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THE OVERDETERMINED CAUCHY
PROBLEM

by C. BOITI and M. NACINOVICH

Introduction.

In the classical Cauchy problem for a linear partial differential equa-
tion with initial data on a hypersurface, smooth initial data together with
the equation allow to compute the Taylor series of a smooth solution at
any given point of the hypersurface.

This leads to the notion of a formally non-characteristic hypersurface
for a system of linear partial differential equations, that was considered in
[AHLM], [AN3], [N2].

This remark suggests further generalizations of the Cauchy problem,
where the assumption that the initial data are given on a formally non-
characteristic initial manifold is dropped, and we allow formal solutions (in
the sense of Whitney) of the given system on any closed subset as initial
data.

The problem is then to find classical smooth solutions of the system,
whose restrictions in the sense of Whitney are the given initial data.

This point of view was particularly fruitfull while investigating initial
value problem for overdetermined systems with constant coefficients and
data on a hypersurface in [N2], [N3], and for systems of partial differential
equations related to complex analysis in [N4].

In this paper we continue this investigation of the Cauchy problem
for a pair of convex subsets of R .

Key words: Evolution - Overdetermined systems - Cauchy problem - Phragmen- Lin-
delof principle.
Math. classification: 35N05 - 32A15.
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The introduction of causality, evolution and hyperbolic pairs further
generalizes the notions introduced in the previous works and gives a
unifying point of view encompassing several different problems, ranging
from questions of smoothness of the solutions, to the classical Cauchy
problem, to the comparison of formal to actual solutions, to Hartog's type
phenomena.

In the first part of this paper we discuss classes of entire functions on
irreducible affine algebraic varieties.

By the use of Fourier-Laplace transform and of the fundamental
principle of Ehrenpreis-Palamodov, many questions concerning evolution
pairs can be translated into the problem of establishing a priori estimates
of the Phragmen-Lindelof type for such classes of entire functions.

Then we apply this method to discuss conditions for evolution in one
space variable and several time variables, and Petrowski-type conditions
for evolution from an affine submanifold of arbitrary codimension.

Finally we apply this theory for extending Hormander's necessary
and sufficient condition for evolution for partial differential equations with
constant coefficients and Cauchy data on a hypersurface, to the case of
general systems and Cauchy data on a closed submanifold of arbitrary
codimension.

1. Algebraic preliminaries.

Let y be a regular unitary Noetherian commutative ring, of global
finite homological dimension N. Let 9Dt be a ^-module of finite type. We
denote by Supp(fOT) and Ass(SDt) respectively its support and the set of its
associated prime ideals:
(1.1)
Supp(9Jt) = {p € Spec(qJ) | 9Jtp ^ 0},
Ass(an) = {p C Spec(9Jt) 19}t contains a ^-submodule isomorphic to ^P/p}.

Note that Ass(9}l) C Supp(9Jt) and the two sets contain the same minimal
elements, as Supp(9Jt) is the set of all prime ideals of (? that contain an
associated prime ideal of 9Jt.

For the proof of the following two propositions we refer to [Nl]:

PROPOSITION 1.1. — Let 9Jt, T be two ^-modules, with Wl of finite
type and p be a nonnegative integer. Then the following statements are
equivalent:
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(i) Ext|p(mt,JT)=0 V^p;

(ii) Ext^/p,^) =0 V^ p, Vp C Ass(ajt);

(iii) ExtyOP/p,.F) =0 Vj^ p, Vp € Supp(aTt);

(iv) Exty(9T, .F) = 0 V.7 ^ p, and for every y-submodule 91 ofWt.

PROPOSITION 1.2. — Let SDt, ̂  be two y-moduies, with 9Jt of finite
type and p be a nonnegative integer. Assume moreover that

(1.2) ExtyOP/p,.F)=0 V j > p and Vp € Supp(OTl).

Then the following statements are equivalent:

(i) Exty(9Jt,^)==0 V^p;

(ii) ExtyOP/p,.?-) =0 Vj^ p, Vp 6 Ass(aTt);

(iii) Ext^(9l, F) = 0 Vj ^ p, and for every ^-submoduJe 91 of9Jt.

Analogous propositions hold for the Tor functor. We have indeed:

PROPOSITION 1.3. — Let 9Jt, T be two ̂ -modules, with SDt of finite
type and p be a nonnegative integer. Then the following statements are
equivalent:

(i) Tor^aTt^^o Vj^p;

(ii) Tor^^/p,^) =0 Vj ^ p, Vp € Ass(97t);

(iii) Tor^OP/p,^) =0 Vj^ p, Vp e Supp(mt);

(iv) Tor^^l, ̂ ') = 0 Vj ^ p, and for every ̂ -submodule 91 oi9Jt.

Proof. — To show that (iii) =^ (i), we consider a composition series
for9Jl:

o = ajio c ajti c... c sotfe c 9Jtfe+i = art.
For each 0 ^ h ^ k the ^-module SDt/i+i/SDt/i is isomorphic to a ^P-
module V/Ph f01 a P1'1111^ ideal p € Supp(9Jt). From the long exact sequence
associated to the quotient:

—> Tor̂ (̂ +i/mi/,,.F)

-^ Tor7(^+i,JF) -^ Tor^art^,^) ̂  Tor^CT^i/aJl^^)
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we deduce from (iii) that

ToTf(Wh, 7) ̂  Tor^(9Jt^+i, 7) for 0 ^ h ̂  k and j < p,

while the homomorphisms

Tor^(mt^JT) -^ Tor^(mt^i,^)

are surjective for 0 ^ h ^ fc. From these observations it follows that (i)
holds true.

To show that (i) =^ (iii) we argue by contradiction. So we assume
that (i) is valid, but Tor^^/p,^) ^ 0 for some p € Supp(9?t) and some
0 ^ J ^ p. Let q be the smallest positive integer for which is possible to
find a p e Supp(97t) with Tor^^/p,^") ^ 0. Having fixed g, using the
assumption that ̂  is Noetherian, there is a maximal po e Supp(9Jt) such
that Tor^^P/po,^) -^ 0. By the properties of the ideals in Supp(SDT) there
is an exact sequence of ^P-modules of finite type of the form:

0 —> ^ —> mi —^ Q —> 0

for a nonzero submodule Q. of y/po. Then from the exact sequence:

... —^ Tor^JF) __ Tor^(Q,JT) __ Tor^(^JT) __ .,

we deduce that Tor^Q,^) = 0.

Indeed Tor^ajl,^") = 0 by assumption (i) and Tor^.i^.F) = 0 by
the first part of the proof, since Supp^) C Supp(93t) and for every prime
ideal p in Supp(97l) we have Tor^^/p, 7) = 0 for every j <^ (q - 1) by the
choice of the integer q.

Let Q. ^ 3/po for an ideal 3 of (? containing po. From the exact
sequence:

0 -^ 3/po -^ ^P/po —. y/0 ̂  0

we obtain the long exact sequence:

... -^ Tor^(3/po,^) -^ Tor^(<P/po,^) —— To^W/3^) -. ...

Then we have Tor^J/po,^) = 0 by the argument above; moreover
Tor^^P/^,^) = 0 by the implication (iii) => (i) because every prime
ideal in Supp^/?) belongs to Supp(9Jl) and properly contains po. This
contradicts Tor^y/po,^) 7^ 0. The proof of (i) =^ (iii) is complete.
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From the equivalence (i) 4=> (iii) the equivalence of these two state-
ments with (ii) and (iii) easily follows.

PROPOSITION 1.4. — Let 9Jt, F be two ^-modules, with SDt of finite
type and p be a nonnegative integer. Assume moreover that

(1.3) ToTV(^/p^)=0 V j>p and Vp € Supp(mt).

Then the following statements are equivalent:

(i) To]f(an,.F)=o vj>p;
(ii) ToifOP/p,.F) =0 Vj ^ p, Vp C Ass(mi);

(iii) Torf(Vl, F) = 0 Vj ^ p, and for every ^P-submoduie 9T offflt.

Proof. — We first prove that (ii) =^ (i). We argue by descending
induction on p. The statement is indeed trivial if p is larger than the
homological dimension N of ^P. So we fix the integer p ^ N and assume
that the statement is true for larger p.

Assume that 9?t is p-coprimary. We argue by induction on the smallest
integer k such that p^SDl = 0. If k = 1, then 9Jt can be thought of as a torsion
free ^P/p-module and hence there is an exact sequence of ^-modules:

0 —> m —> QP/p)7' — ^ Q —. 0.

From the exact sequence

... —— Tor^i(Q,JT) -^ Tor^TO,^) -^ (Tor^/p))' -^ ...

we obtain that Torp(97t,^') = 0 because Torp^/p,^) = 0 by assumption
(ii) and Torp-i-^Q,.?') = 0 by the inductive assumption, as Ass(Q) C
Supp(OTt).

Let now k > 0 and suppose that Tor^^,^) == 0 for all p-coprimary
^-modules of finite type 9T for which p^"^ = 0. Let 97to = {m C
9Jt | p . rn = 0}. This is a p-coprimary submodule of 9Jt for which p9)t = 0,
while 9!7t/9Jto is also p-coprimary and p^"1 (SDt/SJto) = 0. The long exact
sequence associated to the quotient yields:

... —. Tor^o,^) —^ Tor^(OTt^) —^ Tor^mt/mto,^) -^ ...

and therefore Tor^(97t, F} = 0 because Tor^ajto, ̂ ) = Tor^ajt/ajto, ̂ ) =
0 by the inductive assumption.
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To drop the assumption that QJt is p-coprimary, we note that if (f) is a
part of Ass(9Jt) there is a ^-submodule 9T of SJt such that

Ass(^n) = cf), Ass{yjt/^) = Ass(ajt) \ < .̂

As we have the exact sequence

ToifCn,.F) —— Tor̂ .JF) —— Tor^(mt/9T,^)

the conclusion follows by induction on the number of prime ideals in
Ass(OTl).

