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p-ADIC INTERPOLATION OF CONVOLUTIONS
OF HILBERT MODULAR FORMS

by Volker DUNGER

In 1973, Shimura [Sl] proved a striking connection between modular
forms of half-integral weight and modular forms of integral weight, which
was the starting point of a renewed interest in modular forms of half-
integral weight. This also led to an investigation of algebraicity properties
of certain special values of convolutions of modular forms of half-integral
weight by Shimura [S7] respectively convolutions of modular forms of
integral weight and modular forms of half-integral weight by Im [I]. This
suggests that one might ask for the existence of a p-adic L-function
connected to these values, and the purpose of this paper is to show that
the answer is affirmative in the following case:

Let F be a totally real number field, f 6 .M^^f)?^) a primitive
Hilbert automorphic form of scalar integral weight k = ko ' 1 and central
character '0 and g € A4i{c{g)^(f)) a Hilbert modular form of half-integral
scalar weight I = IQ ' 1 and character (f) such that IQ < ko. The convolution
of f and g is then defined in terms of the Fourier coefficients c(m, f) and
A(^,m;^,(^) as the Dirichlet series

D(5;f,^) = ̂  c($m2, f)A(^, m; g, ̂ -^-^A^m2)-5.
(^m)

Here, ($,iri) runs over certain pairs of totally positive numbers $ of F
and fractional ideals m of -F. We fix a rational prime p, an embedding
ip : Q ^—> Cp of the algebraic closure of Q into the Tate field Cp, a finite
set S of finite primes of F containing all primes above p, and an integral

Key words: p-adic interpolation — Hilbert modular forms — Half-integral weight — Con-
volution.
Math. classification: 11F41 - 11F85 - 11F67.
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ideal q. Let Gal 5' be the Galois group of the maximal abelian extension of
F unramified outside S and the infinite primes, let Xs = Horn (Gal^C^)
be the p-adic Lie group of continuous Cf -valued characters of the Galois
group, and let Afp € Xs be that character which associates to a fractional
ideal m the image under ip of its norm ^V(m); here we view Gal^ as the
projective limit of the quotients of the prime-to-5'-part of the ideal group
with respect to certain principal ideal subgroups. We will assume that F
has class number hp = 1, that the p-th Hecke polynomial of the Hilbert
automorphic form f is p-ordinary for p 6 S (i.e. that there exists a root a(p)
ofp-adic absolute value 1), that the ideals c(f), 4c(^), mo and q are pairwise
relatively prime, that the modular form gi with a certain inverter L defined
in section 3, is a simultaneous Hecke eigenform for all Hecke operators,
and that the Fourier coefficients of g at ioo are algebraic and p-adically
bounded. Also, let 6 G {0,1} satisfy 6 =. ko — IQ — . mod 2. Then the main

L

theorem 6.1 states that for r C Z with 0 ^ 2r ^ fco — IQ— 7. + ^ — 2 and for
K,r = 6 ~ 1 — 2r there are measures ^r^ on Xs defined by

^(X) - I Xd^ := i, (7(f.^x)g(^;fo,g(xmq)JC•m')
JGals \ \ I'1 ^cmg /

for X € X^

with a certain constant 7(f, g , \) which is a product of gamma factors,
values of Dirichlet L-functions, and elementary factors. jc,m' is a certain
inverter, and the ideals m and m', and the modified Hilbert automorphic
form fo are as stated in the theorem. These measures satisfy //r^ = Af^^
and determine a p-adic L-function as their Mellin-transform:

L^ : Xs -^ €„, L^ (x) := /^) = f xd^i.
JGa\s

A few remarks regarding the general position of our p-adic L-function
Lp(f^g) := L'p, are in order at this point. First we note that Lp(f,^)
is different from the L-function of the convolution of f and the Shimura lift
g of g . We do not have an arithmetic interpretation of Lp(f, g) in Iwasawa
theory yet. Provided such an interpretation existed, could one then extend
the Main Conjecture of Greenberg [G] for Panchishkin's p-adic -L-function
£p(f,g) to Lp(f,g)7 Another interesting question concerns the so-called
Hida families interpolating an integral weight Hilbert modular form f. Is
there hope to make this proof work for such a Hida family ? Can one show
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the existence of p-adic L-functions if g varies in a p-adic family of half-
integral weight (see [Hi]) ?

Let us now summarize the contents of the sections and the general
idea of the proof of the main theorem. In section 1 we fix the general
notations, establish some formulas for Gauss sums of imprimitive characters
and recall the notions ofp-adic distributions and measures. In section 2 and
the first half of section 3, we recall the basic facts about Hilbert modular
forms of integral and half-integral weight, respectively. We then prove
that the twist of a modular form of half-integral weight with a possibly
imprimitive character \^ is again a modular form of half-integral weight.
Next, we investigate how certain operators </, m and sw which go back
to Shimura [S8] commute with each other and the Hecke operators, and
we define the inverter jc,m' m terms of these operators. The proof of the
theorem then tries to follow the lines of the proof of Panchishkin's theorem
[P] on convolutions of Hilbert automorphic forms of integral weight. The
first step uses the Euler product of partial Dirichlet series of the convolution
of fo and ^(x^q^m' to show the independence of this definition from both
the modulus mq and the auxiliary ideal m'; this is done in section 4. In
section 5, we make use of the Rankin-Selberg integral representation derived
by Im [I] to prove the algebraicity of the distribution, and we can verify this
via the Fourier coefficients of certain Hilbert automorphic forms of integral
weight k and fixed level by successively applying a projection operator, a
trace operator and a holomorphic projection operator to the product of g
with a certain Eisenstein series of half-integral weight. In order to obtain
the measure of the main theorem, the distributions of section 5 have to be
regularized because of the occurrence of Dirichlet L-factors in the Fourier
coefficients of the Eisenstein series. The proof of the boundedness of our
measures is given in section 6 and makes use of the p-adic measure of
Deligne and Ribet [DR] derived from the values of Hecke L-functions at
negative integers.

There are some differences from the integral case of Panchishkin:
The Dirichlet series of modular forms of half-integral weight only have
Euler products for partial series. This suffices to prove the independence
of the definition of fi^ from both m and m', but it prevents a simple
expression in terms of f and g p ( x ) ' Secondly, the interchange of the twist
of a half-integral Hilbert modular form with a character \ and the inverter
isw^(^) defined in section 3, involves a quadratic character as shown in
Proposition 3.10. In particular, this requires us to consider twists with
non-primitive characters. Thirdly, the auxiliary ideal m' used to smooth
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the expression for the Fourier coefficients when proving the boundedness
of the distribution occurs as a square in the level of the half-integral form
9(x!nq)Jc^' The underlying reason is that the operator sw of section 3
commutes with the twist operator, but it requires quadratic levels. Unlike
the integral case, the theory of primitive forms has only been established
in certain cases. We therefore assume that g has algebraic and radically
bounded Fourier coefficients, and that gi is a simultaneous Hecke eigenform.
A theorem of Shimura about the existence of a Q-form of .A^(c, (f)) and of
"primitive" half-integral forms provides evidence towards the existence of
"many" forms g satisfying these conditions. For a discussion we refer to the
end of chapter 6 where we also give a concrete example for the case F = Q.
Finally, we have imposed the class number condition hp = 1. For Hilbert
automorphic forms of integral weight, there are hp components which are
permuted (and acted on) by the standard inverter J of integral forms.
However, Hilbert automorphic forms of half-integral weight as defined by
Shimura in [S7] only have one component. At some point in section 5 we
want to connect the inverter J of the integral case with our inverter j of
the half-integral case, and we do not know how to achieve this without our
class number assumption. Also, there are distributions defined for certain
positive critical points. However, the Fourier expansion of g ' ^ of (37) then
involves the values of certain Hecke L-functions at positive integers. These
can be expressed in terms of the values of the L-functions at negative
integers by applying the functional equation, but there occur Euler product
factors with the ideal character ^* evaluated at primes p € *?. It is for this
reason that we can not show the boundedness of the distribution associated
to the positive values.

I would like to thank Professor C.-G. Schmidt for his guidance during
the preparation of my doctoral dissertation upon which this paper is based.

1. Idele characters and distributions.

Let us introduce some notations first. We will always denote by F
a totally real algebraic number field of degree n = [F : Q] over Q with
maximal order o, different D and discriminant d p , and we write a ^> 0
to indicate that the element a of F is totally positive. The ideal group of
fractional ideals of F will be denoted by J = J p - The class group J F / P F of
order h = hp is then obtained by factorization of J p after the subgroup Pp
of principal ideals with totally positive generator. A = FA denotes the ring
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of adeles, its unit group I p = F^ is the group of ideles, and we write Af
and AQO for the finite and archimedean part of the adeles respectively. If x
is an adele, then XQ and Xoo will denote the finite and archimedean part of
x. The norm map of F/Q (of elements of F, ideals, adeles) will be denoted
by Af. For an idele a of I p or an element a of Fx the associated fractional
ideal will be written as a or o • a or (a). For a finite prime p, i/p denotes
the discrete normalized valuation associated with p, Fp and Op denote the
completions of F and o with respect to z/p, and Dp denotes the local different.
For every (finite or infinite) prime p there are the following exponential
maps from Fp to C: For infinite primes, this is the map e?(x) = exp(2mx)^
and for finite primes, it is the map ep(.z-) = exp{—2my) with any y e Q
such that y € Q (Q H Zg) and y — Trp^/^^x) e Zp; here p is the rational

9^P
prime determined by p|p. These maps are the local components of the maps
CA '' A -^ Cx , x ̂  Y[ ep(rr) and 600= ]~[ ̂  ^ne ^as^ m8ilPls also denoted as

P p|oo
cp by some authors. In particular, eoo is the archimedean component of CA?
and CA is trivial on F^ Similarly we have absolute values | • IA : ̂ A —> C
and |-|oo ' ' ^ n —> C defined by |a;|A := ]~[ l^pip B^ |«^|oo ;= ]"[ l^pip ̂ ^ ̂

P p|oo

local maps |a;[p = ̂ (p)"^^^ for p finite and |a;|p = \x\ for p archimedean.
The algebraic closure of Q will be denoted by Q. We fix a rational prime p
and an embedding ip : Q ^-> Cp of the algebraic closure of Q into the Tate
field Cp which is the p-adic closure of the algebraic closure of Qp. We denote
the ring of integers of Cp by Op. For a fractional ideal m, the "support"
of m is defined as S'(m) := {p | ^p(m) -^ 0}, and we write <I>(n) := ̂ (o/^
for the Euler function of integral ideals. Finally, ji will denote the Mobius
function (of integral ideals) which is non-zero only on squarefree ideals a
and takes the value ^(d) = (—l)7^ if d is the product of r different prime
ideals.

By a Hecke character of finite order, we understand a continuous
character \: I p —^ Cx which has finite image and is trivial on the principal
ideles Fx < I p . \ can be written as a product \ = ]~[ \p of local characters

p
^p : F^ —^CX, where the product is taken over all primes. In particular,
the archimedean part ^oo is given as Xoo(^oo) = Tl xr^ ='' ^oo ^or some

p|oo
r = (r?) € Z71, which is uniquely determined modulo (2Z)n. We will also
write \f for the finite part ]~[ ^p. Ifc = c • Coo is the conductor of ^ with

p/oo
finite part c = c(^) and infinite part Coo, then we can associate a (primitive)
ideal character ^* : J p —>- C modulo c with \ in the following way: It is
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non-vanishing only for ideals a prime to c, and in this case it is given as
^*(a) = ^(a) for any idele a C IF satisfying a = a, a? = 1 mod p^) for
p|c, and Op > 0 for p|coo- For any ideal q with c(^)|q we let \^ : J —> C
be the ideal character which coincides with ^* on the ideals prime to q
and takes the value 0 otherwise. We also let Xq = Fix? De tne q-part of

P|q
the idele character \ and write \Q := Xc(^)- If ^ € Fx then we write Ea
for the quadratic Hecke character corresponding to the quadratic extension
F ( ^ / d ) / F by class field theory. In other words, the kernel of €a is the norm
group A/^(^)/^(J^(^)). For the trivial character ^i, we will also write e.

For a finite prime p and a non-negative integer n we denote the
group of higher principal units by Uf = {x e o^ | x = 1 (p71)}, and
set Up := U ^ ' = o^. If \ is a Hecke character of finite order of conductor c
and p is a finite prime, then the local character ^p has conductor Cp = p^^,
and the (local) Gauss sum of ^p is defined as

/ ^ \^- ( a \ ( a \rM:=^X,^)e^-^-J

where dp € F^ is a generator of the ideal Cp?)p and a runs through a system
of representatives of Up/U^ . If q C c is any ideal we define the global
Gauss sum of the ideal character ^* as

(1) r(Xq*) '= ^ Xoc(a)Xq*(^q)eoo(a),
aG^q)-1/?)-1

where the summation is understood as a running over a system of repre-
sentatives of (^q)"1/^""1 which does not include 0. The Gauss sum r(^)
of \ is then defined as the Gauss sum corresponding to the primitive ideal
character ^*:

r{x):=r(x^=r^

and it satisfies

(2) r(x) = I! ̂ P) and 1^)1 = VW-
P/TOO

Notice that for almost all finite primes p the local character ^p is unramified
and Op = Op, and hence the above infinite product only has a finite number
of factors which are not equal to 1. We give a proof of (2) in a more general
situation below.
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We will need to deal with character sums of imprimitive characters
and therefore introduce the following concept:

DEFINITION 1.1. — An ideal character ̂  modulo q of conductor c is
called almost primitive ifgcd (c, ' ) = o and - is square free.

Remark. — In general, for an imprimitive character ^* the Gauss
sum r(^^) may vanish. However, as shown below, for almost primitive
characters this Gauss sum never vanishes. Moreover, almost primitive
characters naturally occur when multiplying primitive characters with
characters of prime conductor, and the set of almost primitive characters
is stable under this operation.

We will now establish an analogue to the character sum (3.11) of [S3]
for almost primitive characters. This will be needed later on to define the
twist of a half-integral modular function with an almost primitive character.

LEMMA 1.2. — Let a be a fractional ideal, ^* an almost primitive
character of conductor c, and b € a~lq~l^~l.

Then

^ XooW^^xa'^e^bx)
rcGa/aq

^ fxoc(&)x*(6acD)^(?)T(^)^p|fl(l-^(p))min( l^(^^^ if b^O,
t^(q)np|q(l-^(p)), c ifb=0

with the Kronecker symbol 6.

Proof. — Choose an idele a such that a = a, and for p|q let {/3^} C Up
be a system of representatives for Up/U^^\ If gcd^a'^q) = o, then
write x considered as element of the idele group I p as

^=^n^S))'Ac;
P|q

here ^p denotes the embedding Fp ^-> Ap and (3x G IF is an idele that
satisfies /^ C o and f3^ = 1 mod p^ for all p|q. Notice that the map

(i/(aq) -^ n ̂ /P'^ x + ̂  ̂  (̂ p"1 + P'^plq
P|q

is a bijection, and that the image of x + aq is a unit if and only if xa~1

is prime to q. Therefore, as x + aq runs over those representatives of
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a/aq for which ^(.ra"1) does not vanish, the tupel (/^lp \ )p |q runs over
n^p/^^. Making use of
P|q

XooW^{xa~1) = Xoo(^) n Xp(^p"1)
p/q,p/oo

= 11 Xp(ap)-nXp(ap)Xp(/3%)
p/q,p^oo p|q

and

e^(bx) = n6^) = II ̂ (-^ = II^-^O'
p|oo p/oo p|q

the character sum of the lemma now evaluates to

II Xp^p)'!!^^) S^ \^u)e^-ba^u}.
p/q,p/oo p|q u^Up/U^^

For p |fl the local character sum in this expression takes the value

^ ^{u)e^-ba^u} = ^ e^-ba^u)
ueUp/U^ u^Uy/U^

^ r A ^ ( p ) - l , iffcea-^-^-1?,
\ —1, otherwise.

