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THE OVERDETERMINED CAUCHY
PROBLEM

by C. BOITI and M. NACINOVICH

Introduction.

In the classical Cauchy problem for a linear partial differential equa-
tion with initial data on a hypersurface, smooth initial data together with
the equation allow to compute the Taylor series of a smooth solution at
any given point of the hypersurface.

This leads to the notion of a formally non-characteristic hypersurface
for a system of linear partial differential equations, that was considered in
[AHLM], [AN3], [N2].

This remark suggests further generalizations of the Cauchy problem,
where the assumption that the initial data are given on a formally non-
characteristic initial manifold is dropped, and we allow formal solutions (in
the sense of Whitney) of the given system on any closed subset as initial
data.

The problem is then to find classical smooth solutions of the system,
whose restrictions in the sense of Whitney are the given initial data.

This point of view was particularly fruitfull while investigating initial
value problem for overdetermined systems with constant coefficients and
data on a hypersurface in [N2], [N3], and for systems of partial differential
equations related to complex analysis in [N4].

In this paper we continue this investigation of the Cauchy problem
for a pair of convex subsets of RN.

Key words: Evolution — Overdetermined systems — Cauchy problem — Phragmén- Lin-
deldf principle.
Math. classification: 35N05 — 32A15.
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The introduction of causality, evolution and hyperbolic pairs further
generalizes the notions introduced in the previous works and gives a
unifying point of view encompassing several different problems, ranging
from questions of smoothness of the solutions, to the classical Cauchy
problem, to the comparison of formal to actual solutions, to Hartog’s type
phenomena.

In the first part of this paper we discuss classes of entire functions on
irreducible affine algebraic varieties.

By the use of Fourier-Laplace transform and of the fundamental
principle of Ehrenpreis-Palamodov, many questions concerning evolution
pairs can be translated into the problem of establishing a priori estimates
of the Phragmén-Lindel6f type for such classes of entire functions.

Then we apply this method to discuss conditions for evolution in one
space variable and several time variables, and Petrowski-type conditions
for evolution from an affine submanifold of arbitrary codimension.

Finally we apply this theory for extending Hormander’s necessary
and sufficient condition for evolution for partial differential equations with
constant coefficients and Cauchy data on a hypersurface, to the case of
general systems and Cauchy data on a closed submanifold of arbitrary
codimension.

1. Algebraic preliminaries.

Let P be a regular unitary Noetherian commutative ring, of global
finite homological dimension N. Let 9t be a P-module of finite type. We
denote by Supp(90t) and Ass(9N) respectively its support and the set of its
associated prime ideals:

(1.1)
Supp(M) = {p € Spec(*B) | My # 0},
Ass(90) = {p € Spec(M) | M contains a P-submodule isomorphic to P/p}.

Note that Ass(9t) C Supp(9M) and the two sets contain the same minimal
elements, as Supp(9M) is the set of all prime ideals of P that contain an
associated prime ideal of 9.

For the proof of the following two propositions we refer to [N1]J:

PropositionN 1.1. — Let 9, F be two P-modules, with M of finite
type and p be a nonnegative integer. Then the following statements are
equivalent:
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(i) Extf(M,F) =0 Vj<p;
(ii) Extf#(‘,p/p,}') =0 Vj<p, Vp€ Ass(IM);
(iii) Extf(B/p,F) =0 Vj <p, Vp € Supp(M);
(iv) Ext%(‘ﬁ, F)=0 Vj<p, and for every ‘B-submodule N of M.

ProrosiTiON 1.2. — Let M, F be two P-modules, with 9 of finite
type and p be a nonnegative integer. Assume moreover that

(1.2) Extf#(‘,p/p,}') =0 Vj>p and Vp € Supp(M).
Then the following statements are equivalent:
(i) Extfi}(im, F)=0 Vj=p;
(if) Extf,(P/p,F) =0 Vj>p, Vp € Ass(I);
j
(iit) Extig
Analogous propositions hold for the Tor functor. We have indeed:

(M, F) =0 Vj>p, and for every P-submodule N of M.

ProposiTioN 1.3. — Let M, F be two P-modules, with M of finite
type and p be a nonnegative integer. Then the following statements are
equivalent:

(i) TorP (M, F) =0 Vj<p;
(ii) Tor?(P/p,F) =0 Vj<p, Vp € Ass(M);
(iii) Tor? (P/p,F) =0 Vj<p, Vp € Supp(IM);
(iv) Tor?(‘ﬁ, F)=0 Vj<p, and for every B-submodule 9 of M.
Proof. — To show that (iii) = (i), we consider a composition series
for 9

0=mcht1C...kacwtk+1=m.

For each 0 < h < k the P-module My 1/My, is isomorphic to a P-
module PB/p,, for a prime ideal p € Supp(9M). From the long exact sequence
associated to the quotient:

— Torky; (M 1/My, F)
— Tor? (M1, F) —> Tor? (My, F) — Tor? (Mp41/Ms, F)
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we deduce from (iii) that
Tor? My, F) = Tor? (My41,F) for 0<h<k and j<p,
while the homomorphisms
Tor,‘?(zm,,, F) — Torp‘”(zth , F)
are surjective for 0 < h < k. From these observations it follows that (i)

holds true.

To show that (i) = (iii) we argue by contradiction. So we assume
that (i) is valid, but Tor;‘p(‘,ﬁ/p,}' ) # 0 for some p € Supp(M) and some
0 < j < p. Let g be the smallest positive integer for which is possible to
find a p € Supp(M) with Tor:?(‘,p/p,}') # 0. Having fixed g, using the
assumption that P is Noetherian, there is a maximal p, € Supp(91) such
that Tor?(‘.p /9o, F) # 0. By the properties of the ideals in Supp(90) there
is an exact sequence of -modules of finite type of the form:

0 — M —- M —> 9 — 0
for a nonzero submodule 9 of /p,. Then from the exact sequence:
. — Torg“(im,}') — Tor:‘lp(ﬂ,}') — Tor?_l(‘ﬁ,f') — ..

we deduce that Tor?(ﬂ,f ) =0.

Indeed Torq"p(im, F) = 0 by assumption (i) and Tor:f_l(‘ﬁ, F) =0 by
the first part of the proof, since Supp(9) C Supp(9M) and for every prime
ideal p in Supp(91) we have Tor?(‘,p/p,f ) =0 for every j < (¢—1) by the
choice of the integer q.

Let Q ~ J/py for an ideal J of P containing p,. From the exact
sequence:

0 — J/pp — B/po — B/I — 0

we obtain the long exact sequence:
. — Tor?(3/po, F) —> Tor? (P/po, F) — TorP(B/I,F) — ...

Then we have Tor:?(ﬂ /Po, F) = 0 by the argument above; moreover
Tor?(‘,p/ﬂ, F) = 0 by the implication (iii) = (i) because every prime
ideal in Supp(*B/J) belongs to Supp(MM) and properly contains p,. This
contradicts Tor?f(ip/ po, F) # 0. The proof of (i) = (iii) is complete.
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From the equivalence (i) < (iii) the equivalence of these two state-
ments with (ii) and (iii) easily follows.

ProposiTiON 1.4. — Let M, F be two P-modules, with M of finite
type and p be a nonnegative integer. Assume moreover that

(1.3) Tor?(‘,p/p,f) =0 Vj>p and Vp € Supp(M).
Then the following statements are equivalent:
1) Tor?(ﬂﬁ, F)=0 Vj=p;
(ii) Tor? (PB/p,F) =0 Vj >p, Vp € Ass(M);
(iii) Tor?(‘)’t, F)=0 Vj>p, and for every PB-submodule I of M.

Proof. — We first prove that (ii) = (i). We argue by descending
induction on p. The statement is indeed trivial if p is larger than the
homological dimension N of . So we fix the integer p < N and assume
that the statement is true for larger p.

Assume that 9 is p-coprimary. We argue by induction on the smallest
integer k such that p*90t = 0. If k = 1, then 9 can be thought of as a torsion
free B/p-module and hence there is an exact sequence of J-modules:

0 — M — (P/p) — Q — 0.

From the exact sequence
. — Torp1(,F) — Tor,(M, F) — (Tor;’?(‘p/p))r — ..

we obtain that Tor,(9M, F) = 0 because Tor,(P/p, F) = 0 by assumption
(i) and Torp41(Q,F) = 0 by the inductive assumption, as Ass(Q) C
Supp().

Let now k > 0 and suppose that Tor?(‘ﬁ, F) = 0 for all p-coprimary
B-modules of finite type 9 for which p*~ 19t = 0. Let My = {m €
M |p - m = 0}. This is a p-coprimary submodule of 9 for which pMt = 0,
while 901/91, is also p-coprimary and p¥~! (/M) = 0. The long exact
sequence associated to the quotient yields:

e — TorP (Mo, F) — Torr (M, F) — Tork (M/My, F) —> ...

and therefore Tor;‘l3 (90, F) = 0 because Tor;? (Mo, F) = Tor;’f3 (Mm/My, F) =
0 by the inductive assumption.
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To drop the assumption that 9 is p-coprimary, we note that if ¢ is a
part of Ass(9) there is a P-submodule N of M such that

Ass(M) = ¢, Ass(M/M) = Ass(M) \ ¢.
As we have the exact sequence
Tor;?(‘ﬂ, F) — Tor;‘P(im, F) — Tor;‘P(Dﬁ/‘ﬁ, F)

the conclusion follows by induction on the number of prime ideals in
Ass(901).

