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RELATIVE DISCRETE SERIES OF LINE BUNDLES
OVER BOUNDED SYMMETRIC DOMAINS

by A.H. DOOLEY, B. 0RSTED and G. ZHANG

0. Introduction.

The explicit Plancherel formula for a -Z^-space on a Riemannian
symmetric space G / K has been obtained by using the theory of spherical
functions of Harish-Chandra [He]. However the Plancherel formula in the
vector bundle case is less well understood. When G / K is a Hermitian
symmetric space there is a family of line bundles and the corresponding
Plancherel formula is studied in [LP], [PPZ] and [Zh2] for rank one-
symmetric spaces and more recently in [Sh] for all Hermitian symmetric
spaces. In that case there are relative discrete series entering into the
Plancherel formula. One of the main result in [Sh] states that all the relative
discrete series are equivalent to holomorphic discrete series. In most analysis
problems concerning the spectral property of the Plancherel formula it is
important to have explicit formulas (e.g. orthogonal bases, reproducing
kernels) for the discrete series. In this paper we study a concrete realization
of the relative discrete series.

We take the simplest case D = G / K to be the unit disk in the complex
plane. The L2 space of the sections of a line bundle over D can be real-
ized as the L2-spa^.ce of functions that are square integrable with respect
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to certain weighted measure and the group action is the regular action
with a multiplier (or a cocycle). The relative discrete series appearing in
the Z^-space can be characterized by certain invariant Cauchy-Riemann
operators and are equivalent to holomorphic discrete series (see [PPZ] and
[LP]). The holomorphic discrete series have their standard realizations as
weighted Bergman spaces of holomorphic functions. The unitary intertwin-
ing operators from the weighted Bergman spaces into the relative discrete
series are obtained in [Zhi]; they are certain BoPs type operators and are
related to the so called "transvectant55 in classical invariant theory [JP].
The functions in the relative discrete series can be expressed as holomor-
phic polynomials whose coefficients are anti-holomorphic polynomials of a
certain degree. This indicates that they can be realized in the tensor prod-
uct of a holomorphic discrete series with a finite dimensional representation
of the anti-holomorphic polynomials. The purpose of this paper is to make
the above observation precise and prove that it is true for all bounded sym-
metric domains. In particular we find the highest weight vectors of certain
relative discrete series; see Theorem 3.5.

The main results are summarized in Theorems 3.3, 3.4 and 3.5. In §1
we fix some notation and in §2 we identify the space of I^-functions on
G transforming according to a one-dimensional representation of K with
the space of ^-functions on the bounded symmetric domain with a certain
weighted measure.

It would also be interesting to realize the relative discrete series using
the invariant Cauchy-Riemann operator as in [PPZ] and to find the highest
weight vectors of the relative discrete series. Some work in this direction
has been done in [P].

To avoid some technical difficulties involving universal coverings of
groups we consider here only line bundles whose parameter v satisfies some
integral conditions (see Lemma 1.1 and Proposition 2.1). We note that the
main results (Theorems 3.3 and 3.4) still hold for a general v > p — 1.

Acknowledgement. One of the authors, G. Zhang, would like to thank
Jaak Peetre for several helpful discussions and for his encouragement. We
also thank the Australian Research Council for its support.

1. Preliminaries.

We briefly recall the bounded realization of a Hermitian symmetric
space, see [FK], [Sa], [W] and [L].
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Let Q be a simple Lie algebra of Hermitian type and let Q = t + p
be its Cartan decomposition. Thus t has one-dimensional center and
^ === [̂ ] ^ ^. Let ^ be a Cartan subalgebra of ^. Let ^+ be the set
of non-compact roots of O^, ̂ c) which are positive with respect to some
ordering. A basis of root vectors {e^} can be chosen so that re^ = —e-co
[e^, e-cj = fto- and [^a, CcJ = 2e^, where r is the conjugation with respect
to the real form 6 4- zp. So we have the Harish-Chandra decomposition of
9C, Bc=p-+ec^

where p~ and p"*" are sum of the negative and positive non-compact root
spaces. Now an element x € Ms in ^s it and only if trp+ x = 0. Here trp+ x
is the trace of ad a; on p"^.