For p|c the local character sum takes the value

E _ / . / , . / . f^p(&ap), if^p(&acD)=0,
Xp^ep^ap^^rpto)^^ if^Oor.p(6acD)>0.

^e^p/^'"^^

This follows directly from the definition of the local Gauss sum if ^p(^acZ)) =
0. In the other case there exists some u' C ?7p ^[/p p such that
\^(u') -^ 1 because the conductor of ^p is p^^\ But ep(—6apW) =
ep(—&apn) for all u € L^p, and therefore we obtain

^ ^p('a)ep(-6apn) = ^ ^p(W)ep(-&apW)
ne^/^^^^ i.e^/^'^11^

"^p^) ^ Xp(^)ep(-^p^)
^e^/^'^"^

which implies the vanishing of the local character sum as claimed. Now, for
p^c choose a generator dp e jy of the local different Dp and observe that
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the local Gauss sum is then by definition Tp(^p) = ^p(c?p). The lemma is
now proved as follows:

First assume b = 0. If \ ^ e then the character sum equals 0 and
otherwise its value is

n {(-!)(! - A^(p)} = /.(q) HO - ̂ (p)).
Ph p|q

Now assume b ̂  0. If ^p(6acD) > 0 for some p|c then the character sum of
the lemma equals 0, and otherwise we obtain as its value

n ^M n {^M • (-1) • (1 -wr^^} n^w7?^)
p^q,p^oo p|a p|c

= n ^(^p) • ̂ w • /^) • n Tp(xp) • n(1 -A^r^1^6^.
p/c,p/oo p/oo p|a

In all cases this is is the value given in the lemma, n

The proof of the lemma for a = (Dc)"1, q = c and 6 = 1 actually
proves the product expression (2) for the global Gauss sum given above. If
we choose a = (cj^)~1 and 6=1, then the lemma shows that

^)=^©^©T(X).

In particular, the non-vanishing of r{\) implies the non-vanishing of r(^*).
The following lemma is a simple rephrase of Lemma 1.2 more suited to our
intended application.

LEMMA 1.3. — Let a be a fractional ideal, •^ an almost primitive
character of conductor c, and t G F^ an idele with FC a^q"1?)"1. Then

^ XooW^^xa'^eA^-txo)
x^a/aq

= r(x)x^tac^Xf(t^ (q) ]^[(i -^(p))1111^1'^^)).
Pi?

For a prime ideal p \ 2 the next lemma will show the existence of a
certain quadratic character ^p, which is a generalization of the character

( TiA \
nL \—> -—) of the ideals of Z.

LEMMA 1.4. — Let F have class number hp = 1, and let p be a
prime ideal which does not divide 2. Then there exists a unique quadratic
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extension F^ = F{^/r) of F which is only ramified in p and possibly at
infinite primes. The corresponding quadratic idele character of F

^ : I F / F X -^ {±1} determined by ker^) = ̂ / F ^ I F P / F ^ )

has the local components

^ : F^ -. {±1}, xW = f^)
\ H /

with the local Hilbert symbol ('-1-} : F^ x F^ -^ {±1} (see [N], chapter
V §3 for the definition).

Proof. — Let Is00 := [] ^ • TlR' The idele class g^P CF ''=
q/oo q|oo

I F / F X equals I S - F X / F X by our assumption hp = 1 (cf. [N], Satz
VI. 1.3). With the subgroup Up ^ o^ of quadratic residues modulo p let
Cp := ]~[ Oq< • Up • ]~[ M+. CpFX / F X is a norm subgroup of Cp, and the

q^P q|oo
quotient is

C F / ( C ^ F X / F X ) ̂  I S O O F X / C ^ F X ^ ̂ -/(C^ n Is00) = J500/CpOX.

Now Is00 /Cp ^ Op</Up • ]"[ ^/^+ ^ (Z^Z)^1, o^ ^ Cp, and o x /o > < 2 ^
q|oo

(Z/2Z)71 by Dirichlet's unit theorem. This implies that C F / ( C p F X / F X )
is 2-elementary abelian and nontrivial. The existence theorem of class
field theory now implies the existence of i^. Since there are no quadratic
extensions of F that are unramified at all finite primes (by our assumption
hp = 1), F^ must be ramified at p and possibly some infinite primes. If
pp ^ pp ^g another such extension, then the third quadratic subextension
of F ^ F ^ ' over F is unramified, a contradiction which proves the uniqueness
of F^. Finally, the quadratic character ]~[x5 ls a Hecke character by the

q
product formula of the Hilbert symbol ([N], Satz VI.8.1), and for finite
primes q 7^ p the extension F^^/r)/F^ and hence the local character ̂  are
unramified. By the uniqueness of F^ the local characters ̂  must be the
components of ^p. n

We will now recall the notions of p-adic distributions and p-adic
measures. The reader is referred to [P], I§3 and IV§4 or [K], 4.0 for details.

Let Y = \imYi be a profinite (i.e., compact and totally disconnected)
topological space, and R a ring. Denote by Step(y,J?) the .R-module of
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all locally constant R- valued functions on Y. An R- valued distribution on
Y is an .R-linear map

p.: Step(Y,R)^R.
If RQ ^ R is a subring of R and fi is an JP-valued distribution, then we
say it is defined over RQ if /^(^pr.-^Yi)) e ^o for every Yi, y e Y and
characteristic function (^.pr-w.) °f ^ne set ^P1'!"1 )̂ C Y. Now, let R be
a closed subring of the Tate field Cp. Denote by C(Y,R) the J?-module of
all continuous -R-valued functions on Y. An -R-valued p-adic measure on Y
is an J?-linear continuous map

[L : C(Y, R) —^ R, written symbolically as / f dp,.
JY

Given an IP-valued measure p on Y and a function g C C(Y, R\ the product
g^i is the -R-valued measure defined by

/ / d{gp) := [ fg dfi for / e C(Y, R).
JY JY

Given an R- valued p-adic measure ^ on Y and a continuous map (p :Y —>
y, we also have an R- valued measure [i o (p on Y defined by

/ fd^o(p:= { foipd^ for/eC(y,^).
JY JY

The restriction of an R- valued measure fi to the subalgebra Step(Y, R) C
C(Y, R) defines an R- valued distribution which we denote by the same letter
/x. Moreover, the measure ^ is uniquely determined by the corresponding
distribution because of the density of Step(Y, R) in C(Y^ R).

Now, let R = Cp. Then a Cp-valued distribution ft on Y can be extended
to a Cp-valued measure on Y if and only if /^ is bounded on Step(Y,Op),
i.e. if there exists some constant C e M+ such that \^(f)\p ^ C for
all / C Step(Y,Op). This implies that every Cp-valued measure on Y
becomes an Dp-valued measure on Y after multiplication with some non-
zero constant of C^. The following proposition gives an important criterion
for the existence of a measure with given properties:

PROPOSITION 1.5 (Abstract Kummer congruences). — Let {fi}z^i be
a collection of elements ofC(Y,Op) such that the Cp-lmear span of {fi} is
dense in C(V, Cp), and let {a^}^j be any system of elements a^ C Op. Then
there exists an Op-valued measure ^ on Y with the property

V f^d^= di for alii € I
JY
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if and only if the di satisfy the following "Kummer congruences": For every
collection {bi}i^i of elements ofCp which are zero for all but finitely many
^

^ bifi(y) C ̂ Op for allyeY implies ^ bid, C ̂ Op.

We will apply this criterion to the following situation: p is a fixed
prime number and S a finite set of primes of F containing all primes above
p. Let Y = Galas' = Gal(P(5')/F) be the Galois group of the maximal
abelian extension F(S) of F which is unramified outside S and oo. Then
by class field theory,

Gal^=limJ(m)/P(m).
m

Here m runs over all ideals of F with support in 5, J(m) = {a € J | S{o) D
S(m) = 0}, and P(m) is the subgroup {(a) | a G F, a = 1 mod m, a ^> 0}.
Let

^=Hom^(Gal^C;)
be the p-adic analytic Lie group of all C^-valued continuous characters of
the Galois group Gal^-. The elements \ € Xs of finite order can be identified
with those Hecke characters of finite order whose conductors c(^) are only
divisible by primes in 5; if c(^) divides m, then this identification is induced
from

Xm : ̂ (m)/P(m) -. C^ a • P(m) ̂  x*(a).
The maximal abelian extension Q(p)/Q unramified outside p and oo is a
subfield of F{S) because S contains all primes dividing p. The restriction
of Galois automorphisms to Q(p) determines a natural homomorphism

N : Gab ̂  Gal(Q(p)/Q) ^ Z^,

and we shall denote by A/p the composition of this homomorphism with
the inclusion Z^ ^-> Cp . Then Ap is an element of Xs, and A/p maps the
image in Gal^ of an ideal prime to S to its norm. For a fixed r G Z the
Cp-linear span of the collection {^A/^ | \ € ^^or} is dense in C(Gal.5,Cp)
because Step(Gal.s', Cp) has this property, and the Cp-span of the characters
of finite order coincides with Step(Gal,s',Cp) by the character relations.
Provided that for suitable a^ the Kummer congruences are satisfied, we
obtain a bounded Cp-measure p, which determines in turn a Cp-analytic
function, the "p-adic L-function"

L^ : Xs —> Cp, L^(x) := p,(x) = xdji
./Gals
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as its non-archimedean Mellin transform. In particular, L^ takes the value
a^ at the character ^M^.

An example for the Kummer congruences is given by the values at
negative integers of Dirichlet series attached to Hecke characters of finite
order. Recall that for \ € X^ and an ideal m the Dirichlet series

(3) L^x):=^X''W^^(n)-s

n

defines a holomorphic function for Re(s) > 1; here n runs over all integral
ideals prime to m. If m = o we also write L(s^) for Lo(s,^). Lm can be
continued to a meromorphic function with at most a simple pole at s = 1,
and its values at non-positive integers are algebraic and lie in Q(^). There
is the following well-known functional equation for L(5,^), which is for
example given in [N, Satz VII.8.6] in a slightly different formulation:

Let ro be the number of archimedean places at which \ ramifies, write
c(^) for the finite part of the conductor of ^, define the Artin root number

rfy)W(-x} '= ——v/c/ and put
^°vW(x))

£(.,x) - .-^^(cO^r f^)" r (I)-0 L(.,x).

Then the functional equation for L(s^\) formulated in terms of C{s^\) is

(4) £(1-5,X)=^W(5,X).

THEOREM 1.6 (Deligne-Ribet [DR]). — Let p be a prime, S 3 {p|p}
a finite set of finite primes of F, mo = ]~[ P? ^ a Hecke character of finite

pe5
order, a an integral ideal prime to mo with c(a;)|a, and q an integral ideal
prime to mod. Then there exists an Op-valued measure fi = fi(q^,S) on
Gols which is uniquely determined by

i?1 ( I ^ d^) = (1 - (^(q^q)^1)!^-^ X^)
VGals /

for \ e X^ and r = 0, and it satisfies the above equality for all non-
positive r G Z.

Proof. — For uj = 1 this follows immediately from the main theorem
of [DR] in the form of Theorem 0.4 by imitating the proof of Theorem 1.9b).
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The measure /^(q, uj, S) is then obtained by applying this to the set of primes
S = S U S(a) and the character •\u}:

{ xA/';^(q,o;,5):= I ^A/';^(q,l,5)
JGaAs JGa\^-

0

= ip ((1 - (^fWAf(qY^)L^(-r^^)

for \ C XJ01' and r G Z non-positive, n

2. Hilbert modular forms of integral weight.

In this section we want to recall the basic facts on Hilbert modular
forms of integral weight. We refer to [S4] or to chapter IV of [P] for details
and proofs.

Let us view the group GL2(F) as the group 07(0) ofQ-rational points
of a Q-rational algebraic subgroup G of GL2n(Q). Then the adelization GA
of G can be identified with GL^FA.). Now, if TI, . . . , 7-n are all injections of
F into R, fix the embedding of F into R71 given by a i-̂  (a^, . . . , a^). This
identifies R71 and GL2(R)71 with the archimedean part of FA and G, which
we denote by Foo and Goo respectively. The finite parts of FA and G will
be denoted by Ff and Gf. With GL^(R) = {a € GI^R) | det(a) > 0} put

G^ = G4(R)71, GA = [x e GA | ^oo e G^},
and ̂ + = G^Q) = G(Q) H G^.

Next, we let 1 = (1,...,1) € Z71. For k = (A; i , . . . , f cn ) C Z71 and
z = (^i , . . . , 2^) € C71 we write

n

^ := Y^ z^ and a<^ := (a • 1)^ = a^--^71 for a e C.
1^=1

If z\,..., Zn are real positive we define zk in the same manner also for
k € Q71. The group GL^(R)71 acts as follows on IT: For a = (ai,. . . , On) E

GL^(R)71 with a^ = f^ 6l/ ) set
\Cy dy )

a(^)==(ai(zi),...,a,(zj) with a^) = a v z y + b l " .
CyZy + a^
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Let j(a,z) = (det(ai)-i(cizi+di),... ,det(Q^)-i(c^n+dn)). The group
GL^R)71 acts with the factor of automorphy j(a, z)~k on complex-valued
functions / on El71 by

(f^a^^j^z^f^z).

For a congruence subgroup F ^ (^(Q) we denote the C-vector space
of HUbert modular forms of weight k with repect to T by A^F) and its
subspace of cusp forms by <5fc(r). If -0 : F —^ Cx is a character of finite
order, we set

Mk(T^) := {f e A^(ker(^)) | f\\^ = Wf for all 7 C F},
<Sfc(F,VQ :=A^(F,VOn<?fc(ker(^)).