To show that (i) = (ii), we note that the implication (ii) = (i),
together with assumption (1.3) gives Tor;(Q,F) = 0 for all P-modules Q
of finite type satisfying Ass(Q) C Supp(9M) and all j > p. If p € Ass(IN),
then 90T contains a submodule 91 isomorphic to PB/p. If O is the quotient
M/N, we have Supp(Q) C Supp(M) and then the exact sequence

Tor;ﬁl(ﬂ,f) — Tor;‘?(‘ﬁ,]-') — Tor;?(fm,f)

gives that Tor;?(‘,p /9, F) ~ Tor;‘?(m, F)=0.

The equivalence with condition (iii) is clear, because Ass(M) C
Ass(90) for every P-submodule of M.

Remark 1.1. — In the applications of Propositions 1.1, 1.2, we will
consider often the situation where F is the kernel of an epimorphism of
unitary injective 8 modules: when we have a short exact sequence

(1.4) 0 — F — F, — F, — 0

we obtain for every unitary J3-module 9 of finite type the long exact
sequence

(15) ... — Ext} (M, F) — Extfy(9M, F) — Extfy (M, F1) — ...

which yields Ext’,{p(fm, F) = 0 for every j > 1. In particular the question
of the surjectivity of the map Ext%(ﬂﬁ, F) — Ext%(im, F2) reduces
to the surjectivity of the maps Ext?p(m/p,fl) — Ext%(&p/p,]:b) for
all associated prime ideals p of 901. This reduction is especially convenient
when using the Fourier-Laplace transform to investigate the properties of
systems of p.d.e.’s with constant coefficients.
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In the same way, Propositions 1.3, 1.4 can be applied in particular
to P-modules F that are quotients of flat B-modules. The short exact
sequence of unitary B-modules

(1.6) 0 —F — F, — F — 0

yields for every unitary B-module 9 a long exact sequence
1.7)
. — TorP (M, F2) — TorP (M, F) —> Torr (M, F1) — ...

When F; and F, are flat, the question of the injectivity of the map
Torgs(‘.m, F) — Tor:?(im, F3) for a given unitary PB-module 9 of finite
type reduces to the analogous question where 91 is substituted by §3/p for
the associated prime ideals p of 9.

2. The Cauchy problem for a pair of convex subsets of RM.

Let 9t be a unitary module of finite type over the ring P =
C[¢, .-+, ¢n] of polynomials in N indeterminates with coefficients in C. Then
90t has a Hilbert resolution:

0 —» Pad tAa_1(¢)

Pphi-r — Pl-2
2.1 t
( ) A1(¢) Pu tAO(g) Pao — M — 0

1

of length d < N. We define D; = , where z1, ...,z are Euclidean

1 0
V=1 0xi
coordinates in RY. Let F be a C-linear space of (generalized) functions or
distributions defined on a subset of R" and such that D;F C F for every

j=1,...,N. It becomes a unitary P-module by the action
(22) p(Q)- f=p(D)f VpeP, VfeF.

Then the groups Tor;)(im, F) and Extd, (9, F) are isomorphic to the
cohomology groups of the complexes
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0 — Fu Aa-1(D) Fod-1 tA“'_a(Dz Fod-2
2.3 ¢ ¢
&9 LAO g MO
and
0. — Fao 40(D) Foa1 M
(2.4)
Ag—2(D) Faa Aa-1(D) Fi o, 0

respectively. The P-module F is injective if Ext?,‘> (9, F) = 0forevery j >0
and every unitary P-module 90 of finite type; it is flat if Torf(im, F)=0
for every j > 0 and every unitary P-module of finite type 9.

If Q2 is an open subset of RY we denote by £(£) the space of complex
valued C* functions on 2, endowed with the usual Fréchet-Schwartz
topology. It is a P-module by the action (2.2) and is injective when Q
is convex.

Let F be a locally closed subset of RY. Then there is some open
subset  of RY such that F C Q and F NQ = F. Denote by Z°(F,Q) the
subspace of functions in £(£2) which vanish with all derivatives on F. It is
a closed subspace and a P-submodule of £(€2). The exact sequence

(2.5) 0 — I®(FQ) — EQ) — Wr — 0

can be taken as a definition of the space of Whitney functions on F', showing
both its topological structure of a space of Fréchet-Schwartz and of a
P-module by the action induced by (2.2). Whitney’s extension theorem
shows that these structures are independent of the choice of the open
neighborhood Q of F in RY (subject to the condition that F = F N Q).
Note that for a convex F' the P-module Wr is injective (cf. [N1]).

When F is regular in the sense of Schwartz the strong dual of Wg
can be identified to the space £ of distributions in RY having compact
support contained in F'. This is a P-module by (2.2) and is flat when F is
convex.

If f € Wp, all its partial derivatives D*f (for o € NV) are well
defined at points of F. If F C RY is locally closed and S is a closed subset
of F, we define Z°°(S, F') as the space of Whitney functions f on F such
that D*f(z) = 0 for every z € S and a € N¥. Then we have the exact
sequence:

(2.6) 0 — I®(S,F) — Wgp — Ws — 0.
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In the classical formulation of the Cauchy problem, one seeks for a
solution of a partial differential equation on a manifold with boundary, re-
quiring that the solution and some of its normal derivatives take assigned
values on the boundary. Usually the requirements on the given partial dif-
ferential operator are such that, for a solution smooth up to the boundary,
the differential equation and the initial data allow to compute all its partial
derivatives at points of the boundary. In our formulation, we will drop this
assumption, using as initial data Whitney functions and look then to the
possibility of extending formal solutions on the initial manifold to solutions
in a larger manifold that contains the initial one in its boundary.

Let K; C K- be convex subsets of R , with K3 locally closed in RY
and K; closed in K5. We think of K; as the set where the initial data
are given and of Ky as the set where we want to find the solution of a
(generalized) Cauchy problem. Thus, given a unitary P-module 91 of finite
type, we are concerned with the P-homomorphism:

(2.7) Ext% (M, Wk,) — Exth (9, Wk, ).

Using the Hilbert resolution (2.1) the homomorphism (2.7) translates into
the continuous restriction map

(2.8)

{ue Wr)*™ |Ao(D)u=0}>u — ulg € {u€ (Ws)* | Ao(D)u = 0}.
We introduce the following notions:

The pair (K3, K2) is a causality pair for the unitary P-module 90t if
(2.7) is injective;

The pair (K3, K») is an evolution pair for the unitary P-module 2t
if (2.7) is surjective;

The pair (K3, K3) is a hyperbolic pair for the unitary P-module 9t
if (2.7) is an isomorphism.

From Propositions 1.1, 1.2 we obtain:
ProposiTION 2.1. — Let 9 be a unitary P-module of finite type and

let K1 C K- be convex subsets of RN with Ko locally closed and K closed
in K5. Then the following statements are equivalent:

(1) (K1, K?) is a causality pair for 90t;
(2) EXtO‘P(m’Im(Kla K3)) =0;
(3) Exth(P/p,I°(K1, K3)) = 0 for all p € Ass(9M);
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(4) Ext%(P/p,I°(K1, K2)) = 0 for all p € Supp(IM);
(5) (K1,K?) is a causality pair for P/p for all p € Ass(IM);
(6) (K1, K?2) is a causality pair for P/p for all p € Supp(I).

PROPOSITION 2.2. — Let 9 be a unitary P-module of finite type and
let K; C K> be convex subsets of RN with K locally closed and K closed
in K,. Then the following statements are equivalent:

(1) (K1, K2) is an evolution pair for 9;

(2) Extp(9M,I°(K;, Kz)) = 0;

(3) Extp(P/p,I°(K1, K2)) = 0 for all p € Ass(9);

(4) (K1, K?2) is an evolution pair for P/p for all p € Ass(9N).

ProprosITION 2.3. — Let 9t be a unitary P-module of finite type and
let K1 C K5 be convex subsets of RN with K, locally closed and K, closed
in K. Then the following statements are equivalent:

(1) (K1, K3?) is a hyperbolic pair for 9;
(2) Ext®(9M,I°(K:1, K2)) = Extp (M, I°(K1, K2)) = 0;

(8) Ext%(P/p,I°(K1,K2)) = Extp(P/p,I°(K1,K3)) = 0 for all
p € Ass(9);

(4) Extp(P/p,I°(K1, K3))
p € Supp(M);

(5) (K1, K3) is a hyperbolic pair for P/p for all p € Ass(9M);
(6) (K1, K3) is a hyperbolic pair for P/p for all p € Supp(IN).

Exth(P/p,I°(K1,K3)) = 0 for all

The dual map of (2.7) is the map

(2.9) Tor} (M, E5) — Tord (M, Ex).

