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LINEAR HOLONOMY GROUPS OF ALGEBRAIC SOLUTIONS
OF POLYNOMIAL DIFFERENTIAL EQUATIONS

by Paulo SAD

INTRODUCTION

Let T be an analytic foliation of CP(2) of degree k € N. Given
an affine coordinate system of CP(2) such that its line at infinity is not
invariant by J-', the foliation is defined by a polynomial differential equation
(1.1) a; = -Qdx + Pdy = -{Qk + yg)dx 4- (Pfc + xg)dy = 0
where g ^ 0 is a homogeneous polynomial of degree k € N and PA;, Qk are
polynomials of degree at most A; € N. If the line at infinity is ^-invariant,
we still may use (1.1) to define T with g = 0, but at least one of the
polynomials PkiQk must have degree k € N. Setting
(1.2) H{u^)={u-\vu-l)={x,y)

we get

(1.3) H^ = u-^^ [(Qk(u, v) - vPk(u, v))du + (nPfc(u, v) + p(l, v))dv]

where Pk,Qk are polynomials of degree k € N at most. We see from
(1.3) that the line at infinity Loo ;= {u = 0} is the polar curve of cj,
(o;)oo=(^+2)Loo.

We may also define T by the meromorphic vector field

( L 4 ) z - p ^ + ̂  - ̂  + ̂ i + ̂  + ̂ jy
Key words'. Foliations in the plane projective space - Algebraic leaf - Holonomy group

— Degree of a foliation — Theorem of Riemann-Roch — Cousin problem.
Math. classification: 32L30.
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(1.5)

JTZ = -n-^-1) \(uPk(u,v)^g(l,v))9 - (Qk(^v) - vp^v))9]
L ou dv J

Therefore (Z)oo == (fc - l)I/oo. We define inclination functions

^ ^ - Q(^) - Qfc+^
P(x,y) Pk+xg

Qk(u,v)-vPk(u,v)
(1.6)

^(u,v) = —
uPk(u,v)+g(l,v)

It follows easily that if ^oo(u,v) := ̂ (u~l^u~lv) we have

(1.7) z^(tA, v) + ̂ oo (u, v)=v

wherever the functions $, ̂ oo are finite.

Let C C CP(2) be a smooth algebraic curve, invariant for T\ we
may always assume that the two affine coordinates systems (x,y), (u^v) =
(x^.x^y) cover C, and that C is transversal to Loo. If f(x,y) = 0 is the
polynomial equation which defines (7, then

(L8) ^c-'tc
holds except for a finite number of points in C \ Loo.

Given a leaf F of F and p = (^o?2/o) ^ F such that P(xQ^yo) -^- 0
(that is, F is not vertical at p € F), the holonomy group H(F,p) is the
set of germs of holomorphic diffeomorphisms defined as follows: to each
continuous closed curve 7 = (71,72) ^ 7Ti(F,p), 7: [0,1] —> F, 7(0) =
7(1) = (a;o, 1/0), we associate a continuous family of liftings 7^: [0,1] —^ Fy
of 7, where F^ is the leaf through (xo,y) and 7^(0) = (a;o?2/); putting
7^(1) := (xQ^f^(y)), f^ is a germ of diffeomorphism of C which has ^/o € C
a^ a fixed point. Then f^ C H(F,p). It follows that f^{y) = y -^- f ^dx
and that

(1.9) ^Q/o) = exp I ^ydx.
j^i

These expressions are written under the assumption that 7 avoids Loo and
('0)005 which is granted if we deform slightly 7 inside its homotopy class
in TI-I (F,p). Let (7* be the invariant algebraic curve C deprived of the
singularities of F which belong to it. Prom (1.9) it follows that we have in
fact a group homomorphism

^^(C^R^C*

•/.7 i-» exp y ^ydx
Ai
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called the linear holonomy group ofC*, and 1/^^(7) is the linear holonomy
associated to 7.

