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A CHARACTERIZATION OF THE KNEADING PAIR
FOR BIMODAL DEGREE ONE CIRCLE MAPS

by LI. ALSEDA and A. FALCO

1. INTRODUCTION

The goal of this paper is to characterize at a symbolic level the
bimodal degree one circle maps. As it is usual, instead of working with
the circle maps themselves we will rather use their liftings to the universal
covering space M. To this end, we introduce the following class A of maps.
First we define C to be the class of all continuous maps F from R into itself
such that

F(x + 1) = F(x) + 1 for all x € K.

That is, C is the class of all liftings of degree one circle maps. Then we will
say that F € A if (see Figure I):

1) F C £;

2) there exists Cp € (0,1) such that F is strictly increasing in [0,c^]
and strictly decreasing in [c^,, 1].

We note that every map F C A has a unique local maximum and a
unique local minimum in [0,1). To define the class A we restricted ourselves
to the case in which F has the minimum at 0. Since each map from C is
conjugate by a translation to a map from C having the minimum at 0, the
fact that in (2) we fix that F has a minimum in 0 is not restrictive.

The study of these maps arises naturally in different contexts in
dynamical systems. For instance, a three parameter family of such maps

The authors have been partially supported by the DGICYT grant number PB93-0860.
Key words'. Circle maps - Kneading invariants - Rotation interval.
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Figure 1. An example of a map F in class A.

has been introduced by Levi [13] and used to study the Van der Pol equation
(see [13] and [2]). On the other hand, the standard maps family denned as

T-. / \ T sin(27ra*)Fb,w(x) = x + w -+- b —-——L

ZTT

where x, w C R and b C [0, oo) belongs to the class A for all b > 1. The study
of this two parameter family displays a correspondence with periodically
forced chick-heart cells (see [11]) and the plot of the phase-locking zones as
a function of b and w gives the Arnold tongues (see [6]). Also, the class A is
relevant in the description of the transition to chaos for contracting annulus
maps.

We shall use the extension of the Kneading Theory of Milnor and
Thurston [16] given by Alseda and Manosas [4] to maps from A. The key
point of this Kneading Theory is a suitable definition of itinerary. With
this notion they extended some basic results of the kneading theory for
unimodal maps to the class A. Moreover, they showed that for a map from
class A, the set of itineraries of all points (that is, all the dynamics of the
map) can be characterized by the kneading pair which is the pair formed
by the itinerary of the maximum and of the minimum of the map under
consideration (see the next section for a precise definition). Thus, in the
study of bifurcations of parameterized families in A these two sequences
play a crucial role. This is our motivation to characterize the set of kneading
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pairs of maps from A. This will be done in the main result of this paper.
Unfortunately, to state this characterization we need some background
on kneading theory for maps of the class A and some notation. We will
introduce this background and state the main result of the paper in the
next section. The rest of the paper is organized as follows. In Section 3
we introduce some more notation and the preliminary results to prove the
Main Theorem and in Section 4 we prove it. Finally, in Section 5 we extend
the Main Theorem to the orientation preserving homeomorphisms of the
circle and we make some remarks and derive some consequences on the
existence of full families for maps from A.

Acknowledgments. — We thank the anonymous referee of the paper
for careful reading and valuable suggestions which improved its presentation
and organization.

2. DEFINITIONS AND STATEMENT OF THE MAIN RESULT

We start this section by recalling the kneading theory developed by
Alseda and Manosas in [4].

First we recall the notion of itinerary of a point. In what follows we
shall denote the integer part function by E(-). For x € R we set

D{x) =x- E(x).

For F C A and x € R let

( R ifD(x)e{cF,l),
,- C if 2^)=^,
sw~ L if£^)e(0,^),

M if D{x) = 0;

d(x)=E(F{x))-E{x).

Then the reduced itinerary of x, denoted by Ip^x), is defined as
follows. For i € N, set

Si=s(F\x)), di=d(Fi-l(x)).

Then J^(a-) is defined by

( d^dy • • • if Si € {L, R} for all i > 1,
IpW = { d^dy ' • • d8^ if Sn € {M, C} and Si e {£, R}

for all i € {1, . . . ,n — 1}.
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Since F € C we have that J^(^) = Ip^ + ^) f01" all A; € Z.

Let x ^ y G R be such that -D(.r) 7^ ^Q/). We say that x and y are
conjugate if and only if F{D(x)) = F{D(y)). Note that if a; and y are
conjugate then they have the same reduced itinerary.

Let S = {M, L, C, I?} and let

a = aoo;i • • •

be a sequence of elements a% = d8^ of Z x S. We say that a is admissible if
one of the following two conditions is satisfied:

1) a is infinite, Si € {L, J?} for all i > 1 and there exists k € N such
that \di\ < k for all i > 1;

2) a is finite of length n, 5^ e {M,(7} and 5^ € {2y,J?} for all
z € { l , . . . , n - l } .

Notice that any reduced itinerary is an admissible sequence. Now
we shall introduce some notation for admissible sequences (and hence for
reduced itineraries).

The cardinality of an admissible sequence a will be denoted by |a|
(if a is infinite we write |a[ = oo).

We denote by 5 the shift operator which acts on the set of admissible
sequences of length greater than one as follows:

S(a) = Q'203 • • • if a = 010203 • • • .

We will write Sk for the fc-th iterate of S. Obviously 6^ is only defined for
admissible sequences of length greater than fc. Clearly, for each x € R we
have

S^MX^^I^F^X)) if \Mx)\>n.

Let a = a^a^- • • On and f3 = /?i/?2 • • • be two sequences of symbols
in Z x S. We shall write a f3 to denote the concatenation of a and f3 {i.e. the
sequence OL\OL^ ' ' ' an/3i/32 • • •)• We also shall use the symbols

n times

0^ = a a - ' ' a and a00 = a a ' • • .

Let a = ai02 • • • 0^5 be a sequence of symbols in Z x S. Set o^ = d8^
for i = 1,2, • • • , n. We say that a is even if Card{% e {1, • • • , n} ; Si = R} is
even; otherwise we say that a is odd.
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Now we endow the set of admissible sequences with a total ordering.
First set

M < L < C < R.

Then we extend this ordering to Z x S lexicographically. That is, we write
d8 < t^ if and only if either d < t or d = t and s < m. Let now a = 0:102 • • •
and /3 = /3i/32 • • • be two admissible sequences such that a -^ /3. Then there
exists n such that On 7^ /?n and o^ = f3i for i = 1,2, • • • , n - 1. We say that
a < /? if either 0102 • • • o^-i is even and On < (3n or 0102 • • • On_i is odd
and On > /?n.