When S and F are convex, the subspaces *Ag(D)((£5)**) and
tAo(D) ((EF)*) are closed respectively in (£5)* and (€f)*. The map (2.9)
can be described in terms of the Hilbert resolution (2.1) by the continuous
linear map:

€™  _ _ (Ep)™
(210) tA()(D) ((g‘lg)al) tAo(D) ((8}')0'1)
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induced by the inclusion S < F'. Given an ideal p in P and a locally closed
subset S of RN, we denote by

(2.11) 5(p,8) = {u € Ws|p(D)u=0Vp € p}

the space of Whitney functions on S which are annihilated by every partial
differential operator associated to a polynomial in p and by F°(p,S) its
annihilator in £§:

(2.12) F°p,8) ={Te&|(xT)=0VueFp,9)}

Since, when S and F are convex, (2.8) is a continuous linear map
between Fréchet-Schwartz spaces having a dense image, we obtain:

PropPosiITION 2.4. — Let 9 be a unitary P-module of finite type and
let K1 C K5 be convex subsets of RN with Ko locally closed and K; closed
in K5. Consider the maps

gkl 85{2
—_—
30(’),[{1) %o(p7K2)

where p is a prime ideal in P. Then we have:

(2.13)

(1) A necessary and sufficient condition in order that (Ki,K3) be a
causality pair for M is that (2.13) has a dense image for every p € Supp(I);
it suffices that (2.13) has a dense image for every p € Ass(9M).

(2) A necessary and sufficient condition in order that (K;,K3) be an
evolution pair is that (2.13) has a closed image for every p € Ass(9).

(3) A necessary and sufficient condition in order that (Ki,K;) be a
hyperbolic pair is that (2.13) is an isomorphism for every p € Supp(9)
and is sufficient that (2.13) is an isomorphism for every p € Ass(90).

The advantage of the formulation given in Proposition 2.4 stems
from the good characterization of the spaces involved in (2.13) which we
obtain by the use of Fourier-Laplace transform and Ehrenpreis fundamental
principle.

We define the Fourier-Laplace transform of a distribution with com-
pact support T' € £'(RY) by

(2.14) 7(¢) = (exp(—V=1(-,(), T) V¢eCM.

This is an entire function of exponential type.
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Introducing the support function Hx of the convex subset K of RY:

(2.15) Hg(¢) = suII;Im(x,C) for ¢ecCV
z€

the Fourier-Laplace transform of T is characterized by the theorem of
Paley-Wiener-Schwartz by the estimate

(2.16) IT(¢)] < CA+ [¢)™exp(Hk(C)) V¢ eCV

where K is the convex hull of the support of T and C,m are suitable
nonnegative constants.

Let V = V(p) denote the affine algebraic variety of CV of common
zeros of the prime ideal p of P. We denote by O(V) the space of holomorphic
functions on V, i.e. the space of restrictions to V of entire functions in CV.
It is a Fréchet space for the topology of uniform convergence on compact
subsets of V. Let K be a locally closed convex subset of RY and denote by
O\k)(V) the linear subspace of O(V') of functions F satisfying an inequality
of the form

|F(O)] < Cr(1+ [¢])™F exp Hor (C)
(2.17) for some nonnegative constants Cr, mp

and a convex compact subset o C K.

From the Ehrenpreis fundamental principle we deduce the following;:

ProposiTiON 2.5. — Let V be the irreducible affine algebraic variety
of common zeros in CV of a prime ideal p of P and let K be a locally
closed convex subset of RY. The Fourier-Laplace transform induces a C-
linear isomorphism

Ex

(2.18) —S"(p, %) =5

Oy (V).

We shall further investigate the topology and the properties of spaces
of holomorphic functions on an affine algebraic variety of CV in the
following section. Although in this paper we will restrain to the applications
to the Cauchy problem for Whitney functions, we keep a more general point
of view, suitable for developing the study of the Cauchy problem in different
classes of functions and distributions.
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3. Spaces of entire functions.

Let V c CV be a reduced affine algebraic variety. We denote by O(V)
the space of holomorphic functions on V, i.e. the space of complex valued
continuous functions on V which are restrictions of entire functions in CV.
By the Weierstrass theorem (cf [GR]), O(V) is a Fréchet space for the
topology of uniform convergence on compact subsets of V. We note that
O(V) is a Montel space.

Given an upper semicontinuous function ¢ : V. — R, we denote by
04(V) the space
(3.1) 05(V) = {f € OV)| sup |£(0)e™*| < o0},
This is a Banach space for the norm
O4(V)3 f — |Iflls =sup|F(e™*©)| eR
¢ev
and the natural inclusion Oy(V) — O(V) is compact. Moreover, we have:

LEMMA 3.1. — Let ¢,1 : V. — R be upper semicontinuous functions
on V such that

lim )% = .
CeV
[¢]—o0

Then the inclusion map
04(V) = Oy (V)

is compact, as bounded subsets of Oy (V') are relatively compact in Oy (V).

Let Py = P denote the ring C[(3, ...,{n] of complex valued polyno-
mials in CV. We are interested in spaces of holomorphic functions which
are P-modules for the multiplication by polynomials. Hence we introduce
sequences ¥ = {zpn}neN of upper semicontinuous functions ¢, : V. — R
having the property:

(3.2) log(1+[¢]) + ¥n(¢) < ¥n+1(¢) VREN,VCeV

and consider the direct limits:

(3.3) Oy(V) = lim Oy, (V).
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By Lemma 3.1 the space Oy (V) is a compact inductive limit of the sequence
O"/"n (V) *

Therefore Oy (V) is the strong dual of a Fréchet-Schwartz space and
each bounded subset B of Oy(V) is already contained and bounded in one
of the Banach spaces Oy, (V') for some nonnegative integer n (cf. [FW],
[Ko]).

We associate to the sequence 1) the set of weights

(3.4) Ly=1{\¢)= i €ne?(© e, >0Vn M) < 00 V¢ € V}.

n=0

The topology of Oy (V) is described (cf. [BMS], Theorem 1.6) by the
following:

LemmA 3.2. — For A varying in Ly, the sets

(3.5) Ug = {f € Op(M) [1F (Ol < A(¢) V¢ € V}

form a fundamental system of open circled convex neighborhoods of 0 in
Oy (V). A subset G of Oy (V) is open if and only if GN Oy, (V) is open in
Oy, (V) for every n € N. Moreover, the sequence of compact sets

Kn={f € Oy, (V)| Ifllgn <n} for n=1,2,..
is a fundamental covering of Oy (V).

We collect the topological properties of the spaces Oy,(V) which follow
from the discussion above in the following:

THEOREM 3.1. — Let ¥ = {¢,} be an inceasing sequence of upper
semicontinuous functions defined on the reduced affine algebraic variety
V c CV and satisfying (3.2). Then the space Oy(V) is

(1) an (LF) space, being the compact inductive limit of an increasing
sequence of Banach spaces;

(2) is barreled, being a locally convex topological vector space in which
absorbing closed convex circled subsets containing 0 are neighborhoods of 0;

(3) is a (DF) space, since it admits a fundamental sequence of com-
pact subsets and every intersection of a countable family of convex circled
neighborhoods of 0 that absorbs strongly bounded subsets is a neighbor-
hood of 0;
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(4) is an (S) space, since every convex circled neighborhood U of 0
contains an open neighborhood of 0 which is relatively compact in the
completion of Oy(V') with respect to the Minkowski norm defined by U;

(5) is an (M) space, i.e. bounded subsets are relatively compact in
Oy(V);

(6) is bornological, i.e. all seminorms that are bounded on bounded
subsets are continuous;

(7) is reflexive;

(8) is complete.

We refer to [AT], [Gr], [Sc] for the standard implications which
connect the results obtained in the preceeding lemmas to the statement
of this theorem.

4. The abstract Phragmén—Lindel6f principle.

Let V be an irreducible affine algebraic variety in CY and consider, for
two sequences ¥ = {1}, @ = {¢»} of upper semicontinuous functions on
V satisfying (3.2), the spaces Oy (V) and Og (V). In the applications, these
spaces will be identified via the Fourier-Laplace transform to dual spaces
of spaces of solutions of a homogeneous system of 1.p.d.o’s with constant
coefficients. The statements about hyperbolicity, causality and evolution
will translate then into the following notions. Let us consider the inclusion
map

(4.1) 0¢(V) N 0¢(V) — 0¢(V).

We say that the pair (¢, ) is
(i) hyperbolic if (4.1) is an isomorphism;
(ii) of causality if (4.1) has a dense image;
(iii) of evolution if the map (4.1) has a closed image.

While discussing these notions, we note that Og(V) N Oy (V) is equal
to the space Ogpy (V) Where ¢ A1p = {¢, A, }. Since @ A 1 also satisfies
conditions (3.2) we shall for simplicity assume that ¢, < 1, on V for every
n and consider then the inclusion:

(4.1') 0g(V) = Oy (V).
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We also note that, because of the topological properties of the spaces
0Og(V') and Oy(V) the condition that (4.1’) has a closed image is equivalent
to the fact that it is a topological homomorphism. In particular:

THEOREM 4.1. — The pair (¢, ) is of evolution if and only if:

VA€ LpIN € Ly such that Up NO(V) C U,.

LeEMMA 4.1. — Let a < 8 and let K be a compact subset of V' with
a nonempty interior. Then for every € > 0 there is a constant c. > 0 such
that

(4.2) Ifllgs < €llfllga + ce ?gglf(é)l Vf € O, (V).

Proof. — Assume by contradiction that the statement is not true for
some € > 0. Then we can find a sequence {f,} C Oy (V) such that

Iflles > €llfollga +vsup £ ()]
CeK

We can assume that ||f,||¢, = 1. Then we have

Ifollge <€t sup|f(Q)l <v '
(EK

Since the inclusion Oy, (V) — Og,(V) is compact, by passing to a
subsequence we can assume that f, — f € Oy, (V). We have ||f|lg, =1
and therefore f # 0. But f vanishes at all points of K and therefore is 0 on
V by the unique continuation principle. This gives a contradiction, proving
our contention.

