) = r - 61 (X). D
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PROPOSITION 2.5.6. — Let r be a finitely presented group and
let a : r —>• G be an epimorphism where G is a finite abelian group.
Let a : G ̂  T be the inclusion map induced by a. Then

r-l

6i(x,)=6i(x)+^|y,(r)nS(G\T)|.
1=1

Proof. — Starting with formula (2) and Corollary 2.5.3, we have

61 W = (r - 1)|G| + 1 - rank(M(F,,7Z),)
=r-rank(M(^,7Z)^(T))

+ E (r - 1) - rank(M(F,,7Z),(p)).
pec?\T

By Lemma 2.5.5, the left hand summand equals b\{X) and by (4) the right
hand side can be written in terms of the indicator functions:

r-l

&i(X,)=6i(X)+ ^ "EXy^W)
p€G\T i=l

and the claim follows. D

COROLLARY 2.5.7. — Let r = TI-I (X) be a finitely presented group
and a : T —> G an epimorphism to a finite abelian group G, as above. Then

r

&i(x,)=^|^(r)nS(G)|.
2=1

Example. — We illustrate the above exposition using the well known
case of the trefoil knot in the three sphere 5'3:

One presentation of the fundamental group of the complement is

r = {x.y'.xyxy^x^y^Y

Then Si is a bouquet of two circles and F = 7Ti(Si) has two generators x ^ y
one for each positive loop around the circles. The maximal abelian covering
of EI is the lattice £2-
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Now take the relation R = xyxy-^x-^y-1 e F. The lift of R at the
origin of the lattice is drawn in Figure 1.

lifting map with
basepoint 1

t^ty

^
. ̂ .

tl

t^f,

xyxy-'x-'-y-
x y

00
Figure 1

Note that the order in which the path segments are taken does not
matter in computing the 1-chain. One can verify that D(R) is the 1-chain
defined by

(1 - i. + W{x) + (-U^ + i. - tl){y).

Thus, the Alexander matrix for the relation R is

^-[\-:^\-
Here tx and ty both map to the generator t of Z under the abelianization
of r. The Alexander stratification of F is thus given by

' yo( r )=r=c* ,
yi(r)=v(i- t+t 2) ,
v,(r)=0 for i > 2.

Note that the torsion points on Vi(r) are the two primitive 6th roots of
unity exp(±27r/6).

Now let a: F —^ G be any epimorphism onto an abelian group. Then
since ab(F) ^ Z, G must be a cyclic group of order n for some n. This
means the image of a'.G —^ C* is the set of n-th roots of unity in C*.
Let Xn be the n-cyclic unbranched covering of the complement of the
trefoil corresponding to the map a = On. By Proposition 2.5.6,

f 3 i f 6 | n
bl(Xn) = \

11 otherwise.
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3. GROUP THEORETIC CONSTRUCTIONS AND
ALEXANDER INVARIANTS

3.1. Group homomorphisms.

Let F and F' be finitely presented groups and let a:F' —> F be a
group homomorphism. In this section, we look at what can be said about
the Alexander strata of the groups F and F' in terms of a.

LEMMA 3.1.1. — The homomorphism

r^c^r,?)—.^1^,^))

given by composition with a induces a homomorphism

r^^r,?)^^1^^)).

Proof. — It suffices to show that if / is an element of B^r,?),
then Ta(f) is an element of Bl(^/,a(p)). For any / e B1^,?), there is a
constant c C C such that for all g € F,

f(g)=(l-p(g))c.

Then, for any g ' e F,

WW - (1 - PW))c = (1 - a(p)(^))c.

Thus, Ta(f) is in B^r'.a^)). D

The following lemma follows easily from the definitions.