The following results show that the above ordering of reduced
itineraries is, in fact, the ordering of points in [0, Cp] (see [4], Lemma 3.2).

PROPOSITION 2.1. — Let F e A Then

(a) Ifx.y C [O.c^,], andx < y then^x) <T^Q/).

(b) Ifx.y C [c^,, 1), and x < y then !p{x) > J^Q/).

COROLLARY 2.2. — Let F e A For all x e R we have

^(0)<Z^)^(cJ.

To define the kneading pair of a map F € A we introduce the
following notation. For a point x G R we define the sequences J^a:"1")
and ip(x~) as follows. For each n >: 0 there exists 6{n) > 0 such that
^^n-i^^ g^ s(Fn(y)) take constant values for each ^/ e (x,x + <^(n))
(resp. ?/ € (a;-<$(7i), a-)). Denote these values by ̂ (F71-1^)) and ̂ F^a^))
(resp. d(Fn-l(x-)) and ̂ F^-))). Then we set

Ux^) = d(x^F^d{F(x^s(FW)...,

1^-) = d(^-)s(^-))d(F(.z;-))s^2(a;-)). • • .

Clearly, Ip^) ̂ d IF^) are mfinite admissible sequences and

^(^+)=Z^((^+A;)+), lF{x-)=i^(x^k)-)

for all fc e Z. Moreover, if x ^ Z and |J^(^)| = oo then

^(^-)=^(^=^(^+)•
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Let F e A. The pair

(Î U ĉ;))

will be called the kneading pair of F and will be denoted by )C(F).
Let AT) denote the set of all infinite admissible sequences. Then for
each F 6 A we have that fC(F) G AD x AD. As it has been said in
the introduction the kneading pair of a map characterizes its dynamics
completely (see Proposition 3.1).

To characterize the pairs in AD x AD that can occur as a kneading
pair of a map from A we will define a subset £ of AD x AD and, afterwards,
we shall prove that this set consists of all kneading pairs of maps from A.
To this end we introduce the following notation.

Let a = d ^ a ^ ' ' •, be an admissible sequence. We will denote

a' =(dl+l)sla2'" .

Therefore, since for F G A we have d(F(p^~)) = d(F(0~)) — 1 we can write

(^(O^/^O-).

We will denote by £* the set of all pairs (^1,^2) ^ AD x AD such
that the following conditions hold:

1) ^i < ^2;
2) v\ < S^z) < V2 for all n > 0 and i € {1,2};

3) if for some n > 0, S ,̂) = ^ • • • , then S^O^) > ^ for
z e { l , 2 } .

We note that condition 2) says, in particular, that y\ and ^2 are
minimal and maximal, respectively, according to the following definition.
Let a € w4P, we say that a is minimal (resp. maximal) if and only if
a ^^(a) (resp. a ^ ^(a)) for all n € {1 ,2 , . . . , |a| - 1}.

As we will see, the above set contains (among others) the kneading
pairs of maps from A with non-degenerate rotation interval. To deal with
some special kneading pairs associated to maps with degenerate rotation
interval we introduce the following sets. For a € K we set

ei(a)=E(ia)-E((i-l)a),

Si(a)=E(ia)-E((i-l)a),
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where E: R —> Z is defined as follows:
- ( E ( x ) if^Z,
^ W - ^ _ l i f ^ - eZ .

Also, we set
^(a) = €1(0)^2(0^ •••e^a)^.. ,

I^a)=6^a)LWL"'6n(a)L'".

Let

^(a)=(J,(a))'

and let ^(a) denote the sequence that satisfies
(iKa))^!^.

When a = p / q with (p, g) = 1 we denote by T^(a) the sequence
(^(^^..^^(^^.(a^)00

and by J^(a) the sequence which satisfies
(r^(a))'=^(a).

To simplify the use of the sequences IcW^sW^GW and KW the

following lemma will be helpful (see [4], 4.1-4.3).

LEMMA 2.3. — Let a € M. Then the following statements hold:
(a) If a f. Z then 61 (a) = ci(a) + 1. Furthermore,jf a ^ JQ then

^(a) = e^(a) for aii i > 1. That is, ^(a) = J,(a) and ^(a) = J^(a). If
a = p/9 with (p, g) = 1 and q > 1 then e^(a) = ̂ (a) for ^ = 2,..., q - 1,
^(a) = Cq(a) - 1 and, e^(a) = Cz(a) and ̂ +g(a) == ^(a) for aii z € N.

(b) If a C Z then Cz(a) = ̂ (a) = a for a2i z > 0.

Now we set
f {(X(a)J;(a)), (^(a),I,(a)), (T^(a),T^(a))}

^ = <j ifa=p/qe Q, with (p,g) = 1,
[{(^(a),I,(a))} i f a ^ Q .

We note that for each a e R, £a H f* = 0 because all elements from Sa
do not satisfy condition 1) of the definition of £*.

Finally we denote by £ the set £* U ( |j £a)-
a€R

The following result characterizes the kneading pairs of the maps from
class A and is the main result of this paper.
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THEOREM A. — For F € A we have that )C(F) 6 £. Conversely, for
each (1/1,1/2) ^ £ there exists F C A such that fC{F) = (^i, ̂ 2)-

Remark 2.1. — From the proof the first statement of Theorem A (see
Proposition 4.1) one sees that if K(F) G £a then the rotation interval of F
is {a}. However, we note that there are maps in A with degenerate rotation
interval whose kneading pair is contained in f*. Indeed, it is easy to check
that the pair

\L-tLf\Lf\L\oo\((O^l^l1'!1')00, (l^O^O1')00)

belongs to £ * . Hence, from Theorem A there is a map -F C A having it as
its kneading pair. Moreover, from Theorem 3.6 it follows that the rotation
interval of -F is { - }.

On the other hand, since £ \ £* is the boundary of £* one would
expect that if /C(F) ^ £* for some F G A, then the topological entropy
of F is zero. This can be proved in a straightforward way by using the
techniques from [1] (see also Proposition 4.3.3 of [10]). However, there are
also maps F 6 A such that /C(F) € <?* and the topological entropy of F is
zero, as the following example shows. Let F be the map shown in Figure 2.

Figure 2. A map F C A such that /C(F) € £*
and has topological entropy zero.

Then, clearly, J^(c^) = (l^)00 and J^O4-) = O^l2-)00. Therefore,

(ZF(0+)) /=(1L)00<(1^)00=J^;)
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and so /C(F) G £ * . On the other hand, the non-wandering set of the
circle map which has F as a lifting is just two fixed points: exp(27rm)
and exp(27rz&). Therefore, the topological entropy of F is zero (see for
instance [9] or [3]).