Attention has been placed upon the situation where 7 is a small loop
around a singularity q e C of the foliation T. The number mdq(^,C) :=
(2nr)~1 L^ydx is called the index of T relatively to C at q (see [1]), and
A?",c'(7) = exp2^7^indg(.7:', C). Our interest in this paper consists in finding
examples where singularities do not contribute to the linear holonomy
group, but Ly^c is not trivial due to the topology of C\ furthermore, we
estimate the degree of the examples as a function of the degree of G.

It is interesting to regard the situation of a Darboux foliation, defined
by a closed 1-form

n r1P
(1.10) ^=^A,^=0

j=i ^
where \j e C, Pj are polynomials, 1 < j < n. All curves Pj = 0,
1 < J <: n are invariant; we take Pi = 0 which is assumed for simplicity to
be smooth and transversal to P^ = 0, . . . , Pn = 0. The points of intersection
of Pi = 0 with Pj = 0 are singularities, and the linear holonomies at these
singularities are £j = exp2z7rA^A]~1. If 7 C -HI ((PI = 0)*,R), there exist

integer numbers 7712,... , rrin (depending on 7) such that L^c(7) = II ̂ j •>
J=2

as an easy computation shows. Therefore, the linear holonomies associated
to curves in -HI ((PI = 0)*, R) turn out to be trivial once we know that the
linear holonomies at the singularities are trivial.

Since we will work in the situation where the singularities of F
along C have linear holonomies equal to 1, the group homomorphism
^jrc'^^C^R) -^ C* may be thought as defined on ^(C.R); this will
be assumed from now on, unless explicitly stated on the contrary. Our
result is:

THEOREM. — Let C be a, smooth algebraic curve ofCP(2) of degree
d € N, and (f): H^(C^ R) —^C* be a homomorphism of groups. There exists
a foliation F ofCP(2) of degree at most 4d2 -3d such that C is ^-invariant
and Lyfi = (t>'

Our construction in fact allows us, once given a priori a finite number
of points along C and a set of complex numbers assigned to them, to pro-
duce a foliation which has those points as singularities with those numbers
as their linear holonomies. But we can not avoid the appearance of other
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singularities with trivial linear holonomies; the estimate involving degrees
will change to account for this situation. In order to avoid complications
in the exposition, we prefer to restrict to the simplest case. Finally, we do
not know whether our estimation for the degree is the best possible or not
(although the construction we make seems to be the simplest possible).

In connection with our subject we have the following works: 1) in
[3], [6], [8], limit cycles are created from a certain number of vanishing
cycles after perturbing a foliation of CP(2) which has a meromorphic first
integral; the cycles lie in different leaves of the foliation; 2) in [7], the
ambient space is a line bundle over a compact holomorphic curve. A finite
set of points is given on the curve along with assigned complex numbers,
and a foliation is constructed to realize such a data as linear holonomies of
singularities. We will extend this construction in the Appendix to generate
more linear holonomy due to the topology of the curve.

It should be mentioned that the problem of characterizing the groups
of holomorphic diffeomorphisms which can be realized as holonomies groups
of invariant algebraic curves seems to be a very hard one.

This paper is organized as follows: in §1 we use some facts from
the theory of Riemann surfaces in order to choose convenient abelian
differentials related to linear holonomies groups; these differentials are
naturally associated to foliations. Next, in §2, we construct a foliation to
which a differential given a priori is associated, and compute its degree,
finishing then the proof of theorem. We close the paper with the Appendix
aforementioned.

The author thanks D. Cerveau and J.-F. Mattel for valuable conver-
sations.

1. PERIODS of MEROMORPHIC DIFFERENTIALS

Let us keep the notation used in the Introduction. From (1.9) we
see that all information concerning linear holonomies comes from the
meromorphic 1-form ^(.F) := {^ydx)\c of C. The periods of 7?(^7) arise
from small loops around its poles and also from non-zero loops in H\{C^ R);
in this section we collect some facts related to both of them.

We start looking at the poles of r\ (^F).
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Let us take the affine coordinate system in such a way as to have the
tangencies of C with the vertical lines x =const. of quadratic type. The
poles of rf{^F) appear possibly at the following points:

(i) q = (xo.yo) € C, P{xo,yo) = Q{xo,yo) = 0, fy(xo,yo) ̂  0.