Furthermore, let A/A; (F) be the set of all nearly holomorphic forms of weight
fc, i.e. the space of all functions f :W1 —^ C which are modular with respect
to r and which have for some A € Z71 a Fourier expansion

f^="E E ^^(^/r^oo^) forzei r
^GjFO^a^A

with y = Im z, c(a, $) G C, c(a, 0 = 0 unless $ is an element of a certain
lattice in F and $ ^> 0 or ^ = 0, and we also have to require a similar
Fourier expansion at each cusp in the case F = Q. Now, A4(r, '0) is defined
similarly as above, and we let

Mk=[JMk(r), 5fc==|j^(r), and.A4=IJW)'
r r r

with r running over all congruence subgroups of G^. For two fractional
ideals y and t) in F such that yt) C o put

A^M^ ^ (^ J eM2(Fp) |aeop,6e?:p ,cet )p ,deop,ad-6ceop < j>

forp^oo,

^M^n^M] c Gt,
P^oo

r[?,t)]=G(Q)n5[?,t)].
Fix h= hp elements ^ i , . . . , t/i of JF^ so that (1^)00 = 1 and ?i,... ,?^ form
a complete set of representatives for the ideal classes, and put

a^f1 0 ) , DO;)^?)-1,^], andYx(c)=r[(t^r\W
\^ 1'A/
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c • . 1 . 1 1 T^ . i ( a b\ ( d —6\ ,tor an integral ideal c. Denote by L : - i—^ the main\c d} \-c a }
involution of M^{F) and its extension to M^{Fp^), let '0 be a Hecke
character of finite order such that the finite part of its conductor divides c,
and for a subgroup W ^ D[^, t)c] let

^^-.C^ (a b} ̂ o(a).\c aj

The C-vector space .Mfc(c, '0) of Hilbert automorphic forms is the set of all
complex valued functions f : GA —^ C satisfying the following conditions:
f(saxw) = ^(s)-0g (w')f(a;) if s C F^, a G G(Q), and w e D(c) with
Woo = 1, and for each A there is an element f\ of A4k(^\(c)^^ / J
such that f^'y) = (f\\\y)(i) for all y e G^ where i denotes the point
i = ( z , . . . , z ) C EP. The spaces <?fe(c,'0) and A4(c,^) of cusp forms
respectively nearly holomorphic forms are similarly defined by requiring
that fx be an element of Sk(Tx{c)^^) respectively A/fc(I\(c),V^^).
Finally, the group GA can be expressed as a disjoint union

h h

GA = (J G(Q)^(c) = U G(q)x^D(c),
\=1 \=1

so that f G ^^(c,'^) is uniquely determined by the f\ € Mk^x^^ ); we
also write f = (A, . . . , A). Now, by (2.6) of [S4], Mk^x, ̂ ) = {0} and
hence f = 0 unless ^o satisfies

/ ̂  \ ^v
-0o(^) = sgn(£)fe = JJ ( —^7 ) for ^^y £ ^ ox •

y \ I I /

We will henceforth impose this condition on '0o- Now each f\ has a
Fourier expansion

A(^) = ^^(Oeoo(^) with $ = 0 or 0 < $ € ?A.
^

Any non-zero ideal m of F can be written as m == ̂ 1 with 0 < ^ C F
and a unique A. Define the m-th Fourier coefficient of f by

^ f) = | ^(O^"^ if ^ = ̂ '1 is integral,
[ 0, if m is not integral,
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and let C(m,f) = ./V(m) ~S~ c(m, f) with ko := max{A;i,. . . ,A:yi}. This
modified coefficient only depends on m and f, and the form f is uniquely
determined by the values of C'(m, f) for all ideals m. For every integral
ideal n of F one can define a Hecke operator T(n) which is a C-linear
endomorphism of M.k{^-s'^) (cf. p. 648 and (2.21) of [S4]) such that

C(m,f|r(n)) =^^(a)^^(a)ko~lC(a~t2mn,{) for all m,
a

where a runs over all integral ideals dividing m + n. If f is a simultaneous
eigenfunction of the Hecke operators T(n) with eigenvalue ci;(n), then the
Dirichlet series

D^^^C^Wm)-8

mCo

associated with f has a factorization as Euler product over all prime ideals:

D^ f) = G(o, f) II (1 - ̂ (PWP)"5 + ̂ (P)^?)'0-1-2') -1.
p

There are several important operators on the space of Hilbert automorphic
forms. First, if q is an integral ideal and q € F^ is an idele with g = q , and
q^ = 1^ then by Proposition 2.3 of [4] and IV. 1.19 of [P] we can define the
operators

q:Mk(c,^-.Mk(qc,^, {f\q){x) :=^-(q)-^f ̂  } ) ,

(7(q) : Mk(c,^-) -^ .Mfc(qc,V),

(f|[7(q))(^):=^(q)^-1 ^ f^ ^0)).
V^-1/^-1 v v / /

Actually, the definition for U(q) given in [P] is erroneous and should be
replaced by the above expression. These two operators are characterized
by their effects on the Fourier coefficients:

C(m, f|q) = (^(q-^m, f) and G(m, f\U(q)) = C(qm, f) for all m.

Second, there is an inverter Jc : -M.k(^^) —^ -Mk{^^) (cf. (2.46) of [S4]),
which is defined as follows: Let m € F^ be an idele such that m = cD2 and

set b := f p f 1 ) € GA. Then
V^o ) \ Uo

(f\Jc)(x) '.= f^b) for all x € GA.
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With respect to the decomposition f = (/i,... ,A), Jc has the following
description: For every A determine K and a totally positive element q\ of
F such that t\t^2 = (q\) and write f|Jc = (/L . . . , fh)' Then

f. = A||̂ 1 = (-1)^/11^ with ^ = f ^ r) € G(Q).

For f = (A, . . . , A), g = (^i,...,^) e <Sfc(c,^), the Petersson inner
product is defined by

< f^ ) == E ^ , 1 ^ , ^ A(^)^)^ d^z)^ ^(rA(c)\H71) 7r^(c)\H-

^ n
with the G^-invariant measure d^z) = ̂ i V^dxydy^ on IF1. The product

i/=i
is also defined if one of the forms is only in .Mfe(c, VQ or A/fc(c, ̂ ). We will
also use the following inner product which depends on the level c of the
automorphic forms:

h r __
<f ,g )c=^ jL A(^A(^W.

M./r\(c)\lHl71/rA(c)\H71
\=i

The orthogonal complement <Sj^(c,'0) C Sk(c^) of the space of old forms
has a basis of common eigenfunctions for all Hecke operators T(n). A
normalized element f of this basis (i.e. an element with C'(o,f) = 1) will
be called a primitive (cusp) form of conductor c. Now let Ci C 02 be two
integral ideals and ^ a Hecke character of finite order whose conductor
divides €2. Then in VI.4.4 of [P] the following trace operator is defined:

^:A4(ci^)-A4(c2^), (fK)(x):= ^ ^^(^)f(^),
/ie5(ci)/.D(c2)

and it can also be expressed in the formi-»(̂-i)î )-'̂ ),.,.
The important property of the trace operator is the reduction of levels: If
ci < C2, f C 5fc(c2,^) C 5fc(ci,^) and g C A/fe(ci,^), then by (4.10) of [loc.
cit.]

<f ,g)c ,=<f ,g |Tr^)c , .
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Actually, under suitable conditions, a nearly holomorphic function can be
replaced by a holomorphic function without changing the value of the
Petersson scalar product. These conditions involve the following notion:
A function f = (/i,..., f^) € A4(c, '0) will be called of moderate growth
if for all A = 1,..., /i, all z € HP and for any s € C with sufficiently large
real part the integral

/ A(w)(w - z^-^lm^w)^8 d^(w)
JH71

converges absolutely and admits an analytic continuation over s to the
point 0. Here z~k~^ is understood as n^^l^l"28-

v

We end this section by quoting Proposition IV.4.7 of [P]:

PROPOSITION 2.1. — Let f € A4(c,'0) be a function of moderate
growth such that its Fourier expansions f\(x + iy) = ^ ^x(^y)^oo(^x)

Wx
contain only terms with totally positive ^ € t\. For 0 <€ $ C t\ set

(^Tr)^-1}^-1 f
ax^= n71 m. n / ^V^Wy ^^li^i1 ̂  - 1) JR^

and suppose that the integral is absolutely convergent. Then there is a
function Hoi f = (Hoi /i , . . . , Hoi f^) € Mk(c, ̂ ), whose Fourier expansion
is given by

Holfx(z)= ^ a^(0eoo(^),
O<^G?A

and which has the property ( g, f )c = ( g, Hoi f )c for all g e «Sfe(c, ̂ ).

COROLLARY 2.2. — Let f € A/fc(c, '0) and g e <?fc(c,^). Iff suffices the
conditions of the proposition, then

(g,f |Jc)c=<g,(^f)|Jc)c.

Proof. — This follows immediately by observing that J^~1 = (-l)Wj<;
is the adjoint of Jc with respect to the Petersson scalar product, n
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3. Hilbert modular forms of half-integral weight.

In order to define modular forms of half-integral weight, one needs to
define a factor of automorphy of weight . . The ambiguity of the square root

^
of a complex number leads to a much more complicated automorphic factor.
In fact, the property of automorphy is valid only for certain subgroups. We
will recall the fundamental definitions and properties of half-integral forms
before defining some operators which we will need in the sequel.

For two fractional ideals y and t) of F with y) C o let us define the
following groups:

G = SL^F) with adelization GA = G/Goo,
Dp[?,t)] = Pp[?,t)] H SL2(Fp) for p/oo,

D[^ t)] = 5[y, i)] n SI^FA), r[y, t)] = r[?, 9] n G.

For an element g € GA we denote by go and goo the finite respectively
archimedean part. We now fix once and for all, an element 8 of F^ such
that 600 = 1 and 6 = D and define rj = ]~[ rjp € GA by

p

(5) ^ P - f ^ -<$p ) for p foo, rj^=(1 ) for p|oo.
\°P / \ 1/

Next, we define

C' = S02(R)n • tj ^p[2D~1,2D], G" = G' U G'^,
P/oo

P = {a = (a ^eGlcc^O} with adelization PA,
\Cct 0'ot.j

^ = {a € G | CQ 7^ 0} with adelization f^A? and
r = { ^ e C | |^|=i}.

Further, let MA = Mp{Fp^) denote Weil's metaplectic group, which
is an extension of GA with kernel T. Let pr denote the projection map of
MA onto GA? and note that

(6) xy = yx if x,y e MA with pr(:r) e Goo and pr{y) e Gy.

There are splitting homomorphisms

r : G —^ MA, 7p : PA —> MA, and a map r^ : f^A -^ MA,
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which are consistent in the sense that

7^(0/37) = 7p(a)^(/3)rp(7) for 0,7 ^ PA, /3 € ^A,

r = r p O n P , and r = r ^ o n P ( )P

We refer to section 3 of [S6] for the definition of these maps. Via the
embedding r we understand G as a subgroup of MA, and we let MA act
on HP via the infinite part of the projection pr. Similarly, if $ € MA and
z G ST1, we write j($,^) for J'(pr($)oo^)- Then in [loc. cit.] it is proved,
that for every $ C MA such that pr(^) e PA^" there is a non-vanishing
holomorphic function /i($, ̂ ) on W1 with the following properties:

(8) h(^ z)2 = t . j($, z)1 for some t C T,
(9) WT, ̂ ) = fa(/3, ̂ )/i($, rz)h(T, z}

if pr(/3) € PA, pr(0 € PAC"', pr(r) € C"Goc,
(10) ^(t•yp(a;),^=t- l |^|^2 i f t e r a n d a : e P A ,

and if a = r (diag(r,r~1)) with r € F^, then Lemma 2.5 of [S7] shows
that

(11) h(^ z) = h{^ z) if pr(Q, pr^) e C" and $ = arja-1.

Now let us define certain Gauss sums for finite primes p, p, € Fp and x € PA
by

(12) 7p(^) ^= / ep(^2/2)^ for p finite,
./op(13) -r{x) := n ^(^)-

P/TOO

Here, dx is the Haar measure on Pp normalized by J^ dx = 1. By Lemma 3.4
and Lemma 3.5 of [S6], for certain $ € MA the automorphic factor h{^z)
is completely determined by (8) and

(14) lin. -^4 = -y(^) if^^.nP^),
p-oo|/l($,pl)| ^(-c^^)! "

05) ijm ^'P1) = ^^"2^1^)
^OJ p-.oc |̂ ,̂ )| ^(^d^cs)!

i f ^ e ^(f2A)»h(^~1)) npr-^PA^");
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here c^ and d^ are given by pr(^) = [ ^ }} e GA. With the quadratic
V^ d^

Hecke character a; = e-i corresponding to F(y/:=:i)/F, we have the formula

(16) A(7, z)2 = c^o(^) . o;*((^)) . .7(7, z)1 if 7 e r[2Z)-1,2D].

We are now in a position to define half-integral automorphic forms. Fix a
half-integral weight k € ( - Z ) n , l e t f c / : = A ; - _ • l e Z n , and define a factor
of automorphy

Jk(r, z) := h(r, z)j(r, z)^ for r e MA H PT-\PA.C").

For a function / on W1 we write

(/11^)(^) ^= Jk^z)-1^) for T C pr-^PA^').

We will now tacitly assume that all congruence subgroups F of G are
contained in C^Goo. With the operation ||^r, a HUbert modular form
f C A^fc(F), a cusp form f e <?fe(r), and a nearly holomorphic form
f € A4(r) with respect to some congruence subgroup r of G are defined
as in the integral case. We also define Mk, Sk and A/A; as the union over all
congruence subgroups r of the respective groups .Mfc(F), «?fc(r), andA4(r)
as in the integral case. An automorphic function on MA with respect to
the factor of automorphy J^ is a function /A '- XA —> C such that
(17)

/A(a$w) = Jk^w,!)-1^) for a C G, $ G MA, and w e pr-\B)

for some open subgroup B ^ C " . There is the following connection between
modular and automorphic functions (see [S7], section I): Given /A) the
function / : W1 -^ C defined by

/($(i)) := /A(OJ($,i) for $ e pr-^BGoo)

is automorphic with respect to F := G D BGoo, and conversely a complex
valued function / on H71 with the automorphy property with respect to
G H BGoo determines an automorphic function /A on MA by

/AK) := (/||^)(i) for a G G and $ € pr-^BGoo).

An automorphic form is an automorphic function on MA whose correspon-
ding function on H71 is a modular form. Given two integral ideals b, b' and
a Hecke character -0 of F of finite order whose conductor divides 4bb' and
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whose archimedean component satisfies '0oo(—l) == (—1)^ , we denote by
•Mfc(b, ^'5 'tl}) the set °f an / m -^fc such that

/||^7 = ̂ w^)f for every 7 € r[2bD-1,2b'?)]

and let Sk(b, b',^) =5^0 Alfc(b, b',^). The ideal 466' is the level of our
group. We remark that for / C Mk(b, b', ̂ ) the automorphy property (17)
for the associated adelic form /A takes the form

(18) /A(^W) = ^bb^w) • Jfc(w,i)-VA(0

for a € G, $ G MA, and w € pr-^^pbZ)"1^^?)]) with w(i) = i. The
modular forms of .M^b,^,^) have the following Fourier expansion (cf.
[S8] Proposition) I.I):

PROPOSITION 3.1. — Given / e .Mfc(b, b','0), there is a complex
number A/($,m) = A($,m;/,-0) determined for every $ € F and every
fractional ideal m such that

/A^pf "l)) =^(^NiEA^^/,^oo(i^/2)6A(^/2)
v ' / ^e^

for every t € FA and s e ^A- Moreover, A($,m;/,'0) has the following
properties:

A(^, m; /, -0) ̂  0 on2y if$ € b"^"2, and $ = 0 or $ is totally positive,

A(^2, m; /, VQ = ̂ ^oo(^)A(^ &m; /, VQ for every & e Fx.