Let G^ be the adjoint group of^ and P4', P~, G and K the connect
subgroups with Lie algebras p4', p~, Q and 6 respectively. Now P^K^P'
is a dense subset of G^. Let g € G0,^ € p"^ we let )C(g : z) be the J^
component of^exp(^). Namely

(1.1) ^exp(^) = exp(^ • z)IC(g : z)p-

for some p- G P~. Under the above action the G-orbit D = G ' 0 of
z = 0 € p"^ is a bounded domain in p"^ and K is the isotropy subgroup of
0. This is the Harish-Chandra realization of G / K .

Let 71 < • • • < 7y be the Harish-Chandra strongly orthogonal roots
with the corresponding root vectors ej = e^.. We put hj = ft^., and
e-j = e-^.. Thus we have 7j(^fc) = ^j,k- Let

e = ei + ... + Or, e- = e-i + ... + e-r-

We let
^ =^+e_j.

Thus {^j} C p and they span a maximal abelian subspace a of p.

Let ()~ be the subalgebra of ^ generated by the elements %/ij, j =
1,..., r. Then f) = ()~ ® ̂ + and 7^ = 0 on (l)"^. We let

^=^+1^+1^

be the root space decomposition of ^c. Thus

S C =(P + +n^)+( ) c +(p -+n^ )

is the root space decomposition of Q^. By highest weight module of {^ we
will always mean one with respect to the positive root space p"^ + n^.



1014 A.H. DOOLEY, B. 0RSTED & G. ZHANG

The Cayley transform is denned by

7e =Adexp^(e+e-)y

Then 7g'1^ is a maximal abelian subspace of p and ̂ l(^j) = ̂ -j - ̂

Let /^- = (7e'1)* (7.7)5 where (7e~1)* is the adjoint of 7^1. Thus
^j^ek) = 2^-fc. Moreover

0 < /?! < /?2 < • • • < /?r

is an ordering of a*. The root system S^^a) consists of f3j, < J — ' f c ,

j > k, and — with multiplicities 1, a, and 2b respectively. See [L]. Thus
the longest root is /?i +.. . + /3r and the Killing form in Q can be calculated
by the root system as

^ei^ej = tr(ad$e,2) = 2(2(r - l )a+4+ 2b) = 4p

where
p = (r - l)a + 2 + b

is called the genus of D. Now /3j($ej) = 2 thus the length of the longest
roots (3j is

^=^-
One also easily checks that trp+ Hj = p.

Since (7e~l)*(7J•) = /3j the length of 7^ is also —7-.
p I

We let ZQ be the element in the center of 6 which defines the complex
structure on p"^ = V, that is ZQ = i on p"^ and ZQ = —i on p~. We let
n = dimcV and

z=pz,.n
Note that the Killing form B(Z, Zo) in ̂  is

(1.2) B(Z, Zo) = 2^ trp+ Zo2 = -2? = -^p.

We let Z* € a* be defined such that Z*(w) = B(z,w) for all w.

Let K8 the analytic subgroup of K with Lie algebra 65 and K =
exp(]RZ)Ar5. Clearly for each x C 6s we have trp+ a; = 0. Thus for each
k e K8 we have detp+fc k = 1. Also exp(RZ) = T, the one-dimensional
torus. For each v e pZ we consider the representation T^ of K defined by
r^{exp(tZ)) = e^ and Ti/ is trivial on K8.
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LEMMA 1.1. — If^CpZ then Ty is a well-defined character on K.

Proof. — We need only to show that if exp(tZ) € Kg then
T^(exp(tZ)) = 1. However for every element k in Ks we have detp+ k = 1.
Thus exp(^Z) e J^s implies that e^* = detp+exp(tZ) = 1 and that
T^(exp(tZ)) = e1^ = (e^Y/P =1. D

Remark. — It follows from (1.2) that the element Z is the same as
that in [Sch], §3.

2. Line bundle over D.

Let v > p — 1 and suppose that y / p is an integer. Let L^G,^) be
the space of functions in -^(G) which transform according to

F(gk)=r^k)F(g).

Then G acts unitarily on L'2(G,T^) by the left regular action

gF(x)=F(g-lx).

This is an induced representation of G from Ty of K. There is another
realization of the induced representation as space of functions on D.

We let h(z) be the J^-invariant polynomial on P"1" whose restriction
on Rei + • • • + Re^ is given by

h(i^a^)=f[(l-a^
j'==i j'=i

Let h(z, w) be its polarization. Consider, for each real number a > —1, the
Hilbert space I/2^, dp,a) of square integrable functions with respect to the
measure dp,a(z) = Cah(z, z)adm(z) on D, where dm(z) is the Euclidean
measure on p"1" D D induced from the Killing form, and ^(D) = 1. We
put

(2.1) y=a-^-p.