In this case, q G C is a singularity of F and

(1.11) Res^(^) = indg(.F, C).

(ii) q = (xo.yo) G G, fy{xo,yo) = 0.

(iii) ge CH LOO-

LEMMA 1. — In case (ii) and (iii) the equality

(1.12) 1 + Res^(^) = indg(^, C)

holds true.

Proof. — 1) We prove first (1.12) in case (i). We may assume that
q = (xQ^yo) = (0,0) and that locally C is written as x = z/2^^/), where
y? € Oi, <^(0) 7^ O. Therefore

|-(2/2^)^) = 2W<2/) + t/VQ/) for 2/ ̂  0

^ (S).^2^^5^ " M{y) +y2(l)/{y)) + (^)/2/2^(^/)52/)

=(2^(2/)+2/V(2/))'

^ (^).(^(2/)52/)~ (j)/^^)^)(2^^)+^/(2/))

^_(22/0(2/)+2/V(2/)y
2i/0(2/)+2/V(2/)

=> indg(^, C) - Resg77(^) = 1.

2) Let now q € C H Loo. From (1.7):
u^(u,v) + ̂ (u~1 ̂ vu~1) = v =>

u^v -^u^^y^u^.vu'1) = 1, for u -^ 0.

C?1&
Therefore ^dn - ̂ (^') = —, and (1.12) follows. Du

We remark that in cases (ii) and (iii), q € C may not be a singularity
when ReSqTj^) = —1. The index mdq^y^C) is not powerful enough to
detect the existence of a singularity, but if it does exist, its linear holonomy
is trivial.
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COROLLARY 2. — Let d = deg(C). Then ^ indg(^, C)=d2.
gesmg(^)

Proof. — 1) We may choose the affine coordinate system in order to
have only points of type (ii) as singularities of T along C. The contribution
of points (i), (ii) and (iii) to the residues of r]{^F) are:

- points of type (i): ^ ind^.F, (7),
gesing(^-)

- points of type (ii): —d(d — 1),

- points of type (iii): —d.

Since ̂  Resrj(J7) = 0, the corollary follows. D
q

This corollary is a particular case of a theorem proved in [1].

We remark that there are no obstructions to finding meromorphic 1-
forms in compact holomorphic curves with ascribed residues along a given
finite set of points (except that the sum of the residues is zero), see [5].

So far we have studied the periods of the meromorphic 1-form T] (F)
at the points of its polar set. What we want to establish now about the
remaining periods is that there are no obstructions to realizing all of them,
at least at the level of meromorphic differentials.

In order to be more precise, let us consider a canonical basis a\,..., ag,
& i , . . . , & ^ for ffi((7,R), and fix representatives in each class of these
elements, still denoted by a i , . . . , a?, 61, . . . , bg (g := genus((7)).

THEOREM 3. — Given a collection ( A i , . . . , Ap, JLAI, . . . , iig} € C9,
there exists a meromorphic 1-form rj such that \i = a^-period of 77, /^ = bi-
period ofrj.

Proof. — 1) Let He be the complex vector space of holomorphic
differentials of C. The map

(/„...,/,)
\Jai Jag )

H c ^ r j ^ / 77,. . . , / r j \ CC^
\Jai Jag )

is a linear isomorphism (see [5]), so that we can find a (unique) holomorphic
differential with ascribed a-periods.

2) Now we want to realize fr-periods. Let us fix i distinct points
P i - > ' " •>Pf. ^ C outside the a-curves and fr-curves, and define D := pi +
... +J^. Let Vc = {meromorphic differentials of C with poles at pi , . . . ,p^
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of order at most 2, zero residues at these poles and zero a-periods} and
T'.Vc^C^

( [ ( \rj^T(rj)= \ 7 7 , . . . , / r] .
\Jbi Jbg )

It is easily seen that dim Vc = ^.

The following sequence is exact:

(1.13) 0-^C ^HD) -^Vc ^C9

where L(D) = {meromorphic functions h of (7, (fa) > —D}. ( (/i) stands for
the divisor associated to fc), and d is the usual differentiation. Our problem
is to add a last arrow

(1.14) 0-^C ^HD) -^Vc J-^ CS-^Q
keeping exacteness. It is enough to have dimL(-D) = £ — g + 1. By the
theorem of Riemann-Roch, this is implied by £. > 2g — 1; we then pick up
such an integer t € N.