Furthermore, iff3 € Gndiag^r-^Ppb?)-1^^^ with r e F^, then

./(A/r^/Or^) =^(r)^o(^)|^|* ^A($,F;/,^)6oo(^/2).
^er

The form / is uniquely determined by its Fourier coefficients A(^,m;
/,'0) for $ C F and fractional ideals m (actually, m = o is sufficient).
As in the integral case there is an algebra of Hecke operators acting on
Mk(^^'^)\ for a definition see section 2 of [S8]. For our purpose the
following description of the Hecke operators on the Fourier coefficients is
sufficient: For / G •Mfe(b,b',1^), a prime ideal p and a fractional ideal m
with ^bm2 C o we have

(19) A($,m;/|Tp^)=A($,pm;/^)

+^(P)W ($-2) A(^m;/^)+^(P)2•^(P)~l^mp-l;/^).
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Here c is an element of Fp such that co? = m?, ( - ) denotes the Legendre
^P7

symbol, and the last two summands are 0 if p^bb'.

PROPOSITION 3.2. — Let f e.M^b.b'.^Q.ForCXre Fletrb = q2?
with a fractional ideal q and a squarefree integral ideal y, and write Or for
the quadratic Hecke character ofF corresponding to F ( ^ / r ) / F . Then the
following are equivalent:

(a) / is a Hecke eigenform ofTp for all primes p: /|Tp = ujpf with a;? e C.

(b) For all 0 < r e F, the following formal identity holds:

^ A^(r, q-^^m)-5 = Ay(r, q-1)
m n i-(^)4^(p)^(p)"1-5

ii i - ̂ w-8 + ̂ (p)2^?)-1-25'
Here, m runs over all integral and p over all prime ideals of F.

Proof. — (a) implies (b) is proved in Proposition 2.2 of [S8]. Conver-
sely, (b) implies

^/(^ (T^/O", q^m) = \f(r, q-^AyO-, q-W)

for relatively prime integral ideals m and n. Now, multiplication of the
above partial Dirichlet series with the denominator on the right side and
comparison of the coefficients yields

A^r.q-1?) -^A^(r,q-1) = -(^^/(p^^-^^r.q-1),
€w (P)2.̂ ?)- ,̂ q-V) - a;pAy(r, q-1?^1) + Ay(r, q-^^2) = 0

for non-negative integers r. Together with (19) this proves

A(r, q-^np"; /IT?, ̂ ) = a;pA(r, q-^p"; /, ̂ )

for all integral ideals n prime to p and all r ^ 0. But this holds trivially for
r < 0, and hence (b) implies (a), n

We remark that by Proposition 3.1 of [S8], there is the following
relation between modular forms of integral and half-integral weight: If
/ G <?fc(b, b',^) is a simultaneous Hecke eigenform of half integral weight,
then there is an integral automorphic form f € .Mfe(2bb','02), which is
called the Shimura lift of /, such that the denominator of the product in
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(b) of the above proposition coincides with the following Dirichlet series:
(20)
^c^f^m)-^1) = n (l -^^(p)-8 ̂ ^'(P)2^?)"1-2')" •

m p

Let us now define certain operators which will play a vital role in
the definition and proof of boundedness of a distribution associated with
convolutions of Hilbert automorphic forms of integral weight and Hilbert
modular forms of half-integral weight. We will start with the twist of a
modular form of half-integral weight and an almost primitive character \.
The final form of the twist is then obtained in the next corollary. Apart
from the adaptation to almost primitive characters the proof goes along the
well known lines (cf. Proposition 4.4 of [S4]), but the automorphic factors
require more attention.

PROPOSITION 3.3. — Let f C Mk{b,b^^) be a Hilbert modular
form of half-integral weight k, ^* an almost primitive ideal class character
modulo q of conductor c, and define b by requiring that 466 be the least
common multiple of 466', q^6 and qc('0). Then

WAW := ̂  E XocWx^u^b-^fA (xr^ ( (1

ul/ ueR v v v

for x € MA

with a system of representatives R of q~12b^~l/2bD~1 defines a Hilbert
modular form f(x^)° ^ ^fc(6,i,'0x2) with Fourier coefficients

A(^m;/(x,*)W)

^ fx*(^m2)A(^m;/,^(^)^p|a(l-^(p))min(l^(^^^ if^O,
\ ̂ ,A(0, m; /, ̂ (q) rip|q(l - W). if$ = 0-

Proof. — First notice that /(x^)^ ls well-defined because Xoo(u)~\^

(uq2~16~ lD) and f^(xTp{ ( ])) only depend on u mod 26D~1. To
\ 1 /o

prove the automorphy property (18) for /(^q)A it suffices to show

/(X^M = (^X2)^^)-1/^*)^^)
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for x € MA and w € pr-^.DpbO-^bD]) with Woo = 1 and /i(w,z) = 1.

Write w = ( ). By the approximation theorem find d € o with\c d}

d=d~2 mod q, d=l for p[2bi», p/)q, andd»0.

Then {v := du} is also a system of representatives for q'^bi)"1/^!)"1.

For each u € R define w' = !(;„ = I , 6 ) € pr-^DpbO-1^,!)]) by\c d )
pi(w')oo = 1, /i(w', z) = 1, and the relation

/I du\ /a &\ _ /a' y\ A d2^V it\c 4- ^ 4^ i ),
Now let 9 € -FA wltn 9 = 1 and set °'g = ̂  (9 -i) )• Then

, / / A du\\ / /I -A\\ \'^U ilr^U i 1)''}
, / ( (\ du\\ ( (\ -A-\\ i \^[^^ ilr^U 1 1 ) ^ )

, ( ( (\ q^v\\ _i //I -g^du^ .\''^U ilr^^U i l)'̂
= /I ( (TgWO- 1 ,^ ) = /l(w, ^) = 1,

(9),(10) v q g ' / (11) v ) /

, . , ,, . , ,, ( (\ du\\ , ( (\ A\\
which proves the identity 7p ( ( 1 ) ) ' w == w^ ' ̂  ( ( ) ) on

\ \ A)^ V \ k)
MA. Now the automorphy property follows from the calculation

/(X,*)̂ ) = ̂  ̂ ^(^(^^b-1!))
'x' uefl

, / / A -du\\ , / A u(d2d-l)\\\
•A(^(( i^(( i )}))

=V'46b'(a')-lXq(d)/(^)^(^

and the congruence properties of d. Finally, to calculate the Fourier
coefficients of /(^^)°, let t € F^ and s € FA. Then
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A^((1;,)))

^^^(«,,,^-,-^(,((————)))

= X^W^Ml E A($J;/^)eoo(i^/2)6A(^/2)
c ^

——— E Xoo(^*(^2-lb-lZ))eA(-t2^o$/2)
vx/ n€A

by Proposition 3.1. The desired expression for A($,t;/(^)°,V?^2) now
follows from Lemma 1.2 for $ = 0 and from Lemma 1.3 otherwise, n

COROLLARY 3.4. — For a Hecke character \ of finite order let q C c
be an integral ideal contained in the finite part c of the conductor of\ and
set no := [I P- Then for f e ^(fc(b, b', ̂ ) the twist /(^) with the ideal

P|q,P/c
character ^* mod q defined by

/(Xq*) ̂  ̂ (no^no)-1^^)^^)-1/^)0

n|no

is an element of Mk(b,b,i{jx2) with b = lcm(4bb/,(cno)24b,cnoc(^))/4b.
Moreover, its Fourier coefficients are the Fourier coefficients of / twisted
with ̂ *:

/. ./ ^ , 2. fx^^m^A^m;/^), if^O,
A($,m;/(xJ,^ )-^ ,A(o,m;/,^), if^=0.

^ A.q 5<-o

In particular, ifq^oor\^e then f(x^) is a CU•SP fo^m. Conversely, we
have

f{x^)° = $(no) ̂ /i(n)$(n)-W(n)/(Xc*,).
n|no

Proof. — It suffices to prove the corollary for \ = e and q = no. Now,
for a prime ideal p the Fourier coefficients of f(e^) are given by the last
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proposition as

A($, m; /(^*), VQ = ——y (^(p)A($, m; /, ̂ ) - A($, m; /(^*)°, ̂ ))

= — . (<l>(p)A($,m;/,VQ + (-^(^r^^^^'^A^m;/^))

^f^bm^A^m;/,^), if^O,
U if^==0.

The general formula for the Fourier coefficients now follows by iteration of
the different prime divisors of no. Finally, notice that the converse formula
is a special case of the Mobius inversion formula. D

Remark. — It is this twist /(;<*) that we will work with. If a Hilbert
automorphic form f of integral weight I is a Hecke eigenform of Tp, then

f(^*) = f - G(p, f)f|p + ̂  (p).^0-1^2.

This can be used as a definition for f(^). In other words, using the
operators |p, one can cancel the p-th Hecke polynomial in the denominator
of the Euler product. However, in the case of half-integral weight, the Euler
product has a nontrivial numerator which depends on the quadratic partial
series. Therefore, it is better to work with almost primitive characters.
Moreover, our construction also has the advantage of obtaining a twist for
every half-integral modular form.

In the rest of this section we want to construct an inverter j on
.Mfc(b,b','^) similar to Jc m the integral case. In particular, we want to
have some commutation relation between j and the above twist similar
to Proposition 4.5 of [S4]. We also would like j to map (certain) Hecke
eigenforms to Hecke eigenforms and to be "compatible" with Jc m the
sense that there is a relation between fif2\Jc and f\\j • f^j for two half-
integral forms whose product is an integral modular form. The problem we
encounter is that the definition of Jc involves matrices of the group GLa
having determinants different from 1. Our inverter will only be defined for
certain ideals b, b7 and it will depend on a choice of a generator of an ideal.
However, if we assume that the class number hp equals 1, we can always
define an appropriate inverter.
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PROPOSITION 3.5. — a) Let t) be a fractional ideal and choose any
y C FA sucn tnat 2/oo = 1 and y = t). Then there is a "swop" operator

sw^ : Mk(b, b', ̂ ) ̂  ̂ (tT'b H o, ̂ b' n o,^),

(/SW^AM^^^^^-^Af^^^ ' }}Y

which is a bijection if both t)""^ and t)2^ are integral. The definition only
depends on y = t), and the Fourier coefficients satisfy

A($, m; / sw^, -0) = A($, tr1!^ /, -0) for aJi 0 < $ C F and ideais m of F.

Moreover, ift) = (/3) for some fnot necessarily totally positive) /? C F, then

(/sw^)(^=^(/3)/3fc7(/3^).

(b) For every totally positive r G F there is an operator (multiplication
byr)

m^M^b^^^-^A^^r-^no^b'no,^), (fm^(z):=f(rz)

where Or denotes the quadratic Hecke character of F corresponding to
F{-^r)/F. The effect on the Fourier coefficients is given by

A($, m; / m^ -^r) = ̂ (T-1^ m; /, -0) for all 0 < $ C F and ideais m of F.

(c) There exists a unique element r]' of MA such that h(r]',z) =
J^rj', z) = 1 and pr(7/) = 77 with rj of (5). Then

,: A^(b, b', ̂ ) -^ A^^b', b,^), (A)A^) := ̂ )/A(^/)

defines an inverter independent of the choice of 6 with the property
fi2 = -0^(-i)y for f € .Mfc(b, b','0). Moreover, if^ is an open subgroup
ofC" such that f^{x) = {f\\^x)(i) for x € pr-^BGoo), and if 17 is an
element ofG such that rfrj € BGoo, then

f^=W)f\\^

Proof. — a) and b) are mainly a restatement of Proposition 1.4 of
[S8]. c) is given in Lemma 2.3 of [loc. cit.] and the discussion following it,
and the same arguments as for the independence of L from 6 also show the
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independence of sw^ from y. Finally, the formula for /sw^) is obtained as
follows: Let z = x + iy G IP. Then

(/SW(^))A (^ ( ̂  2) ) ) = V^ E^0^8^)^)6-^/2)
\ \ ^ v^oo/ / ^e^

=V^A;(/sw^))(^)

by applying Proposition 3.1, but we also have

(f^w)A L ( (vy 3) )) =^(/3)|^(/3)|-.
\ \ v V^oo/ /

=^(/3)|^(/3)|-^(/3^);c/|/3^||o/(/3^).

This proves the last formula of a), n

PROPOSITION 3.6. — The following diagrams are commutative for all
0 <$: r € o and integral ideals t) of F:

Mk^V^) ^ AWb.Tb',^,)
a) ^9 sw^

M^r^V^) m^ M^r^b^^)

./^(M2^) —^ M^VM)
b) A^^-^w^-i] Isw,

Mk^b^b'^) —> ^^b'.^b,^)

^(^b.Tb^) —. Mk{rb^b^)
C) ^(^T-^'A^^'im^-i m^

.Mfc(rb,b',^) ^^ A^^b^rb,^)

with some homomorphism ̂ of^ mto {±1}.

Proof. — a) follows directly by computing the Fourier coefficients
of /sw^m^ and /m,-sw^ For b), let / be an element of .Mfc(M2^^
y a finite idele with y = t), rf as in Proposition 3.5c) and observe that
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rp (C'1 y)^) rp (C~1 y)) = 7h(77) by (7)-This gives

(Asw,)ACr) = ̂ Q/Wt))-^/A (^ ((y-l )r/))
\ \ \ v / / /

^(yWo)-W^(^ ,)))
\ \ \ y / / /

=^rw-l(fsw^i)A(x)
and proves b). For c) let / € Mk^.rb^^), let B be an open subgroup of
C' such that /A(^) = (/ll^)(i) for rr C pr-^BGoc), and let 7} = 7)(r) be

an element of G such that 7777 e BG^ H ( ) ̂ Goo ( -i). Then

(/m^m^) =^f(6)Jk{'n,Tz)~lf(Tr|rz).

^t<;=(^-.)<^l)£G•Thm<-'=(^-N^)(T .-1
C BGoo, and hence fi = ^f(8)f\\^ by Proposition 3.5c). In order to

calculate J k ^ ^ ) / J k { ' n , r z ) define C := ( J$ = ( ^77^ J and

notice that < € ^A H PAC"': From 77 € C7' and $77 € BG^ C (^"Goo
it follows that $ € C^Goo and hence C ^ PAC"'. If $ t ^A, then
$ = (a'1 b} c P, and thus ($77)0 = (̂  -a-1^1) e Bo C Go, a

contradiction which shows that both $ and (^ are elements of Q.A- We now
understand G embedded in MA via r and note that

^($^) = Jk ((T ^-l)c^) = iT-'lloT-^C^),

J(C^)=^((T J^^jj^^^n7^ J^) ==J'(^^)-

Therefore, the quotient J k ( ^ z ) / J k ( r f , r z ) is M'^-^T-^V^) with

. x ^fc(C^) ,. ^(^ Pi) / ^(^7^ Pi) .- ^
^(T) ::= -,-T^——^ = I1111 77T7—^T / 77"^—^T e (L-v / Jk(ri,rz) p-oo|^«,pi)|/ |/^(77,pi)|

This is a quotient of Gauss sums and absolute values thereof, see (14).
Replacing / by /rn^-i now gives the commutativity of the diagram, v is
necessarily a homomorphism, as can be seen by considering im^ m^ =
im^^. Also, v(r) does not really depend on / because the subgroup B
used in the definition of 77 = 77(7-) can be replaced by any sufficiently small
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subgroup of C ' . Finally, we calculate fim^ in two different ways using
Proposition 3.5a) and obtain

/tm^ = (^ni^)m^ =.V(T)-l^;(T)2T-2fc'/m,-21

= ̂ (^T-^'^SW^) = ̂ •(T)T-fc'./V(T)-l/SW(^-l) i

=^f(TrlT-2k'fm^^.