There is a unitary representation of G on I?(D, d^a) given by the formula

(2.2) U^ : f(z) ̂  f{g-\z}){J,\z)^ (g € G)

where Jg stands for the Jacobian of the transformation g.
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PROPOSITION 2.1. — Assume that a > —1 is such that y / p is
an integer. Then realizing the symmetric space G / K as the bounded
symmetric domain D we have

I : F{g) ̂  f(z) = F(g)r^)C(g : o)), z = g • 0 C D

is a unitary G-intertwining operator from L2(G, Ty) to -^(-D, d/^).

Proof. — First we see that if F is in ^(G^Ty) then F(g)r^()C(g :
o)) is right A'-invariant and thus / is well-defined. We now check the
intertwining relation. Let h € G. Then for z = g • 0 G D

I(h'F){z)=F(h-lg)r^lC(g:o)).

However we recall from [Sa] that the Jacobian Jg{z) of g € D on D defines
a character on K^

and

In particular

IC^g : 0) = JC(h~1: gQ))C(g : 0)

Jg(z) = Tp(fC(g : z)).

Jk(z)=r^k\ k e K .

Thus

r,(/C(/i-^ : 0)) = T,(/C(/i-1 : g0))r^(g : 0)) = (^-i(^))^(^(0))i

or
(^-i(z))i = r-,(/C(/i-^ : 0))r-,(/C(p : O))-1.

Thus
I(h'F)(z)=F(h-lg)r^)C(g:0))

= F(/I-^)T,(/C(^-^ : O^T-^/C^-1? : 0))
^JF^-1^)^-!^))!

= U^h)IF(z).

It is clear that I is onto. In fact for any / € I^^D^ dflo) we let

^)=/(ff-0)r,(A;(5:o))-1,

we have IF = /. Using the Iwasawa decomposition of G and the corre-
sponding integral formula ([He], Proposition 5.1, Ch. I) we can easily prove
that I is an isometry; we omit the details. D
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The irreducible decomposition of L2(G,Tv) under G is given in [Sh].
One of the main results there states that the relative discrete series
appearing in the decomposition are all holomorphic discrete series, which
we recall here. First we introduce some notation.

Let E{A) be a J^-module with highest weight A. Let N(A) be the
highest weight module of ^c

NW^U^^^EiA).
As ^-module
(2.3) 7v(A)^5(p-)0£;(A).

Let a > —1 and let v be as in (2.1). We define

_ J g^- — 1 = ^"j"1 if a is an odd integer
- \ [aM] = p^^] otherwise.

Here [t] stands for the integer part of t C M.

Denote
r

Dy = ̂ m= Vm^^O <: mi < • • • <: rrir <: l.rrij e z}.
j'=i

Shimeno proved in [Sh], Theorem 5.10 that relative discrete series (if any) in
L^G^r-^) are equivalent to a holomorphic discrete series. We reformulate
this result in the following.

THEOREM 2.2 (Shimeno [Sh]). — The relative discrete series rep-
resentations appearing in ̂ (G, r-v) are all holomorphic discrete series of
the form A^(A), with

=m- ^-]^7j, m^D^
(^ 2 j=i

A

and A(?7+ D 65) = 0, A(zZ) = —v in case D = G/K is non-tube domain.

Proof. — The highest weights A of the relative discrete series are
determined in [Sh], Theorem 5.10. They are determined by A|yy+n^ = 0
and A|y,- = (^ - p) o 7e where v € Di (see (6.13), loc. cit.), p is the half
trace for the root system of a in Q and c is the Cay ley transform. Each
v € Di can be written as (using also the identification in (1.8), (1.9), loc.
cit.)

r

^=P-^-^-^mj(3j
j'=i
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with 0 < mi < • • • < rrir are integers Since cr^j = f3j our result follows. D

Remark. — The reason why we define A on iZ is that when D is
non-tube type then Z ^ 77", the restriction of A on rj~ is not sufficient
to characterize A. However all the highest weights involved in this paper
vanish on 77+ ft 63 and it is easy to calculate the action of the center. Thus
we will only consider the restriction of highest weights on T]~ .

Similarly to the trivial line bundle case one can develop the theory
of r^-spherical functions and generalized Harish-Chandra c- functions [Sh].
Roughly speaking, the relative discrete series appear at the most singular
poles of the c-functions. The above result is proved in [Sh] by using the
results Casselman and Milicic [CM] and by finding those holomorphic
discrete series which contains the r-^-type.