LEMMA 3.1.2. — J f o ^ r ' — ^ r i s a group homomorphism^ then (1)
implies (2) and (2) implies (3), where (1), (2), and (3) are the following
statements:

(1) fa : H^r.p) -^ H^r^a^p)) isinjective',

(2) dimJ^r.p) ^ dimJf^r.a^)), for all p e P; and

(3) W(r)) c ̂ (r).
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PROPOSITION 3.1.3.—Jfa::r-^r is an epimorphism, then

f^:H\Y^p)-^H\T^p)
is injective. Furthermore,

a(Y,(r)) c v.(r').
Proof. — To show the first statement we need to show that if

Ta(f) € B^r,^?)) for some p C P, then / e B\r,p). If / e C^r,/?)
and T^(/) G B^F', S(p)), then for some c e C and all g ' e F we have

T,(/)=(l-a(p)(</))c.
Take ^ C F. Since a is surjective, there is a </ € F' so that a{g') = ^. Thus,

f(9)-fW))=TMW)
={l-a(p)(g/))c

=(l-pW))c

=(l-p(g))c.
Since this holds for all g € F, / is in B^r, /?).

The second statement follows from Lemma 3.1.2, Lemma 2.2.3 and
Corollary 2.4.3, since a is injective and sends the trivial character to the
trivial character. D

PROPOSITION 3.1.4. — I f a ' . r ' — ^ r is a monomorphism whose image
has finite index in r, then, for any p € F,

^^(r^^^r.aGo))
is injective.

Proof. — We can assume that F7 is a subgroup of F. Take any pe r .
We can think of a(p) as the restriction of the representation p on F to the
subgroup r7. The map Ta is then the restriction map

resp, ^(r.p)—^1^,^))
in the notation of Brown [Br], III.9. Furthermore, one can define a transfer
map

corF,:^1^^))^^1^,?)
with the property that

cor?, o res?, : H1 (F, p) —> H1 (F, p)
is multiplication by the index [r:F] of r' in F (see [Br], Prop. 9.5). This
implies that res?/ is injective. D
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Note that Proposition 3.1.4 does not hold if o;(r) does not have finite
index. For example, let a: F\ (= Z) <—^ F^ be the inclusion of the free
group on one generator into that free group on two generators, sending the
generator of F\ to the first generator of F'z. Then for any p € F^,

dimH^F^p) = 2 > 1 == dimff^Fi.S^)).

3.2. Free products.

In this section, we treat free products of finitely presented groups.
The easiest case is a free group. Since there are no relations, it is easy to
see that

Vi(Fr) =Fr= (CT

for i = 1,..., r — 1 and is empty for i >_ r. Thus,

f(C*)7 ' i f % = l , . . . , r - l ;wm= \\ ) .. '
I {1} if z = r

and is empty for i > r.

PROPOSITION 3.2.1. — IfF = FI *... * Ffc is a free product ofk finitely
presented groups, then

W = E Vi,(r,)G)---eVi,(Tk).
ti+.-.+ifc

Proof. — We first do the case k = 2. Suppose F is isomorphic
to the free product Fi * F2, where Fi and Fa are finitely presented
groups with presentations (-F^,7^i) and (^2,7^2)5 respectively. Suppose
TZi = {Ri,..., Rs,} and %2 = {5i , . . . . 6^}. Then, setting r = ri + 7-2
and noting the isomorphism Fr ^ Fr^ * -Fr2 ? r has the finite presentation
{Fr, U} where U = {R^..., Rs,, 5i, . . . , S,J.

The character group Fy. splits into the product Fr = -Fy-i x ^2-
Thus, each p € F can be written as p = (^1,^2)5 where pi € Fri
and p2 ^ ^'2- The vector space ^(^(p) splits into a direct sum
V(n)(p) = P(7^i)(pi) © P(7^2)(p2) so we have

dimP(7Z)(p) = dimP(7Zi)(pi) + dim^T^X^).

The rest follows by induction. D
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3.3-Direct products.

In this section we deal with groups r which are finite products of
finitely presented groups.

LEMMA 3.3.1. — Let r be the direct product of free groups
F^ x ... x Fr^. Let qi : r —> Fr, be the projections. Let r = 7-1 + ... + Tk
and let m = max{ri, . . . , r^}. Then

( U ^•(^•) ifl<i<m,
i<Tj

W = {1} if m < i < r,

0 if i > r.