From this lemma (cf. also [Bae]) we deduce:

THEOREM 4.2 (PHRAGMEN-LINDELOF FOR EVOLUTION). — A neces-
sary and sufficient condition in order that the pair (¢,1) be of evolution
is that one of the following equivalent conditions be satisfied:

(PhLI) VaeN3BeN,cq, >0 suchthat fe€ Og(V), |flly. <

1= "f”¢ﬁ < Ca-

(PhLII) VYae€N3B€N suchthat Og(V)NOy, (V) C Oy, (V).

Proof. — Assume that the pair (¢, 1) be of evolution. Then, for every
fixed a € N, the set {f € Og(V) || flly. < 1} is compact in Og(V') and
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therefore is contained and bounded in Oy, (V) for some 8 € N. Therefore
we obtain (PhL I) and (PhL II). It is obvious that (PhL I) = (PhL II)
and also that (PhL I) is a sufficient condition in order that (¢,) be an
evolution pair. To complete the proof, we only need to prove that (PhL II)
implies (PhL I).

Assume then that (PhL II) is valid. Let a € N be fixed and let 8 € N
be such that Og(V) N Oy, (V) C Oy, (V). Then we have

04, (V)N Oy, (V) = O (V) N Oy, (V) Vv 2.

We consider on these Banach spaces the intersection norm. By the Banach
open mapping theorem we obtain, with some constant c(y) > 1, the
estimate:

1flles + 1F e < () (Ifllgy + Ifllpa) VS € Op (V)N Oy, (V).

Now we apply Lemma 4.1 choosing v = 8+1 and € > 0 such that e-c(y) < 1.
With K C V compact and with a nonempty interior we obtain:

(A =cMllfliss < NI fllpa +ce-clr) sup IF(O Vf € 0g(V)N Oy, (V)

and this shows that (PhL II)=(PhL I), because e~¥= is bounded from
below in K.

As a corollary, we obtain:

THEOREM 4.3 (PHRAGMEN-LINDELOF PRINCIPLE FOR HYPERBOLIC-
ITY). — A necessary and sufficient condition in order that (¢,%) be a
hyperbolic pair is that one of the following equivalent statements be valid:

(PhLTI') Yo € N3B €N, ¢, > 0 such that |fllgs < callfllva YV € OV);
(PhLII) Vo e N3IBeN such that Oy (V) C Oy, (V).

5. Further remarks on hyperbolicity.

In this section we shall consider equivalent formulations of the hyper-
bolicity conditions for special pairs (¢, v)).

a) We consider first the case where the sequence {1, } is defined in the
following way:

(5.1) ¢:CY — R is a real valued convex function
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and the functions 9, : V. — R are restrictions to V' of the continuous
plurisubharmonic functions { — %(¢) + alog(e + |¢])-

We introduce the dual convex function

¥*(2) = sup —Im(z, ¢) —¥(¢).
ceC”

This is an upper semicontinuous convex function in CV, with values in
R U {4+00}. We define D(¢*) = {z € CV |4*(2) < oo}. The set D(¢*) is
nonempty and we have

Y(¢) = sup —Im(z, ) —9*(2) V¢eCV.

z€D(y*)

THEOREM 5.1. — A necessary and sufficient condition in order that
the pair (¢,), with ¥ = {(¢ + alog(e + -))|v} for a convex function
¥ : CV — R be hyperbolic is that there exist a € N and a constant
¢ > 0 such that

(5.2) P({) <c+¢al() VCEV.

Proof. — We note that (5.2) is obviously a sufficient condition for
hyperbolicity. To prove that the condition is also necessary, we use condition
(PhL I') of the previous section: we can find a € N and « > 0 such that

(*) IF(Ol < ke?=© v(eV
for every function f € O(V) satisfying
(#%) If(Ql<e?® VeV
For every z € D(1*) we consider the entire function on C":
CNo¢ — eV Reiz:0 ¢,
Its restriction to V satisfies () and therefore we have by (*):
“Im(z, ¢) - ¥*(2) < logk + $a(() VCEV.

Taking the supremum of the left hand side for z € D(¢*) for fixed { € V,
we obtain (5.2).
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B) Next we consider the case where ¢ : C¥ — R is a continuous
plurisubharmonic function satisfying for some constants a > 0,¢ > 0r > 0:

(53)  [¥(Q) — ()| <c(L+ICNC —nl V¢neCN with ¢ —n| <7

and 1), is the restriction to V of the continuous plurisubharmonic function
N
on C™:

CV 3¢ — Y()+alogle+[¢]) eR.

We have the following:

LeEmMMA 5.1. — Let 9 be a continuous plurisubharmonic function on
CY satisfying (5.3). Then, if g € O(CN) satisfies

912y = [l 19(ORE O < o0,

it also satisfies the pointwise estimate:
(5.4)

N! c 1\\V e
001 < Ty e (max (5.7 ) Mollzaen 0+ e

Proof. — For every fixed 6 € CV and g € O(CN) we obtain by the
mean value theorem

N!

90O = S5 [ g Man)
™ CEB(6,p)

for every p > 0. When 0 < p < 7, using (5.3) we obtain by the Cauchy
inequality

_ N! _ ¢ a _
90) O] < Tg e 0" [ jg0)jeviOar(g)
™ B(6,p)

[ N! a _
< ;ﬁec”(lﬂol) p N||9"L2(C”,¢)-

We can assume that ¢ > Nr. Then we can take in the inequality p =
N

—————, obtaining (5.4).

c(1+|0|)a’0 aining (5.4)

Using the L? existence theory for 8, we obtain, using the lemma above
and a standard argument (cf. [H61]):
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LeEMMA 5.2. — Let ¥ be a continuous plurisubharmonic function
satisfying (5.3). Then there are positive constants ¢,m > 0 such that for
every § € CV we can find an entire function Fy € O(CN) with:

(5.5) Fp(60) = €@, |Fo(¢)] < e(1+[¢))™e¥© v¢ e CN.

Using this lemma we obtain the criterion:

THEOREM 5.2. — Let v : C¥ — R be a continuous plurisubhar-
monic function satisfying (5.3) and let 1, be the restriction to V of the
function ¢ + alog(e + | - |). Then a necessary and sufficient condition in
order that the pair (¢, 1) be hyperbolic is that there exist « € N and ¢ > 0
such that

P(C) <c+9a(() VeV

Proof. — The condition is obviously sufficient. To obtain the necessity,
it suffices to apply the condition (PhL I) of the previous section to the
restriction to V of the entire functions Fy, for 8§ € V, given in the previous
lemma.

6. The Phragmén-Lindel6f principle for
plurisubharmonic functions.

To investigate the conditions for a pair (¢, ¥) to be of evolution, it is
convenient to translate the results of § 4, formulated in terms of holomor-
phic functions, into statements involving instead weakly plurisubharmonic
functions on the irreducible affine algebraic variety V. In this section we
show that this is in fact possible under some additional conditions on the
sequences ¢ and . This result is analogous to the corresponding one in
[MTV] and is suggested by the treatment of analytic convexity in [Ho2]
and [AN2].

As before, we assume that V C CN be an irreducible affine algebraic
variety, of positive dimension.

We recall that a function u : V' — [—00,400] is said to be weakly
plurisubharmonic if it is plurisubharmonic on the complement of the
singular set S(V') of V' and moreover

u(¢) = limsup u(z) V¢ eV.
z—¢
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We will denote by P(V) the space of weakly plurisubharmonic functions
onV.

We say that a sequence ¥ = {¢,,} of real valued functions on V is
admissible if the following conditions are satisfied:

(i) for every integer n > 0 the function 1, is the restriction to V of a
plurisubharmonic function %, in cN ;

(ii) for every nonnegative integer n and for every constant ¢ > 0 there
are an integer n’ > 0 and a constant ¢’ > 0 such that

(6.1) Pn(C) + clogle + [¢]) < P (¢) +¢ V¢ €CN;

(iii) for every integer n > 0 there are a real number 0 < 6 < 1, an integer
n’ > 0 and a constant ¢’ > 0 such that

(6.2) Pn(C) < 0P (¢) +¢ V¢ €CN;

(iv) for every nonnegative integer n there are constants by, ¢, > 0 such
that

(6.3) [%() = Pn(¢)| < en(1+1CDP ¢~ if ¢, ¢’ €CN and |¢—('| < 1.

We note that condition (6.3) implies that ¥n, is bounded by a constant times
(14[¢])®»*! on C™. In the following, while considering admissible sequences
1, we will think the functions {¢,} as given and write fo simplicity ¥,
instead of 1/;,,

We have the following:

THEOREM 6.1. — Let ¢ and v be two admissible sequences of
plurisubharmonic functions defined on an irreducible affine algebraic va-
riety V. CN. Then the Phragmén-Lindel6f conditions (PhL I), (PhL II)
of Theorem 4.2 are equivalent to the following:

(PhL III) for every integer n > O there are an integer n’ > 0 and a
constant ¢, > 0 such that, for u € P(V):

(1) u(@)<¥n() eV
(i) 3ve€N,3c>0 suchthat =~ u(Q) <P () +cn Y EV.
u(() <Y()+c VeV
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The proof of Theorem 6.1 follows the general pattern used in [H62],
[AN2] for discussing analytic convexity and can be obtained by repeating
with slight variants the arguments in [MTV] and [F]. It will therefore be
omitted, referring the reader to [MTV], [F], [H63], [Ho4] for the general
results on plurisubharmonic functions that are needed to fill in the details.