The aim of the present paper is to give an explicit embedding of the
holomorphic discrete series. We will use a completely different approach
based on the idea of diagonal operator (see Lemma 3.2 below). In particular
we will not use the general theory of r_ ̂ -spherical functions.

For v € R let A^(D) the space of K-fimte functions in L^^D^d^o)
with v = a-\-p as (2.1). We consider (2.2) and its induced action on Ajf(D)
(2.5) u^X)f(z) = -(Xf){z) - ̂ jx(z)f(z)
where
(Xf)(z)=^ /(exp(^).z)

, ̂ ),(<'(s^)^^),̂ &a^)) ^
and

3x(z)= [^) Je^ptx(z)

and Jg{z) is the complex Jacobian detdg(z) of g € G (as a holomorphic
mapping on D).

We also consider the actions TT^ of ̂  on the subspace of holomorphic
polynomials on D^ defined by the same formula as
(2.6) ^(X)f(z) = -(Xf)(z) - ̂ jx(z)f(z)

'd) f{exptX-z)-^
^Vo P

=(^} f{exptX-z)-yx(z)f(z)

.̂ ,(& )̂)J.̂ ,̂



RELATIVE DISCRETE SERIES OF LINE BUNDLES 1019

The next result is proved by Faraut-Koranyi [FK], see also [W]; the
first part is a known theorem of W. Schmid; see also [J], [Up].

THEOREM 2.3 (Faraut-Koranyi [FK], Theorem 5.4). — The space
P of holomorphic polynomials on p"*" decomposes into irreducible subspaces
under Ad{K), with multiplicity one as:

V r^ V^ P' ~ 2^ m-'
m>0

Each Pm_ is of lowest weight —m = —(mi 71 + • • • + rrir^r) with 0 < m\ <
... < rrir. With the action (2.5) for v > ^(r — 1) the space

P^(D) = P(D) under ̂

forms a highest weight module of^ with highest weight —— ̂  7j and
2 3=1

highest weight vector the constant holomorphic polynomial 1. For v <, 0
an integer, the space

(2.7) P.{D) = ̂  Pn,
mr^v

forms a (finite-dimensional) highest weight module of 0° with highest
v r

weight — 7 . ^ 7 r ^d highest weight vector 1.2 j=i

All the results above except (2.7) are stated explicitly in [FK],
Theorem 5.4. It follows now from [FK], Theorem 5.4 that when v < 0
is an integer MQ is a (finite-dimensional) highest weight module of^, with

v T

highest weight — - ^ ^ ^ r and highest weight vector 1. However their Mo2 j=i
is just our Py in (2.7) above, by [FK], Theorem 3.8.

We denote by TT^ the representation on the space of anti-holomorphic
polynomials obtained by taking the complex conjugate of the above for-
mula.

3. Intertwining operator into relative discrete series.

In this section we will consider the embedding of the holomorphic
discrete series into the relative discrete series.
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By Theorem 2.3, the lowest weights appearing in P-i(D) are
r ^ r

-][^m^+^^7j» 0 <mi < • • • <mr,mr <l.
j=l .7=1

Thus we have the following.

LEMMA 3.1. — Under the WZi-action restricted to K, P-i(D) de-
composes as

P-i{D) = ^ P(1^
0<mi<---<mr<l

_____ r ( r
where P^1^ is of lowest weight-m = — ̂  ̂ j'7j + ~~ S 7j with 0 < m\ <

j==i 2 ̂ =i
7712 ^ • • • <: TTIr <: l-

The tensor product P^-i(D) <S>P-i(D) can be realized as the space of
polynomials F(z^w) == ̂ fj(z)Qj(w) where fj are holomorphic polynomi-

___3_
als of z, and ~g] in P-i(D) are anti-holomorphic polynomial in w. We define
the operator R by

R: F(z,w) ̂  F(z,z)h{z)~1.

The key fact about R is the following (see also [PZ] where the tensor
product of two discrete series are considered).

LEMMA 3.2. — The operator R is a G-intertwining operator from
P^i(D) ̂ pZi(D) to L^D^d^).

Proof. — First we show that R indeed maps Pv-i{D)^P-i(D) into
L2^, dp,^). For any / 6 P^-i(D) and g € P-i(D) we have

R(f^9){z)=f(z)'g(z)h-1.