It follows that adding differentials of He and Vc we may realize all
a-periods and fr-periods. D

Remarks.
1) Since d(d— 1) >, 2g — 1, where d := degree((7) and g := genus(<7), all

poles of the meromorphic 1-form given by Theorem 3 may be placed
along the points (xo.yo) e C \ Loo where fy(xo,yo) = 0.

2) Let F be a foliation of CP(2) which has C as a invariant curve; if
r](T) G He + Vc'> then any singularity of F along C has trivial linear
holonomy.

3) We may add to the meromorphic differentials in "He + Vc convenient
meromorphic differentials in order to realize ascribed residues along
a given finite set of points.

In the next sections, we construct a foliation T', and compute its
degree, for which rj^) is given a priori in He + Vc'

2. CONSTRUCTION OF FOLIATIONS

Let 77 be a meromorphic 1-form of the smooth algebraic curve C C
CP(2). We consider affine coordinate systems (re, ?/), (n, v) = (^-1, x^y) G
C2 which satisfy
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Cl) C is covered by these coordinates.

C2) C is transversal to LQ = {x = 0} U Loo = {u = 0}.

C3) The tangencies of C with the vertical fibration x =const are of
quadratic type.

Let f{x^y) = 0 be the polynomial equation for C. We will look
for a rational function ^ of CP(2) such that the foliation F defined by
dy
— = ^(x,y) has C as an invariant curve and rj(^F) = rj. We will try a
dx
function ^ in the following form:

(1.15) ̂  y) = -^^) + f(x, y)^\x, y) = ̂ , y) + f{x, y)^\x, y)j y ^ ^ y )
where ^1 is a rational function to be determined. Let T] = (3dx[c^ so that
/3 is a meromorphic function of (7. From (1.15) we derive

(1.16) ^=^+/^ l+/^•

Since we demand that rf^) = 77, or ^y[cdx = /3ckc, (1.16) implies that

(,H) ^c^-^.
Jy\C

(3-^°[c
The function (p := ———— is a meromorphic function of (7. We want to

fy\c
extend it as a rational function ^1 of CP(2). This is always possible and
in fact there are many extensions: once '01 is one of them, we may consider
ip1 + / • h as well, where h is any rational function of CP(2) such that
Woo ~/> C. The problem now is to determine the degree of the resulting
foliation, what we do by counting singularities along C. The 1-form 77,
which will presumably be rj^) at the end of the construction, does not
carry all the information concerning the singularities of F. For instance,
the foliation Q defined by —xdy + y(x2 + y)dx = 0 has C = {y = 0} as an
invariant algebraic curve and (0,0) € C is a singularity, but T](G) = xdx
is holomorphic at (0,0) € (7. The conclusion is that we have to follow
carefully the steps along the construction of the foliation in order to be
able to compute the degree. We will use the ideas of [2]; in this paper,
a meromorphic function is given along an analytic curve of C2, and an
extension to C2 as a meromorphic function is shown to exist.
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2.1. Poles of the function </?.

As we indicated before, the 1-form rj € T~i -+- V may be chosen to have
its poles in the set of points of C \ Loo where fy = 0. The poles of the

function (p = ——J/—, where rj = /3&c, are possibly:
fy\C

(a) points of C \ Loo where fy = 0.

Since the computation is local, we may assume that the point under
examination is (0,0) € C2 and f(x,y) = x -y2. Writing rj = a{y)dy =

a{y)—, we get f3(y) = -—. We conclude that:
2^/ ^y

- if (0,0) is a pole of rj of order 2, then it is a pole of (3 of order 3 and
a pole of ip of order 4.

- if (0,0) is a regular point of rj (that is, a(y) is holomorphic at (0,0)),
it follows that (p has a pole of order 3 due to the fact that ^[c has
a pole of order 2.

(b) points of C D Loo.

We apply (1.7) to the foliation defined by the inclination function
^° = - J x and get

fy
(1.18) ^(x,y)=u-u2^(u,v), x=u~1, y=u~lv.