To show that (i) => (ii), we note that the implication (ii) =^ (i),
together with assumption (1.3) gives Toij(Q,y) = 0 for all ^-modules Q
of finite type satisfying Ass(Q) C Supp(9Jt) and all j > p. If p e Ass(9Jt),
then 9Jt contains a submodule 9T isomorphic to ^/p. If Q is the quotient
ajt/^T, we have Supp(Q) C Supp(97t) and then the exact sequence

Tor^(Q,JT) ̂  Tor^(^^) -^ Tor^(mt,^)

gives that Tor^y/p,^) ^ Tor^Tt,^) = 0.

The equivalence with condition (iii) is clear, because Ass(9T) C
Ass(9?l) for every ^P-submodule of 271.

Remark 1.1. — In the applications of Propositions 1.1, 1.2, we will
consider often the situation where T is the kernel of an epimorphism of
unitary injective (? modules: when we have a short exact sequence

(1.4) 0 — F —— ^i —— F^ —— 0

we obtain for every unitary qj-module 9Jt of finite type the long exact
sequence

(1.5) ... — Exty-^aji,^) — Exty(ajt,jF) — Ext^(art,^i) —.. .

which yields Ext^(9Jt,^') = 0 for every j > 1. In particular the question
of the surjectivity of the map Exty(9Jt,^'i) —> Ext^(9Jl,^2) reduces
to the surjectivity of the maps Ext^qj/p,^) —> Exty^/p,^) for
all associated prime ideals p of 97t. This reduction is especially convenient
when using the Fourier-Laplace transform to investigate the properties of
systems of p.d.e.'s with constant coefficients.
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In the same way, Propositions 1.3, 1.4 can be applied in particular
to ^-modules T that are quotients of flat ^P-modules. The short exact
sequence of unitary ^P-modules

(1.6) 0 —> ^ —> ^2 —> F —> 0

yields for every unitary ^-module 9Jt a long exact sequence
(1.7)
... —— Tor^aJl,̂ ) —— Tor^ajt,^) —— TorJL 1(^,^1) —— ...

When T\ and F^ are flat, the question of the injectivity of the map
Tor^(9Jt,^'i) —> TorJ^ (971,^2) for a given unitary qj-module 9Jt of finite
type reduces to the analogous question where 3D? is substituted by ^P/p for
the associated prime ideals p of 9Jt.

2. The Cauchy problem for a pair of convex subsets of R^.

Let 9?t be a unitary module of finite type over the ring V =
C[^i,..., <^v] of polynomials in N indeterminates with coefficients in C. Then
97t has a Hilbert resolution:

0 ___>. pOd d~u<:J pCid-1 ___^ pCid-2 ___).

w ... <A1(C) 7.0. tAO^) 7.an , yjt , Q

1 1̂

of length d ^ N. We define D. = —===——, where a;1,.... x1^ are Euclidean
V"! ox3

coordinates in R^. Let F be a C-linear space of (generalized) functions or
distributions defined on a subset of M^ and such that DjF C T for every
j = 1,..., N. It becomes a unitary V- module by the action

(2.2) p^'f=p{D)f VpeP, V/e^.

Then the groups Tor^ajt,^) and Ext^(9Jl,J') are isomorphic to the
cohomology groups of the complexes
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respectively. The ̂ -module F is injective if Ext^ (9Jt, .77) == 0 for every j > 0
and every unitary 'P-module 9Jt of finite type; it is flat if Tor^SDT,^') = 0
for every j > 0 and every unitary P-module of finite type 9Jt.

If 0 is an open subset of R^ we denote by f(0) the space of complex
valued C°° functions on ^, endowed with the usual Prechet-Schwartz
topology. It is a P-module by the action (2.2) and is injective when 0
is convex.

Let F be a locally closed subset of R^. Then there is some open
subset f2 of R^ such that F C ̂  and ~F D 0 = F. Denote by Z°°(F, ̂ ) the
subspace of functions in £(fl) which vanish with all derivatives on F. It is
a closed subspace and a P-submodule of f(f^). The exact sequence

(2.5) 0 —> Z°°(F,^) —> 8W —> WF —> 0

can be taken as a definition of the space ofWhitney functions on F, showing
both its topological structure of a space of Frechet-Schwartz and of a
7^-module by the action induced by (2.2). Whitney's extension theorem
shows that these structures are independent of the choice of the open
neighborhood 0 of F in M^ (subject to the condition that F == ~F H 0).
Note that for a convex F the P-module }Vp is injective (cf. [Nl]).

When F is regular in the sense of Schwartz the strong dual of Wp
can be identified to the space £p of distributions in R^ having compact
support contained in F. This is a ^-module by (2.2) and is flat when F is
convex.

If / € WF, all its partial derivatives D^f (for a € N^) are well
defined at points of F. If F C R^ is locally closed and S is a closed subset
of F, we define I°°(S, F) as the space of Whitney functions / on F such
that D^f^x) = 0 for every x C S and a € N^. Then we have the exact
sequence:

(2.6) 0 —— Z°°(5,F) — Wp —— }Vs —— 0.
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In the classical formulation of the Cauchy problem, one seeks for a
solution of a partial differential equation on a manifold with boundary, re-
quiring that the solution and some of its normal derivatives take assigned
values on the boundary. Usually the requirements on the given partial dif-
ferential operator are such that, for a solution smooth up to the boundary,
the differential equation and the initial data allow to compute all its partial
derivatives at points of the boundary. In our formulation, we will drop this
assumption, using as initial data Whitney functions and look then to the
possibility of extending formal solutions on the initial manifold to solutions
in a larger manifold that contains the initial one in its boundary.

Let Ki C K-i be convex subsets of R^, with K^ locally closed in R^
and K\ closed in K^. We think of K\ as the set where the initial data
are given and of K^ as the set where we want to find the solution of a
(generalized) Cauchy problem. Thus, given a unitary P-module SDt of finite
type, we are concerned with the P-homomorphism:

(2.7) Ext^(9Jl,W^) —— Ext^>(9Jl,WxJ.

Using the Hilbert resolution (2.1) the homomorphism (2.7) translates into
the continuous restriction map
(2.8)
{u e (W° | Ao(D)u = 0} 3 u —— u\s C {u e (W^)00 | Ao(D)u = 0}.

We introduce the following notions:
The pair (JCi, K^) is a causality pair for the unitary P-module 9Jt if

(2.7) is injective;
The pair (K^,K^) is an evolution pair for the unitary P-module 271

if (2.7) is surjective;
The pair (JCi, K^) is a hyperbolic pair for the unitary P-module 9JI

if (2.7) is an isomorphism.

From Propositions 1.1, 1.2 we obtain:

PROPOSITION 2.1. — Let 9JI be a unitary P-module of finite type and
let K\ C K^ be convex subsets ofM^ with K^ locally closed and K\ closed
in K^. Then the following statements are equivalent:

(1) {K\^ K^) is a causality pair for 9Jt;

(2) Ext^mi.Z00^!,^))^;

(3) Ext^/p.Z00^!,^)) = 0 for all p € Ass(mi);
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(4) Ext^(P/p,Z°°(^i, ̂ 2)) = 0 for aJi p e Supp(9Jt);

(5) (J^i, ̂ 2) is a causality pair for P/p for aJJ p e Ass(9Jt);

(6) (K^,K^) is a causality pair for P / p for all p e Supp(mt).

PROPOSITION 2.2. — Let Wtbea unitary P-module of finite type and
let K^ c K^ be convex subsets ofR^ with K^ locally closed and K^ closed
in K^. Then the following statements are equivalent:

(1) (T^i, K^) is an evolution pair for SDT;

(2) Ext^Z00^!,^))^;

(3) Extp(^/p,Z°°(^i,^2)) = 0 for all p e Ass(mt);

(4) {K^K^) is an evolution pair for P/p for all p e Ass(9Jt).

PROPOSITION 2.3. — Let Wbea unitary P-module of finite type and
let K^ C K^ be convex subsets ofR^ with K^ locally closed and K^ closed
in K^. Then the following statements are equivalent:

(1) (K-t,K^) is a hyperbolic pair for 9DT;

(2) Ext^(a»,Z°°(^i,^2)) = Extp^Z00^,^)) = 0;

(3) Ext^(P/p,Z°°(^i,^2)) = Extp(P/p,Z°°(^i,^2)) = 0 for all
p € Ass(9Jl);

(4) Ext^(P/p,Z°°(^i,^2)) = Extp(P/p,Z°°(^i,^2)) = 0 for aJi
p € Supp(9Jl);

(5) (^TI, ̂ 2) is a hyperbolic pair for P / y for all p e Ass(9Jt);

(6) (K^,K^) is a hyperbolic pair for P / p for all p e Supp(9Jt).

The dual map of (2.7) is the map

(2.9) Tor^DJI,^) -^ Tor^mt,^).

When S and F are convex, the subspaces ^(D) ((f^)"1) and
^(D) ((f^)01) are closed respectively in (^)ao and (f^)00. The map (2.9)
can be described in terms of the Hilbert resolution (2.1) by the continuous
linear map:

(2.10) W° W1

^owa^)01) ~^ ^(D)^)^)
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induced by the inclusion S ̂  F. Given an ideal p in P and a locally closed
subset S of R^, we denote by

(2.11) 5(p, S) = {u e Ws I P(-D)^ = 0 Vp C p}

the space of Whitney functions on S which are annihilated by every partial
differential operator associated to a polynomial in p and by ^(p,*?) its
annihilator in £g:

(2.12) r(p,5) == {T e £s | M = 0 W e 5(p,5)}.