3. DEFINITIONS AND PRELIMINARY RESULTS

In the first subsection we study the symbolic properties of the kneading
pair. In Subsection 3.2 we give some standard definitions and preliminary
results about circle maps that we will use in the proof of Theorem A.

3.1. Some properties of the kneading pair.

In Section 2, to each map F € A, we assigned a pair from AD x AD
called the kneading pair. The following definitions were introduced in [4].

Let a,/3,7 be admissible sequences such that f3 < 7 . We will say
that a is quasidominated by /? and 7 if and only if the following statements
hold:"

1) f3<Sn{a) < 7 for aline {0,1 , . . . , |a| - 1},

2) if for some n C {0 ,1 , . . . , |a| - 1} we have S^a) = d^ • • • then
s^w > y.

We will say that a is dominated by f3 and 7 if and only if 1) and 2)
hold with strict inequalities.

Let F € A We say that a is quasidominated (resp. dominated) by F
if a is quasidominated (resp. dominated) by I p ^ ) and J^(c^).

The next result, due to Alseda and Manosas (see [4], Proposition A),
characterizes the set of reduced itineraries (and hence the dynamics) of a
map F C A in terms of the kneading pair.

PROPOSITION 3.1. — Let F e A Then the following hold:

(a) Let x C (0,1) with x -^ Cp. Then I p ( x ) is quasidominated by F.

(b) Let a be an admissible sequence dominated by F. Then there exists
x € [0, Cp\ such that I p ( x ) = a.

The following result, which is an immediately corollary of the above
proposition, will be used in the study of the kneading pair.
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COROLLARY 3.2. — Let F € A. Then the following hold:
(a) Letxe (0,c^). TAen7^(0+) ^ J )̂ ^ Jj,(c;).

(b) Let a; e (c^, 1). Then 7^(0-) < J )̂ < J^(c;).

The following proposition gives the main symbolic properties of the
kneading pair.

PROPOSITION 3.3. — For each F e A we have that

(^(O^/^c;)
and I p ^ ) an^ Ip^r) are quasidominated by F.

Before proving Proposition 3.3 we introduce some more notation.

For k e Z we denote by (Z x <S)^ the set of sequences a = d^d^ • • • e
(Z x S)^ such that [d,| < k for all i > 1 (recall that S denotes the set
{M,L,C,R}). Let a = d ^ d 8 2 ' " and (3 = t ^ t ^ 2 ' " be two sequences
in (Z x S)^. We consider in (Z x ̂  the topology defined by the metric

^^E^W)
where w^)=r i fdr^v z l / lo i f^=^.
With this topology, (Z x <?)^ is a compact metric space and the shift
transformation S : (Z x S)^ —> (Z x <S)^ defined by

^W 1 ^ 2 ••• )=^ 2 ^ 3 •••
is continuous. Moreover, we can extend in a natural way the ordering
defined for the admissible sequences to the sequences from (Z x S)^.

Let a, (3 be two admissible sequences such that a' <, f3 and let AVa Q
denote the set of all admissible sequences quasidominated by a and" /?
union {a, (3, a7}. Now, we define Y^ : AD^ -^ (Z x S)^ as follows:

• If |7| = oo then 1^(7) = 7.

• If 7 is finite and ends with (7, then we define
r 7 13 if (3 is infinite,
7(/3)00 if f3 is finite and ends with C,

p /^ _ , 7 /^ if /? is finite and ends with M and a is infinite,
^M/./ —— \ --- - _ 5

7 /3(a)°° if /3 is finite and ends with M and a is finite
and ends with M,

7(/3a)00 otherwise.
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• If 7 ends with M then we proceed similarly with the roles of a
and /?, and M and C interchanged.

We note that the map F^,/? preserves the ordering of the sequences
and that S71 o 1^(7) = I\/3 o'S71^) for all n € {0,1, • • • H - 1}.

Proof of Proposition 3.3. — The first statement follows from
Corollary 3.2 (b) and the fact that (^(O"^))7 = T^(0~). Now, we prove the
second statement. Denote by Tp the map

^^.(0+)JF(C^)•

From the part of the proposition already proved it is well defined. It is not
difficult to show that

Z^+)=^^^(Z^)),
y>x

Mx-)=^TF(Ip(y)).
y<x

Now, we consider several cases. Assume first that

^(Z^)) = ̂  ... (resp. ̂ (J^)) = ̂  •..)

for some n >, 0. Then there exist points x € (0, cp) arbitrarily close to 0
(resp. cp) such that D(Fn~}~l(x)) € (0,c^) and Ip(x) coincides with J^(0)
(resp. J^(c^)) in the first n 4- 1 symbols. Then from Corollary 3.2 (a) we
have that ̂ (O^ < J^F714-1^)) ^ J^(c^). Thus

IF^) ̂  ̂ (^(F^1^))) < MC^).

Since

r ĵ̂ F"^))) = r^s^d^x))) = ̂ (r^Or))),
letting x tend to 0 from the right we get

I p ^ ) <. 5"&(0+)) < J^(^)

(resp. letting x tend to cp from the left we get

J^) ̂ "(J^)) ^(c^)).

Now, assume that

S^MO^) =dR••• (resp. 5"a^)) = ̂  • . •)

for some n > 0. There exist points x € (0, cp) arbitrarily close to 0
(resp. cp) such that D(Fn^l(x)) 6 (c^, 1) and J^(^) coincides with J^(0)
(resp. J^(c^)) in the first n + 1 symbols.
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From Corollary 3.2 (b) we have that

W^^iF^W)^!^).
Then, in a similar way as above we can show that

^(o-) ̂ s^d^))^!^)
(resp. J^(O-) < S^U^)) < 1^))

and the proposition follows. D

3.2. The rotation interval, twist periodic orbits
and the kneading pair.

We advise to the reader that most of the results we are quoting from
other authors will be written in terms of class C unlike the original versions
are stated for circle maps of degree one.

We shall say that a point x e R is periodic (mod. 1) of period q with
rotation number p / q for a map F G C if

F q ( x ) - x = p and F i ( x ) - x ^ Z for z = l , . . . , g - l .

A periodic (mod. 1) point of period 1 will be called fixed (mod. 1).