Proof. — We know from section 3.2 that

w,)^ fo^^<rJ '
(V) for z > T J .

By Proposition 3.1.3, the epimorphisms qj;: F —> Fry give inclusions

qj(Fr,)cVi(T)
for all j such that i < rj. This gives the inclusion

U^^TO
z<rj

for all i < m.

Let a^i, . . . , a;̂  be the generators for F^, for i = 1,..., k. Let

F^=F^*. . .*F^.

For i,j = 1,..., fc, z < j, ^ = 1,..., r^ and m = 1,..., r^, let

I^i^.j.m = [^1,^5 ̂ 'j',mj-

Let

^={^j,m:^j}.

Then (Fy., 7^) is a presentation for r. Let Ar be the Laurent polynomials in
the generators t^, z = 1,... , fc, ^ = 1,..., TI and associate this to the ring
of functions on Fr = r by sending xi^ to t^.

We have

D(Ri^m) = (1 - ̂ ,m)(^) + (tz,^ - l)<^,m).

It immediately follows that M(F^7^)(T) is the zero matrix, so T e Vi(T)
for z < r and T ^ V,(r) for i ̂  r.



ALEXANDER STRATIFICATIONS OF CHARACTER VARIETIES 577

Now consider p C Fr = F with p ^ 1. We will show that if p € qi (F^)
then p € Vn(r) for n < ri and p ^ Vn(r) for n > TI. If p ^ ^(-FrJ for any i,
then we will show that p ^ V^(T).

Let pi^, i = 1 , . . . ,A: and i = 1,. . . ,?^, be the component of p
corresponding to the generator ̂  in Ay.. For each i = 1,..., fc, let

Si =ri + - "+ r ,+ - - -+ r f c .

Take p € ^(-FrJ. We know from Proposition 3.1.3 that p C Vn(T)
for n < ri. Also, p^m = 1, for all j = 1,..., z , . . . , k. Since p -^ 1, p^ 7^ 1 for
some £. Consider the Si x Si minor of M(Fr^Tt)(p) with rows corresponding
to the generators {x^m) and columns corresponding to generators Ri^j,m^
where j = 1,..., z , . . . , fc and m = 1,..., rj. This is the Si x Si matrix

(1 - Pi.e)Is,
where J^ is the Si x Si identity matrix. Thus, rank M(Fr^)(p) > Si. This
means that p ^ Vn(r) for n > (r — Si) = r^.

Now take p ^ ^(^rj for any i. Then, for some i and j with i ̂  j,
and some £ and m, we have p^ 7^ 1 and p^rn 7^ 1- Consider the minor
of M(-F^,7^)(p) with columns corresponding to all generators except Xz^
and rows corresponding to relations Ri^j',m^ where j' = 1,... , z , . . . , f c
and m' = l , . . . ,?y, and -Rz,^,j,m? where ^/ = 1,... ,^ , . . . , r%. This is
the (r — 1) x (r — 1) matrix

r±(i-p^ o i
[ o ±{i-p^)ir,-i\

which has rank (r - 1). Thus, p is not in Yi(r). D

COROLLARY 3.3.2. — Let r be the direct product of finitely presented
groups

r = Fi x .. • x Tk
with 7 *1 , . . . , Tk generators^ respectively. Let

P=Fr, x . . . x F ^ .
Then

Vi(r) c Vi(P)
for each i and, in particular,

^( r )c{T}
ifmax{ri,... .r^} < i.

Proof. — This follows from Lemma 3.1.2 and Proposition 3.1.3. D
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In particular, if r is abelian, we have the following result.

COROLLARY 3.3.3. — Jfr is an abelian group, then

Vi (^ )= i { l } if x < ^ < rank(r),
1 0 otherwise.

Here rank(F) means the rank of the abelianization ofT.