Since, when S and -F are convex, (2.8) is a continuous linear map
between Frechet-Schwartz spaces having a dense image, we obtain:

PROPOSITION 2.4. — Let W be a unitary P-module of finite type and
let K\ C K'2 be convex subsets ofR^ with K^ locally closed and K\ closed
in K^. Consider the maps

E' £ /
( ( ) 1 0 \ K! ___v ^2{ ' r(p, î) r(p,^)
where p is a prime ideal in V. Then we have:

(1) A necessary and sufficient condition in order that {K-^^K^) be a
causality pair for 9JI is that (2.13) has a dense image for every p € Supp(QJt) ;
it suffices that (2.13) has a dense image for every p € Ass(9Jt).

(2) A necessary and sufficient condition in order that (^1,^2) be an
evolution pair is that (2.13) has a closed image for every p € Ass(SJt).

(3) A necessary and sufficient condition in order that {K\^K^} be a
hyperbolic pair is that (2.13) is an isomorphism for every p € Supp(9Jt)
and is sufficient that (2.13) is an isomorphism for every p € Ass(QJl).

The advantage of the formulation given in Proposition 2.4 stems
from the good characterization of the spaces involved in (2.13) which we
obtain by the use of Fourier-Laplace transform and Ehrenpreis fundamental
principle.

We define the Fourier-Laplace transform of a distribution with com-
pact support T € ^'(R^) by

(2.14) r(C) = <exp(-v^l<., 0), T) VC C C^.

This is an entire function of exponential type.
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Introducing the support function HK of the convex subset K of R^:

(2.15) ^(C)=supIm^,C) for C e C^
x^K

the Fourier-Laplace transform of T is characterized by the theorem of
Paley-Wiener-Schwartz by the estimate

(2.16) |r(C)| ^ C(i + KD-exp^O) vc e c^

where jFC is the convex hull of the support of T and C^m are suitable
nonnegative constants.

Let V = V(p) denote the affine algebraic variety of C^ of common
zeros of the prime ideal p of V. We denote by 0(V) the space ofholomorphic
functions on V, i.e. the space of restrictions to V of entire functions in C^.
It is a Frechet space for the topology of uniform convergence on compact
subsets of V. Let K be a locally closed convex subset of R^ and denote by
0\K}(y) the linear subspace of 0(V) of functions F satisfying an inequality
of the form

r|F(C)|<CMl+|C|)"^expff^(C)
(2.17) ^ for some nonnegative constants Cpi ^F

[ and a convex compact subset dp C K.

From the Ehrenpreis fundamental principle we deduce the following:

PROPOSITION 2.5. — Let V be the irreducible affine algebraic variety
of common zeros in C1^ of a prime ideal p of P and let K be a locally
closed convex subset ofR^. The Fourier-Laplace transform induces a C-
linear isomorphism

<2-18' yfe? — W-

We shall further investigate the topology and the properties of spaces
of holomorphic functions on an affine algebraic variety of C^ in the
following section. Although in this paper we will restrain to the applications
to the Cauchy problem for Whitney functions, we keep a more general point
of view, suitable for developing the study of the Cauchy problem in different
classes of functions and distributions.
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3. Spaces of entire functions.

Let V C C^ be a reduced affine algebraic variety. We denote by 0(V)
the space of holomorphic functions on V, i.e. the space of complex valued
continuous functions on V which are restrictions of entire functions in C^.
By the Weierstrass theorem (cf [GR]), 0(V) is a Prechet space for the
topology of uniform convergence on compact subsets of V. We note that
0(V) is a Montel space.

Given an upper semicontinuous function (f): V —> M, we denote by
0^ (V) the space

(3.1) O^V) = {/ € 0(V) | sup /(C)e-^ < oo}.
Cev

This is a Banach space for the norm

O^V) 3f —. ||/||^ = sup /(Qe-^0 € M
C€V

and the natural inclusion 0^(V) ̂  0{V) is compact. Moreover, we have:

LEMMA 3.1. — Let (f>, ̂  : V —> R be upper semicontinuoiis functions
on V such that

lim e^)-^=0.
C<=v

ICI-^oo

Then the inclusion map

o^(y)^o^v)
is compact, as bounded subsets ofO^(V) are relatively compact in 0^(V).

Let PN = "P denote the ring C[Ci, ••.,CN] of complex valued polyno-
mials in CN. We are interested in spaces of holomorphic functions which
are P-modules for the multiplication by polynomials. Hence we introduce
sequences ̂  = {'0n}yicp^ °f upper semicontinuous functions ^n '' V —^ ^
having the property:

(3.2) log(l + |C|) + ^n(C) ^ ^n+i(C) Vn € N, VC e V

and consider the direct limits:

(3.3) O^V)=\mO^(V).
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By Lemma 3.1 the space 0^(V) is a compact inductive limit of the sequence
0^{V).

Therefore 0^(V) is the strong dual of a Frechet-Schwartz space and
each bounded subset B of 0^(V) is already contained and bounded in one
of the Banach spaces 0^(V) for some nonnegative integer n (cf. [FW],
[Ko]).

We associate to the sequence ̂  the set of weights
00

(3.4) ^ = {A(C) = ̂  6^0 | en > 0 Vn A«) < oo VG € V}.
n=0

The topology of 0^(V) is described (cf. [BMS], Theorem 1.6) by the
following:

LEMMA 3.2. — For A varying in C^j, the sets

(3.5) ^ = {f e e^(y) | |/(c)| < A(C) vc e y}
form a fundamental system of open circled convex neighborhoods of 0 in
0^(V). A subset G ofO^(V) is open if and only ifGH 0^ (V) is open in
0^ (V) for every n € N. Moreover, the sequence of compact sets

Kn={feO^(V)\\\f\\^^n} for n=l ,2 , . . .

is a fundamental covering of 0^ (V).

We collect the topological properties of the spaces 0^(V) which follow
from the discussion above in the following:

THEOREM 3.1. — Let ^ = {-0yj be an inceasing sequence of upper
semicontinuous functions denned on the reduced affine algebraic variety
V C C^ and satisfying (3.2). Then the space 0^(V) is

(1) an {CF) space, being the compact inductive limit of an increasing
sequence of Banach spaces;

(2) is barreled, being a locally convex topological vector space in which
absorbing closed convex circled subsets containing 0 are neighborhoods ofO;

(3) is a (Z>^7) space, since it admits a fundamental sequence of com-
pact subsets and every intersection of a countable family of convex circled
neighborhoods of 0 that absorbs strongly bounded subsets is a neighbor-
hood ofO;
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(4) is an (<S) space, since every convex circled neighborhood U of 0
contains an open neighborhood of 0 which is relatively compact in the
completion of 0^(V) with respect to the Minkowski norm defined by U;

(5) is an (M) space, i.e. bounded subsets are relatively compact in
0^(V);

(6) is bornological, i.e. all seminorms that are bounded on bounded
subsets are continuous;

(7) is reflexive;

(8) is complete.

We refer to [AT], [Gr], [Sc] for the standard implications which
connect the results obtained in the proceeding lemmas to the statement
of this theorem.

4. The abstract Phragmen—Lindelof principle.

Let V be an irreducible affine algebraic variety in C^ and consider, for
two sequences zp = {'0n}, 0 = {<^n} of upper semicontinuous functions on
V satisfying (3.2), the spaces 0^j(V) and 0^(V). In the applications, these
spaces will be identified via the Fourier-Laplace transform to dual spaces
of spaces of solutions of a homogeneous system of l.p.d.o's with constant
coefficients. The statements about hyperbolicity, causality and evolution
will translate then into the following notions. Let us consider the inclusion
map

(4.1) O^V)nO^V)^0^(V).

We say that the pair (0, i/?) is

(i) hyperbolic if (4.1) is an isomorphism;

(ii) of causality if (4.1) has a dense image;

(iii) of evolution if the map (4.1) has a closed image.

While discussing these notions, we note that 0^(V) F\0^{V) is equal
to the space 0^^(V) where 0 A '0 = {0n A ^n}. Since 0 A ̂  also satisfies
conditions (3.2) we shall for simplicity assume that 0n ^ ^n on V for every
n and consider then the inclusion:

(4.1') O^V)^0^(V).
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We also note that, because of the topological properties of the spaces
0^(V) and 0^(V) the condition that (4.1/) has a closed image is equivalent
to the fact that it is a topological homomorphism. In particular:

THEOREM 4.1. — The pair (0, ^?) is of evolution if and only if:

VA e /^ 3V e C^ such that U^ D 0^(V) C U^.

LEMMA 4.1. — Let a < f3 and let K be a compact subset ofV with
a nonempty interior. Then for every e > 0 there is a constant Cg > 0 such
that

(4.2) ||/||̂  ^ e ||/||̂  + c, sup |/(C)| V/ e 0^{V).
<€K

Proof. — Assume by contradiction that the statement is not true for
some 6 > 0. Then we can find a sequence {fy} C 0^(V) such that

ll/.ll̂  > ^ll/.ll0.+^sup|/,(C)|.
^K

We can assume that ||jf^[|^g = 1. Then we have

ll/.ll^<e-1, sup|/,(C)|<^-1.
Cex

Since the inclusion 0^(V) ^ 0<^(^) is compact, by passing to a
subsequence we can assume that fy —> f e 0^(V). We have ||/||̂  = 1
and therefore / 7^ 0. But / vanishes at all points of K and therefore is 0 on
V by the unique continuation principle. This gives a contradiction, proving
our contention.