The notion of rotation number was introduced by Poincare [19] for
homeomorphisms of the circle of degree one. This notion will be used to
characterize the set of periods of circle maps of degree one. It is well-known
(see [17]) that if F e C is a non-decreasing map, then

lim l.(Fn(x)-x)
n-»-oo n /

exists and it is independent of x. From above it follows that to every
non-decreasing map F G C we can associate a real number

p(F)= lim ^(Fn{x)-xY
n—>-oo n /

which is called the rotation number of F. Roughly speaking, p(F) is the
average angular speed of any point moving around the circle under iteration
of the map. We note that p(F) is a topological invariant of F. That is, if
F and G are topologically conjugate (i.e. there exists an increasing map
h € £ such that F o h = h o G) then p(F) = p(G). Poincare also proved
that F has a periodic orbit if and only if p(F) e Q.
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We remark that lim — (Fn{x) — x) may not exist for a general mapn-^oo n
F € C and if it exists it may depend on the choice of the point x. This
motivates the following extension of this notion due to Newhouse, Palis and
Takens (see [18]) to each map F e C. For F € C and x e R we set

pp{x) = p(x} = lim sup — {Fn{x) — x).
n—^oo n

We denote by Rp the set of all rotation numbers of F. Ito (see [12]) proved
that the set Rp is a closed interval, perhaps degenerate to a single point.

When looking at periodic points of circle maps sometimes it is useful
to look at the set of all iterates of the point under consideration. In our
framework this means that we have to look at the set of all points projecting
on the iterates of the periodic point under consideration. This motivates
the following definition.

Let F G C and let x C R. Then the set

{y € R; y = F71^) (mod. 1) for n = 0,1,...}
will be called the (mod. 1) orbit of x by F. We stress the fact that if P is a
(mod. 1) orbit and x € P, then x + k € P for all fc € Z.

It is not difficult to prove that each point from an orbit (mod. 1) P has
the same rotation number. Thus, we can speak about the rotation number
of P.

If A C R and x € R, we shall write x + A or A + x to denote
the set {x + a; a 6 A} and we shall write A + B to denote the set
{a + b; a C A, b € B} if B C M.

If a; is a periodic (mod. 1) point of F of period q with rotation number
p / q then its (mod. 1) orbit is called a periodic (mod. 1) orbit of F of period q
with rotation number p / q . If P is a (mod. 1) orbit of F we denote by Pi the
set P n [i, i -+-1) for all i € Z. Obviously P, = i + PO. We note that if P is a
periodic (mod. 1) orbit of F with period g, then Card(P^) = q for all i G Z.

Let P be a (mod. 1) orbit of a map F € C. We say that P is a twist
orbit if F restricted to P is increasing. If a periodic (mod. 1) orbit is twist
then we say that P is a twist periodic orbit (from now on TPO).

The following result gives a geometrical interpretation of a TPO.

LEMMA 3.4. — Let P = { . . . ,^_2,.z;-i,rro,a:i,a;2,...} be a TPO with
period q and rotation number p / q and assume that Xi < Xj if and only if
i < j. Then (p, q) = 1 and F(xi) = x^p.
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Remark 3.1. — We note that if P is a twist orbit then the rotation
number of P can be computed by lim — (F^rr) — x) for each x € P.

n—>oo Tl

The following result, given in [8], studies the relation between the
rotation number and twist orbits.

LEMMA 3.5. — Let F e C. For each a e Rp there exists a twist orbit
P of F with rotation number a. Moreover P is contained in a union of
closed intervals on which F is increasing.

Now, we will study the basic properties of the sequences
Jg(a),_Z^(a),J^(a) and J^(a). These sequences give the characterization
of the rotation interval by means of the kneading pair. The following result
is due to Alseda and Manosas (see [4], Theorem B).

THEOREM 3.6. — Let F C A. Then Rp = [a, b} if and only if

m<i^)^Ua) and I,(b) <, J^) < J:(&).

Remark 3.2. — Since (J^O4"))' = J^(O-), by the definition of the
sequences J^(a), J^)? -^(a) an^ ^(a)? we ^ave tnalt

J^(a) ̂ (0+) ^J,(a)

is equivalent to
W < 7^(0-) ^ 7:(a).

We end this section by stating three results which give some
properties of the maps F 6 A such that the kneading pair satisfies that
(J^O"*"))' = Ip^c?). In view of Theorem 3.6 and Remark 3.2 we get:

LEMMA 3.7. — Let F e A be such that (J^O4-))' = JF^). Then Rp
is degenerate to a point.

Lastly, from Lemma 4.4 of [4], the proof of Theorem 2 of [8] and
Lemma 3.5 we have the following result. For a map -F G C we will denote
by Fu the map defined as follows:

F,(a;)=sup{FO/); y < x } .

It is known that Fu is a non-decreasing map from C.
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PROPOSITION 3.8. — Let F e A be such that (Tp^))' = Ip^c?) and
Rp = {a} with a G M. Then the map F has a twist orbit P of rotation
number a such that PH [0,1) C [0,cp] and F\p = Fu\p. Moreover, if
a = p / q e Q with (p,g) = 1, then P is a twist periodic orbit of period q.
Set fJip = minPn [0,c^] and vp = maxPH [0,cj?]. Then the following
statements hold:

(a) {0,c^} ^ {iip.vp}.

(b) Assume that vp^cp.Iffjip^O then Jp(/xp) = Jg(a). Otherwise

1^(0) = c^.. • e^a^e^ and 1^) = Zja).

(c) Assume that jip ̂  0. Jf^p ̂  cp then Ip{vp) = Is(a)' Otherwise

ZpM=^l(a)L•.• ̂ -1(0)^(0)° and Jp(c^) = Z^(a).

4. PROOF OF THEOREM A.

We split the proof of Theorem A into two parts. In the first subsection
we will prove the first statement and the second one in Subsection 4.2.

4.1. Proof of the first statement of Theorem A.
We start by noting that if for F € A we have (^(O"^))7 < Jp(c^)

then, in view of Proposition 3.3 and the definition of £, ^(F) € £* C £.
Thus, to prove the first statement of Theorem A, we only have to prove
that if (Tp^))' = ZF(C^), then /C(F) G £a for some a e R. This follows
from the following result.

PROPOSITION 4.1. — Let F e A be such that (^(O4'))' = Tp(c^).
Then there exists a € R such that Rp = {0} and )C{F) 6 £a-

Proof. — From Lemma 3.7 we have that Rp = {a}' Assume that
a ^ Q. From Lemma 2.3 (a) and Theorem 3.6 we see that /C(F) G £a- Now,
assume that a = p / q with (p,(?) = 1. Let P be the twist periodic orbit
of period q and rotation number p / q given by Proposition 3.8. If ^p = 0,
from Proposition 3.8 (a), we have vp ^ cp (here we use the notation from
the statement of Proposition 3.8). Therefore, from Proposition 3.8 (b),
I^(0+) == J,(a). Hence, I^Cy) = (^(a))' = P,(a) and so, /C(F) e fa .
If vp == cjp then, as above, u.p ^ 0. By Proposition 3.8 (c), J^(c^) = J^(a)
and, consequently, J^O"*") = I^(a). So, /C(-F) also belongs to £a. We are
left with the case p,p ^ 0 and vp ^ cp.
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From the definition of P and Fn we see that for all y e P and z < y
we have

F(z)<F^z)<F^y)=F(y).