We have also that f(x, y ) = —^f(u, v) for a polynomial /, and /^(O, v) ̂  0
at the points of C D Loo. It follows that

(1.18Q fy(^y)=^fy(u,v).

Since 77 is holomorphic at C H Loo, if we write rj = -J3(u)du (where J3 is a
holomorphic function) we get

(1.18") /?(^)=H2^)
\ Ui /

and from (1.18), (1.18') and (1.18") we conclude that y? has a zero of order
d € N at the points of C n Loo.

Therefore, all poles of (p belong to the set of points where fy = 0.
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2.2. Local extensions of the function y?.

We will construct in this section a family {^^} of meromorphic
functions defined over a covering {Ua} of CP(2) with the properties:

(1.19) '(i) ^-^eO^n^ if ^n^0
(ii) ^|cn^ = ^[cnu^ if C H ̂  ̂  0.

Before doing that, we have to choose the affine coordinate system in
order to satisfy two extra properties (C4) and (C5), (Cl, C2 and C3 were
introduced in §2):

C4) if fy(xo,yo) = 0 for some {xo.yo) € C, then fy(x,yo) ̂  0, ^(x,yo) e
C and x -^ XQ'-,

C5) if (0, yo) C C then fy(x, yo) ̂  0, V(a:, yo) e C, and if (a;o, Vo) € C and
/2/(^o, Vo) = 0 then 2/0 ^ 0-

In order to construct the elements of (1.19), there are several situa-
tions to be analyzed; in the sequel, all neighborhoods are supposed to be
sufficiently small.

Case 1: (.z;o, yo) e C \ Lo, fy{xQ, yo) ̂  0, fy(x, yo) ̂  0, V.Z: € C.

Since C can given locally by y = h(x), where h is a holomorphic
function such that yo = h(xo)^ we may define

(1.20) ^{x,y)=^h(x))

for {x^y) in a neighborhood Ua of (xo^yo)-

Case 2: (rro, 2/0) e C \ Loo, /y(^o, 2/o) = 0.

There are d € N points (xo.yo),. • . , (xd-i,yo) C C; let a; = gj(x)
describe C locally at these points for 0 < j <: d - 1, (gj(yo) = Xj,
QJ holomorphic function). Condition C4 implies that fy(xj,yo) ^ 0,
j = 1,..., d — 1. We define
(1.21)
^1^ ^ ̂  ______y(go(y).y)f(x,y)______ /^)Y~2

a ^ y } (goW-x)(g^y)-go(y)).^(gd-i{y)-go(y)){ x )
^ ^(^ofa)^)(^i(2/) - x)... (gd-i(y) - x) /^oQ/)V~2

(9i(y)-go{y)).^(gd-i(y)-go(y)) \ x )
for |2/ - t/o| small, a; € C*.
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It is easily verified that ^(go{y),y) = ^(go(y),y) (so ̂  extends y?)
and ^(gj(y), y) = 0 for 1 < j < d - 1. We may also write

(i.^> ,̂̂ (s^ ,̂,))
\k—± /

where Ak(x) is a polynomial of degree d — 1 at most and r(x^y) is a
holomorphic function defined for \y - yo\ small. Let us define Py^x.y) =
^ AfeQr)
^i^-^'

Remark. — A^(x) = 0 when the pole of y? at (xo, yo) has order 3.

Case 3: points {x^yo),..., (xd-i, yo) C C\Lo such that fy(xo, yo) =
0 and {xo.yo) ^ C.

We consider in the neighborhood of these points the expression given
by (1.20), and add the one in (1.21). Clearly we get an extension of (p.

Case 4: (xo, yo) i C U Lo, fy(x, yo) ̂  0, Va; e C.

We just put ^(x, y) = 0 in a neighborhood Ua of the point (xo, yo)'

Case 5: (xo.yo) ^ C U Lo, but fy(xo,yo) = 0 for some XQ € C and
(xo.yo) ^ C.

We have already associated to (xo^yo) ^ C the expression in (1.21),
and we keep it in this case.

Case 6: points in Loo \ Lo.