From this lemma (cf. also [Bae]) we deduce:

THEOREM 4.2 (PHRAGMEN-LINDELOF FOR EVOLUTION). — A neces-
sary and sufficient condition in order that the pair (^, zfJ) be of evolution
is that one of the following equivalent conditions be satisfied:

(PhL I) Va e N 3/3 € N, ̂  > 0 such that f e 0^(V), ||/||̂  ^
1 =^ 11/lk ^ ̂
(PhL II) V a 6 N 3 / ? e N such that 0^(V)HO^(V) C 0^(V).

Proof. — Assume that the pair (^, -0) be of evolution. Then, for every
fixed a € N, the set {/ € 0^(V) 11|/||^ ^ 1} is compact in 0^(V) and
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therefore is contained and bounded in 0^^(y) for some f3 € N. Therefore
we obtain (PhL I) and (PhL II). It is obvious that (PhL I) =^ (PhL II)
and also that (PhL I) is a sufficient condition in order that (^, -0) be an
evolution pair. To complete the proof, we only need to prove that (PhL II)
implies (PhL I).

Assume then that (PhL II) is valid. Let a € N be fixed and let f3 € N
be such that 0^(V) H 0^(V) C 0^(V). Then we have

o^ (V) n o^ (V) = o^ (V) n o^ (V) v-y ^ /?.
We consider on these Banach spaces the intersection norm. By the Banach
open mapping theorem we obtain, with some constant 0(7) > 1, the
estimate:

1 1 / 1 1 ^ + 1 1 / l k ^^(7)(ll/lk+ll/lk) v/eo^(y)no^(y).
Now we apply Lemma 4.1 choosing 7 ==/?+! and e > 0 such that €-0(7) < 1.
With K C V compact and with a nonempty interior we obtain:

(l-c(7)e)||/||^ <c(7)||/|k+c..c(7)sup|/(C)| V/ € O^V)r\0^(Y)
C€-?^

and this shows that (PhL II)=^(PhL I), because e~^01 is bounded from
below in K.

As a corollary, we obtain:

THEOREM 4.3 (PHRAGMEN-LINDELOF PRINCIPLE FOR HYPERBOLIC-

ITY). — A necessary and sufficient condition in order that (^,'0) be a
hyperbolic pair is that one of the following equivalent statements be valid:

(PhL I') Va € N3/? e N, Co > 0 such that \\f\\^ ^ Ca\\f\\^ V/ C 0(V);

(PhL II') Va € N3/3 € N such that 0^(V) C 0^(V).

5. Further remarks on hyperbolicity.

In this section we shall consider equivalent formulations of the hyper-
bolicity conditions for special pairs (^,'0).

a) We consider first the case where the sequence {^a} is defined in the
following way:

(5.1) '0 : C^ —> R is a real valued convex function
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and the functions -0^ : V —> R are restrictions to V of the continuous
plurisubharmonic functions C —> ^(^) + alog(e + |^|).

We introduce the dual convex function

^*(z)= sup -Im(z,C)-^(C).
CeC^

This is an upper semicontinuous convex function in C^, with values in
R U {+00}. We define D(^*) = {z e CN \ ̂ (z) < oo}. The set D(^) is
nonempty and we have

^(0= sup -lm<^c)-^) vcec^.
zCD^)

THEOREM 5.1. — A necessary and sufficient condition in order that
the pair (0,-0), with ^ = {(-0 + alog(e + -))|y} for a convex function
^ : C^ —> R be hyperbolic is that there exist a € N and a constant
c ^ 0 such that

(5.2) ^(CKc+cMC) vcev.

Proof. — We note that (5.2) is obviously a sufficient condition for
hyperbolicity. To prove that the condition is also necessary, we use condition
(PhL I') of the previous section: we can find a G N and K, > 0 such that

(*) lAOl^^0 vcev

for every function / € 0(V) satisfying

(**) 1/(C)1^0 VCeV.

For every z e D{^*) we consider the entire function on CN:

C^C —— e-^^^eC.

Its restriction to V satisfies (**) and therefore we have by (*):

-lm(z, C) - ̂ * {z) < log K + ̂  (C) VC € V.

Taking the supremum of the left hand side for z e J9('0*) for fixed C € V,
we obtain (5.2).
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/?) Next we consider the case where ^ : C^ —> M is a continuous
plurisubharmonic function satisfying for some constants a ^ 0 , c > 0 r > 0 :^ ^ 5 '

^ ̂ u(5.3) |^(C) - ̂ (T/)| ^ c(l + ICD^C - rj\ VC, 77 € C^ with |C - rj\ < r

and -0Q is the restriction to V of the continuous plurisubharmonic function
onC^:

0^30 —— ^(C)+alog(e+|C|)eM.

We have the following:

LEMMA 5.1. — Let if^ be a continuous plurisubharmonic function on
C^ satisfying (5.3). Then, if g € 0(0^) satisfies

ll̂ lll̂ c^) = L I^OI26"2^0^^) < ̂«/c

it also satisfies the pointwise estimate:
(5.4)

1^)1 ^ V^^ (max (^' 0)^ "^'^(^^(^ICD^^0 YC ^ ̂

Proof. — For every fixed 0 € C^ and ^ e O(C^) we obtain by the
mean value theorem

p(0)e-W) = ̂ -2JV / g(<:)e-^d\(C)
^ J<:eB(e,p)

for every p > 0. When 0 < p < r, using (5.3) we obtain by the Cauchy
inequality

\9(0)e-^\ ̂  ̂ p-^e^W I |ff(C)|e-W)dA(C)
" JB(0,p)

^^p^M^^.

We can assume that c ^ Nr. Then we can take in the inequality p =
^^, obtaining (5.4).

Using the L2 existence theory for 9, we obtain, using the lemma above
and a standard argument (cf. [Hoi]):
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LEMMA 5.2. — Let '0 be a continuous plurisubharmonic function
satisfying (5.3). Then there are positive constants c,m > 0 such that for
every 0 6 C^ we can find an entire function FQ € 0(0^) with:

(5.5) Fe(0) = e^°\ |F,(C)| ^ c(l + ICI)^^ VC € C^.

Using this lemma we obtain the criterion:

THEOREM 5.2. — Let ^ : C1^ —> R be a continuous plurisubhar-
monic function satisfying (5.3) and let ^a be the restriction to V of the
function ̂  + alog(e + | • |). Then a necessary and sufficient condition in
order that the pair (^, z^) be hyperbolic is that there exist a € N and c > 0
such that

^(C)^c+^(C) vcev.

Proof. — The condition is obviously sufficient. To obtain the necessity,
it suffices to apply the condition (PhL I) of the previous section to the
restriction to V of the entire functions FQ^ for 0 € V, given in the previous
lemma.

6. The Phragmen-Lindelof principle for
plurisubharmonic functions.

To investigate the conditions for a pair (<^, ^) to be of evolution, it is
convenient to translate the results of § 4, formulated in terms of holomor-
phic functions, into statements involving instead weakly plurisubharmonic
functions on the irreducible affine algebraic variety V. In this section we
show that this is in fact possible under some additional conditions on the
sequences 0 and t/?. This result is analogous to the corresponding one in
[MTV] and is suggested by the treatment of analytic convexity in [Ho2]
and [AN2].

As before, we assume that V C C be an irreducible affine algebraic
variety, of positive dimension.

We recall that a function u : V —> [—00, +oo[ is said to be weaJciy
plurisubharmonic if it is plurisubharmonic on the complement of the
singular set S(V) ofV and moreover

n(C) = limsup u(z) VC C V.
Z-.C,
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We will denote by P(V) the space of weakly plurisubharmonic functions
onY.

We say that a sequence z/? = {^n} of real valued functions on V is
admissible if the following conditions are satisfied:

(i) for every integer n ^ 0 the function ipn is the restriction to V of a
plurisubharmonic function ^n in C^;

(ii) for every nonnegative integer n and for every constant c > 0 there
are an integer n' ^ 0 and a constant d ^ 0 such that

(6.1) ^(C) + clog(e + |C|) ^ ̂ (C) + c' VC € C^;

(iii) for every integer n ̂  0 there are a real number 0 < 6 < 1, an integer
n1 ^ 0 and a constant c' > 0 such that

(6.2) ^(O^r^O+c' VCeC^;

(iv) for every nonnegative integer n there are constants bni Cn ^ 0 such
that

(6.3) ^(O-^^I^^O+ICD^IC-C'I it C^C 'eC^ and |C-C'l ^ 1.

We note that condition (6.3) implies that ^n is bounded by a constant times
(l+ICl)671"1"1 on C71. In the following, while considering admissible sequences
zp, we will think the functions {^n} as given and write fo simplicity ^n
instead of ̂ n-

We have the following:

THEOREM 6.1. — Let ^ and -0 be two admissible sequences of
plurisubharmonic functions defined on an irreducible afHne algebraic va-
riety V C C^. Then the Phragmen-Lindelof conditions (PhL I), (PhL II)
of Theorem 4.2 are equivalent to the following:

(PhL III) for every integer n ^ 0 there are an integer n' ^ 0 and a
constant Cn > 0 such that, for u € P(V):

(i) ^(C)<^n(C) V C e Y
(ii) ^ G N, 3c > 0 such that ^ u^ ̂  ̂  (C) + Cn VC € V.

^(CK^(C)+c V C G V
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The proof of Theorem 6.1 follows the general pattern used in [Ho2],
[AN2] for discussing analytic convexity and can be obtained by repeating
with slight variants the arguments in [MTV] and [F]. It will therefore be
omitted, referring the reader to [MTV], [F], [Ho3], [Ho4] for the general
results on plurisubharmonic functions that are needed to fill in the details.