Figure 3. The map G = F9 - p in case q = 2, p = 1.

Let G = F^ - p (see Figure 3 for an example). Then G(z) < G(y) = y for
all ̂  e P and ^ < y. Set P = {x,}^ with .z, < ̂  if and only if i < j, and
XQ = /^p. Then, since P has period q we have :z^_i = vp and a-^ = x^l for
each z e Z. From Lemma 3.4 we get F(x,) = x^p for each i e Z. Thus, since
PH [0,1] c [0,c^), each interval [x^x,^} is mapped homeomorphically
(preserving ordering) into [x,^ x^^} for i = 0,1,.. . . q - 2. On the other
hand [a^-i,:^] contains {op, 1} in its interior (recall that x^ = vp < cp
and Xq = p,p +1 > 1). Since F| [a;,_,,^] is increasing and cp < Xq we obtain

^-I+P = ̂ (^-1) < F{z) < F(cp) < F(x,) = x^
for each z e [x^c?]. Since (p, ̂ ) = 1, for each i e {1 ,2 , . . . . 9 - 1}, we
have zp ̂  0 (mod. q). Therefore, q-l^-ip^q-1-^-mq with m C Z and
so, ̂ -i+,p ^ ̂ -i +m. Consequently, F^_^^^ is strictly increafiing
for z = 1,2,. . . , q - 1. Therefore, for each z e [^-i, cp},

G(z) C [Xq-l^p-p,G(cp)] = [^_I,G(C^)] C [Xq.^Xq}.

Moreover, ^)^_, ̂ ] is strictly increasing. By Proposition 3.8 (c) we see
that

IF^p)=IF^-l)=W = (<?l(a)L•••^-l(a)L^(a)L)oo.
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So, from above it follows that, for each z € [a;g_i, c^],

IF^) = W1- • • .^-l(a)Ld/(G^^(G(^))

where

289

dq=
'W ifG{z) <1,
. 6q(a) + 1 otherwise,

(recall that Ip(x) = Ip^x + ̂ ) for each m €

Now we consider three cases.

Xq-l Cp 1

Figure 4. The map G\[xq_-^,xq} m Case 1.

• Case 1: G{cp) € [xq-^^cp} (see Figures 4 and 3).

Then G([a;g_i,c^]) C [a;g_i,Ci71] and, if we take z < CF close enough
to cp, we have

Mop) = W = W' • • • ̂ (^^(a)^^))
= (^(a)1-... ̂ -l(a)L^(a)L)2J^(G2(^))

=^^).

• Case 2: G{cp) € (cjp, 1] (see Figure 5 next page).

We claim that G(l) G (c^,G'(cj?)). To prove the claim we start
showing that G(l) > CF. Otherwise, either G(l) € [0,cr] or G(l) < 0. In
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Figure 5. The map G\^^_^^^ in Case 2.

the first case J^(l~) is of the form d^d^ ' • • d^ ' ' ' while s(G{cp)~) = R.
This contradicts the fact that

ip{l-)={ip^)y=Ip{Cp).

In the second case, take x < 1 close enough to 1 so that I p ( x ) and
Ip{l~) coincide in the first q symbols and G(x) < 0. From above it
follows that either I.p(cp) and Ip{c'p) coincide in the first q symbols when
G(cp) < 1 or Ip(cp) and J^(c^) coincide in the first (q — 1) symbols and
d(F9(cj.)) = d(F^Cy)) + 1 when G(c^) = 1. Set

^ n ifC?(c^)=l ,
^ L O i fG(cF)<l .

Hence, since J^(l~) = ( I p ^ ) ) ' = Ip(cp) we have that

0 > G(x) > E(G{x)) = E^F^x)) -p

=(^^(F^^))-^(F^-l(^))-p

^^(F1-^)))-?
i=l

=(S^^-1M))-P-
i=l

= E(G(cp)) - s^ = 0;

a contradiction.
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In short, we have proved that G(l) > cp. Now we prove that
G(l) < G(c^). Note that if F(l) < F(xq-i) then

G(l) < G(^-i) = Xq-i < CF.

Hence F(l) > F(^g-i). So, there exists z\ G [xq-^cp} such that
F(^) = F(l). Since cp < Xq we have F(l) = F(^i) < F(CF) < F(xq).
Thus, from above it follows that G(l) < G(c^). This ends the proof of the
claim.

From the claim and its proof it follows that G|[^,I] is decreasing and
G([CF, 1]) C (cp, 1]. We note that from all said above, for each x € [cp, I],
there exists x* € [xq-^.cp} such that G(a;*) = G(;r). So,

J )̂ = J^*) = ̂ (a^ .. • ̂ -i(a)%(a)^(G(^)).

Now take ^ < CF close enough to c p ' Since G'(2:) G (c^, 1) for each i > 1,
we have

IF^) = Mz) = W1-.. ̂ -i(a)%(a)^(G^))

= (^(a)1' • . -(W^^W^2^))

=^)-

a;g_i c^ 1 xq

Figure 6. The map G|[^_,^] in Case 3.

• Case 3: G(c^) G (1,^] (see Figure 6).

In a similar way as in Case 2 we get that G(l) G [1, G(CF)). Therefore,
G([l,Xq\) C [l,Xq\. As in Case 2, for each a; C [l,G(cp)] there exists
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x* e [xq^.cp} such that G(x*) = G(.r) and so,

(JF^))' = ̂ Cr*) = 6^ ... ̂ (^(^(a) + 1)^(0^)).

As in the previous two cases, for z < cp close enough to cp we have

Mcp) = Jp(z) = ^(o^... ̂ -1(0)^(0) + l)^^))
= W1'... ̂ -1(0)^(0) +1)^

(<?i(a) - if ... ̂ -1(0)^(0) + ifl^G^z))

=^l(a)L•. .^_l(a)L(^(a)+l) z /

((^(^-^^..^(a^^^^+l)^00

and from Lemma 2.3 (a) we get that J^Cp) = I^a). This ends the proof
of the proposition, r-i

^ Proof of the first statement of Theorem A. — Let F e A If
(-^(O^Y < J^(c^) then, as it has been said before, /C(F) e <P* C ^ by
Proposition 3.3. Otherwise, &(0+))' = J^(c^) and, by Proposition 4.1,
/C(^) € 8a for some a e M. Q

4.2. Proof of the second statement of Theorem A.

The next theorem already proves the second statement of Theorem A
in the case (^i, ^2) e f*.