Now f(z) and g(z) are polynomials and thus there exist a constant C such
that \f{z)\\g(z)\2 < C for all z C D. So,

/ ^(/^(^[^(^ / \f{z)g{z}\2h-2lh(zrdm(z)
J D J D

^ C I h^^dm^z)
J D

< oo.

The last integral is finite because v — p — 21 = a — 21 > —1 (see [FK]).
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Next we prove the intertwining relation. For any x € (7,
U^xW^g^z) = f{x-lz)^(x^h-\x-lz)J^{z^

=/(^-l^)^F^)^(^)J,-l(z)^J,-l(^)T^J,_,(^i

= R^-i(x) 0 7fZ~i(x)(f 0 g)(z).
This finishes the proof. D

The next results proves that the tensor product Vy-i{D) 0 P-i{D)
is decomposed into highest weight modules, and each is of multiplicity
one. It is, roughly speaking, similar to the fact that in the tensor product
decomposition of two modules with highest weights Ai and Aa? the modules
with larger highest weight Ai -+- \2 occurs with multiplicity one.

THEOREM 3.3. — As (^.K) module we have

P^(D)^pZi(D)= ^ A^D)
m,mr<l

where Av^r11(D) is a highest weight module of ^c with highest weight
r y r
S ̂ .̂  ~ T) S 7j w1^ 0 ̂  m! ̂  ' " < ̂ r < ̂
j=l ^ j=l

We note that A^'221 is a holomorphic discrete series of ^ since
z / -2Z > p - 1.

The theorem will be proved by carefully checking the multiplicity
of certain weights appearing in the tensor product. First we consider the
highest weights appearing in P-i(D). We define an ordering of weights of
the form aZ* -\- m\^\ + ̂ 272 + • • • + m^r by saying that

aZ* + mi7i + ?7i272 + • • • + rrir^r >. <^* + ̂ 'i7i + ̂ 72 4- • • • + m'^r
r r r r

if ^ mj > ̂  m' or if ^ m^ = ^ m' and m^- = m\ for j = 1, • • • , k — 1
j=i j=i j=i j=i

and mfe > m^ for some 1 < k < r.

Proof of Theorem 3.3. — The idea of the proof is similar to that of
[Re], though only tensor products of holomorphic discrete series are studied
there. The ^-module P^-i(D) has an J^-irreducible decomposition

P^(D)=Y^P^(D)
m

where each P^^(D) is a .FC-module of J^-lowest weight —m — —— ^ 7^,
2 j=i

and Vy-i{D) is a highest weight module of {^,K) with highest weight
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vector 1. Since P-i(D) is a highest weight module, P-i(D) is a lowest
weight module. Moreover being finite dimensional it is also a highest weight

n [ r
module with highest weight ^ l^j — . ^ 7j. Let vi be the corresponding

j=i 2 ̂ i
highest weight vector.

Step 1. The vector 10^ is annihilated by p'^+n^ and thus generates
a highest weight module of ^c, say

,̂-.0 = ̂  ̂  ̂ (^c^i ̂  ̂  ̂  ̂ p-) ̂  ̂ ... ̂
r

where £'((, • • • , () denote a module of K with highest weight ^ <7j —
j=i

^ v-
9 E7j-2^=1

Step 2. Continue this process and go down to smaller highest weights.
Let 0 < m\ < ' ' ' < rrir < I - We claim that there exists exactly one highestr y r
weight module A^'221 of y" with highest weight ^ rrij^j — - E 7j-

j=i 2 j=i

We use induction. This is true for ̂  l^j — - ̂  7j from Step 1. Suppose
r y r

it is true for all highest weight ^ nj^j — - ̂  7j that are bigger than
.7=1 2 j=i

r ^ r

E ̂ j7j - 9 E 7j-
J=l z J=l

r ^ r
We observe that the weight ^ ^j7j ~~ T) E 7j will not appear in

j=i 2 j=ir ;/ r r r

submodule with highest weight ^ n^j — - ̂  7j if ^ nj7j < ^ ^j7j.
j=i ^^i j=i j=i

r i/ r
In fact the ^-module with highest weight module ^ n^j — - ̂  7j is

j==i 2 ^=i

isomorphic to ^(p"") (8) £'( ^ ^7j) where ^( ^ ^jT?) ls a module of ^c

'̂=1 / S=i /
T v T

with highest weight ^ n^j — — ^ 7j; see (2.3). Thus, by theorem 2.3,
j=i 2 ^=i

r r
all the (^-highest weights appearing are of the form ^ nj^j + ̂  n'-T^ —

j=i j=i
^/ r
- ̂  7^ with n'i,..., n'^ being nonpositive integers, all of which are smaller
2 j=i