4. APPLICATIONS

Let X be any topological space homotopy equivalent to a finite CW
complex with fundamental group F. In this section, we will study the
role that rational planes in the Alexander strata Vi(F) and the jumping
loci Wi(T) relate to the the geometry of X.

4.1. Betti numbers of abelian coverings.

Let X be homotopy equivalent to a finite CW complex. Let F = 71-1 (X).
We will relate the first Betti number of finite abelian coverings of X to
rational planes in the jumping loci Wi(T).

Let a:F —> G be an epimorphism onto a finite abelian group G.
Assume that r is generated by r elements. Then by Corollary 2.5.7, we
have

r

&i(x,)=^|^(r)nS(G)|.
i=l

Since G is finite, all points in a(G) have finite order. Thus, to compute
bi (Xa) for finite abelian coverings X^, we need only know about the torsion
points on Wi(T).

The position of torsion points Tor(V) for any algebraic subset
V C (C*)7' is described by the following result due to Laurent [La].

THEOREM 4.1.1 (Laurent). — If V C (C*)7' is any algebraic subset,
then there exist rational planes Pi,. . . , Pk in (C*)7' such that Pz C V for
eachi = 1 , . . . , A ; and

k

Tor(V)=|jTor(P,).
i=l
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From this theorem it follows that, to any finited presented group F,
we can associate a collection of finite sets of rational planes 7^, such that

Tor(y,(r)) = |j Tor(P).
PePi

We thus have the following.

COROLLARY 4.1.2. — The rank of co-abelian, finite index subgroups of
a finitely presented group T depends only on the rational planes contained
in the Alexander strata V^(r).

4.2. Existence of irrational pencils.

Let X be a compact Kahler manifold. An irrational pencil on X is a
surjective morphism

X —> Cp,

where Cg is a Riemann surface of genus g > 2. In this section, we will
discuss the relation between properties of the Alexander stratification for
r == 7Ti(X) and the existence of irrational pencils on X.

Let Vg be the fundamental group of Cg. Then Tg has presentation
{F^g^ Rg)i where Rg is the single element

[.Tl, Xg^][X2, Xg^} ' ' • [ X g , X^g\.

The Fox derivative of Rg is given by

9 ^9

Wg) == E ̂  - 1)^) + E (1 - ti^'
i=l 1=^+1

Thus, we have

(r^(C*)2^ i f l ^ z < 2 ^ - l ,
Vi(^9)={ {i} if z = 2^-1,

if i > 2g-l,

and for the jumping loci

(T^(C*)^ i f l<z<2^- l ,
Wi(Tg)={ { 1 } if2g-Ki<2g,

0 if i > 2g.
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Given an irrational pencil X —^ Cg, the Stein factorization gives a
map

X —> Ch —^ Cp,

where the map from Ch to Cg is a finite surjective morphism and X has
connected fibers. Then h > g and there is a surjective group homomorphism

7Ti (X)——— I \ .

By Proposition 3.1.3, this implies that there is an inclusion

^(I\)->^(7Ti(X)),

for all i.

We can thus conclude the following.

PROPOSITION 4.2.1. — IfX has an irrational pencil of genus g , then
for some h >_ g , Wi{^\{X)) contains an affine subtorus of dimension 2/i,
f o r z = l , . . . , 2 / i - 2 .

The question arises, do the maximal affine subtori in W^TT^X)) all
come from irrational pencils? This was answered in the affirmative by
Beauville [Be] for W^^(X)) (see also [GL], [Arl] and [Cat].) This shows
that the irrational pencils on X only depend on the topological type of X
(see also [Siu]).

Now suppose V C Wi(T) is a translate of an affine subtorus by a
character p e F of finite order. Then, since F is finitely generated, the image
of p is finite in C*. Let X —> X be the finite abelian unbranched covering
associated to this map. Then the corresponding map on fundamental groups

a:7ri(X)->7ri(X)

ha^image equal to the kernel of p. Thus, a(p) is the trivial character in
Ti-i (X) and a(V) is a connected subgroup, i.e., an affine subtorus of 71-1 (X).