7. The Cauchy problem with data on an affine subspace.

Let ¥ denote an n dimensional affine subspace of RY. By an affine
change of coordinates we can as well assume that ¥ is the coordinate n-
plane:

>y = {(L’ = (ZL‘I, ,xN) (= RN |:I)n+1 =..= xN = 0}

A typical closed wedge I with edge ¥ can then be written, after another
linear change of coordinates, in the form

= {z=(z....2N) e RN |zt > 0,..., 2" > 0}.

We are interested in characterizing the P-module of finite type 90t for which
(X,T) is a hyperbolic or an evolution pair. We already observed in §4 that we
can restrain to consider the P-modules of the form P/p with p € Ass(9M).

Let us denote by Py, the ring C[(i, ..., {,] of polynomials in the first
n indeterminates. This is a subring of P and therefore every P-module
M can be considered also as a P,-module by change of the base ring.
Let (4.1) be a Hilbert resolution of M and identify Ext% (9, £(RY)) to
the space of smooth solutions of the homogeneous system Ag(D)u = 0,
with u € (8 (RN )) “ . In [AN3] and [N2] it was observed that a necessary
and sufficient condition in order that the Taylor series at points of ¥ of
the elements of Ext® (9, £(R™)) be determined by the restriction to X of
a finite number of their transversal derivatives is that 901, considered as
a Pp-module, be of finite type. When this is the case, we say that X is
formally noncharacteristic for 9.

Denote by 7, : C¥ — C™ the natural projection onto the first n

coordinates. Then we obtain:

LEMMA 7.1. — A necessary and sufficient condition in order that ¥
be formally noncharacteristic for 9 is that for every p € Ass(9) the map

(7.1) V(p) 3¢ — m(()eC”
be finite.
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For the proof of this lemma we refer to [N2].

Let us denote by (91),, the P,-module obtained from 9t by change
of the base ring. When ¥ is formally noncharacteristic, we obtain a Hilbert
resolution for (9M),, of the form

‘Rar_1(€) 'Ry (€),P.,-1 ‘Ro (§)Pro
.o v n n

(72 0 — Pre — (Mm), — 0

where we set £ = (1, ...,(») and d’ < n. The Cauchy data for 9t on ¥ can
then be identified to the solutions v € (£(R™))™ of Ro(D;,..., Dp)v = 0
and, using the homotopy formulas relating (4.1) to (7.2) we obtain a one-
to-one correspondence between Ext%n ((9M)n, E(R™)) and Exth (9, Wrx).

We say that 9t has free Cauchy data on X if (9),, is a free P,-module.
We obtain:

LEMMA 7.2. — A necessary and sufficient condition in order that I
have free Cauchy data on X is that

Vp) 3¢ — m(() eC”

be surjective for every p € Ass(901).

8. The Cauchy problem with data on a formally
noncharacteristic free affine subspace of RV:
a necessary Hormander’s type condition.

In [H61] Hormander investigates the necessary and sufficient condi-
tions for the pair consisting of a closed half space of RY and its boundary
to be of evolution for a P-module of the form P/Z, where T = (p) is a
principal ideal generated by a polynomial p € P.

There is no loss of generality in considering the case where the
boundary ¥ of the closed half space Q2 is a hyperplane containing the origin.
Then the pair (X, ) is of evolution for P/(p) if and only if the scalar partial
differential operator p(D) admits a fundamental solution E € D'(RY) with
support contained in 2. Using this fact, the characterization is obtained
in terms of properties of the complex affine variety of the zeros of the
polynomial p.

In our formulation there is a difference in sign with respect to the
one in [H61], due to the fact that we are taking as the main object for
investigation the irreducible affine algebraic variety V, rather than the
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system of differential operators attached to it: starting with a scalar partial
differential operator p(D) the variety V is given by the equation p(—(¢) = 0.

In this section we extend this result to the case of overdetermined
systems, showing how conditions generalizing the one in [H61] are related
to the Phragmén-Lindel6f principle.

They are indeed equivalent for the pair consisting of an affine hyper-
plane and the half space it bounds.

In the case of pairs (S,), where S is an affine subspace of RY of
arbitrary codimension and © a closed wedge with edge equal to S, we
prove the necessity of the generalized Hormander condition, whereas for
the sufficiency we need a stronger condition, which is no more necessary,
but which coincides with the previous one in the codimension 1 case for
pairs consisting of compact convex sets K; C S, Ko C .

However, in the case in which the associated variety is an algebraic
curve, we prove that our generalized Hormander condition is necessary
and sufficient for semi-global evolution, i.e. for pairs consisting of compact
convex sets K1 C S, Ko C Q.

Note that global evolution implies semi-global evolution (for data on
a free noncharacteristic affine subspace of R ). The two concepts agree for
a scalar operator and initial data on a hypersurface, but are distinct in
general.

Let the pair (S, ) consist of an affine subspace S of RY of arbitrary
codimension and a closed wedge 2 with edge equal to S. By an affine change
of coordinates we can always reduce to the case where

(8.1) S={z=(z}....,.2N)eRY: g"* =.. . =2V =0}
for some 1 < n< N —1and
(8.2) Q={z=(z,...,2N) eRY : 2" >0,...,2" > 0}.
We assume that 9 is a given P-module of finite type and that

S is formally noncharacteristic and free for 9. In particular, for every
irreducible affine algebraic variety V = V(p) with p € Ass(9) the map

Tp - V3(<l>‘>CN)—)(Cl77<’n)€(Cn

is finite and surjective. Let us set, for ¢ = ((1,...,¢y) € CV:

¢=01--6n), ¢"=((ns1,---,CN)-
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Since 7, is finite and surjective, there are positive constants k, b such that
(8.3) K" <R+ Y =(¢¢") eV

Moreover, there is a proper affine algebraic variety Z C C™ such that
V\n,;1(Z) is smooth and

VAT H(Z) 3¢~ eC"\Z
is an m-sheeted cover of C" \ Z.
We consider the following condition on V:
3R > 0, ¢, € R such that
for every 8 € R™ with B,(0,R) ={|¢' - 0| <R} CcC"\ Z
(H) and every connected component w of m,1(B, (6, R))

there is { € w such that
Im{; <c, forj=n+1,...,N.

It coincides with the one given by Hérmander in [H61] in case V is
an affine algebraic hypersurface.

Then we obtain the following criterion:

THEOREM 8.1. — Let 9 be a P-module of finite type for which S
is formally noncharacteristic and free. Then a necessary condition in order
that the pair (S,Q) be of evolution for 9 is that for every p € Ass(M)
condition (H) be satisfied on V = V (p).

Proof. — Let us consider the plurisubharmonic function in cN:

N

k() = z max{Im¢;,0}.

j=n+1

By Theorems 4.2 and 6.1 a necessary and sufficient condition for the
pair (S,Q) to be of evolution for 9 is that, for every V = V(p) with
p € Ass(9) we have:

VA, B,a >0 34,3 > 0 with the property:

if u € P(V) satisfies,with constants A, and ¢, depending on u:
u(C) < AlIm(’| + Br(C) + arlog(1+[¢]) on V'
u(¢) < AuIm¢’| + ay log(1+[¢]) onV

then it also satisfies:

u(¢) < A'lIm¢’| + Blog(e +[¢]) on V.

(8.4)
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To show that (8.4) = (H), we argue by contradiction. Let &/ denote
the set of pairs (6,s) with 6 € R and s € R with s > 0 such that
B,(6,s) C C™\ Z and there is a connected component w of m; (B, (8, s))
in V such that «(¢) > s for every ( € w. This set is semialgebraic and
therefore the function

f(t)=sup{seR: (0,s) elU, |0 =1t}

is semialgebraic. Statement (H) is equivalent to the fact that f(t) is
bounded for ¢ — +o0o0. Assuming the contrary, there are positive
constants ¢, q such that

() =t1(2c+ 0(1)) fort>t, > 0.

Thus there is t; > t, such that for ¢ > ¢; there is §; € RY with 16| = ¢,
By (6s,ct?) C C™\ Z and a connected component w; of 7, (B, (6;, ct?)) on
which k(¢) > ct?.

Let A be a positive real number and fix a real valued nonnegative func-
tion x € D(R™), with support contained in the ball {z’ = (z!,...,2") €
R™: |2'| < A/2}, and x(0) = 1. By Paley-Wiener theorem for every integer
¢ there is a constant c; such that

85 R <al+C) e (Fimcl) W ecn

We consider for every positive integer £ the plurisubharmonic function
in CV defined by

u,e(C) = log(IX(¢" — 0:)]) + £log(1 + |C]).
Clearly we have, as (8.5) holds with ¢, = 1 when £ = 0:
A
ur,e(¢) < Sm¢’| + Llog(1+[¢[)  on cM.