This shows that v(r) € {±1} as claimed, n

PROPOSITION 3.7. — The fohowing- diagrams are commutative for a7i
integral ideals b, b ' , totally positive r € o, integral ideals <) of F and ideal
characters ^* mod q;

Mk{b,b',^) ^ Mk(b,b,^x2)

a) r^ Jr,

^(b,b^) ^^^ ^^b,b.^2)

with b as in Corollary 3.4.

b)

c)

Mk(rb,b'^) ^ Mk(b,rb',^)

^ 1 k.
•̂  ^

A^(rM^) ^ ^fc^Tb',^,)

A^^^b^^) ^> Mk^^V^)

^ Tp

^^^^b^) ^ Mk^^V^).

In particular, \^, m^ and sw^ map Hecke eigen forms to Hecke eigen forms.

Proof. — The effect of all three operators on the Fourier coefficients
of a modular form is given in Corollary 3.4 and Proposition 3.5. Thus
the diagram relations can be verified via the Fourier coefficients using the
description (19) ofTp. n

LEMMA 3.8. — For a finite prime p the local Gauss sum 7? of (12) has
the following properties:

a) 7p(a) = 1 ifae 2Z)p-1.
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b) 7p(7^-2^a) = A/'(p)~'7p(a) if p /f 2, TT is a prime element ofFp,
a € Fp\ppt)p'1, and z ^ 0.

c) ^(a) = AT^ ^ f^) ^(^y2) ^ ^ 2- and a € PP-1 ^-1
•/V(P) a;modp \P /

\V1.
This is - in a different notation - proved in §54 of [H].

LEMMA 3.9. — Assume hp = 1, let q be an integral ideal prime to 2
and fix an idele q € F^ with q=q. Ifu.v CF^ are such that

^e2q - lD - l , 'ye2q~ lzr l , and uvq262 =-1 mod q,

then the Gauss sum 7 of (13) evaluates to

^,=^f2)xq*(^)Xqoo^)•
l7(")l VI/

Here, the root of unity £q depends only on q modulo square ideals and is
explicitly given as

,.n^(,/p-)
f 1, ifg=l mod 4,

for q squarefree. IfF=Qandg>0, then e^ = < ̂  ^^ ̂  3 ̂ d 4.

Proof. — Let p|q be a prime ideal, and ^p respectively F^ = F{^r)
the quadratic idele character respectively quadratic extension of F of
Lemma 1.4 which is only ramified in p and possibly at infinite primes.
We may assume that ^p(r) = 1 and hence can take TT = r as prime element
ofFp. Then

00'(T)'^' f°"e''•>'•
'"V (?/ )

If ^p(q) is even, then a) and b) of the previous lemma show . p ., = 1. If

;/p(q) = l+2m we obtain by part c) of the previous lemma and the product
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formula (2) for the Gauss sum of ̂

f 2m ^ 1 V- (^ /TT^U \^ ̂ ^J '̂M
1 V- p/ . f^U \

=M(y) I: ^^ (̂ a;;
v / re modp,x^pp v /

1 / ^m,, \

'^(-V)^
= ̂  (J) xK-")^^)^'"^/^")-

The conditions on u and v imply ^(—u) = ̂ (^i ^d together with part
b) of the previous lemma we obtain

ĵ )_ _ 7p(7^2m^) _ (^\ _2^PL,.p*^/^,^W^„p*(^/„^W^„p^
l7p(")l ~ l^^2"1")! ~ Vp7 V<A/TP) w J v / / ' ' v /

This proves the formula of the lemma. If F = Q, then it is well-known that

^P./^_.IV^ i f p = l m o d 4 ,
^X >> VP ^^ if p ̂ 3 mod 4

for a positive rational prime number p. Let s be the number of prime factors
of q congruent to 3 mod 4. If q > 0 and q is squarefree, then

^-•nnC^)"'^3-
»i|ii •i,r "•'

P2^-Pl

The proof is finished by observing that the formula for 6fq\ only depends
on q modulo squares and coincides with the expression of the last formula
for q squarefree. n

PROPOSITION 3.10. — Let %^ be an almost primitive character mod q
of conductor c dividing q, r G o a totally positive integral element ofF, and
t) an integral ideal. Set b = Icn^bb^q^^qc^))/^. Then the following
diagrams are commutative:

Mk(rb^ b', ̂ ) (x^0 Mk(rb^ ̂ 2)

a) "^r] Jm,

Mk^rb^^r) {x^ A^(b,rb,^x2)
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Mk(^b,b'^) ̂  Mk^b^x2)

b) -4 I8"'

Mk{b^b\ip) (x^ Mk{b^b,^x2)

Mk(b,b',^ ^ Mk^^b'^x2)

c) 1 1 l18^/ •^ ____^ ^

* ^ / r / r ~T\ ^^Hto^q )° ... / . / 21, ~~2\Mfc(b',b,^) —^ ^^(b^'b^X2)

ifhp = 1 and q, 466' are relativeiy prime. Here A(q,^) = A(q,^;'0) is the
constant

^,X)^-(,)ta-)*(4b^)C."teV( '̂(^)) '̂̂ .

Proof. — We will only prove c) since it is only here that the automor-
phic factors require special attention. Let R be a system of representatives
for q-12b^)-l/2b^-l, fix a finite idele q e F^ such that 9 = q , and let 77'
be as in Proposition 3.5c). If / e .Mfe(b, b',-0) then

(/(X;)°^W,)A^) = ̂ Wq)-*^

.^XocM^W-^-^/A^^"1 ^^(1 -^J.

For u e R such that i^""^"1?) is relatively prime to q find a v € q'^b'?)^
with

uvq282 = -1 mod q, uvq262 = 0 mod 4bb'.

Now, choose a system of representatives S for q'^b'Z)'"1^^'"1 containing
these v, and notice that these v are precisely those representatives whose
associated ideals z^"1^"1^ are relatively prime to q. Furthermore,

(q-1 \ (\ -u\ (\ -v\m 1 = -i ]W1^
\ V \ ^k \ 1 / )
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with an element w € D[2b^~1,2bZ)] which is given by
((\+uvq262)/q-l vq\w^ = [ ,,^-i and Woo = 1. Therefore, there is a relation\ u{•lo Q /

(.) r,((1 ^(f ,))»'r,((1 -^)=w','..;1

on the metaplectic group with some tu C T where w' is the unique element
of pr'^w) such that h(w',z) = 1. Calculating the automorphic factors of
both sides gives

h (7/7^ C T) ̂ )= tu • f t (w/5 77^)ft(77/5 z)== ̂ •
We will now determine the value of tu. Define <" e G'A by Co = ( ) and

( -^Coo = [. J • Then there is a unique element C,' C MA which satisfies
Y /oo

71

P1'̂ ') = C and fe(C', ^) = I"! \/(-^)~1 with the complex square root ^/w
v=l

for w € C determined by - _ < arg(v/w) ^ ^. Now (rj C f^A H PAC", and
from

lim ^^-^ = 7(0) ^ -,
P-oo|^(^),pi)| (14) |^(0)| )

Hm ^V^) = 1^ ^C^^Pi) feW^i) ^ /rn
^^[^(^^^[(^^cx)!^',^^)! l/î î)! v z

we conclude that CV = V^^r^rj). This gives

' ^^ -^^' ^A -^^^ /^-n ^ A -^•"•,(( iij«'"'.(( i^^ ^( 4).
Applying Lemma 3.9 we now obtain the following expression for tu:

^(C 7)o).<'2)t,,.=

'•(^(C 7)«).<'2)!
^(C ':)-°)< '̂) ̂ ,i)

/ lk(C'.
= lim

""̂  '•(^(C T)J<',.')|' "•"'•'"'i
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.-2n, ^(X1 "^o)'^) (̂.)= vz lim ———————————————z"71 ' v /

^« T)o)-)l 17(u)lP-^00 !,/„ / r^/1 -u

Q) rnxq*(2W*(^(2b/)-lWoo(^0.

Making use of (*), the automorphy property of /A, and of the equality

^(^Xoo^X^qO) = Xoo(-l)Xoo(v)x^(vq!l),

the above expression for (/(x^)°'-sWq)A(a;) evaluates to

^(^)x*^^)^(4bb/)^xoo(^)^(^2-lb/-l^))
yVV ^JT^^ ^^^g,

•^(^((1 7).)"''"'1;')
^'w1^^x'(t?')e''^'(w)

' ̂ XX^WXX^^-^-^WA (x^ (1 7) )
ves ^ ^ k^

= ̂ *(q)x*(4bb/)^-l f2) ̂ Y*(2bQX*(|)x^
W yW(q)7-(x)

' ̂ ^^cO^^^^^^^^^
This proves part c). n

Remark. — Part c) of the above proposition as well as its proof
are analogous to Proposition 4.5 of [S4]. However, the half-integral case
differs from the integral case because of the occurrence of the quadratic
character ^q.

For an integral ideal c write .Mfe(c,'0) for the space Mk(o,c,^). If c
is of the form c = cicj with a totally positive ci e o and an integral ideal
C2 of i71, we define an inverter

3 =^ci,c2 :Mk(c^) -^Mk^^^) byjci,c2 :=.A/'(c)3cf^m^ sw^.

Proposition 3.6 shows that j2 = 'y(ci)'0oo(-l), and Proposition 3.6, 3.7 and
3.10 describe the action of the operator j on the space of Hilbert modular
forms.
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4. Distributions related to convolutions
of Hilbert modular forms.

From now on, we assume that the totally real number field F has class
number hp = 1. Let f e <?fe(c(f),'0) be a primitive Hilbert automorphic
form of integral weight k = (A; i , . . . , kn), conductor c(f) and character -0 and
let ko := max{A;i , . . . , kn}. Also, let g € .Mz(c(^), (f)} be a Hilbert modular
form of half-integral weight I = (? i , . . . ̂ ln) and character <^, set (/ = I — -1

2t
and assume that the Hecke character 0 satisfies (f)oo(x) = sgn^)^ and that
gi is a simultaneous Hecke eigenform for all Hecke operators. Fix a prime
number p of Z, a finite set S of finite primes containing all primes p dividing
p, and set mo := ]~[ P- ^OT every p e 5' let a(p) = a? and (^'(p) = a? denote

pe6'
the roots of the g-th Hecke polynomial of f:

X2 - C(p, f)X + ̂ (p^p)^-1 = (X - ap)(X - a?).

We extend this definition of a and a' to any integral ideal m with S'(m) C S
by multiplicativity. Define also

fo := ̂  ̂ (aMcOfIa e A^fc(c(f)mo, ̂ );
a|mo

this is the Hilbert automorphic form whose Dirichlet series factors into the
following Euler product:

^GOn.fo^m)-8 = nO-^P).^)-5)"1

m pes

. n(l - C^f)W + ̂ (P^P)'0-1-25)-1.
p^s

We will always assume the following:

I < /c, i.e. /i < A ; i , . . . , In < kn^
k\ =. . . . = kn mod 2, l\ =. . . . = ̂  mod 2,
c(f), 4c(^) and mo are pairwise relatively prime, and
the Fourier coefficient (7(c(f),f) does not vanish.

Determine 0 e {0,1} by k\ -1\ - - = ... = kn - In - ̂  = 9 mod 2, setz^ Zi
c = c(f)4c(^), fix once and for all totally positive numbers c(f), c(g) G -F
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with (c(f)) = c(f) and (c(g)) = c(^), and set c := c{f)c(g). Let ($,m) denote
a pair of a totally positive number $ of F and a fractional ideal m of F
subject to $m2 C o. If ($',m') is another such pair, we say that (^,m) and
(^m') are equivalent if $ = yy2^ and m = T^W for some T] e Fx. The
convolution of f and ^ is then denned as

D(s^^g) = ̂  c^m^^A^n^Jr^^^m2)-5,
(^m)

where ($, m) runs over a set of representatives for the equivalence defined
above. With the quadratic Hecke character u} = e-\ corresponding to
F(^/—1)/F define the complex functions

V(s) = L^s - 1, W)^D(s - |;fo^),

^s)=V(s)f[^(s-l+k1^Y
1^=1 v /

^)=^)n{^+^-^)r(.+^)}[S) = W(5)
v=l

I s - 3 if (cx;^)2 = 1 and 6 = 0,
t 1, otherwise.

The additional gamma and L-factors guarantee that ^o is a holomorphic
function in s, cf. the proof of Proposition 5.1 and Proposition 3.1 of [I].
Recall now that a C-valued distribution fi on Gals = lim^f(m) with
H(m) = J(m)/P(m) can be uniquely defined by giving its values on the
characters \ € ^or. Now the projection pr^ : Gal^ == limlf(n) —> H(m)
induces the map

^ : F(^(m),C) ̂  Step(Gals,C) -^ C,

where F(H(m)^C) denotes the set of all C-valued functions on H{m). The
distribution p, is also uniquely given by the maps /^, and the ^m fulfill a
certain compatibility relation. If c(^)|m then the map \: Gals —> C factors
through ̂  : H(m) —> C, and by the character relations ji^, is determined
by ^m(x^) fo1' all \ with c(^)|m. For every s € C we will now define a de-
valued distribution ̂  related to ^o by the values of /I^(^). It will turn
out that for certain values of s and non-vanishing factors Cs the distribution
Jls := Csp°s wlu take values in the algebraic closure Q of Q, and thus these
Jls will give rise to a ^-adic distribution.
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PROPOSITION 4.1. — For fo and g as above and for every s €
C there exists a uniquely determined complex valued distribution Jl°, :
Step(Gal5,C) —^ C such that

A/7^/Uo+2(5-l)
^(X) = %.(X:) = ——^7)2———^o(^fo^(X;)jc,m/)

for any Hecke character \ € X^ and any choice of integral ideals m, m'
satisfying lcm(mo, c(^))|m, momlm', and 5(m') = S.

The proof is based on the following basic lemma which extends
Lemma 1 of [S3] to Dirichlet series with a more complex Euler product.
We will omit the proof which is completely analogous to [loc. cit.].

LEMMA 4.2. — Assume that we have formally

V AfnWfnr5 - TT 1 - Q(pWp)-5
^A(n)^(n) -ll(i_^(p)-.)(i_^(p)-.).

v- ornwrn^ n i-^(pWp)-5
^B(n)Mn) -[[^.^^-^.^^-sy

where n runs over all integral and p over all prime ideals of F. Then for
each prime ideal p and for each integer t € Z there exist polynomials

Xp^(T) of degree less than 4,
Vp(r) = (1 - ap/?pT)(l - ap/3pT)(l - ap/3pT)(l - a^pF),

such that for arbitrary integral ideals u and t) the following holds:

VA^^^Vvrnr^-.v'^^Vn^^^"^^^^"^i.AUBUA/(n) -^U 11—W/TpF^—
where Q = gcd(u,t)) is the greatest common divisor of u and t), and
A( - ) = 0 if u/n, and similarly, B(-) = 0 if U/fn. Moreover, the

polynomials Xp^ ^d Yy have coefficients in Q[A(n), B(r\)^ ^(n), b(n)]y and

Xp,o(T) = 1 - apap/?p/3pT2 ifa(p) = &(p) = 0,

Xp,f(r) = a^Xp,o(T) if ap = a(p) = 0 and t ^ 0.