7. The Cauchy problem with data on an affine subspace.

Let S denote an n dimensional affine subspace of R^. By an affine
change of coordinates we can as well assume that S is the coordinate n-
plane:

S = [x = {x\.... x^ e ̂ N | ̂ n+l = ... = ̂ N = 0}.

A typical closed wedge r with edge E can then be written, after another
linear change of coordinates, in the form

r = {x = (x\..., x^ e R^ I x^1 ̂  o,.... xN ̂  o}.
We are interested in characterizing the P-module of finite type 9Jt for which
(E,F) is a hyperbolic or an evolution pair. We already observed in §4 that we
can restrain to consider the P-modules of the form P/p with p e Ass(9?t).

Let us denote by Pn the ring C[d,..., Cn] of polynomials in the first
n indeterminates. This is a subring of P and therefore every P-module
9Jt can be considered also as a P^-module by change of the base ring.
Let (4.1) be a Hilbert resolution of 9?t and identify Ext^ajt.^R^)) to
the space of smooth solutions of the homogeneous system AQ(D)U = 0,

( ,, \ ao
with u e ^(Br^J . In [AN3] and [N2] it was observed that a necessary
and sufficient condition in order that the Taylor series at points of S of
the elements of Extij^aTt^R^)) be determined by the restriction to S of
a finite number of their transversal derivatives is that 9JI, considered as
a P^-module, be of finite type. When this is the case, we say that S is
formally noncharacteristic for SDT.

Denote by TTn : CN —> C71 the natural projection onto the first n
coordinates. Then we obtain:

LEMMA 7.1. — A necessary and sufficient condition in order that E
be formally noncharacteristic for 9Jt is that for every p € Ass(9DT) the map

(7.1) V(p) 9 C -^ 7T,(C) G C71

be finite.
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For the proof of this lemma we refer to [N2].

Let us denote by (W)n the P^-module obtained from 9Jt by change
of the base ring. When E is formally noncharacteristic, we obtain a Hilbert
resolution for (W)n of the form

(7.2) 0 —— pryR^..:^lpr^^ _^ (̂  _^ o

where we set ^ = (Ci,..., Cn) and d' ^ n. The Cauchy data for 9JI on S can
then be identified to the solutions v € (fQR71))7'0 of Ro{D-t,...,Dn)v = 0
and, using the homotopy formulas relating (4.1) to (7.2) we obtain a one-
to-one correspondence between Ext^^ajt^^Sr)) and Ext^(9Jt,Ws).

We say that 9Jt has free Cauchy data on S if (SDt)n is a free Pn-module.
We obtain:

LEMMA 7.2. — A necessary and sufficient condition in order that 9Jt
have free Cauchy data on S is that

V(p) 3 C —. 7r,(C) e C71

be surjective for every p € Ass(9Jt).

8. The Cauchy problem with data on a formally
noncharacteristic free affine subspace of M^:

a necessary Hormander's type condition.

In [Hoi] Hormander investigates the necessary and sufficient condi-
tions for the pair consisting of a closed half space of R^ and its boundary
to be of evolution for a P-module of the form P/Z, where T = (p) is a
principal ideal generated by a polynomial p G P.

There is no loss of generality in considering the case where the
boundary S of the closed half space 0 is a hyperplane containing the origin.
Then the pair (S, f^) is of evolution for P / ( p ) if and only if the scalar partial
differential operator p(D) admits a fundamental solution E € P^R^) with
support contained in fl,. Using this fact, the characterization is obtained
in terms of properties of the complex affine variety of the zeros of the
polynomial p.

In our formulation there is a difference in sign with respect to the
one in [Ho I], due to the fact that we are taking as the main object for
investigation the irreducible affine algebraic variety V, rather than the
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system of differential operators attached to it: starting with a scalar partial
differential operator p(D) the variety V is given by the equation p(—C) = 0.

In this section we extend this result to the case of overdetermined
systems, showing how conditions generalizing the one in [Hoi] are related
to the Phragmen-Lindelof principle.

They are indeed equivalent for the pair consisting of an affine hyper-
plane and the half space it bounds.

In the case of pairs (5,^), where S is an affine subspace of M^ of
arbitrary codimension and Q. a closed wedge with edge equal to 5, we
prove the necessity of the generalized Hormander condition, whereas for
the sufficiency we need a stronger condition, which is no more necessary,
but which coincides with the previous one in the codimension 1 case for
pairs consisting of compact convex sets K\ C 5, K^ C 0.

However, in the case in which the associated variety is an algebraic
curve, we prove that our generalized Hormander condition is necessary
and sufficient for semi-global evolution, i.e. for pairs consisting of compact
convex sets K\ C 5, K^ C ^l.

Note that global evolution implies semi-global evolution (for data on
a free noncharacteristic affine subspace of R^). The two concepts agree for
a scalar operator and initial data on a hypersurface, but are distinct in
general.

Let the pair (<?, 0) consist of an affine subspace S of R^ of arbitrary
codimension and a closed wedge f^ with edge equal to S. By an affine change
of coordinates we can always reduce to the case where

(8.1) S == {x == [x\... ,^) e R^ : x^ = ... = ̂  = 0}

for some 1 < n < N — 1 and

(8.2) ^={x=(x\...,xN)eRN : x^ ^0,... ,^^0}.

We assume that SDt is a given P-module of finite type and that
S is formally noncharacteristic and free for 9Dt. In particular, for every
irreducible affine algebraic variety V = V(p) with p C Ass(SDt) the map

TTn: ^(^...^^(Cl^^CrOeC71

is finite and surjective. Let us set, for ^ = (<j , . . . , <^v) € C^:

C' = (Cl^-^Cn)? C" = (Cn+l^-^Ov)-
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Since TTn is finite and surjective, there are positive constants A;, b such that

(8.3) K'^fcO+IC'l)6 VC^OeV.

Moreover, there is a proper affine algebraic variety Z C C"' such that
V\7^^1(Z) is smooth and

v\^\z)^(:^(:fecn\z

is an m-sheeted cover of C71 \ Z.
We consider the following condition on V:

' 3R > 0, Co C M such that
for every 0 € R71 with B^(0, A) = {|C' - 0\ ̂  R} C C71 \ Z

(H) ^ and every connected component uj of 'K^{Bn{6i R))
there is ^ € a; such that

, Im<^ ^ Co for j = n + 1,..., N.

It coincides with the one given by Hormander in [Hoi] in case V is
an affine algebraic hypersurface.

Then we obtain the following criterion:

THEOREM 8.1. — Let 971 be a P-module of finite type for which S
is formally noncharacteristic and free. Then a necessary condition in order
that the pair (5, fl.) be of evolution for 9Jt is that for every p e Ass(M)
condition (H) be satisfied on V = V{p).

Proof. — Let us consider the plurisubharmonic function in C^:
N

^(0= ^ max{ImC,,0}.
J=7l+l

By Theorems 4.2 and 6.1 a necessary and sufficient condition for the
pair (6', ̂ ) to be of evolution for 9Jt is that, for every V = V(p) with
p G Ass(9Jt) we have:

VA, B, a ̂  0 3A', (3 ̂  0 with the property:
if u € P(V) satisfies,with constants Ay, and ay, depending on u:

^ r^O^AIIrnC'l+B^O+alogO+KI) ony
v0' ; 1 n(C) ^ AJImC'l + a,log(l + |C|) on V

then it also satisfies:
^(C) ^ A'IImC'1 + /31og(e + |C|) on V.
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To show that (8.4) => (H), we argue by contradiction. Let U denote
the set of pairs (0, s) with 0 e R71 and s e R with 5 > 0 such that
Bn(6, s) CCn\Z and there is a connected component cc; of ^^{Bn^O,«))
in V such that /t(^) > s for every C ^ ct;- This set is semialgebraic and
therefore the function

f{t) = sup{s e R : (<9, s) e ̂ , |(9| = t}

is semialgebraic. Statement (H) is equivalent to the fact that f(t) is
bounded for t —> +00. Assuming the contrary, there are positive
constants c, q such that

f(t) = ̂ (2c + o(l)) for t > to ̂  0.

Thus there is i\ ^ ^o such that for t > t-^ there is 6t € R^ with \6t\ = ^,
Byi(^, ct9) cCn\Z and a connected component 0:1 of Tr^1^^^, c^9)) on
which /^(C) > ct9.

Let A be a positive real number and fix a real valued nonnegative func-
tion \ € '^(R71), with support contained in the ball {x/ = (rr1 , . . . .a^) €
^ : |a/| < A/2}, and ^(0) = 1. By Paley-Wiener theorem for every integer
£ there is a constant Q such that

(8.5) ^(Ol ^ Q(l + IC'D-^exp (̂ M) VC' € C".(̂ .•°<'i)
We consider for every positive integer £ the plurisubharmonic function

in C^ defined by

^(0 = iog(ix(c' - ̂ )D +^iog(i + ici).
Clearly we have, as (8.5) holds with Co = 1 when £ = 0:

^(C) < ^lImC7! +Hog(l + |C|) on C^.

Using (8.3) we obtain that log(l + |C|) ^ 7log(e+ |C'|) on V, for a constant
7 > 0. Hence for each fixed B > 0, we can find i^ ^ i\ such that

^(C)<A|ImC'|+B/<C) VCCo;,

provided t > t^. Indeed ^(e+K'l) ^ log(e+t+c^) on c^, while /^(C) > c^9

on ujt.
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On the other hand, using the Paley-Wiener estimate, we obtain for
some ^3 ^ ^2 that

Ut ^(C) < A|Im^'| near ^ne boundary of 0:1 if t > ̂ 3.