Let us start with the point u = 0, v = 0 (remember that u = a;"1,
v = x^y), which we may assume to be not in C. The points studied in Case
2 were associated to expressions like (1.21) which give rise to horizontal
polar lines y = y^\ 1 <, j < d(d — 1), meeting together at u = 0, v = 0.
We define

d(d-l)

(1.23) ^M= ^ u^-2?^-1,^-1)
J'=l

where P Q) (a:, ^/) was defined when we treated Case 2 points. The polarVQ
d(d-l)

divisor of the function in (1.23) is exactly \J {v — y ^ u = 0}.
j==i

At the points u = 0, v -^ 0, we proceed as in Cases 1 (points of
GULoo) or 4.

Case 7: points in Lo.
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We go back to the expression (1.21), associated to the horizontal polar
line y = y^ \ 1 < j < d(d — 1). Each of them may be written as

^y) = /M f^ a,(x)(y - y^)\
fc=-4

where dk(x) is a rational function on x — XQ. We define then
, . d(d-l) -l

(1.24) V(x^y) = ̂  ̂  ^ a,(x)(y - y^.
j=l fc=-4

It is easy to check that ak{x) = —-——— ' - for 6^, Cfc polynomials of degrees
C k [ X - X o )

A; + 4, fc+5, respectively (-4 < fc < -1). We observe that V vanishes along
(7, so that:

- if (0,2/o) ^ C'? we define ^(rc,z/) by adding V(a;,2/) to the expression
(1.20);

- if (0,2/o) 1 C, we put ^(x,y) = Y(a:,2/);

- at the point in the intersection LQ H Loo, we take ^($,^) =
^(77$-l^~l)5 (^ = xy~1, $ = z/~1 are affine coordinates that cover
LQ n Loo)- A simple computation shows that this last expression is
holomorphic along Loo'

The properties listed in (1.19) are immediately verified. We may then
f ̂  - ̂  1consider the additive Cousin data ^ ——,—•- ^ ; the covering U of CP(2)
I / J a,/3

by the open sets introduced along the analysis of the several Cases 1 to 7
is assumed to be a Leray covering, see [5], p. 46.

2.3. Solution of the Cousin problem.

Since I:fl(CP(2), 0) = 0 (see [4]) and U is a Leray covering, we can
find a meromorphic function G of CP(2) such that

(1.25) G-^eOu^ W^eU.

We define

(1.26) ^ := fG.
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Clearly '01 extends </?, and it is the function we employ to define -0 in
(1.15).

As for the polar divisor (V^oo? it certainly coincides with (V^)oo in
every open set ^(Ua) when Ua C CP(2) \ Loo. When L^ Ft Loo 7^ 0,
(1.25) and (1.26) imply that Loo is a line of poles of ^1 of order d € N at
most.

2.4. Computation of the degree.

We have at last a foliation F defined by(L27) l--^'^
which has C C CP(2) as an invariant curve whose linear holonomy group
is given a priori'^ '01 comes from the last section.

Let Z be the meromorphic vector field defined by (1.4). The restriction
Z\c will have zeroes and poles, which we proceed now to describe; they
coincide with the singularities of F along C (the singularities of F lying in
the set C H Loo will be poles of Z\c)-

The singularities of T along (7, computed with multiplicities, are as
follows:

1) points in {x = 0} H C

Both {x = 0} and C C CP(2) are invariant curves of .F, so that all d
points of their intersection are singularities. Since C is transversal to
{x = 0}, each of them has multiplicity at most d — 2 € N (according
to the order of {x = 0} as a polar line of '01).

2) points (xo, yo) G C such that fy(xo, yo) ̂  0 but fy(x^ yo) = 0 for some
x € C.

We have seen that the line of poles y = yo has order 4 or 3 (§2.1).
Again, since C is transversal to any such line, we conclude that the
points of their intersection are singularities of F (with multiplicities
4 or 3).