As we discuss in the next section, a theorem of Simpson shows that
all the jumping loci VI^(7Ti(X)) are finite unions of rational planes. This
leads us to the following question:

QUESTION. — Can all the rational planes in the jumping loci
Wi(7Ti(X)) be explained by irrational pencils on X or on finite abelian
coverings of X?
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4.3. Binomial criterion for Kahler groups.

If r is a group such that there is an isomorphism F ̂  Ti-iPO for some
compact Kahler manifold X, we will say that F is Kahler. A binomial ideal
in A^(C) is an ideal generated by binomial elements of the form

tx -u

where X C V, tx = t^ ...t^ and u € C is a unit. The following is
straightforward.

LEMMA 4.3.1. — IfV C (C*)7* is a rational plane then V is defined by
a binomial ideal where the units u are roots of unity.

In [Arl], Theorem 1, Arapura shows that Wi(T) is a finite union
of unitary translates of affine tori. Simpson [Sim], Theorem 4.2, extends
Arapura's result, showing that the T^(r) are actually translates of rational
tori.

THEOREM 4.3.2 (Simpson). — IfF is Kahler, then Wi(F) is a finite
union of rational planes for all i.

COROLLARY 4.3.3. — Iff is Kahler, then any irreducible component
ofVi(T) is defined by a binomial ideal.

Proof. — By Lemma 2.2.3, Vi(T) equals H^(r) except when i equals
the rank of the abelianization of F. Suppose the latter holds. Then, again
by Lemma 2.2.3, V^F) is Wi{T) minus the identity character T. But Vi(F)
is a closed algebraic set, so 1 is an isolated component of Wi(T). Thus,
since W^(r) is a finite union of rational planes, so is Vi(T). The rest follows
from Lemma 4.3.1. D

Remark. — Stated in terms of the ideals of minors (also known
as Alexander ideals or fitting ideals) of an Alexander matrix, Simpson's
theorem implies a property of the radical of these ideals for Kahler groups.
Subtler and interesting questions can be asked about the fitting ideals
themselves. We leave this as a topic for further research.

Let Rg be the standard relation for 7Ti(C^), where Cg is a Riemann
surface of genus g. It is possible from Corollary 4.3.3 to make many examples
of nonKahler finitely presented groups. For example, we have the following
Proposition (c/. [Ar2], [Gro], [Sim]).
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PROPOSITION 4.3.4. — Let g >_ 2 and let

F= (x^...,x^g :5i,...,^},

where

5z = u^RgU^ ' • - Ui^RgU^ ̂

fori == 1. . . . .5. Let

pi = ab(^i) + • . . + ab(^)

considered as a polynomial in Ay.. Then, ifF is Kahler, the set of common
zeros Y(pi,... ,ps) must be denned by binomial ideals.

Proof. — The Fox derivative D: F^g -^ Z[ab(F2^)]2^ takes each Si to

D(S,) = (ab(^,i) + ... + ab(n^))D(^).

Thus, the z-th row of the Alexander matrix M(F^g, K) equals M(F^g, Rg),
considered as row vector, multiplied by pi. It follows that the rank
of M(F^g,U) is at most 1 and equals 1 outside of the set of common
zeros of pi , . . . ,ps and the point (1,. . . , 1). The rest is a consequence of
Corollary 4.3.3. Q

Example. — Fix g > 3, and let F be given by

F = (rKi, . . . ,^: 51,62),

where
5'! = X^gX-^ 1 . . . XgR^gXg 1,

62 = Xg^R^gX~g^ . . . X^gR^gX^.

Then
D(S,)=(t^--+tg)D(Rg)

D(S^=(tg^-^'"+t2g)D(Rg)

which implies that ^i(F) contains 1 and the points in

V(t^ + • . . + tg) H V(tg^ + • • . + t2g).

This is isomorphic to the product of the hypersurface in (C*)^ defined by
V = V(t^ + • • • -\-tg) with itself. Since g > 3, this hypersurface is not defined
by a binomial ideal. Thus, F is not Kahler.
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