Indeed, with a fixed s > 7 ^ ( l + - ) we obtain on the boundary of ^i\

log(|x(C' - Of)\ ̂  logc. - 5log(l + c^) + ^IImC'1,

whereas

<log(l + |C|) ^ ^log(e + IC'I) ^ ^log(e +1 + ct9).

We define a function z^ € P(V) by setting

_ f max{m^(C), A|ImC'|} for C € ̂
vtA^~\A\l^\ f o r C € V \ ^ .

When t > ts we have
f^KO^AIIrnC'l+B^C) onY
t^O^AIImC'l+^logO+KI) ony

but (8.4) cannot hold true because for every £ and t > t^ we also have at
points 0t G a;t with 7Tn(0t) = ̂ :

^(^)^^og(l+I^D-

Remark 8.1. — By repeating the same arguments used in the proof
of the previous theorem, we also show that a necessary condition in order
that the pair {K^.K^) denned by

(8.6) K^ ={(t,x) eM^ xBT : \x\ ̂  A, 0 < tj ^ B forj = 1,... ,/Q

(8.7) K ^ = { ( t , x ) ^ K 2 : t=0},

for constants A, B > 0, be of evolution for 9JT is that for every p € Ass(9Jt)
condition (H) be satisfied onV = V(p).

Indeed, it suffices to put in (8.4) Ay, = A' = A.
We can thus say that condition (H) is necessary for global evolution

(from a formally non-characteristic affine subspace of R to R ), but
also for semi-global evolution, i.e. for pairs (JCi,^) of compact subsets
as above.
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9. The case of algebraic curves.

In this section we investigate the Cauchy problem in K^ with initial
data in J^i, when K^ and K^ are denned by (8.7) and (8.6) with n == 1.

The general discussion allows to reduce to the investigation about
the validity of a Phragmen-Lindelof principle on algebraic varieties V =
V(p) C C^1 where p is a prime ideal in C[ri,..., r^, <].

In this particular case we obtain more precise results. Namely, we
prove that condition (H) is necessary and sufficient for the pair (Ki.K^)
to be of evolution for a system of linear partial differential operators with
constant coefficients.

We assume that V = V(p) is an irreducible affine algebraic curve in
C +1 and that the projection into the last coordinate TT : V —>• C = C/-
is finite and surjective. The closure V of V in CP^ is an irreducible
projective curve and TT extends to a finite surjective map TT : V —> CP1 =
C U {oo}. We note that V \ V = Tr-^oo).

The normalization V a >V is an irreducible smooth projective curve
and the birational isomorphism a is regular.

Let (T^oTr-^oo) ={Pi,...,P,}.

Then we can fix pairwise disjoint connected open neighbourhoods
Y I , . . . , V S of Pi,..., Ps respectively in V, in such a way that, setting
^ = ̂  \ {-Pj}) C V for 1 ̂  j ^ s we obtain:

(i) Vj n VH = 0 for 1 ^ j < h ̂  5;

(ii) a : Vj \ {Pj} -^ Vj is biholomorphic;

(iii) TT : Vj —> 7r(Yj) C C^ is an m^-fold covering for some integer
rrij ^ 1;

(iv) ^(Vj) U {00} is an open neighbourhood of oo in CP1.

(v) for each j (with 1 ̂  j ̂  s), 7r-1 (R) n Vj consists of 2m j connected
components.

We can also assume that for a fixed r > 0 and every j = 1,.... s we
have:

7r(Vj) = {C e C : |C| > r}.
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For each j = 1,..., s we obtain a Puiseux parametric description of Vj of
the form:

• c = ̂ mj

Th= ^ ^,j,a^, for/ l=l , . . . , fc.

Q!^(^J)

Denote by Ep, for J? > 0, the set

ER = {(r,C) = (Ti , . . . ,Tfc ,C) e V : |ImC| ^ R}.

For each fixed R > 0 and R' > 0 the set

{(T,C)€^: Kl^fi'}

is semialgebraic and for R' > r sufficiently large for each j = 1,..., s

y,n^n{(r,c)ey: |C| ̂ '}

consists of 2m j connected components.

PROPOSITION 9.1. — Let p be a prime ideal in C[ri,... ,Tfe,C] such
that the natural projection TT : V(p) —^ C^ is finite and surjective.

Then the pair (J^i, K^), defined by (8.7) and (8.6), is of evolution for
P/p in the Whitney class if and only if the following condition is satisfied
for every R' > 0:

(*) there exist Co € M and R > 0 such that on every connected
component of{(r,C) e V : |ImC| ^ R, |C| ^ ^'} t^ere is a sequence
{(r^,C^)} such that |C^| ̂  +00 and \(1mr^\ ̂  Co.

Proof. — Sufficiency. We can assume R > 1. For v sufficiently
large, condition (*) implies that for every j = 1,..., s on each of the 2m j
connected components of

{ ( r , C ) e y , : K l^ f i ' , lImCl^fi},

we can find a sequence {(r^, C,)} with \^\ —^ +00 and such that [(ImT^I ^
Co.

Let us fix j = 1,..., s and let us omit the index j for simplicity.

We can then find 2m sequences {^^eN C C\B(0,r) such that, for
every h == 0 , . . . ,2m- 1, ̂ ^ > fi, llm^e-1^)! ^ I?, |̂ | 7 +oo
and|(ImT)+(zw)|^Co.
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Let us consider the semi-algebraic set

E = {(5, z^°\..., ̂ (2—1)) e [r, +00) x C27" :

|̂ | ̂  5, |Im(^)e-^)| ̂  A, Kirnr)^))] ̂  Vfe = 0,..., 2m - 1}.

By assumption the projection TT : £' -^ [r, +00) is onto for large positive s.

Therefore by Theorem A.2.8 of [Hoi] we can find 2m Puiseux series
^(s), . . . , z^-^^s) converging for large positive s and such that
(s^^(s),...^^m-l\s))eE,l.e.

\lm(zW(s)e-^^)\ ̂  R and [(Im^ (z^ (s))\ ^ c, Wi = 0,... ,2m-l

for 5 large enough.

Extending these curves up to 0 € C we can then find 2m real analytic
curves w^(^), such that, for some constant c^ Co,

|Im(w^)e-^)| ^ R and Kirnr)^^))] ^ c^ \fh = 0 , . . . , 2m - 1.

In order to prove that the following Phragmen-Lindelof principle is valid:
given A, B > 0,

(9.1)
VM e N 3M' e N such that \/u € P(V) with

f n(r, C) < A|ImC| + B[(lmr)^ + Mlog(l + [C| + |T[) V(r, C) e V
\ u(r, C) ^ A[ImC| + Mn log(l + |C| + M) + Cn V(r, C) C V
we also have:
u(r, C) ^ A[ImC| + M/ log(l + |C| + |T[) + C1 V(r, C) € V,

it suffices to prove the following Phragmen-Lindelof principle- given
A,B'>0,

VM e N 3M' e N such that \/u e P(C) with

f u(z) ̂  Allm^j + B' + Mlog(l + \zm\) for ^ = w^), /, = 0, . . . , 2m - 1
1 u(z) ̂  Allm^l + Mn log(l + 1^1) + Cn for z e C
we also have:
n(^) ^ Allm^l + M/log(l + 1^1) +0' V^ € C.
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Indeed:
1) Let us first assume Mu = 0 and prove that

VM e N 3M' € N such that Vn 6 P(C) with
J u(z) ^ Ajim^l + B' + Mlog(l + 1^1) for z = w^(t), /i = 0, . . . , 2m - 1
\ u(z) ̂  Al^l + C^ for z e C
we also have:
u(z) ̂  Allm^l + M' log(l + 1^1) + C' \/z e C.
The 2m real analytic curves w/i(t) can be chosen to divide the C^ plane into
2m components. We obtain the Phragmen-Lindelof estimate by applying
the maximum principle to each of these components.

As the argument is the same on each of them, we give the proof of
the estimate for the sector S bounded by the curves Wo(t) and wi(t).

Let us first consider the sector S bounded by the curve Wo(t) and the
half ray {pe^ : p ^ 0}.

We assume, as we can, that

-^<argw<,(t)<^

for every t.
By construction we can find k > 0 and y such that for 0 = arg z with

z € S we have

-^<(m+k)(0-y)<^

and hence cos(m + k)(0 — y) ^ A > 0.
Let us set, for e > 0,

Ve{z) = u(z) - eRe ((-ee-^)"^) - 2MRelog(i + -z"1)
- AImz"1 - 2AR - B' - M log 4 - Cu.

For z = Wo(t) = poWe^W, po(t) > 0, we have:

ve(z) = u(w<,(*)) - ep^W cos(m + fc)(0o(t) - y) - 2Mlog \i + w^{t)\
- AImw^(t) - 2AR - B' - M log 4 - Cy,
^ A\lmw^{t)\ + B' + Mlog(l + p^(t))
- M log^t) cos2 m6^t) + (1 + p^(t) sin m^(t))2]
- AImw^(t) - 2AR - B' - M log 4
^ A{|Imw^(t)| - Imw^(t) - 27?} + Mlog(l + /?:"(<))
- M log(l + p^t) + 2p^(t} sin m0o(t)} - M log 4
^0.
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For(?=^:
2m

Ve(z) = u(z) - ep"1^ cos(m + k) (— -y\-2M log \i + ̂ TO|

- Ap"1 - 2A.R - B' - Mlog4 - C^
< Ap"1 + C« - 2Mlog(l + p"1)
- Ap" - 2AA - B' - Mlog4 - Cn
<0.