r ^ r r ,̂ r
than ̂  HjTy — - ̂  7j, and thus smaller than ̂  ^j7j — - E 7j • I11 otherj=i 2 ^=i j=i 2 j=i

r y r
words, the weight ^ rnj^j —- ̂  7j will not appear in the submodule with

j=i 2 j=i
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r V T

highest weight ^ n^j - -. E 7j-
j=i ^ j=i

r i/ r

Thus the multiplicity of ^ ^j7j — 7. ^ 7j appearing as a highest
j=i 2^=i

weight in the tensor product is (see [Re], Theorem 1)

(̂Z2l) ~ 5. ^A.(271)
.A>m

where n(m) is the multiplicity of IX* + ̂  ̂ j7j — 7. V^ 7j appearing in
J=l ^=1

the tensor product, and n\(,m) is the multiplicity of m appearing in A.

Considering the decomposition under the action of K of the finite-
dimensional ^-module P_^(D), one sees that n(m) = ^ ri\(,m). From

A>m
this it follows that

n(m) — V^ n^{m) = 1.
A>m

This concludes the proof of the claim.
( r

Step 3. The above process stops at the lowest weight —7.S7r (with
____ 2 j=i

lowest weight vector 1) of P-^(-D), and we find modules with a highest
r

weight FX + ^ ̂ j7j with 0 < m\ <_ ' ' ' < mr <. I such that 1 (g) 1 is
j=i

in their linear combination. However it follows from [OZ1] that 1 0 1 is a
cyclic vector of P^-i(D) <S> P-i(D) we have thus

P^i(D)^PZi(D)=^S(p-)^E{m). D

Remark. — The above theorem is very similar to the following situ-
ation for compact groups. Let V\ and Vz be two irreducible representations
of a compact group with highest weight Ai and Az. Then an irreducible
submodule of the tensor product V\ <S> Vz has highest weight Ai -h A^ where
Aa is a weight of V^ [Ze]. In particular if all the weights in Vz are of multi-
plicity one then V\ 0 V^ is decomposed into irreducibles with multiplicity
at most one.

In view of Proposition 2.1 and Lemma 3.2 we have thus given explicit
realization of all the relative discrete series,

N{m) ̂  A^ C Pv-i{D) ̂  P-i(D) -R^L2{D,d^la) ̂  I?(GjK,r^.
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Moreover Theorem 2.2 above concludes that all the relative discrete series
are realized in this way. We summarize this in the following.

THEOREM 3.4. — The operator U maps A^^D) into a relative
discrete series of ^(D^d^a). Moreover all the relative discrete series are
realized in this way.

Note that the explicit decomposition of the tensor product will gives
us the embedding of the space A^'771 into L^^D^d^oi)- It remains an open
question to find the unitary intertwining operator as in [Zh2]. Nevertheless
from Theorem 3.3 we can read off the singularity of the reproducing kernel
of a relative discrete series in L2(D, dp,oc)- This might be of help in studying
the I^-properties of the spectral projections onto the discrete series.

We observe that Lemma 3.2 can be generalized as follows. Let k be
any integer such that 0 < k < 1. We consider the operator R = R(k) from
P^-k(D) 0 P-k(D) into the functions on -D, given by

^F^.wt^F^)/^)-^

Lemma 3.2 can easily be generalized as follows.

LEMMA_3^_— The operator R is a G-intertwining operator from
P^-k(D) 0 P-k(D) to L^D, d/^).

Now when D is a tube domain then P-k{D)is a highest weight
module of (^,K) with highest weight vector A^) where /^{z) is the
determinant function. Thus 1 0 A^) is a highest weight vector for the
tensor product Py-k{D) <S>P.k(D). Lemma 3.2' immediately implies the
following, which may also be proved using Capelli identity [OZ2].

THEOREM 3.5. — Suppose D is a tube domain and Let I be as
defined in (2.4). Then for any k, 0 ^ k < I we have that /i^)-^^) is
the highest weight vector for a relative discrete series ofL^-D, d^oc).

Finally we remark that if we take C?0 to be the simply connected Lie
group with Lie algebra ̂  and G the connected subgroup with Lie algebra
5, then, by appropriate change in the definition of the Harish-Chandra
decomposition (1.1) of G0, we may extend the results in this paper to all
^cR .
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