Proof of Proposition 4.1. — /^? will be a distribution if and only if the
value J10, m(x^) does not depend on either m or m'. We extend the definition
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of ^p of Lemma 1.4 for primes p not dividing 2 to integral ideals n prime
to 2 by multiplicativity, so that ^n == ["[W^- ̂  the character ^, let

P|n

^ = ^x) be the finite part of its conductor and define

no := II p5 nl :== II P' ^° := ̂ nl with c^ductor qo = -L.
pe5\5(x) pe^A^x") nl

Then by the definition of jc,m^ Corollary 3.4 and Proposition 3.6 and 3.10

9(x^Jc^' = Ar(^m/2) 4 ̂ ^(X^^c sw^

=^(^m'2)^i^(no)^(no)-l^/.(n)^(n)-l^^)o.m,sw^^
n|no

=^(^m/2)3c^'$(no)^(no)-l

• ^^(n)^(n)-lA(qn,x;^)^m,(„)((^oX(IOXn)q*n)omc(f) sw /̂,,.,
njno

= ̂ (^m'2) '^^(no^no)-1^^) ̂  ̂ (^^(^-^(qn, ̂ ; ̂ )
n|no

• ̂  ^(ml)^(ml)-lA/'(ml)ff<,mc(g)(xo?CqoXn),*onmlmc(f)SWn,,/qn.
mi |ni

Put G = Gn,mi ^= ^"^(^(XoX^X^onmi and evaluate each summand as
follows:

D(5;fo,Gm^f)SW^/qn)

= ̂  c(^m2,fo)A(^m;Gm^sw^/<,n)^^72^(^m2)-s

(^,m)

^ Y^ ^—A;o/2.1-Z72-s-l

0«$€o
($) squarefree, $ mod ox

• E c'^m2' fo)A($,m; Gm,(f) sw.^JA/'On)-^28).
mCo

Here, we have made use of the assumption hp = 1 to find a representative
(^,m) in each equivalence class such that 0 < ^ e o, ($) is squarefree, and
m is integral. Then, m is uniquely determined, and ^ is determined modulo
o^. Provided that C((0,fb) ^ 0 and A($,o;G) ^ 0, the following two
Dirichlet series now have an Euler product as in Lemma 4.2:
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^ C^fo) T-^ W^W^^M^^ -^S^p-.^r^
00 1 /v ^(0+2n+l ,,^(0+2n+l

_ TT y^ 1 aP______-^______A/7^-^
"V^oW^—————^—————(p)

1 _ an-^^-^^ 1 ^(p)-^
= TT p p ^-^p ^(p^fo)^^
- li (1 - ap2.^)-^! - ap^p)-)

where we have denoted by Op and a? the roots of the p-th Hecke polynomial
of fo. If a? and a? are the roots of the Hecke polynomial of f then a? = a?
and a? = a? if p ^ 5, and a? = a? and a? = 0 for p e S. In the case
a? = a? the above formulas have to be interpreted as before.

The second Euler product is given by Proposition 3.2 because G is a
simultaneous Hecke eigenform by our assumption on g and Proposition 3.7:

^^^(m)-Efe^0^) v / ___

_ TT 1 - (^^X^q^P)^^?)^?)-1^?)-5

11 1 - a;p(G)^(p)-5 + (^X^Wp)-^)-^

with a = 4c(^)q^n2m^. Applying once more the class number hypothesis
hp = 1, we fix totally positive integral numbers ci(f) and 02 (f) such that
c(f) = ci(f)c2(f)2 and (ci(f)) is squarefree. For 0 < ^ € o find 03 (f) and 77
such that

ci(f)$ == C3(f)2^ with 0 < r] e o, 0 < C3(f) C o, and (77) squarefree.

Consider G € ^(c^q^n2!^,^^)^2) as a form of Mi(c(f)—,
___ qn

^^O^2112 ^^cO^X2)- Then Proposition 3.1 and 3.5 show

A(^m;Gm,(f)Sw^/qn) = A^fr^m/^G)
\ qn /

^(tr^fr^fH.-A^/si^.o).
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Assuming C(($), fo) 7^ 0 and A(^, o; G) 7^ 0 we can apply Lemma 4.2 with

^(m) := ̂ ^ and B,(m) :- X(WG) to obtainsv / C((0,fo) ^ ' A(T?,O;G')

^ C^m2, fo)^^^^^^,,^^^)-^^28)
mCo

_i/

»£•(((), W,,,,G) ('̂ ay
•S^)^1^)^")-1'""''

mCo

^^ f n^ n ̂  ̂ ^C^Y'' /Cl(f)C2(f)m/^-(fco+2a)

=G((0,fo)A(^,o,G')^^^^J ̂  cs(f)qn J

^^,(£lffi^WP)-(fco+2s)

' H yp(^(p)-(fc°+2s))

= ("^y^f01^^^^^2^^),^ ̂ )Y C3(f) ) \ C3(f)qn ) Vqny
• ̂  C(»7m2, fo)A(»?, m; G^m)-^^2^.

mCo

Now, this equation holds regardless of our assumption C'(($), fb)A(^, o; G') -^
0: I fA(77,o ;G)=OthenA($,m;G) =A(^m;G) =Oforal lm.I fC((0 , fo) =
0, then there is a p|($) with 0 = G(p, fo) because ($) is squarefree. But then,
^((^)) = 1 and the p-th Euler factor of Em^^^^o)^^)"5 is 0. and

hence C'^m^fo) = (^(^m2,^) = 0 for all m. Thus, in the excluded case
both sides of the above equation equal 0 and we have equality as well. From

c\(f}r] = { —— ) $ it follows that ^ mod o>< i—^ rj mod o>< is a bijection.
^(f)/

Therefore

D(s', fo, Gm^f) sw^/qn)

.̂(^(^-^(-lî )-^^),̂
. ̂ ^-fco/2.1-;'/2-,.l^^(fco+2.)l+i' ̂ C(^2^^^^^-(fco+2.)

$ TO

/ / \—( fco+2s) /.n/\

=c(f)- i '/2^(c(f))-( fc°+2s)/2C(c(f),f)^(TO) a2 ( T O - ) D(.;fo,G).\qn/ \qn/
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This, together with the expression for g(x^)jc,m^ shows the independence
of the value of the distribution of both m and m'. n

5. Algebraicity of special values.

Theorem 5.1 of Im [I] shows, that for certain special values s and non-
vanishing factors Cs, the values of Cg/^ are contained in the field Q(f,^),
which is obtained by adjoining the Fourier coefficients of f and g at ioo to
the rational numbers. This was done for primitive forms f, and we could
try to prove the algebraicity of our distribution at these special values by
making use of this result and calculations similar to those of the previous
section. However, we will proceed in the following way: The distribution
has a certain integral representation derived by Im. We will then apply
a projection operator different from Im's as well as the trace operator
and the holomorphic projection operator of section 2. Then, the theory
of (integral) primitive forms allows us to verify the algebraicity via the
Fourier coefficients of a certain Hilbert automorphic form of integral weight
obtained from g and an Eisenstein series. In the next section the formulas
that we obtain will then be used to show the boundedness of the p-adic
distributions obtained by regularizing the distributions associated with the
negative special values.

Let fo and g be as in the previous section and determine 6 € {0,1}
by ky - ly - - = 6 mod 2 for all v = 1,..., n as before. Now, define thez
meromorphic functions

^i00=<h(5;f,^)

-II{r(.-i^)r(.^4)r(.^)},

^2(5) = <t>2(5; f,^) := d>i (2 ( s - I)) ,

and notice that ^i is just the product of the gamma factors occurring in
the definition of ^o(5; fo,g). We do not know if ^ or ^o satisfy a functional
equation; if we had a functional equation of the form ^ / ' ( s ) = £^'(1 - s) for
some ^' related to ^o we could define the critical points of P(s; f, g) as in
Deligne [D]. However, in our case the following definition turns out to be
adequate: we say that s is a critical point of V(s\ f , ^ ) i f ^ : = 2 f s - - ) + l
is a rational integer and neither ^2(5') nor ^2(1 - s ' ) have a pole at s ' = K.
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Since the only poles of the F-function are the non-positive integers, one can
easily verify that the critical points of P(s; f, g) are given by Sr = - (^r+ - )
with i^r e K^ U K~ and

^+={^:=2-0+2r|reZ,

0 ^ 2r ^ ky -^ - , + 6 - 2 for v = 1,..., n},

K~ = [i^r := 0 - 1 + 2r|r € Z,

0 ^ 2r < k^ - ly - _ + 6 - 2 for v = 1,..., n}.
2i

For these critical points Sr of 'D(s; f, (7) we define C-valued distribu-
tions /^ and j2^ according to i^r € J^ respectively /^y. G JFC" by

f2n 5± (^ - ̂  ̂ (m/)fc°+2^-l) ^(^;fo,g(x;)j^)
W ^,m(Xm)-7 ^) ^^2 ————(!,f}^————

with the factors

^-(.,) = ̂ ^-^"-{^^^(^"rt^-t-1^2"! n ̂ (s- + ̂ )'
1^=1

7+(^)=7-(^)7^-n/tr,

and arbitrary integral ideals m, m' subject to lcm(mo, c(^))|m and momlm'.

Let us denote by F° the Galois closure of F in C. For any subfield K C C
and any set M C C, we will shortly write K{M) and K(^) for the field
obtained by adjoining the elements of M or the values of the character

/I \n

^ to the field K. By a scalar weight m e \~^} 5 we understand that

m = mo ' 1 for some mo G -Z71. Recall now that we always impose the
following conditions:

hp=^
I < fc, k\ = ... = kn mod 2, l\ = ... = ̂  mod 2,
c(f),4c(^) and mo are pairwise relatively prime, and
C(c(f) , f )^0.

THEOREM 5.1. — Let fo and g be as above.

a) Let Kr ^ K^ and assume ^ ^ l i f F = Q and ^2 = (f>2 = 1. Then

the distributions JS^ associated with the critical points Sr := -(/^r + -)
ofP(5; f, ̂ ) are denned over Q(^).
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b) There exists a number field K depending only on f and S such that,
for the critical points Sr = - ̂ r + -) ofP(s; f, g) with Kr € K~, the as-

sociated distributions Jl^ are defined over K(F°, 0, '0, g , -\/o^, {^(p) | p €
5}). If the weights k and I are scalar, then the distributions Ji'g are already
defined over K{(f), ̂ , g , {(^(p) | p e 5'}).

The proof of the theorem proceeds in several steps throughout the
rest of this section.

1. Integral representation of the distribution.

To start the proof, we will always take the ideal i\ = o in the definition
of the components of a Hilbert automorphic form of integral weight. This
is the most natural choice in view of the class number hypothesis hp = 1
and simplifies the notation. First, we note that J£^ is well-defined by
Proposition 4.1, so it remains to prove that the distributions are defined
over the fields stated in the theorem. Now, from the proof of Theorem 5.1,
(3.13) and (1.4b) of [I] we have the following integral representation for ^:

(22) ^;fo,<7(x;)jc,m')

= ̂ ^-^y^8-^^————,——1
F [ro(cm'2) : {dri^cm'2)]

• / /o||,f2 ' ^Wx^Jc^iz^s^d^z)
Jr^cm^)\M^ \ V

with the following notation: c = 4c(f)c(^) as before, ro(n) = r[2?)~1,2-l^m]
and ri(n) = { 7 0 ro(n)|a^ = 1 mod m} for an integral ideal n
with 4|n, d^{z} = y'^dxdy is the invariant measure on El71, /o ^
<?fc(^[D-l,c(f)mo^,^_l^^^^) is the component of fo = (/o), and £
is given by

£{z, s) = £ ^, s; ——, Q, cm'2 j

= L^. (4^ - 1, ̂ )y-^E L s - ̂  J, g, ̂ , cm'2)

with ^ = (j'^(/)£cX2, q = k - I - . • 1, and the Eisenstein series E which
equals H of (1.4b) of [I], or equivalently, E of (4.7b) of [S6]. Then

/o||,(2 ' ^e<S,(r[2Z)-^2c(f)c(^)moZ)],^_,^^^^^

^^^^(cm'2),^^^)).
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Our first claim is that g(^)jc^'(z)£{z^) € ̂ (^(cm'2),^^'2)):

Let 7 e ro(cm'2) ^ C". Then

(^(x^c^^)^2^^^))!!^
= ̂ (X;)jc,m/(7^)^(7^)-^(7^)-1

.Im(7(^))-g/2^(7(^,^(7^)-^(7^)-l • J^zf^-' • ̂ (7^)2

= (0^x2)o(a7)^o(^)^o(^) 'g(xt)jc^(z)y~q/2E(z,s)

=^^)9{x^c^(z)y~q/2E(z^).

Here, we have made use of g(^)jc^' ^ .A^cm'^^cX2)? the auto-
morphy property of the Eisenstein series as shown on p. 299 of [S6], and
(16). Now, for the critical points s, £(z,s) is nearly holomorphic by 1.12
of [I], and our claim follows. We write G(z) := ^(^^m^^^^s) e
A^r^'^cm'2^],^?)--1,^2?)]) f011 a short notation. Then

(23) [ro(^'), {L}r.(^)] /.„„,,„. ̂ ^C" i)̂ ^"

""".L^ r̂ i)0^1.^11)'1'"-^
=2W/2 / /oG^^(z).

Jr^-^cm72?)]^71

2. A projection operator.

We introduce a certain projection operator, which enables us to write
this last integral as the Petersson scalar product of Hilbert automorphic
forms of integral weight.

0

LEMMA 5.2. — Let RQ be a system of representatives ofo^. mod o^
and n an integral ideal. Then there is a projection

p, r^^r^-1,^],^^-!^]) -^(r^-1,^],^.,^),

f-^Efh(1 .)
-yCRo v '/

whose effect on the Fourier expansion of f(z) = ^ ^^^^oo^^) is
^=o,^>o

Pk(f)(z)= ^ (2-n+l ̂  7-la(7^7-12/))eoo(^).
^=o,o<^ ^e-Ro
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Proof. — For 7,7' e RQ determine 7" by 77' = 7"7^ for some
71 C o^. Then for 7 fixed the map 7' i-̂  7" is a bijection of RQ. This
shows

W)"/1,)-^1^/"/1^)
v / Y€Ro ' " '

^2-n+i y- .11 hi1 \» hi \|| A ^
-y^o H ^H ^H ^

=2-n+l ^ ^^r1)/!!/1 »)=W)
7"6fio v /

because the character ̂  satisfies V>o(e) = sgM^^ for every e € o x. Secondly,

let (a 6) eriO-^nOJ.Then\c a/

W)l(: ̂ ^ /̂IL(\)ll.(: :)
_2-n+i V- .„ ( a 7-16^ /I \
~ h ̂  d M 7;
=^o(a)P,(/).

Butr^-^n^-o^ is generated by r^-^n^-o^ and{[1 ) | 7 G ^o}-o^,

hence P ;̂ is a projection of the given spaces as claimed. The Fourier
expansion of Pk(f) is then derived from the explicit formula of P^. n

The Hecke character ^ of finite order is uniquely determined by
its c(^)-part '0o because the class number hp equals 1. Thus Pfc(G) €
^(r^'^cm72^],'^^! ^,2^1) is already the component of a nearly holo-
morphic Hilbert automorphic form of central character ^ which we will
denote by Pk(G)A- We can then apply the trace operator for integral Hil-
bert automorphic forms to obtain
(24)

/ foGy^^z)
^r^-Scm'^lYH"

=2"-1 / fMGjd^z)
./rpi-^cm'2!!̂ !!"