Using (8.3) we obtain that log(1+|¢|) < ylog(e+|¢’]) on V, for a constant
~ > 0. Hence for each fixed B > 0, we can find ¢35 > ¢; such that

ue(¢) < AlImC’| + Br(() V(€ w,

provided ¢ > t5. Indeed log(e+|{’|) < log(e+t+ct?) on wy, while k(¢) > ct?
on wy.
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On the other hand, using the Paley-Wiener estimate, we obtain for
some t3 > to that

ut0(¢) < AlIm{’| near the boundary of wy if t > 3.
Indeed, with a fixed s > £ (1 + é) we obtain on the boundary of w;:
(P AL
log([%(¢" — 6¢)] < log e, ~ slog(1 + ct?) + = [Im¢’Y,

whereas

2log(1 + [¢]) < £ylog(e + |¢']) < bylog(e + t + ct9).

We define a function v, € P(V') by setting

vee(€) = ma‘x{ut,l(C), A|ImC'|} for ¢ € wy
L6577 AlIm¢’| for( €V \ wy.
When t > t3 we have
{ v,e(€) < AlImC’| + Br(¢) onV
v,e(€) < AJtm(’| + elog(1+¢[) onV

but (8.4) cannot hold true because for every £ and ¢ > t3 we also have at
points 6; € wy with m,(0:) = 6;:

v1,0(0:) > Llog(1 + |64)).

Remark 8.1. — By repeating the same arguments used in the proof
of the previous theorem, we also show that a necessary condition in order
that the pair (K, K3) defined by

(8.6) Ky={(t,z) eRFxR": |z|< A, 0<t;<Bforj=1,...,k}

(8.7) K, ={(t,z) € K2 : t=0},

for constants A, B > 0, be of evolution for 9 is that for every p € Ass(9M)
condition (H) be satisfied on V = V (p).

Indeed, it suffices to put in (8.4) A, = A’ = A.

We can thus say that condition (H) is necessary for global evolution
(from a formally non-characteristic affine subspace of RY to RY), but
also for semi-global evolution, i.e. for pairs (Ki, K3) of compact subsets
as above.
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9. The case of algebraic curves.

In this section we investigate the Cauchy problem in K5 with initial
data in K3, when K; and K are defined by (8.7) and (8.6) with n = 1.

The general discussion allows to reduce to the investigation about
the validity of a Phragmén-Lindelof principle on algebraic varieties V =
V(p) € CF*1 where p is a prime ideal in C[ry,...,7x,(].

In this particular case we obtain more precise results. Namely, we
prove that condition (H) is necessary and sufficient for the pair (K, K3)
to be of evolution for a system of linear partial differential operators with
constant coefficients.

We assume that V' = V(p) is an irreducible affine algebraic curve in
and that the projection into the last coordinate 7 : V — C = C¢
is finite and surjective. The closure V of V in CP**! is an irreducible
projective curve and 7 extends to a finite surjective map #: V — CP! =
C U {oo}. We note that V' \ V = #71(00).

(Ck+l

The normalization V—2—V is an irreducible smooth projective curve
and the birational isomorphism o is regular.

Let 07 o 77 1(00) = {P,..., Ps}.

Then we can fix pairwise disjoint connected open neighbourhoods
Vi,..., Vs of Py,...,Ps respectively in V, in such a way that, setting
V; =0(V;\ {P;}) C V for 1 < j < s we obtain:

i) VinWy=gforl<j<hsgs;
(i) o: V;\{P;} — V; is biholomorphic;

(i) =: V; - w(V;) € C¢ is an mj-fold covering for some integer
m; > 1;

(iv)  m(V;) U{oo} is an open neighbourhood of co in CP'.

(v) foreachj (with 1< j < s), 7~ }(R)NV; consists of 2m; connected
components.

We can also assume that for a fixed r > 0 and every j =1,...,5 we
have:

m(V;) ={¢eC: [{|>r}.
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For each j = 1,...,s we obtain a Puiseux parametric description of V; of
the form:
( C = 2™
Th = Z Th,j,a2%, forh=1,...,k.
ag"(hhj)

Denote by Eg, for R > 0, the set
Ep={(r,¢)=(r1,...,7,¢) €V : [Im({| < R}.

For each fixed R > 0 and R’ > 0 the set
{(r,Q) € Er: [{| > R’}
is semialgebraic and for R’ > r sufficiently large for each j =1,...,s
VinErN{(r,) €V : (| > R}

consists of 2m; connected components.

ProposiTION 9.1. — Let p be a prime ideal in C[ry,..., 7k, (] such
that the natural projection 7 : V(p) — C; is finite and surjective.

Then the pair (K1, K2), defined by (8.7) and (8.6), is of evolution for
P/p in the Whitney class if and only if the following condition is satisfied
for every R' > 0:

(*) there exist c, € R and R > 0 such that on every connected
component of {(1,{) € V : [Im{| < R, |¢| > R’} there is a sequence
{(7y,¢,)} such that |(,| — +o0 and |(Im7,) | < c,.

Proof. — Sufficiency. We can assume R > 1. For v sufficiently
large, condition (*) implies that for every j = 1,...,s on each of the 2m;
connected components of

{(r,¢) € V;: [{| > R, Im¢| < R},
we can find a sequence {(7,,(,)} with |¢,| — +o0 and such that |(Im7,)*| <
Co-
Let us fix 7 = 1,...,s and let us omit the index j for simplicity.

We can then find 2m sequences {z,(,h)}heN c C\ B(0,r) such that, for
every h=0,...,2m — 1, Iz,(,h)lm > R, |Im(z,(,h)e—ih—v:)| < R, |2,(,h)| /" 400
and |(Im7)*+(2")]| < co.
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Let us consider the semi-algebraic set

E={(s,29,.. ., 2% D) € [r, +00) x C™ :
12| > s, Im(z™e=*%)| < R, |(Im7)* (z™)| < ¢, VR =0,...,2m — 1}.

By assumption the projection 7 : E — [r,+00) is onto for large positive s.

Therefore by Theorem A.2.8 of [H61] we can find 2m Puiseux series
20 (s), ..., 22m™=1(s) converging for large positive s and such that
(5,209(s),...,22m"1(s)) € E, i.e.

|Im (2 (s)e"_)| R and |(Im7)* (2™ (s))|<c, VR =0,...,2m—1

for s large enough.

Extending these curves up to 0 € C we can then find 2m real analytic
curves wy(t), such that, for some constant ¢, > ¢,

IIm(wr(t)e™*=)| < R and |(Im7)* (wa(t))] < Vh=0,...,2m— 1.

In order to prove that the following Phragmén-Lindel6f principle is valid:
given A, B > 0,
(9.1)

VM € N 3M’ € N such that Vu € P(V') with

{u(r, ¢) < Allm¢| + B|(Im7)*| + Mlog(1 + [¢| +|7]) ¥(7,¢) €V

uw(1,¢) < Allm(| + Mylog(1+ [¢| +|7]) + Cu V(1,{) €V
we also have:
u(7,¢) < AlIm¢| + M'log(1+ [¢| + |7]) + C" V(7,{) €V,

it suffices to prove the following Phragmén-Lindel6f principle: given
A,B >0,

VM € N IM’ € N such that Vu € P(C) with

{ u(z) < AlImz™|+ B’ + M log(1 + |z™|) for 2z = wp(t), h=0,...,2m -1
uw(z) < A|Imz™| + M, log(1 + |2™]) + Cu forze C

we also have:

u(z) < Allmz™| + M'log(1 + |z™|) +C' VzeC.
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Indeed:
1) Let us first assume M, = 0 and prove that
VM € N AM’ € N such that Yu € P(C) with
{u(z) < Allmz™|+ B’ + Mlog(1 + |2™|) for z=wp(t), h=0,...,2m —1
u(z) < Alz™|+C, forzeC
we also have:
u(z) < A|lImz™| + M'log(1 + |z™|) + C' Vz eC.

The 2m real analytic curves wp(t) can be chosen to divide the C¢ plane into
2m components. We obtain the Phragmén-Lindel6f estimate by applying
the maximum principle to each of these components.

As the argument is the same on each of them, we give the proof of
the estimate for the sector S bounded by the curves w,(t) and w; ().

Let us first consider the sector S bounded by the curve w,(t) and the
half ray {pe‘z= : p > 0}.

We assume, as we can, that

T T
~%m < argw,(t) < om

for every t.

By construction we can find k > 0 and ¢ such that for § = arg z with
z € S we have

-g <(m+k)@-09)< g
and hence cos(m + k)(0 — @) = A > 0.
Let us set, for € > 0,
ve(2) = u(z) — eRe ((ze7*)™**) — 2MRelog(i + z™)
— Almz™ — 2AR - B’ — M log4 — C,.
For z = w,(t) = po(t)e®®), p,(t) > 0, we have:
ve(2) = w(wo(t)) — epgt(t) cos(m + k) (8o(t) — ¢) — 2M log |i + w}' (¢))|

— Almw™(t) —2AR— B’ — Mlog4 — C,
< Allmw]*(t)| + B’ + M log(1 + p(t))
— M log[p?™(t) cos® mB,(t) + (1 + p(t) sin mb,(t))?]
— AImw(t) — 2AR — B’ — M log4
< A{|Imw]*(¢)| — Imw)*(t) — 2R} + M log(1 + pJ*(t))
— Mlog(1 + p2™(t) + 2p™(t) sinmb,(t)) — M log 4
<0.
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T
F = —:
or 0 5

ve(2) = u(z) — ep™ * cos(m + k) (% - <p) —2Mlogli +ip™|

—Ap™ —2AR—-B' — Mlog4 - C,
< Ap™+C, —2Mlog(1 + p™)

— Ap™ —2AR—-B' — Mlog4 - C,
<0.