Moreover, for z e S,we have

A|.z|"1 = Ap" ^ £/)m+fc cos(m + fc)(0 - y>)

/ , 4 \ V f c r 4 ii/fc
for |.d = p ̂  R, = { —} ^ _____A_____

' ' ' £ \e\) [ecos{m+k)(9-y)\ '

Therefore for \z\ = p ^ Re, z e S, we have

Ve{z} = u(z) - ep"̂  cos(rn + k){9 - y>) - 2M log \i+zm\

- Almz"1 - 2AR - B' - Mlog4 - Cn

< Alz"! + £'„ - epm+fc cos(m + k){9 - y) - A(Im2"1 + R) - AR - Cn
< -A(Imw^(t) + R)
<0.

It follows, by the maximum principle, that

Ve{z} < 0 in S Ve > 0.

For e —+ 0 we obtain

u(z) < 2Mlog |1 + z^ + AIm^ + 2A^ + B' + Mlog4 + Cy.
< 2Mlog(l + \zm\) + Allm^l + C' + C» \/z € 5.

Arguing in the same way in the other sectors we have that

(9.2) u(^)^2Mlog(l+\zm\)+A\lmzm\+C'+Cn Vz e C.

Let us now get rid of the constant Cu-

Let us set, for z € S and e > 0,

w,(z) =u(z) - eRe [(ze-^)""^ - 4MRelog(z + z"1)

- Almz"1 - 2AR -B' -2M log 4 - C'
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with fc > 0 and y? such that for 0 = arg z with z € S we have
7T , \ 7r

-^<mk{0-^)<^

and hence cosmk(0 — (p) ^ A' > 0. For ^ = Wo(t) or z = wi(t) we have

We{z) == n(w^(t)) - ̂ ^(t) cosmk(0j{t) - y) - 4Mlog |i + w^t)]
- AImw^t) - 2Afi - B' - 2Mlog4 - C"
^ A\lmwj(t)\ + B' + Mlog(l + p7(t))
- Mlog^^) cos2 m^(t) + (1 + p^{t) sinm^(t))2]
- AImw^^) - 2AR - B' - M log 4
^0.

Moreover for z E S we have

Cn ^ ep^ cos mfc(0 - y?)

( n \ A / ^ \ T^fe
forM=p^= -^) ^ (———-——-) .

e\' ) \ecosmk(0 - ^p) )

Therefore for z G S with \z\ ̂  Ru, by (9.2) we have

We(z) = n(^) - ep^ cosmk(0 - (p) - 4Mlog \i + ̂ 1
- AIm^ - 2AJ% - B' - 2M log 4 - C"
^ Allm^l + 2Mlog(l + 1^1) + C1 + Cn
- ep^ cos mfc(0 - (p) - 4M log |i + ^m!
- AIm^ - 2Afi - B1 - 2M log 4 - C"
^(llm^l-lm^--^)
^2A(max|Imwm(t)|-fi)j'=o,i J

<o.

By the maximum principle we have

We(z) < 0 Vz € 5 Ve > 0.

For e —> 0 we obtain, for z G. S:

u(z) ^4Mlog(l + [z"1]) + AIm-z"1 + 2AR + B ' + 2Mlog4 + C'
<M' log(l + \zm\) + Allm^l + C".
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Arguing in the same way in the other sectors, we finally have

u(z) ̂  M' log(l + 1^1) + Allm^l + C11 \fz e C.

2) Let us consider now the general case Mu G M.

We can easily see that for each e > 0 there is a constant Bu,e > 0
such that

Mn log(l + 1^1) ^ £[^1 + B^e V^ € C

and hence

u(z) ^ (A + ̂ l^l + (Cn + B^,) ^z e C.

By the first step we have

u(z) ^ (A + e)\lmzm\ + M' log(l + 1^1) + C' \/z C C

for every £: > 0.

For £: —> 0 we have the thesis.

Necessity. Condition (H) is necessary in view of the remark following
Theorem 8.1 and it clearly implies condition (*).

Remark 9.1. — Theorem 8.1 and Proposition 9.1 show that, in the
special case where V(p) is an algebraic curve, condition (H) is necessary
and sufficient in order that the pair (^1,^2) given by (8.7) and (8.6) be
of evolution for P/p in the Whitney class.

10. The Cauchy problem with data on a formally
noncharacteristic free affine subspace of R^:

a sufficient Hormander's type condition.

Now we consider a stronger condition (H') which is sufficient for
evolution for the pair (K-^^K^) considered in the previous sections, but
which in general is not necessary. In the case n = N — 1 this stronger
condition (H') coincides with Hormander's condition (H), and hence we
obtain another proof of Hormander's characterization of evolution in the
case of scalar operators.
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Let us then state condition (H') by:

' 3fi, r > 0, ci € M such that
for every 0 € M71 with %n09, -R) C C71 \ Z

(H') ^ and every connected component uj of ^^{Bn^Oi JZ))
there is B(C^r) C Bn(0,R) such that

JmC^ci VCeTr^B^r)), j = n + l , . . . , ^ v .

By translation we can assume that condition (H) holds with Co = 0.

Then the following lemma shows that Hormander's condition (H) is
equivalent to (H') when n = N — 1.

LEMMA 10.1. — Let Fm{B(O^K)) be the set of analytic functions in
B(0, R) C C" algebraic of degree ^ m, i.e. the set of all analytic functions
f in B(0, R) such that for some polynomial R ̂  0 of degree ^ m in C71"1"1

the equation J?«, /«)) = 0 is valid in B(0, R), and let 0 < Ro < JRi < R
and 6 > 0.

Then there is r > 0 such that iff e Fm(B(0, R)) and if

3^eB(0,R^)s.t. Im/($o)^0

it follows that

Im/(Q ^0 V^ € B
where B is some ball in f?(0, Jti) of radius r.

This is Lemma 12.8.8 of [Hoi] after substituting —/ to /.

THEOREM 10.1. — Condition ( I F ) on V(p) implies that the pair
(J^i, K^) is of evolution for P/p.

Proof. — By translation we can assume ci = 0.

We have to prove that condition (8.4) holds with Au = A.

Let n be a plurisubharmonic function which satisfies the first two
inequalities of (8.4) with Au = A, then by the Hadamard three circle
theorem (cf. [Hoi]) we can find 0 < jRi < -R and 0 < 6 < 1 such that

^0"(^U) ^ (1-^) sup u+<5supn V$eB(0,.Ri).
B(6,R) B

Therefore, for < € B{6, R) we have

sup u ^ sup5^ R\{mu log(l + J C I ) + A|Im$| + Cy}
B(0,R)

^ m^[log(l + |C|) 4- R + Ri] + AR + c^,
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since log(l + \0\ + R) < log(l + \9\ - R^) + R + R^ < log(l + |d) + a + ̂ .
Moreover,

sup ^ sup {mlog(l+|d)+A|Imd+c}
B((e,r) B((y,r)

^ m[log(l + |d) +R+Ri+r]+AR+c
since

log(l+|C@|+r) <log(l+|0 |+^+r)
^ log(l + \e\ - Ri) + R + Ri + r
< log(l + |C|) + R + Ri + r

for < € B(e, -Ri). Therefore for < e V n R^ we have

•u(C) < (1 - ̂ ){mu log(l + |C|) + m^(R + fli) + AR + Cn}
+6{mlog(l + |d) + m(R + Ri + r) + AR + c}
=[(l-<5)m^+^TO]log(l+|d)
+(1 - 6)[m^(R + Ri) +AR+c^}+ 6[m(R + R^ + r) + AR + c] .

This inequality, together with the second inequality of (8.4), implies, by
the classical Phragmen-Lindelof theorem, that

u(C) ^n[(l - 8)mn + 6m] log(l + |d) + A|Im$|
+ (1 - 6)[m^(R + Ri) +AR+c^}+ 6[m(R + Ri + r) + AR + c].

After t steps we obtain:

u(C) ^ a log(l + Id) + A|Imd + \t + if]

where C(. and \{ are defined by recurrence by

(io.i) !. Cl = TRu

Q = n[(l - (5)Q-i + 6m}

f ^1 = Cy,

I A , = ( I -

(10.2)
^ = (1 - 6)(c^(R + ̂ i) + AR + A^-i)

and 77 = m(J? + R^ + r) + AA + c.

If we apply the above considerations to

^(0 = ̂ (C) - c - m(^ + J?i + r) - AJ?

instead of ZA, we obtain

^(C) ^ Q log(l + |C|) + A|Im^| + A^.
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Let
L = lim sup Q, A = lim sup \(,.

e-^oo e—^oo

By (10.1) we compute:

L = n[(l - 6)L + 6m]
6mL = 1^(1^)< +00

(it is always possible to chose 6 such that (!-<!)) 7^- i f n > l ) .it'

By (10.2)

A =(1 - 6)[L(R + Ri) + AR + A]
=L(R + Ri) + AR + A - 6[L(R + Ri) + AR} - 6A

A=1—6-[L(R+Rl)+AR}.
6

Letting f. tend to +00, we finally obtain

v(C)<Llog(l+|C|)+A|Im$|+A

and hence

u(C) ^ L log(l + |C|) + A|Im$| + A + c + m(R + Ri + r) + AR.

This theorem proves that condition (H') is sufficient for evolution for the
pair (Ki,K2) denned by (8.7) and (8.6).

However, condition (H') is not necessary for evolution neither for the
pair (S',0) nor for the pair (-Ki,^)-

Example 1. — Let us consider the following system:

( 8 ,92

nn^ 9tl t9x2
(10.3) Q Q2

9t2+^9x2'

The associated algebraic variety is

V = {(Ti,T2,C) 6 C3 : Tl = C^Ta = -C2} ,

and

(Imn)+ + (Imr2)+ = 2|ReC| • |ImC| on V.
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In this case condition (H) is valid, but not condition (H').