THEOREM 4.2. — Let (^1,^2) € S\ Then there exists F e A such
that /C(F)= (1/1,^2).

Proof. - Set ^ = <^2 ...d^ ... for z = 1,2. Since z.i and ^
are admissible there exist k ^ ^ k ^ e Z such that fci < dij < k^ for all j > 1
and i = 1,2. Let F e A be such that F(0) = fci - 1 and F(c^) = A;2 + 1.
Clearly

/C(F) = (((^ - l)^)- (fc, + i)^((^ _ i)^p

and ;/, is dominated by^F for ^=1 ,2 . From Proposition 3.1 (b) there exists
Xi e [0,c^] such that Jp(^) = ̂  for % = 1,2. By Proposition 2.1 (a) we
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have that 0 < x^ < x^ < cp because v\ < v^' Let x^x^ € [cp, 1] be such
that F(^) = F(xi) + 1 and F(x^ = P(^). Thus,

J^(^) = i/i and T^(^) = ^2.
Since v^ < v^, from Proposition 2.1 (b), we obtain that cp < x^ < x\ < 1.
We note that

!^Fn{xi))=Sn{Uxi))=Sn(^

for i = 1,2. Therefore, if F71^) C [0,cp] (resp. F^z) € [c^,l]), by
Proposition 2.1, we see that F71^) € [^1,^2] (resp. Fn(xi) C [^,^^])
because (^1,^2) ^ ^*- So,

P^UP^ C[^i,.z;2]U[^,^]
where P^, denotes the intersection of the (mod. 1) orbit ofxi by F with [0,1)
f o r z = 1,2. Set

^=(P,,UP,JU{^,^}.

Let
d^=E(F(x)) and 7r(x) = F{x) - d^.

We note that ^(xz) = 7r(a;^) for i = 1,2, d^ = d ;̂ + 1 and d^ = d^.

We choose an auxiliary map h: R —^ M satisfying:

• /i(a; + 1) = ̂ (^) + 1 for all x € R;

• /i(0) = 0;

• /I|R\(J<+Z) ls continuous and strictly increasing;

• if x € K then /i(rr) = lin^ /i(i/) < lin^ h(y).
y<x y>x

Let ^ € £ be the nondecreasing map obtained from h~1 by extending it
to the whole real line. We note that g is strictly increasing on h(R\ (Jf+Z)),
for each x € K there exists a closed interval [aa;,&a;] C (0,1) such that
g([dx,bx}) = x and if x , x ' e K then, a; < x ' if and only if ^ < c^/.
In particular, since {x^x^} H JC = 0, fa|(o;2,^) is strictly increasing and
^-i(c^) e (^c2^-)- Then we define G € £ as follows:

• G\^ ^ ] is strictly increasing and, for each a^^bx € [^^a^^],

G(a^) = a^x) + ̂ ^ G?(^) = ̂ (rc) + ̂  •

• G\\b ^ a * } [s strictly decreasing and, for each a^^bx 6 [bx^,a'x^
"• X2f " I 1

G(ax) = &7r(o;) + dx, G(bx) = a^.(^) + dx .
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• G{g~l{cF)'} € (a^) +^,^2) +cU. ^[a.^-1^)] is strictly
increasing and GI^-I^),^] is strictly decreasing.

• C?(0) € (a^,) + d^, &^) + ̂ ), G| [o,b,j is strictly increasing and
G\[b^,i] is strictly decreasing.

We note that G € A and CG = g^^cp). Moreover, for each x e K we
have that C?([aa;, &a;]) C [^(cc) + dx,b^^) + ̂ ]-

Now, we only have to prove that J^O"1") = Zo(0) = Ip^i) and
^G^c) = IG^G) = IF^^)' ^rom au said above we see that

^(F^i))^^)) and E^^)) =-^(G^^)).

Since ^(0) = 0, g^co) = CF, ^ is non-decreasing and <7|(^ ,a *) ^s strictly
increasing we have that g{D(x)) € (0,cp) (resp. g(D(x)) G (c^p, 1)) if and
only ifP(rc) € (0,%) (resp. D(.r) € (CG, 1)). Therefore,

TG(°) = IF^) == ^1 and ^G'^) = IF (^2) = ^2.

In short, K,(G) = (^i, ^2) ^d the theorem follows. D

Another strategy to prove the above theorem is the one used by de
Melo and van Strien in the proof of Theorem II 3.3 of [15]. However our
approach, suggested by F. Manosas, is considerably more simple in the
case of maps with two critical points. It seems to us that this approach,
which uses strongly the characterization of the itineraries of a map given
by Proposition 3.1 (b), could also simplify the proof in their case and could
be used to deal with similar problems for multimodal circle maps of degree
one.

To end the proof of the second statement of Theorem A we still have
to prove that if (^1,^2) ^ £a for some a € K then there exists F 6 A
such that Rp = {d} and /C(-F) = (^i,^)' We note that the strategy used
in the proof of Theorem 4.2 also works in this case. However, we prefer
a constructive approach which characterizes better the allowed kneading
pairs in £ \ <?*. We consider separately the rational and the irrational case.
To deal with the rational case we need the following technical lemma.

LEMMA 4.3. — Let F € A n C^R, R) and let p / q G Q with (p, q) = 1.
Then the following statements hold:
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(a) Assume that J^(cj?) = S^p/q^ • • • 6q-.-i(p/q)L6q(p/q)c. Then there
exists ?7, a neighborhood of F in A H (^(M, M), such that for each G € ?7,
TcG^) is either ^{p/q) or^{p/q).

(b) Assume that Z^(0) = e^p/q^ • • ' € q - - t ( p / q ) L € q ( p / q ) M . Then there
exists [/, a neighborhood of F in A H (^(R.M), such that for each G € U,
J^(04-) is either I^p/q) orUp/q).