=2ra- l(fo,Pfc(G)A)cm-

- (-l){fc}2"-w©2-fco< WG)^U(^),,



CONVOLUTIONS OF HILBERT MODULAR FORMS 413

/^/2\
3. The Fourier expansion of Pk{G)AJcm'2U [ —„- ) .v"1"/
The next step will be to decompose J^s into half-integral operators

of well-known effect on the factors of G. For this purpose we choose totally
positive elements d, m! € Fx such that (d) = 0 and (m') = m'. Set

/ 1\ (2 \ /2-1 \(d \( d^\ fern'2 \fi \
-[-^d2 )=[ 2)[ l)[d)[-d )[ l)[ l}00

/3= f2-1 V d-l}(cm'2 V2 )
^ l)\-d ){ l){ l)-

The component of Pfe(G')A^cro'2 ls
(25)

(-l)Wp.(G)||,/3o=(-l)W2-"+l^G||^o||,(7 )J1 i)
76flo \ r/ \ r /

= (-l)Wpfc(GH^).

It is most convenient to have 6f = ( . . . , d, d, d,...) for the idele 6 used to
define rj of (5). We then choose an open subgroup B ^ C' such that

(ff(x^)jc,m')A(a;) = (ff(^)jc,m'||;a;)(i) for a; € pr-^BG'oo),

(^/^(^^(a-) = O/-9/2^^)!!,^)^) for x € pr-^SGoo),

^ll^2"1 i)"^^2"1 i) for7e<?n5Goo,
and find f) € (7 as in Proposition 3.5c) such that rjr] € -BG'oo- Define

7:=( rf ^^"^f d ^(wr^GnBGoo.\ a / \^—a /

The action of /3 on G can then be written as

(GV)(^) = ̂ -W/2^^-!,^)

•((^:)^(.))||^•(^g/2^(.,.-^))ll^)ll,(cm/2 ,)(2 ,)

with ui = ' . Next, observe that
3('n,z)

(g(X^fc^(z) = ̂ cm'^c^'g^Jc^^sw^z)

= (cm'^g^j^im^^z)

=(cm'2)^g(X^3c,r.-\Wcm'2^)
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by Proposition 3.5a) and m' being totally positive. For the other factor we
write

y-^E (z,s- ̂ _ft=y-^E^z),s- ̂  (^^(^^Ij^^)!-9)"1

=y-^E'^-s-^

by (4.10) of [S6] with an Eisenstein series E' = E ' { z , s } = E'(z,s;-,g,

n, cm' ) defined by 4.9a,b) of [loc. cit.]. Summarizing these calculations
we obtain

(26)
(G^(3)(z) = ̂ z;(c)^(-l)(cm'2)^

• g^tWL^-s- l^^cm'2^/2^ (-W2^- ̂  .

Here, v(c) € {±1} is determined by Proposition 3.5c). By 3.14b) of [S6] we
have v^ = (—I)71, so v\ is a fourth root of unity. v\ is independent of m'
because the value of v\ is independent of the subgroup B used to define i)
as can be seen from (26).

Now, the Fourier expansion of E/ has been derived by Shimura in
[S6]. It involves the confluent hypergeometric function

$(ZA, v, a, /3) = / e~^ivx(x-^iu)~a(x-^u)~f3 dx for u € M+, v e M, a, /? € C
,/R

introduced in (1.25) of [S5]. The integral is defined for Re(a + /3) > 1, but
admits analytic continuation in a and /3. Let us also define

77(u,2;;a,/3)= /' e-ux(x-^v)Q-l(x-v)(3-ldx
Jx>\v\

and the classical Whittaker function

W(u,a,/3)= ( e~ux{x^l)oi~lx^dx for u > 0 and Re(/3) > 0.
^0

TV has a meromorphic continuation as shown in [S2]. By (1.29) of [S5] there
is the relation

^ v; a, (3) = ̂ -^TOna)-1^/?)-1^ TT^; a, /?).
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A short calculation shows that ^ can then be expressed in terms of TV as
follows:

(27) $(n, ̂ ; a, /3) = ̂ 2^(0)-^ ((3)-1

e-^^^v^^W^uv.a^) if v > 0,

r(a + f3 - l^n)-^^-1) if v = 0,

e-27^u\v\(27^\v\)a+(3-lW^7^u\v\,|3,a) if i; < 0.

Now, let Sr = - [f^r + -) with Kr € K^ UK~ be a critical point of P(5, f, g)
and define
(28)
^^(^):^+^+^ /3,=/3^):=^-^ for^=l,..,n.

Then, o^ + /3^ — 1 = Kr — - = 2sr — 1. In particular, we have the
following:

ay = . mod 1, ay > 0 and {5^ € Z, /3^ ^ 0 if /^. € ^+,
(29) 2 ^

a^ € Z, a^ ^ 1 and /3y = - mod 1, /?^ < 0 if /^y. € ^C .

The Fourier expansion of E ' is given by (6.1) and Proposition 6.1 of
[S6]:
(30)

£cmo(2K,, ̂ ^cm^-^^cm^, ̂ , j,9,", cm'2)

= V^ c(cr,2cm' y,Kr)eoo(2cm/ <ra;),
(Te2c-lm'-2

n

c(a,2/,^) = (-l)^^r^(2c-lm/-2)e2^?^(a,^) n^^ .̂;̂ .̂).
^=1

C^(0,^)=Lcmo(2^r-1^2),

cy(a,^) = L^(^,^) ̂ ^^(^^(b2)^^-^^^1-^.
(a,b)

Here, for $ e i71, ̂  denotes the Hecke character fl, multiplied with the Hecke
character e^ corresponding to F(^/$)/F, I/cmo('5^20) is the L-function
associated with ^2<7 as in (3), and the summation in the last sum is over
all ordered pairs (a, b) of integral ideals of F prime to cm72 such that
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(^b2 3 crcm'2. Our next claim is that the Fourier coefficients c(a,y^r)
vanish unless a = 0 and i^r ^ 0 or a is totally positive.

Let us first consider the case i^r e K^. If a = 0 then the factor
Lctno(2^r — l?^2) is finite unless ^r = 1 and ^2 = 1 in which case it
has a simple pole. On the other hand, $(^,O,Q^,/^) has a simple zero
at Kr = 1. Hence c(0,y,Kr) = 0 except for the excluded case F = Q,
Kr = 1, and <^2 = -02 == ^4 = 1. Now assume Oy < 0 for some i^. Then,
^(^ cr^; ̂ •v^v) = 0 because F"1 has a zero at /3^ and TV(47n/^|a^|, /3^, a^)
is finite. If ^y. > 1 or f^o- 7^ 1 then Lcmo(i^r^2a) is finite, and we have
c(a,y,Kr) = 0. If Kr = 1 and ^20- = I? then 0 = 1 and I/cmo('^2<r) has a
simple pole at 1. By the assumption on the archimedean components of '0
and (f) we have ^oo(^) = sgn(a;)9 = sgn(a;)01; this follows from ^oo{x) =
sgn(a;)1, (f>oo(x) == sgnQr)^, and '0oo(^) = sgn(x)k because '0oo(^) = sgn^)^
for all e € ox and there exist units e with any given signature due to the
class number assumption hp = 1. Therefore, ^2<r = 1 implies a is totally
negative. Now if F = Q, ^20 = 1 implies f22 = </)2 = -^2 = ^4 = 1
and thus gives the excluded case again. But for F > Q the n-fold zero of
n^^?0'^0^ ') ^ (/^i? • • • ?/3n) now implies the vanishing of c(a,2/,^).i/
Let us now treat the case Kr ^ K~. If ^y. = 0 and f^tr = 1 then
Lcmo(0,1) = PI (l-^v'(p)°)L(0,1) = 0. In all other cases, L(l-Kr^2a) is

p|cmo
finite. This implies again that Lcmo (^r? ^2<r) = 0 by the functional equation:
we have Kr = 0 — 1 mod 2 and as above, ^oo(^) = sgn^)01. Let ro(^2<7)
denote the number of archimedean primes at which ^20- ramifies. If 6 = 0

and a ^> 0, then ro(^2<r) > 0 and rf^——^ ro 2<r = 0. If 6 = 1 and

(^ \ —(n—'ro(^2o-))
<j ^> 0 then ro(^2<r) < ^ and hence F — J = 0. In both cases,
L(/^,n2o-) = 0 by the functional equation (4). This proves the vanishing
of c(a,2/,^y.) if a -^ 0 and a is not totally positive. Our claim is now
established.

The Fourier expansion (30) can now be written such that up to some
factor it is independent of m'. Observe that as a runs over 0 and the totally
positive elements of 2c-lm/-2, a ' := a2cm/2 runs over 0 and the totally
positive elements of o. Define

(31) B(a', /^; cmo) := ̂  /2(a)^,,(a)^*(b2)^(a)-/<r^(b)l-2/^r

W

where the summation is over all ordered pairs (a, b) of integral ideals of F
prime to cmo such that c^b2 2 (^/). Expressing $ in terms of W as in (27)
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gives us the normalized Fourier expansion

Lenzo(2^, ̂ ){2cm^y)-^E1 (2cm/\^-l g, ̂  cm'2)
(32)

=7i(n^r) ^ ci^^^eoo^),
(Xo^eo

where the factor 71 and the Fourier coefficients ci are given by
n

^(m',^) = i^-l-^dpKr^f(2c-lm'~2)e2vi%(2^^)n JJ r(a^)-\
i/=i

Ci(0,y,K,) = 2-n(K•-^^(^ - |)"£ano(2/tr - I,"2)

. f[ ̂ c^Vr^^rTO-1},
v=\

Cl^',y,Kr) = (27^)"(2s•-l^((7/)28^-l£^(^,^c)B(<7/,^;CTOo)
n

• n {(2c,m/,2^)-a•/+l^(/3,)-ly^W(47^y,^,a„/3,)}.
I/==l

By Proposition 3.1 and Corollary 3.4 g(~)(^) has the Fourier expansion

^(X:)(2z)= ^ ^((^))A,(ai,o)eoo(^^).
0<(7i€o

Summarizing (25), (26), (32) and applying Lemma 5.2 to the nearly holo-
morphic automorphic form P^C^A^cm72 = (^i) we see ^na^ 1;ne component
^i has the Fourier expansion

g,(z) = (-l)<fc^l^(c)^(-l)(cm/2)(fc-^)/27l(m',^)2-7l+l

• E ( E ^-fc/2 E^^^))^^'0)0!^^-1^^^^^),
0<<reo ^^o x /o x 2 o'i>o"2

where the summation in the third sum is over all (TI, (72 which satisfy
^o- == cri -\- (72, 0 ̂  o'i G O and 02 = 0 or 0 <^ <72 ^ o- For the two inner
summations, notice that

{(^1,^2) | o 3 Oi > 0, o-i + 0-2 = cr} —> {(ai, 02) | 0 3 a, > 0, ai + 0-2 = 7<7}^

(0-1^2) ̂  (7^157^2)

is a bijection. Also, the effect of the operator U is given as follows: Let
fi = (/i) C .A4 with the Fourier expansion fi{z) = ^ a($, fi)eoo(^)

^=o,o<^eo
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with complex coefficients a(^,fi) = a($,fi,^/) depending on y. Now, let
?7 € o be totally positive. From the definition of U(q) and (2.18) of
[S4] it follows that a(0,fi|?7((77))) = a(0,fi) (which can only be different
from 0 if k\ = ... = fcn), but it will turn out that the 0-th Fourier
coefficient a(0,fi|(7((77))) will not occur in the Fourier development of

Pk{G)^J^2u(vc—\. Now, let $ € o be totally positive. Then C7(($),fi) =\mg /
^(feoi-fc)^ {^ and C((0, fi\U((rj))) = C((^), fi), and hence the Fourier
expansion of ft\U((rj)) = (/a) is given by

/2(^= E ̂ ^'"'^(^fl)^^).
0<^€o

Fixing a totally positive rriQ ^. Fx with (mo) = nio? we finally obtain the
/2

Fourier expansion of Pk(G)^J^f2U(—ir] = ((72) as follows:
\mo /

(33) ^2 (^) =72(111',^) ^ b(a,y,Kr)e^(az)
0<o-€o

with the factor 72 and Fourier coefficient 6 given by

^(m^.) = (-l)<fc+^'}^,lt;(c)(cm/2)(fc-^)/27l(m/,^)2-"+l(^)fcol-'c

n
. (27^)^2sr-l) JJ(2c^2)-Ql/+l,

1^=1
b(a,y,Kr)= Y^ X^((^i)) ^ \(7^i^)

(^^i-^ 7€o^/o^2

0<o-i€o

• ^cmo(^r, ̂ <T2c)5(7^2, ̂ r; Cmo)7~fc/2^V'((72)2sr~l

n

11 {7^l/^^(/?,)-llV(47r^a2,.,a„/3,)} .
i/=i

4. Application of the holomorphic projection operator.

We will now apply the holomorphic projection operator of Propo-
/2

sition 2.1 to the function Pk{G)^J^2Jj{—g-), which is of moderate
vn io /

growth because it is a cusp form in .A4(cm§,^). The Fourier expansion
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of Hol(Pk(G)AJcm/2U( —o-)) is obtained by replacing 6(a, y , i^r) with\ \ rrio ^ ^

A^.{k-l}-k-l f ft

nn ^ ,. / b(a^^e-4^<7^'[[y^-2dy^..dyn.IL^i1^- 1) m^ ^i
This integral can be explicitly evaluated because there exist polynomial
expressions in y~1 for ^T^)"1^^,^,/^) with o^ and f3y of (28).
This also shows that the integral is absolutely convergent. We will now
first treat the case ̂  € X+. From (2.3) of [S2] and (29) it follows that

/,-7TZ/3, /-(0+)

^ITO-1^, a,, /?,) = -^-r(l - /3,) y (1 + 2/-4)Q--l^-le-t ̂

= (-l)^r(l - /^) I^es {(1 + y-H^-H^^e^}t—u

^^^-^^(-D.^dr-^L
^^ 3 )y { ) r(i-/3.-j)'

with the contour integral as in [loc. cit.]. We then evaluate
(34)

4'Tr v fT •/

P^,^):=^ ^_^
noo

• \ y/3-^(^)-lW(47ry<T2..,Q.,/3.)(<^2,.)2sr-le-47^•T^yfc•'-2dy
Jo

_ ̂  /a, -1\ , r(i-^) r(fc.-i-j) , i.,-2^ ^ / ) r^-A^Ty^^^ir-2- •
For Kr € A"", Lemma 2 of [loc. cit.] together with the above

calculations gives

iAlW1^,^,^) - y^TO - a^W{y, 1 - A/, 1 - a,)

^/-M-,/ ,Y, r(a.)
= § U > (-1) I^TT)'

and we can similarly define and evaluate

(35) P^(^ ̂ ): = (^ 4^1^)"1

/.OO

• / ^^(/3,)-llV(47^^2,.,a„/3,)(a2,.)2sr-le-47^(7^^-2d2/
^o
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= y (~^\ i)7 w ^(fc-•l•JL—l-^U / "r^-^) r(fc,-i) ^^ •
Summarizing (21), (22), (23), (24) and applying the holomorphic projection
operator as in Corollary 2.2, the distribution Jlf can be written in the form

/o^\ -±/ \ {^Q^G'r l^cm2 } cm2

(36) ^ (x) = ——/.,.,\°—°-
( I» I )cm2

with the cusp forms G^ = G^(f,^,^,^) = (^/±) e <?fc(cm^) defined
by

, A/'^m/^A;o+2sy.-2 ,
0'^ = -r:l:(»,)J•t'^'—(-l)(*)2(ll-24(2»)"^••-"+i(»+')

^K)^""^'^^17^))-

Moreover, (33) and the above calculations show that the Fourier expansion

(37) ^(^ E ^^e^z)
0<o-€o

of ^/ has the following Fourier coefficients:

6(^)=73±(m/) ^ ^((ai)) ^ 7-fc/2A,(7<Tl,a)
(^i^)2—^^. ^eo^/o^2

<7,»0 ' 1

• W .̂, f2^j5(7(T2, K.; Cmo) n {7^ ,̂. (<T2,., (-m!-)2^) },
i/==i ^^o,^7 /- '

73-(m') = a(m')-2m/fcol-fcm§-2•l^^;(c)22<fc}-l-2n^,
73+(m/)=7^-n/t-73-(m/).