Moreover, for z € S, we have

Alz|™ = Ap™ < ep™FF cos(m + k)(6 — o)

f|—>R—£1/k> A 1/k
or |zl =p > Re = ) ~ lecos(m+ k)@ —p)|

Therefore for |z| = p > R., z € S, we have

ve(2) = u(z) — ep™ ¥ cos(m + k) (6 — @) — 2M log |i + 2™|
— Almz™ —2AR-B' — Mlog4 - C,

< Alz™| + Cy — ep™F cos(m + k)(6 — ¢) — A(Imz™ + R) — AR — C,,
< —A(Imw™(t) + R)
<0.

It follows, by the maximum principle, that
1:(2) <0 inS Ve>o.
For € — 0 we obtain
u(z) < 2Mlog |1+ 2™| + Almz™ + 2AR+ B’ + M log4 + C,,
< 2Mlog(l + |z™|) + A|lmz™|+C'+C,  Vze€S.
Arguing in the same way in the other sectors we have that
(9.2) u(z) < 2Mlog(1 + |z™|) + A|lmz™|+C'+C, VzeC.
Let us now get rid of the constant C,.

Let us set, for z € S and € > 0,

we(2) =u(z) — eRe [(ze'iw)mk] — 4MRelog(i + z™)
— Almz™ —2AR— B’ —2Mlog4 — C’
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with k > 0 and ¢ such that for § = arg z with z € S we have
T T
—5 <mk(0—<p) < 2
and hence cosmk(0 — ¢) > X' > 0. For z = w,(t) or z = w;(t) we have
we(2) = u(w;(t)) — ep** () cos mk(6;(t) — ) — 4M log |i + w}* ()|
— Almw*(t) — 2AR — B’ —2M log4 - C’
< Allmw; ()| + B' 4+ M log(1 + o} (t))
— Mlog[p5™ (t) cos® mf;(t) + (1 + Py (t) sinmb; (t))?]
— Almw[*(t) — 2AR — B’ — M log4
<0.

Moreover for z € S we have

Cy < ep™* cosmk(0 — ¢)
C.\ 7% C E
- 2 > —>2 .
for |zl =p > Ru (s)\') (ecosmk(G—ga))

Therefore for z € S with |z| > R,, by (9.2) we have

we(2) = u(z) — ep™* cosmk(f — ) — 4M log |i + 2™
— Almz™ — 2AR~ B' —2Mlog4 - C'
< Allmz™| 4+ 2M log(1 + |z™|) + C' + C,
— ep™* cosmk(f — @) — 4M log |i + 2™
— Almz™ —2AR - B' —2Mlogd4 - C'
< A(Im2™| — Imz™ — 2R)
< 2A(jn=1%.§ [Imw}* ()| — R)

N

0.

By the maximum principle we have
we(2) <0 VzeS Ve>o0.
For £ — 0 we obtain, for z € S:

u(z) <4Mlog(1 + |z™|) + Almz™ + 2AR + B’ + 2M log4 + C'
<M'log(1 + |2™]) + A|lmz™| + C".
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Arguing in the same way in the other sectors, we finally have

u(z) < M'log(1 + |2™|) + AlImz™| + C” ¥z e C.

2) Let us consider now the general case M, € R.

We can easily see that for each € > 0 there is a constant B, . > 0
such that

M,log(1+ |2™|) <elz™|+ By, Vz€eC

and hence
u(z) < (A+¢)[z2™|+ (Cyu+ Bye) VzeC.
By the first step we have
u(z) < (A+¢€)Imz™|+ M'log(1 + |2™|) +C" VzeC

for every € > 0.
For ¢ — 0 we have the thesis.

Necessity.  Condition (H) is necessary in view of the remark following
Theorem 8.1 and it clearly implies condition ().

Remark 9.1. — Theorem 8.1 and Proposition 9.1 show that, in the
special case where V(p) is an algebraic curve, condition (H) is necessary
and sufficient in order that the pair (K3, K3) given by (8.7) and (8.6) be
of evolution for P/p in the Whitney class.

10. The Cauchy problem with data on a formally
noncharacteristic free affine subspace of R":
a sufficient Hormander’s type condition.

Now we consider a stronger condition (H’) which is sufficient for
evolution for the pair (K7, K2) considered in the previous sections, but
which in general is not necessary. In the case n = N — 1 this stronger
condition (H’) coincides with Hérmander’s condition (H), and hence we
obtain another proof of Hormander’s characterization of evolution in the
case of scalar operators.
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Let us then state condition (H') by:

(3dR,r > 0, ¢; € R such that
for every § € R™ with 8,(0,R) cC"\ Z
(H) and every connected component w of 7, (B, (0, R))
there is B((j,r) C Bn(8, R) such that
Im(; <1 V¢ en,Y(B(r), j=n+1,...,N.
By translation we can assume that condition (H) holds with ¢, = 0.
Then the following lemma shows that Hormander’s condition (H) is

equivalent to (H') when n =N —1.

LemMA 10.1. — Let F,,(B(0, R)) be the set of analytic functions in
B(6,R) C C™ algebraic of degree < m, i.e. the set of all analytic functions
f in B(8, R) such that for some polynomial R # 0 of degree < m in C"*!
the equation R((, f(¢)) = 0 is valid in B(6,R), and let 0 < R, < R; < R
and 6 > 0.

Then there is r > 0 such that if f € F,,(B(0, R)) and if
3¢, ¢ BO,R,) st Imf(E) <0
it follows that

Imf(§) <0 V{eB
where B is some ball in B(6, R;) of radius r.

This is Lemma 12.8.8 of [H61] after substituting —f to f.

TueoreM 10.1. — Condition (H') on V(p) implies that the pair
(K1, K3) is of evolution for P/p.

Proof. — By translation we can assume c; = 0.
We have to prove that condition (8.4) holds with Au = A.

Let u be a plurisubharmonic function which satisfies the first two
inequalities of (8.4) with Au = A, then by the Hadamard three circle
theorem (cf. [H61]) we can find 0 < R; < R and 0 < § < 1 such that

Therefore, for ¢ € B(6, R) we have
BS(E%) u < Suppg,p){mulog(l + [¢]) + A|lmé]| + ¢, }
< myflog(1+[¢]) + R+ Ri] + AR+ ¢y,
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since log(1 + 6] + R) < log(1+|6] — R1) + R+ R; <log(1+¢|) + R+ Rs.
Moreover,

sup < sup {mlog(l+ |¢|) + A|Im&| + ¢}
B((e,r) B(¢e7)
<mflogl+[{])+ R+ R1+7]+AR+c¢

since

log(1+ |¢p| +7) log(1+ 0]+ R+ 1)

<
<log(1+|0]—R1)+R+R; +7r
S<log(1+ )+ R+Ry1+7

for ¢ € B(6, R;). Therefore for ¢ € VN RY we have

uw(() < (1 -8){mulog(l+[(]) + mu(R+ R1) + AR+ cy}
+6{mlog(1 +|¢|)+ m(R+ Ry +7)+ AR+ ¢}
= [(1 = 6)my, + m]log(1 + [¢]) :
+(1 = 8)[mu(R+ R1) + AR+ cy] +6[m(R+ Ry +7)+ AR+ ] .

This inequality, together with the second inequality of (8.4), implies, by
the classical Phragmén-Lindeldf theorem, that

w(¢) <n[(1 — 8)my + ém]log(1 + [¢]) + AlIm¢|
+ (1 =6)mu(R+ R1)+ AR+ cy] + 6[m(R+ Ry + 1)+ AR+ c|.

After £ steps we obtain:
u(¢) < celog(1+[¢]) + AlImE] + Ap + £n
where ¢y and A, are defined by recurrence by

C1 =My
ce =nf[(1 = 6)ce—1 + dm]

(10.1) {

Al =cy
(10.2) {/\e =(1-6)(ce—1(R+ R1) + AR+ X¢—1)

andn=m(R+R1+7)+AR+c

If we apply the above considerations to
v({)=u({) —c—m(R+R1+71)— AR
instead of u, we obtain

v(C) < crlog(1+[C]) + A[Img| + Ay
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Let

L =limsupcy, A =limsup,.
£—o00 -0

By (10.1) we compute:

L =n[(1-6)L + ém]
ém

L=—m
T—ni—3 -

1
(it is always possible to chose é such that (1 — §) # - ifn>1).

By (10.2)

A=(1-68)[L(R+R;) + AR+ A]
=L(R+ R1)+ AR+ A - §[L(R+ R:1) + AR] — 6A
1-—

A =—6—é[L(R + R;) + AR].

Letting £ tend to 400, we finally obtain
v(¢) < Llog(1 +[¢]) + Allm¢| + A
and hence
u(¢) < Llog(1+ [¢]) + A|lIm¢| + A+ c+m(R+ Ry +7) + AR.

This theorem proves that condition (H’) is sufficient for evolution for the
pair (K3, K3) defined by (8.7) and (8.6).

However, condition (H’) is not necessary for evolution neither for the
pair (S, ) nor for the pair (K1, K32).

Example 1. — Let us consider the following system:

9 2

6t1 0z2
(10.3) o g

atz za.'llz.