Figure 7. The graph of {Fq — p ) near cp-

Proof. — We only prove statement (a). Statement (b) follows in a
similar way. Assume that Ip^cp) = ^{p/q^ ' • -^q-i^P/q^Sq^P/q)0' Let
P = {xi}i^z be the twist periodic orbit of period q and rotation number
p / q such that Xq-\ = cp- Clearly, we can take F\^^_^^p\ (see Figure 7) in
such a way that F has a periodic (mod. 1) point z G (^9-2? cp) close to c^,
of period g, such that (Fq — p)\[z^cp}ls ^ri^ly increasing, (Fq — p){x) > x
for each x € (z^cr) and I.p(z) = I g ( p / q ) (in particular F(z) > 1 = F(l)).
Since

^(^-p)M=o
there exists 0 < e < CF — z such that

^-^x;|
for each x C (c^ — e,c^ -h e). Now we take [7, a neighborhood of F
in (^(R, R) H A, such that for each G € (7 the following conditions hold:
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a) Mca) = Wq^ ... 6g.•^(p/q)L6g(p/q)s(G''(c^)...;

b) G has a periodic (mod. 1) point ZG < CG close to z, of period q,
such that G(zc) > max{l, (7(1)} and JG^G) = !e(p/q);

c) CG € (cp - e,cp + e), (G9 -p)|[^,cc] is strictly increasing and
(G9 - p)\[ca,cF+e] is strictly decreasing;

d)(G^-p)(cG)e(c^-e,CF+e);

e) ^ {G9 - p)(x) < j for each x e (cp - e, cp + e).

We note that for each G € U and x e [zc, Co} we have that

MX) = Wq^ ... Sg^p/q^Syip/q)8^^ .. . .

Let ZQ e (CG, 1) be such that G(zc) = G{zy) (such Zy exists because, in
view of b), G(zo) > G'(l)). Clearly, for all a- € [ZG, Zy} we also have that

la(x) = 6l(p/q)L... 6^(p/q)L6y(p/q)s(G'tW ....

If (G"7 - P)(CG) < CG, then for each x € [zG,ca] we have that
(<7? - p)»(a;) g [ZG,CG} for each z e N. Hence, /c^c) = Is(P/<l).
Now, assume that (G'« - p)(cc?) > CG. From c) and d) we see that
CG < (G9 - p)(cc) € (cp - e, CF + e) and (G9 - p)(co) is the maximum of
G" - p in (cp - e, cj. + e). So (G? - ̂ ^cc) < (G"? - P)(CG). On the other
hand

(G9 - p)(cc) - (G9 - p}\ca) = ̂  (^ - Pm\ ((G" - p)(ca) - cc)

with $ between CG and (GI - p)(cG). In view of e) we have that

^(G^-PXO < j and hence

(G9 -P)(CG) - (G^-P)\CG) < (G" -P)(CG) - CG.

Therefore CG < (<?» -p)2^) and, consequently,

(^ - p) ([CG, (<^ - p)(cc)]) C [CG, (G9 - P)(CG)] .

From all said above we see that, in this case, .TG^G) = Jfl(p/g). D

The next result already proves the second statement of Theorem A in
the degenerate rational case.
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PROPOSITION 4.4. — Let (^1,^2) ^ ^p/g with p e Z, 9 € N
and (p,<7) = 1. Then there exists F 6 A such that Rp = {p/q} and
W=(^2).

Proof. — We will deal first with the case p / q € Z (that is, q = 1).
From Lemma 2.3 (b) we have

£p = {((^r, (p + iwr), ((p - iwr, (^)00),
((p-iW)00,^)00}.

Assume that (^i, ̂ 2) = ((? - l)^^)00, O^)00). Then we take F e A
such that a G (0, cp) is a fixed point of (-F — p) with the property that
(F—p)\ [a^i] is a unimodal map satisfying that cp < (F—p)(l) (see Figure 8).

0 a CF 1

Fig-ure 8. The map F.

In consequence

^(^-^(n^a^))' and J^)=(^)°°.

Thus /C(F) = ((p - 1)^, (p^)00^)00). The rest of the ca^es follows in a
similar way.

Now we consider the case q ̂  1. Assume first that

(^2) e {(K{p/q\Up/q)\(r^p/q)^(p/q))}.
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Set P = {xi}^z with Xi = z/g + I/(2^) for each z € Z and let
FeC1 (R, R) H A be such that

1)F(0)=Oandc^=^-i ;

2) F(a;) = re + p/9 for each x e P;

3) F is affine in the interval [xo, Xq-^}.

Note that P is F-invariant and Fi(x) = a; + z 2 for each x € P
and z e N. Hence, s^^)) = 5(F^_i)) = L for ^ = 1,2,... ,q - 1.
Moreover, since ^(cp) = F^g-i) = a;g_i + q^ = cp 4-p we see that
5(F^)) = s(F^Xq^)) = C. On the other hand,

d(cp) = d(^-i) = E(F(^_i)) - ̂ (^-i)

^^^i+n^^n+i\ 2q q / \q/
=ei(p/q)+l=6i(p/q),

and, for i = 2,..., q — 2,

d(^(c^)) = ̂ F^-i))

=E(F^+l(^-l))-£?(F^(^_l))

=^^l)^(2^)

=(^^)^)^)_(^),,)

= ei(P/9) = 6i(p/q).
Lastly,

ri^-1^))^^^-1^.!))

=E(2^+^-^2^^-^)

-^-K^)^)
= ̂ (p/9) -1 = ̂ g(p/g).

In consequence 1?^) = S^p/q)1-. • . 6q^(p/q)L6q(p/q)c.

Now we are ready to construct maps Hg, H^ e A such that

RHS = RHH = {P/Q},
W)=(S(p/q)^(p/q)),

W^=(r^(p/q)^{p/q)Y
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From Lemma 4.3 (a) we have that there exists U, a neighborhood of
F in AnC^R^M), such that for each G e U, ^(^c) is either ln(p/q)
or ^(p/q). Moreover, from the proof of Lemma 4.3, G has a periodic
(mod. 1) point ZG < CG of period q such that G(zc) > max{l,G(l)} and
IG^G) = Z>(jV9)- Let ZG € (CG, 1) be such that G(zc) = G(^). Clearly,
for all x C \ZG, ZG\ we also have that

IcW = Wq^ ' ' • S^p/q^p/qY^^ • • • .

To construct Hg take G € U such that (G9 - p){cc) < CG and let
c* e (I,CG + 1) be such that G(cc) = G(c*). We take ̂  C C^R.R) H A
such that ens = CG, G|[C--I,CHJ = ^|[C*-I,CHJ and ^(a;) > G{zc) for all
rr € (CG,C*) (see Figure 9).

G(zc)

ZG CG ZQ c^

Figure 9. The maps Hs and G.

We note that

^([CG,I]) C Hs{[zG,CH,}) = G([^G,CG]).

Hence, from above we have that

WO-) = IH,W = IG^G) = UP/Q)'

Thus

/C(^)=(JKP/9)J,(P/9)).