However the system (10.3) is of evolution since adding the two
equations of the system we obtain

A-_A
<%i ~ <%2'

A solution of such an equation is of the form u = u(ti — t^).

Therefore, if u(t\^x) is a solution of the Schrodinger operator

9 . Q2

9ti ^x2

(note that this solution exists since we have already proved necessity and
sufficiency of Hormander's condition (H) in the case n == N — 1), we have
that

v(t^t^x) =u(tz -t^x)

is a solution of the system (10.3).

This example proves that condition (H') is sufficient but not necessary
for the pair (J^i, K^) to be of evolution.

We will show by the following example that semi-global evolution
does not imply global evolution, i.e. the Phragmen-Lindelof principle

Va ^ 0 3(3 ^ 0 with the property:
if u e P(V) satisfies, with a constant On depending on n:

(104) f^O^AIImC' l+^O+a^e+KI) on V
I ^(C) ^ A|ImC'[ + an log(e + |C|) on V
1 then it also satiesfies:
[ ^(C) < AlImC7! + /?log(e + |C|) on V

does not imply the Phragmen-Lindelof principle (8.4).

Example 2. — Let us consider the system

( a .92

9tz ^x2

_9_ . 92

< ^2+^^2

_9___9^
< 9t3 Qx1 '
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The associated algebraic variety is given by

^={(T l ,T2 ,T3 ,C)eC 4 : T i=C 2 , T2=-C2 , T3=-ZC2}.

For C = $ € R we have
Imri = Imr2 = 0
Imrs = -$2 ^ 0

and hence condition (*) of Proposition 9.1 is satisfied.

Therfore the pair (^1,^2) defined by (8.7) and (8.6) is of evolution
for the given system, i.e. the Phragmen-Lindelof principle (10.4) is satisfied.

However, we assert that there is a sequence {^n}yi^ of plurisubhar-
monic functions in C4 which satisfy

f u,(r, C) < A|ImC| + B E îOmr,̂  V(r, C) € V
tu,(r,C)^AJImC| V(r,C)cy

but which do not satisfy

^(r,C) ^ A'llmd +/?log(e+ |r| + |C|) V(r,C) € V

for any /3 € N, A' ^ 0.

Indeed, for (r, ̂ ) e V we have:

Imri = 2Re< • ImC
ImT2 = -2Re< • ImC
Imrs = (ImC)2 - (ReC)2

and hence

^ (Imr,)+ = 2|Re| . |ImC| + ((ImC)2 - (ReC)^ ^ |(ImC)2,
j=i

since for |ReC| ^ j|ImC|

((ImC)2-(ReC)2)^ (ImC)2-(ReC)2

^(ImC)2-^(ImC)2

= |(ImC)2

and for |ReC| ^ jllmd

2|ReC|•|ImC|^|ImC|2^|(ImC)2 .
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It is then sufficient to find a sequence {un} cN °f plurisubharmonic
functions which satisfy

r^(r,C)^A|ImC|+B|ImC|2 onV
[ ) l^(T,CKAn|ImC| onY

but which do not satisfy

(10.6) ^(r,C) ^ /31og(e+ M + |C|) 4-A'IImCl on V

for any (3 6 N, A' ^ 0.

Let us construct a sequence {<^n}nGN °f convex increasing functions
by

( 0 if -oo < x ^ 0
/n f^\ ~~> ifo ̂ x ̂  n^nW = n2

x-\- — —n ifn^x< +00.
n

Then we have a sequence {t^}y^ of plurisubharmonic functions defined
by

( 0 i f I m C ^ O
Un(r, C) = nn(C) = n^n(ImC) = -ImC if 0 < ImC ^ n

Ti

nim^ + 1 — n if Im^ ^ n.

These functions Hn(C) cannot satisfy (10.6) for Im^ large enough,
however they obviously satisfy the second inequality of (10.5), and they
also satisfy the first inequality of (10.5) since

for ImC ^ 0 ^(C) = 0 < (ImC)2 + 1,

for 0 ̂  ImC ̂  n.(C) = ̂ ImC ^ { (;mo2 [inw^ n ^ (ImO l̂,n ^ ^ 5 - ^ 1 n U ̂  jLmQ ^ ^

and for ImC ^ n Un(C) = ̂ ^C + 1 - n2 ^ (^C)2 + 1-

Therefore

^(CKamO'+i vcec,
and hence the Phragmen-Lindelof principle (8.4) is violated.

We summarize the discussion in the last three sections, by saying that
whereas in the cases n = N — l o r n = l condition (H) is necessary and
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sufficient for semi-global evolution, in the general case we only proved it
is necessary, whereas for sufficiency we require the stronger condition (H')
(which coincides with (H) when n = N — 1) which is not necessary.

Let us translate the results obtained so far in terms of Cauchy
problems for systems of differential operators.

Let us first recall that the hypothesis that TT^ : V —> C? be finite,
proper and onto, for

v = v(p) = {c = (r,0 e c^ x c" ̂  c^ : p(C) = o Vp e p},

means that the module 971 == 'PN/P? considered as a P^-module (9Jt)n
via the natural inclusion Vn <—> T^Ni is finitely generated and free, i.e.
{W)n ̂  ^n for some ^ € N \ {0}.

This means that:

(i) R71 is formally non-characteristic for the complex

(10.7) y^^y^^H^ ^ ...

where ^(D) = \pi(D\... ,pr(D)) for generators pi(C),. . . ,pr(C) of the
ideal p, and D = (D(,D^);

(ii) A complex of Cauchy data

^00^(1^*31^ ^ ...__ ^
yKl ————''' "Ki ————''' "Ki

for the complex (10.7) on R" reduces to the trivial complex

WK, -^ 0,

i.e. we have a set of free Cauchy data for *A(D).

l{tTo : Pn —^ 'PN is a Pn-homomorphism such that the diagram

mi <— PN
II T t T O

(9Jt)n <—— '?„

commutes, then the Taylor series in t along t = 0 of a solution / G W/(-2 of
*A(D)/ = 0 is uniquely determined by the Cauchy data

To(/)=To(£»t,A.V(t)|t=0.

We refer the reader to [AN1] for more details.
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We can finally formulate the following theorems:

THEOREM 10.2. — Let

(10-8) S = {(t, x) e R^ x R7111 = 0}

(10.9) 0 = {(^) e R^ x IIT [^, ^ 0 forj = 1,... ,fc}.

Then condition fH) is necessary in order that the following generalized
Cauchy problem have a solution:

( given f e H% and (p e Ws
\ find u € W^ such that ̂ (D)^ = / and ^[5 = ^p.

If k = 1 and r = 1 condition (H) is also sufficient.

THEOREM 10.3. — Let

(10.10) K, = {(t, x) e ̂  x IT 11^| ^ A,t = 0}

(10.11) K^ = {(^, x) e ̂  x R711 \x\ < A, 0 ^ t,^ B for j = 1,..., fc}.

Then condition (H) is necessary in order that the following generalized
Cauchy problem have a solution:

( given f e H^ and y? € WK,
[nndue WK^ such that (̂.D)̂  = / and U\K, = (p.

Ifk=lorn=l condition (H) is also sufficient.

THEOREM 10.4. — Let K^ and K^ as in (10.10) and (10.11). Then
condition ( H ) is sufficient (but not necessary) in order that the following
generalized Cauchy problem have a solution:

( given f € H^ and (p e W^
{Gndue WK, such that ^A(D)^ = / and U\K, = ̂
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11. The Petrowski condition for evolution.

We want to show that the following Petrowski condition:

(11.1) 3cj € R+ : (ImT,)+ < Cj V(r, C) € V, C = ̂  e K"

for j = l,...,k, is a sufficient condition for the pair (K\,K'i) to be of
evolution in the Whitney class, for K\ and K^ defined as in (8.7) and
(8.6).

We will prove that (11.1) implies the following Phragmen-Lindelof
principle:

Vm 3M, c > 0 s.t. VF (E 0(C") with

r ( k
\ |F(r,C)| < (1 + |r| + ICirexp ^B(ImTj)+ +A|ImC|

(11.2) ) V^i
I |F(r,C)| < CF(I + |T| + Id)^ exp(A|ImC|)

we also have
|F(r,C)| ^ c(l + |r| + |C|)Mexp(A|ImC|) V(T,C) e V.

Indeed, by (8.3) and (11.1), from (11.2) we obtain

r |F(T,O| ^ c'(i + \(i\)rnt on y, c = ̂  e r1

1 |F(r,C)| < 0^(1 + ICI)^ exp(A|ImC|) on V.

If we set

n(C)= sup log|F(r,C)|,
(T,C)€V

then n is plurisubharmonic in C71 and

f ^(C) ^ ̂  + m, log(l + |C|) + A[ImC| VC e C"
\ u(Q ^ c" + m1 log(l + |$|) V$ € R71.

We want to show that

u(Q < c + Mlog(l + |C|) + A|Imd VC € C71.

For this purpose we prove the following Phragmen-Lindelof principle for
plurisubharmonic functions:

THEOREM 11.1. — For every positive constants M, B we can find some
positive constants M' ^ B ' such that every plurisubharmonic function u in
C" which satisfies

( ^(C) ^ A|C| + mn log(l + |d) + Cn VC € C71, for some m^, c^
{ u^) ̂  Mlog(l + |d) + B V$ € R71
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then is also satisfies

u(C) ^ A|ImC| + M' log(l + |C|) + B' VC € C71.

Proof. — Let us first remark that the case n = 1 is fairly well-known
and moreover has already been treated in the proof of the sufficiency of
condition (*) of Proposition 9.1. The general case follows by a standard
reduction argument from the case n = 1.
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