The associated algebraic variety is
V= {(T1)T2aC) € C3 1= <27T2 = _42} )
and

(Im71)t + (Im72)* = 2|Re(| - |Im(| on V.
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In this case condition (H) is valid, but not condition (H').

However the system (10.3) is of evolution since adding the two
equations of the system we obtain

0 0

oty
A solution of such an equation is of the form u = u(t; — t2).

Therefore, if u(t1, ) is a solution of the Schrédinger operator

o 0
oty zax2

(note that this solution exists since we have already proved necessity and
sufficiency of Hormander’s condition (H) in the case n = N — 1), we have
that

’U(tl,tz, :1:) = u(t1 - tz,x)
is a solution of the system (10.3).

This example proves that condition (H') is sufficient but not necessary
for the pair (K3, K3) to be of evolution.

We will show by the following example that semi-global evolution
does not imply global evolution, i.e. the Phragmén-Lindelo6f principle

Va > 0 36 > 0 with the property:
if u € P(V) satisfies, with a constant o, depending on n:

(10.4) u(¢) < AlIm¢’| + Bk(¢) + alog(e +[¢]) onV
u(¢) < AlIm¢’| + oy log(e + [€]) onV
then it also satiesfies:
u(¢) < AIm¢’| + Blog(e + []) onV

does not imply the Phragmén-Lindel6f principle (8.4).

Example 2. — Let us consider the system

o .9
6t1 31)2
i + _?i_
Oty | Oz?
0 62

ot; 022
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The associated algebraic variety is given by
V={(r1,72,713,{) €C*: =% np =% 73 =—i¢%}.
For ¢ =& € R we have
Imm =Immp, =0
Imr3 = —£2<0
and hence condition () of Proposition 9.1 is satisfied.

Therfore the pair (K7, K2) defined by (8.7) and (8.6) is of evolution
for the given system, i.e. the Phragmén-Lindelof principle (10.4) is satisfied.

However, we assert that there is a sequence {un}, N of plurisubhar-
monic functions in C* which satisfy

{ un(7,¢) < Allm¢| + BY 3, (Im7)*  ¥(1,¢) €V
un(7,¢) < Ap|Im(| V(r,{) eV

but which do not satisfy
un(7,¢) < A'Im(| + Blog(e + |7| +[¢])  V(r,() eV
forany e N, A’ > 0.
Indeed, for (7,¢) € V we have:
Im7m = 2Re( - Im(
Imm = —2Re( - Im(
Im7s = (Im()? — (Re()?
and hence
S (tmry)* = 2fRe] - flme] + ((1mC)? — (Re¢)?)” > 2 ()2,
j=1

since for |Re¢| < 3|Im(]

((m¢)? — (Re)?) ™ = (Im¢)? — (Re()?
> (1m¢)? - 7 (Im()?

3
= 7 (Im¢ )?

and for [Re(| > 1|Im(|

w

2[ReC] - [Im¢] > [Im¢|* > 5 (Im¢)*.
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It is then sufficient to find a sequence {u,}, .y of plurisubharmonic
functions which satisfy

(105) un(7,¢) < AjIm¢| + BlIm¢|> on V
' un(7,¢) < Ap|Img| onV
but which do not satisfy
(10.6) un(7,¢) < Blog(e + ||+ [¢]) + A'Im¢|  onV

forany B e N, A’ > 0.
Let us construct a seqilénce {@n}nen of convex increasing functions
by

0 if —co<z<0

on(z) = o fog<z<n
n(Z) =

a:—{—;—n ifn<z<+o00.

Then we have a sequence {un},en of plurisubharmonic functions defined
by
(0 ifIm¢ <0
Un(7,¢) = un(¢) = npn,(Im¢) = %Im( if0<Im{<n
nlm¢ +1—-n? ifIm¢ > n.

These functions u,(¢) cannot satisfy (10.6) for Im( large enough,
however they obviously satisfy the second inequality of (10.5), and they
also satisfy the first inequality of (10.5) since

for Im <0 u,(¢) =0 < (Im¢)% + 1,

1 Im¢)? if L <Im¢ <n
for 0<Im¢<n un() = ~Im¢ < {(_15 91 g0 < ImCC< T < (me)?+1,
nZ X B S n

and for Im{ >n  u,(¢) = nIm{ + 1 — n? < (Im¢)? + 1.

Therefore
un(¢) < (Im¢)®+1 W €eC,
and hence the Phragmén-Lindelof principle (8.4) is violated.

We summarize the discussion in the last three sections, by saying that
whereas in the cases n = N — 1 or n = 1 condition (H) is necessary and
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sufficient for semi-global evolution, in the general case we only proved it
is necessary, whereas for sufficiency we require the stronger condition (H’)
(which coincides with (H) when n = N — 1) which is not necessary.

Let us translate the results obtained so far in terms of Cauchy
problems for systems of differential operators.

Let us first recall that the hypothesis that 7, : V — Cz be finite,
proper and onto, for

V=V({p)={(=(r§eCxC"=C": p(¢)=0Vpenp},

means that the module 9 = Py /p, considered as a P,-module (9),
via the natural inclusion P, — Py, is finitely generated and free, i.e.
(9M),, ~ Py, for some v € N\ {0}.

This means that:

(i) R™ is formally non-characteristic for the complex

‘A(D) B(D)

where 'A(D) = Yp1(D),...,p-(D)) for generators p1(¢),...,pr(¢) of the
ideal p, and D = (D, Dy);
(ii) A complex of Cauchy data

20 *A(Ds)y xva, B(Ds)

Wy, ——Wg, —— W

for the complex (10.7) on R™ reduces to the trivial complex
Wk, — 0,

i.e. we have a set of free Cauchy data for tA(D).

Iftr,: P, — Pn is a Pp-homomorphism such that the diagram

m  — Py
I 1o
o), «— P,

commutes, then the Taylor series in ¢ along t = 0 of a solution f € Wk, of
tA(D)f = 0 is uniquely determined by the Cauchy data

To(f) = To(Dt, Dg) f(t)]t=0-

We refer the reader to [AN1] for more details.
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We can finally formulate the following theorems:

THEOREM 10.2. — Let

(10.8) S = {(t,z) e R* x R™ |t =0}

10.9 Q={(t,z) eRF xR"|t; >0 forj=1,...,k}.
J

Then condition (H) is necessary in order that the following generalized
Cauchy problem have a solution:

given f € WY, and ¢ € Wg
find u € Wy, such that *A(D)u = f and u|s = ¢.

Ifk =1 and r = 1 condition (H) is also sufficient.

THEOREM 10.3. — Let

(10.10) K ={(t,z) e R* x R"||z| < 4, t =0}

(10.11) Ko ={(t,z) e R* xR"||z| < A, 0<t; < Bforj=1,...,k}.

Then condition (H) is necessary in order that the following generalized
Cauchy problem have a solution:

given f € Wi, and ¢ € Wk,
find u € Wk, such that *A(D)u = f and u|g, = ¢.

Ifk =1 or n =1 condition (H) is also sufficient.

THEOREM 10.4. — Let K, and K5 as in (10.10) and (10.11). Then
condition (H') is sufficient (but not necessary) in order that the following
generalized Cauchy problem have a solution:

given f € Wy, and ¢ € Wk,
find u € Wk, such that *A(D)u = f and u|k, = .
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11. The Petrowski condition for evolution.

We want to show that the following Petrowski condition:
(11.1) Jc; € RT: (Im7j)t < ¢ V(r,{) eV, (=€ €R”

for j = 1,...,k, is a sufficient condition for the pair (K;, K3) to be of
evolution in the Whitney class, for K; and K, defined as in (8.7) and
(8.6).
We will prove that (11.1) implies the following Phragmén-Lindelof
principle:
VYm 3AM,c > 0 s.t. VF € O(C") with

( k

IF(r,O)l < @+ 7|+ [¢)™exp [ Y B(Imr;)* + AIImCI)

(11.2) =1
|F(1, Q)| < er(L+|7| + [¢])™F exp (A[Im(])

we also have
[F(1,0)] < e(1+ || + [¢))M exp (A[Im¢])  V(7,{) € V.

Indeed, by (8.3) and (11.1), from (11.2) we obtain

{ IF(r,e)l <L+ €)™ onV, (=E€R"
[F(7,0)] < p(1+ [¢)™F exp (AlIm(])  on V.

If we set

u(¢) = sup log|F(,()],
(r)eVv
then u is plurisubharmonic in C" and
u(€) < cu + mylog(l + [¢]) + A[Im(] V¢ e C"
u(€) <"+ m'log(l+|¢]) VEeR™

We want to show that
u(¢) <c+ Mlog(1+[¢]) + Allm¢| V¢ eC™

For this purpose we prove the following Phragmén-Lindelof principle for
plurisubharmonic functions:

THEOREM 11.1. — For every positive constants M, B we can find some
positive constants M', B’ such that every plurisubharmonic function v in
C™ which satisfies

{ u(€) < A|¢] + mylog(1 + [¢|) + ¢ V¢ € C", for some my,c,
u(§) < Mlog(1+¢)+ B V€ e R"



198 C. BOITI, M. NACINOVICH

then is also satisfies

u(¢) < Allm¢| + M'log(1+ [¢])+ B’ V(eC"

Proof. — Let us first remark that the case n = 1 is fairly well-known
and moreover has already been treated in the proof of the sufficiency of
condition (*) of Proposition 9.1. The general case follows by a standard
reduction argument from the case n = 1.
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