Furthermore, by Lemma 3.7 and Theorem 3.6 we see that Rns = { P / Q } '
To construct Hp we take G G U such that (G9 - p)(c^) > Cj,-. Let
a={Gq - p)(cc) and let b e (cc, ̂ c) be such that (G9 ~ ^)(6) = CG' Since

(G9 -i9)(6) = CG < (G9 -p)2^) = (G9 -p)(a)
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and a, 6 e (cc, 1)
such that G{ca) =
QifR == %? ^|[c"-

(see Figure 10).

we have that b > a. Finally, let c* € (I,CG? + 1) be
= G(c*). Then we take HR 6 ^(M.R) H .4 such that
-i,a] = GI^-I^] and Hp(x) > G(b) for all x € (a,c*)

G(6)

ZG CG a b ZQ c*

Figure 10. The maps Hp and G.

In consequence, since b < ZQ we have that G(b) > G^z^) = G{ZG)
and hence,

^([^R. 1]) C HH([ZG^H^}) = G([ZG^CG}).

Therefore, from above we get that

WO-) = InnW = I^) = lR{p/q).

Thus, IC(Hn) = d^(p/g),Jfi(p/g)) and A^ = {p/q}.

To end the proof of the proposition it remains to construct a map
He € ^(R.R) nA such that RH^ = {^} and /C(^) = (t(p/q)^(p/q)).
To do it we proceed as in the above construction of the map Hg by using
Lemma 4.3 (b) and, instead of the map F, the map F e C^R,]^) D A
defined as follows. Set P = {xi}i^z with xi == i / q for each i G Z. Then F is
such that:

i) F is affine in the interval [:TI, Xq-\\\

ii) F{xi) =Xi-^-p/q;

m) Cp € (^-i, 1) and F(c^) = Cy + F(p/^) +1. D
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Proof of the second statement of Theorem A. — If (i/i, ^2) ^ ^* then
the theorem follows from Theorem 4.2. Otherwise, (^i, ^2) ^ Sa with a € M.
If a € Q then the theorem follows from Proposition 4.4 If a ^ Q then, from
the proof of Proposition 1 of [5] it follows that there exists F € A such
that Rp = {a}. Now, from Lemma 2.3 (a) we see that J^(a) = J^(a) and
J^(a) = J^(a). So, from Theorem 3.6 we obtain that /C(F) = (J^(a),J6(a)).
Hence, by the definition of £a we see that 1C(F) = (^i, ^2)- n

5. APPENDIX: EXTENSIONS AND CONSEQUENCES
OF THEOREM A

In this section we comment some extensions and consequences of
Theorem A. In Subsection 5.1 we extend the main result of this paper to
the case of orientation preserving circle homeomorphisms. In Subsection 5.2
we will consider some questions about the existence of full families of maps
from A.

5.1. The kneading pair for the orientation preserving circle
homeomorphisms.

In this subsection we extend Theorem A to the orientation preserving
circle homeomorphisms. To this end we will denote the class of all
orientation preserving circle homeomorphisms by H. More precisely, F G H
if and only if F e C and it is strictly increasing. Now, we extend the notion
of reduced itinerary to the maps from H as follows. For F e H and x G R
let

( M i fD(^)=0 ,
^IL ifD(^0.

For i e N, set
Si=s(F\x)) and d, = ̂ F1-^))

(recall that d(x) = E(F(x)) - E(x)). Then !p(x) is defined a^

r d^d^2 ' " if Si = L for all i > 1,
t d^d^ ' ' • d^ if Sn = M and ^ = L for all i € {1, . . . ,n - 1}.

In this context we define the kneading pair of a map F e H as
(jrF^U^O-)). As above it will be denoted by /C(F).

With these notations all results from [4] and this paper can be
extended to this case in the natural way. In particular Propositions 3.1
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and 3.3, Theorem 3.6, Corollary 3.2 and Theorem A. However, since
the characterization of the set of kneading pairs of maps from T~L is not
the straightforward extension of Theorem A, we are going to state this
characterization in detail.

For a € K we set

f {(X(a),J:(a)),(^(a),J,(a)),a,(a),J,(a))}
£a=\ i f a = p / 9 € Q, with (p,q) = 1,

[ {(^(a),J,(a))} i f a ^ Q ,

and £ = |j £a. The characterization of the kneading pairs of maps from H
a€K

is now given by the following.

THEOREM 5.1. — If F e H then /C(F) e £. Conversely, for each
(^1^2) e £ there exists F e H such that IC(F) = (^i,^)- Moreover
^ = {a} if and only ifJC(F) e £a.

5.2. A remark on the full families for maps in A.

In the context of Theorem A the following question arises in a natural
way: Does there exist a family F^, e C^M.R) H A, depending continuously
on /^, such that for each (^i, v^} € £ there exists /^o in the parameter space
such that /C(-F^o) = (^i, z^)7 In the literature, such a parameter family of
maps is usually called a full family (see [7] and [15]). It is well known that,
in the unimodal case, the family f^{x) = /^(l — x) with x € [0,1] and
[i G [1,4] (among others) is full (see [7]).

The simplest non-invertible degree one circle maps are the ones with
two critical points. That is, the maps from class A. Among the families of
such maps, the standard maps family defined as

_ / . - sin(27nc)Fb^ (x) == x + w -\-b—-.——/-
Z7T

where x € R and (&,w) € (l,oo) x M is known to display all dynamical
features. Therefore, it is natural to think that this family is full. To discuss
this problem we need to introduce some notation

Let F € C H C^M.R). We shall say that x e R is a non-flat critical
point if it is a critical point and there exists an integer k > 1 such that F

d^
is C1^ in a neighborhood of x and —^ F{x} -^ 0. We say that x € R is a
turning point if the map F has a local extremum in x.
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PROPOSITION 5.2. — Let F e A be analytic. Then /C(F) ^ U Sa.
That is, RF is not degenerate to an irrational. "^

Proof. — Assume that 1C(F) G £a for some a ^ Q. From Lemma 2.3
(a) and Theorem 3.6 we have Rp = {ft}. In [14] Malta proves the
following statement which depends heavily on a result of Yoccoz [20]:
Let F € C H C2^,]^) and suppose that all non-turning critical points are
non-flat. If F has a turning critical point, then F has periodic points.
So, from the fact that if a ^ Q we have that F has no periodic points, we
get that -F has flat non-turning critical points. Since F is analytic it follows
that F = 0; a contradiction. D

Proposition 5.2 tells us that there is no analytic full family in A. In
particular, the standard maps family is not full. This suggests that the
"good" families from A will only be weakly full in the following sense. We
say that a family F^ e C1 (R, R) nA, depending continuously on JLA, is weakly
full if for each (^1,^2) € f* U (U^Qfa) there exists ^o in the parameter
space such that IC(F^) = (1/1, v^}. Thus, we propose the following.

CONJECTURE 5.3. — The standard maps family is weakly full.
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