There are 2g-l lines of poles of order 4, and d(d - 1) - {2g -1) lines
of poles of order 3 (at most). It follows that there exists (d—l)(2g—l)
singularities of order 4 and [d(d— 1) — (2g — l)](d— 1) singularities of
order 3 (of the type described above).
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3) points (0-0,2/0) € C where fy(xo,yo) = 0

There are (2g — 1) poles of (p in C of order 4; an easy computation
shows that each of these points has multiplicity 3 as a singularity of
F. Analogously, there are [d(d - 1) - (2g - 1)] singularities of F of
multiplicity 2 (due to poles of (p in C of order 3).

4) points in C D Loo (in number of d e N points).

We write (1.27) in the coordinates (u,v), u = x~1, v = x~^y using
(1.7):

v-^oo ^ v - h^go + f(u~1, n-1^1^-1, u-^v)}
$= u u

where ̂  = ^(n-1,^-1^ and ^° = -^ (see (1.15)). Since ̂  ==
•/2/

——~—n-, where /(n"1,^"1^) = u~df(u^v) for some polynomial /,
Jv

it follows that

'L28) t-d-t^+^s•^
Now '0^ has a vertical line of poles {u = 0} of order d € N at most
(§2.3); we conclude then that any point of C D Loo has multiplicity
2d + 1 at most as a singularity of F, and (deg(^) - 1) - (2d + 1) at
most as order of the pole of Z\c. Applying the Poincare-Hopf theorem
to Z|c, we find at once that degree (F} < 4d2 - 3d. Our theorem is
proved.

APPENDIX

Let L be a complex line bundle over the compact Riemann surface
(7, identified with the 0-section. Let c(L) denote the Chern class of L. We
will consider here a holomorphic foliation F defined on L which leaves C
invariant and has a finite number of singularities along C, all of them with
trivial linear holonomy. As we explained in the introduction, we may speak
of the homomorphism L^^c''Hi(C,Ii) —> C*, the linear holonomy group
ofC.

THEOREM 4. — Suppose c(£) = 0. Given a group homomorphism
(f): H^ (C, R) —^ C*, there exists a foliation F as above such that Lj: c = 0.
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This theorem is the basic step to proving the analogous result for all
complex line bundles over C\ it is enough to apply the machinery developed
in [7].

Proof of Theorem.

1) The condition c(L) = 0 implies that we may define L by a cocycle
of constant transition functions {^0/3} € ̂ (^, C*) for some covering
U = {Ua} by open sets, see [5], p. 180.

Let 77 be an abelian differential of C constructed according to §1.
We define in each trivialization chart Ua x C of L the differential
equation -— = yrj(za). The closed 1-form f} = -y- - rj(za)dza isdZa y
then independent of the chart, so that it defines a foliation T in L.
Clearly C is invariant, and the poles of 77 are its singularities; the
fibers Si, . . . , Sy^ over these singularities are also invariant.

2) Let us calculate the holonomy group of C. We fix a fiber E of L,
transversal to F and take 7 e H^(C,Tt) avoiding the poles of rf.
Starting at yo e E, we lift 7 to a path i\ contained in the leaf of T
through VQ , and we end up at f^(yo) € S. Join in S yo to f^{yo) by
a path ^2 disjoint of S D C. Therefore

/ n = / ^ + / ^ = / ^ .
^1^2 J^l Ji-2 Ji'2

Notice that f^ ̂  = ^ ̂  = log f^- mod 2mZ. We want to

compute J^^ ^. Both 1-forms ^i = -" and 77 = rj(za)dza are

well-defined closed meromorphic 1-forms of L, (^i)oo = C7 and
(77)00 = Si U ... U Sy^. We have that exp (J^^ ^i) = 0(7), where
c: ̂ i(C7, R) — ^ C * i s a homomorphism which does not depend on 77.
Also, ^1*^2 is homologous to 7+A:iai+...+A;^ayn in L\SiU.. .LlEy^,
where A;j C Z and Oj is a small loop in C going around each
pole of 77; therefore f^^^ = ^77 (remember that the poles of
77 have zero residues). It follows that f^(yo) = exp (f. ^ ^) =

0(7) (exp/^ 77^2/0.

In particular, the holonomy group of (7, defined in S, is linear (that
is, in the coordinate coming from the trivialization chart) and of the type
we asked for. Q
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