Now, the Fourier coefficients of g^ are elements ofQ(^): Lcmo(^r, ^7,020)
is algebraic for ^ e ^-, and the functional equation (4) shows that
Tr'^Lcmo^r^^c) is algebraic for ̂  C ̂ + as well. By Proposition 2.2
of [S4] the coefficients C(p,f) are algebraic, and hence so is c^m'). Apart
from A^(7o-i, o) all other factors in the Fourier coefficients of ̂ ± are clearly
algebraic which proves the claim.
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5. A linear functional on <?fc(cm§, -0).

Let us now show that the linear functional

„ - / 2 i\ ^ ^ ( ^^l^cm2 )cm2

C: <Sfe(cm^^) -. C, ^ ̂  — — ° — — ° -
{ I» I )cm2

is defined over some number field K, i.e. that there exists a number field
K and a finite number of ideals n^ and (algebraic) numbers Z(n^) C -?C such
that

(38) £(<&)= ̂ C(n,,<l>)^).
%

We remark that Panchishkin [P] in chapter IV.5.5 already applied this
functional and the property that it is defined over Q. By the theory of
primitive forms there exists a basis of <Sfc(cm§, -0), consisting of elements of
the form fj |bj with primitive forms fj C Sk(cij^) and integral ideals Oj
and bj satisfying cijbj|cm§. Now there exist certain integral ideals n% such
that {Cm '- Sk(cm^ip) —> C, $ i—> (7(n^ $)} is a basis of the dual space
of<S,(cm^). If^ = E^-l^ then (G(n,, <!>)), = (C(n,,f,|b,))^(a,),
with matrix notation, and hence

/:(<&) = (^Ib,))^^) = (^•Ib,))'^^,^!^.))-1^^^)).

By Proposition 2.8 of [S4] (7(n^fj[bj) = (^(n^b.1 ,^) is an element of the
number field Q(fj), so it remains to show the algebraicity of £(f^-|bj).

r ( f Ih ^ (fo.fji^l^mg )cm2^•l^)-—^^ ^0 /^"0

cm2

/ ri rpi ^o \

^^^/(^(^r^(^)fco/2A(f,)x l;;.fl;^• ,
a|mo PJ v r 5 1 /

where we have made use of (3.17) of [P] and fj\Jaj = A^fj)!^ for some
constant A(fj) C C; the form { p e M.k(o-j^) is determined by (^(n.f^) =
(7(n,fj) and is primitive. Moreover, i f fy = (/j) and fj|Jaj = (/O? then /^ =
(—l)W/j||/3 for some /? C G^Q) as described in section 2. Proposition 1.4
of [S4] now asserts that f'j has algebraic coefficients which implies that A(fy)
is algebraic as well. Now write D(s',f,fj) := ^C(m,f)C(m,{j)M'(m)~8

m
for the convolution of Hilbert automorphic forms of integral weight. The
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Dirichlet series associated to f has the Euler product

^(-(m.Wm)-8 - F[(l -C^Wf)-3 +^)(p).A/-(t))fco-l-2s)-l,
m p

and we have a similar expression for the Dirichlet series of fj. Applying
Proposition 4.13 of [loc. cit.] together with Lemma 4.2 now shows that

(fl^l^) ^ /^;f|a,f,|b)M
(f, f /) '< 5(5; f,f,) ^=fco

ab v^^b/a^p)-^0)= \r( ab T FT
' Vecdfa,bV 11<gcd(a,b)^ ^ ^(^(p)-^)

with the polynomials Xp^ of Lemma 4.2 with respect to the roots of the
Hecke polynomials of f and fj. Notice in particular that the Xp^ have
coefficients in Q(f, f,), and that Xp^p)-^) = l-^f^f^P)2^)"2 ¥-
0. The right side now shows that the above quotient of the scalar product
is algebraic. The algebraicity of jC(fj[bj) now follows because both f and

/ f fP \
{^ are primitive, and hence — 3 equals 0 or 1. This shows that the

\ 5 )
linear functional C is defined over a number field K, and we may take
K = Q(fy,A(f,),{a'(p), ^/V(p)|p C S}) where fy runs over all primitive
forms contained in <Sfc(cm§,^).

We are now in a position to prove the theorem. If n% = (n%) with some
totally positive riz € o, then

G(n,^±)=n?(fco•l-fc)&(n„^).

This shows immediately that our distributions take values in Q(^). We want
to show that ̂  is defined over the field L = K(FG\ -0, ̂ , <y, v/o^, {^(p) |
p € 5'}). We claim that it suffices to show the following: For each integral
ideal m with S'(ni) = S there exist a finite number of ideals a% prime to mo
and elements o^ € L such that

(39) /^(X)=E"^)
i

for every Hecke character \ of finite order whose conductor divides m.
Denote by E = E(m) the finite subextension of F(S) which corresponds
by class field theory to J(m)/P(m). Now, if Q is any ideal prime to mo, and
(5, F ( S ) / F ) is the image of Q in Gal(F(S')/F) under the Artin isomorphism,
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then

6(Q,FW/FyGa.\(F(S)/E) = f ^T^ S^ X*(fl)X*

^ '̂Gaî )/^

by the character relations. Therefore, (39) implies that our distribution is
defined over L. Now let n = lcm(cmo, c^/yo^c))- Then

Lcmo(^r,^2c) = ̂ ^^cWC^ 5)
JC

where the summation is over the classes 1C of <7(n)/P(n) and C(/C, s) is the
partial zeta function

c(^)= E ^-
bCo,bP(n)eK: v /

By a result of Siegel-Klingen, the values of <^(/C, s) at non-positive integers
are rational (cf. [N, Korollar VII.9.9]). This, together with the explicit form
of the Fourier coefficients of g ' ~ ^ shows that ̂  can be written as in (39),
and hence is defined over L. If the weights k and ( are scalar, then 7" 2' and
the product ]~[ ̂ ^P^ y become norms of elements of F and are therefore

v
rational. Thus, the same argument as before yields the stronger result in
this case as well, and the theorem is proved, n

We finally remark, that it suffices to adjoin the Fourier coefficients
A(a, o; <7, (/)) for (a) prime to mo because only these coefficients occur in the
Fourier expansion of g ' in (37).

6. Boundedness of the regularized distributions.

The aim of this section is to show that the distributions j£^ can be
regularized such that they give rise to bounded p-adic measures. Before
stating the theorem we describe the general situation with slight changes
to the previous section: Let q be an integral ideal, S 3 {p|p} a finite set
of primes containing all primes above p, f € <?fc(c(f), ̂ ) a primitive Hilbert
automorphic form of scalar integral weight k = ko • 1, g (E .A^(c(^),(^) a
Hilbert modular form of scalar half-integral weight ( = IQ • 1 which has p-
adically bounded algebraic Fourier coefficients A(^,o;^,0) for (^) prime to
moC|, and assume that gi is a simultaneous Hecke eigenform. For p € S'U<S'(q)
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let a(p) and o^p) be the roots of the pth Hecke polynomial of f. With the
definition of a and a' extended by multiplicativity to all integral ideals a
with S{a) C SUS{q) we set mo := ]~[ P. qo := [IP. ̂  = E /^M^l^

pES p|q a|qomo

and c = 4c(f)c(^). Also, fix a totally positive number c (=: F such that
(c) = c(f)c(^), and let 6 € {0,1} be determined by 0 = fco - lo - - mod 2.&

THEOREM 6.1. — Assume that the following conditions hold: F has
class number hp = I? the ideals c(f), 4c(p), mo and q are pairwise relatively
prime, lo < ko, (7(c(f),f) 7^ 0, and ip(a(f)) is a p-adic unit for all
p G S U 5(q). Then for each r € Z with 0 ^ 2 r ^ A ; o - f o - ^ - t - ^ - 2
there is a p-adic measure p,^ on Gals' associated with the convolution of
fo and g which is uniquely denned by the following values on the Hecke
characters of finite order with 5'(c(^)) C S:

^(x):^^)

== ip [W-l)(l - WVnqWq)^-^)^) ̂ (sr; ̂ ^^ ̂
;cmg

where

K^ = 0 - 1 - 2r, Sr = „ ( Kr + _ j ,

^(s) = ̂ -2—"-»fc°4^ (-y r"^0-2^ [s + ̂ "^y
.^(^^o+2(.-l)^(^)-2^

andm, m' are arbitrary integraJideaJssatJsfyjnglcm(mo, c(^))|m, mocî mlm',
S(m) C S and S(m') C S U 6'(q). Moreover, the measures are normalized
such that

//^.A^/0).

Proof. — Note first that ^(/^^(x)) ls independent of m and m7 and
is algebraic because of Theorem 5.1 applied to S U S(q). Therefore p,^ is
a p-adic distribution and it remains to prove its boundedness. In view of
(36) and (37), this can be verified via the Fourier coefficients of

(40) G*(f,p,x,r) = Xoo(-l)(l - (^^(qWq)^1-^^^^^^^).

Let us show that the abstract Kummer congruences of Proposition 1.5 are
fulfilled. We assume, without loss of generality, that the Fourier coefficients
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^(^<5;^,^) of g are p-integral (i.e. p-integral for all p[p) if (^) is prime to
qmo. Let C = nz^p(r(fco — 1)) and N an arbitrary positive integer. For a
Hecke character \ € X^ we choose an ideal m such that 1cm (mo, c(^))|m
and set m' = moqjm2?6''^. Now, in the expression (37) for the Fourier
coefficient of G/ we may restrict the summation to those o"i,<72 whose
associated ideals (<7i) and (0-2) are prime to moqo- Let mo,m' e ̂  be
totally positive with (mo) = mo^o and (m') = m'. Then

n^,.^^^;)2^)-^^))-'"-1^^0^0"^ m^-
( 777/ \ 2

Also notice that from — ) a == a\ + 01 and the choice of m' and
mo^

m', we have

W-l^o^l)) ̂ ^(M).

With the quadratic Hecke character £-^2 associated with F^—^a^/F^
the measure /^ = /A(q, E-^^(J), S) on Gal^ of Theorem 1.6 and the measure
/2 on Gal^ defined by

/ f(x) dfl{x) := / /(x2)^-0^) d^x) for all / € ('(Gal^, Cp)
./Gals ./Gals

we have the following expression for the "regularized" L-value:

(1 - W2X4)*(q)^(q)2(l-/<r))^mo(^^-^^X2)

= (i + (ir^x2)^)^)1-^-1 f / x2^)^^)2^1-' ̂ M)
VGals /

= (1 + (i^^X2)(q)^(q)2-'+2r)^l f / X^)^^)- d/2(^)) .
VGals /

Summarizing, we have found that for every positive integer N and
all integral ideals n, m with S(m) = mo there exist p-integral elements
ai = Q^(./V,n,m) € Q, fractional ideals 04 = a^(Ar,n,m), and Op-valued
measures /^ on Gal^ such that for every Hecke character \ of finite order
with c(^)|m the following congruence holds:

zJc7(n,C?*(f,^x^))) = Y^a^^iWW I X^p ̂v / ^ ^Gals

= ]C ai \ x(xai)M'^(xai) dp,i(x) mod pN.• ./Gals
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This, together with (38), now implies the abstract Kummer congruences as
well as the relation between the different distributions, n

Let us finish with a few remarks on the conditions we imposed on g.
In the integral case every Hilbert automorphic form can be written as f =
^Q^| 04 with primitive Hilbert automorphic forms fi, complex numbers
ai, and integral ideals c^. Moreover, the primitive Hilbert automorphic
forms fi have the following important properties: They are characterized
by the fact that both f^ and f%|^c(fi) are simultaneous Hecke eigenforms, cf.
Corollary 4.6.22 of [M], and if fci = ... = fcn, then the Fourier coefficients
C(m,fi) are algebraic integers by Proposition 2.2 of [S4]. Therefore, it is
most natural when investigating convolutions of Hilbert automorphic forms
of integral weight as in [P], to assume that both forms are primitive. In the
half-integral case the analog of the Atkin-Lehner theory has so far only
been established for the field F = Q, and only for the case 2/fbb ' and
a quadratic character '0, cf. [Koh], [MRV] or [U]. There, a multiplicity-1
theorem is only established for certain subspaces of .A^^)"1^^), e.g.
the Kohnen +-space, but our inverter may not respect these subspaces.
If g is a simultaneous Hecke eigenform and g denotes the Shimura lift of
g , then G(p,g) = A^(p)^c(p,g), (20) and Proposition 3.2 show that for
^ G o with (^) squarefree the quotient \g(^m)/Xg{^ o) is p-integral for
m prime to p, but in this way we cannot derive any integrality properties
for \g(^ o) itself. However, the algebraicity condition on g is very natural:
By Proposition 8.1 of [S7] the space Mi(c, (f)) is spanned by its Q-rational
elements and by Proposition 8.9 of [loc. cit.] the same is true for the space
<S^(c,^,h) of Hilbert cusp forms of half integral weight I whose Shimura
lift is the primitive Hilbert automorphic form h of integral weight 21—1.
Since the results on "primitive" half-integral forms and integrality of their
Fourier coefficients are not yet as complete as in the integral case, we have
formulated the theorem with the above conditions on g. For F = Q, an
example of a modular form g satisfying our assumptions can be obtained
as follows: Let

w= E <?"2' ^= E <7l(n)(^"
n=-oo n>0,2^n

with q = e2^ and a^n) = ^ d. By Proposition IV.4 of [Kob],
d\n

M^W-\(2),£) is spanned by F^Q, FQ5 and 99. At the cusps oo, -j
and 0 the forms F and 64 take the values 0, ^p —g^ and 1, 0, — ^ , respec-
tively (cf. Problem III.3.10 and III.3.11 of [loc. cit.]). The cusp -\ being
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irregular for the weight j by Problem IV. 1.3 of [loc. cit.], it follows that
S^((2)~l,{2),e) is one-dimensional and spanned by g ' := l^F^Q - F65.

We can therefore take g(z) := g ' ^ z } € <S9((1),£2).
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