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SCATTERING THEORY FOR 3-PARTICLE SYSTEMS
IN CONSTANT MAGNETIC FIELDS :

DISPERSIVE CASE
by C. GERARD and I. LABA^*)

1. Introduction.

A system of N interacting particles of masses mi and electric charges
qi in a constant magnetic field B == (0,0,2&) in R3 is described by the
Hamiltonian

N .
(1.1) H=^——{D,-q,Jx^^V^x,-x,)^

1 zmi i<3

where J is the vector potential associated with the field. We will use the
transversal gauge in which J is the skew-symmetric matrix

/O -b 0\
(1.2) J:= [ b 0 0 .

\0 0 O/

We consider the case when N = 3 and assume that all of the particles are
charged, i.e., ^ ^ 0 for 1 ̂  z ^ 3. No other conditions on the charges of
particles will be needed. In particular, the system is allowed to have neutral
proper subsystems (pairs).

The main task of scattering theory is to describe the large time
asymptotic behaviour of the solutions of the Schrodinger equation

.9u
^-9t=HU•
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For an TV-particle system described by (1.1), with pair interactions V^
vanishing at infinity, one expects that it either remains stable or breaks
up into asymptotically independent stable subsystems called clusters. This
statement cast into precise mathematical terms is called asymptotic com-
pleteness.

In [GL1] and [GL2], we proved asymptotic completeness for short-
range and long-range systems of TV charged particles in a constant magnetic
field, under the assumption that they have no neutral proper subsystems.
In this paper, the latter assumption is not required. However, our results
are restricted to the 3—body case, and to Coulomb-type interactions.

We saw in [GL1] that the behaviour of noninteracting clusters depends
on their electric charge. Bound states of charged clusters escape to infinity
only along the field and their transversal to the field coordinates remain
bounded. On the other hand, bound states of neutral clusters may travel
across the field with a nonzero average velocity which depends on their
internal structure. We emphasize that this has nothing to do with the
free motion of the center of mass which occurs in the absence of external
forces. Noninteracting charged particles, quantum or classical, can perform
only bounded motion in the directions transversal to the magnetic field;
whether the sum of their electric charges is zero or not is irrelevant. The
motion of clusters of charged particles across the field becomes possible if
the Lorentz forces are cancelled by the interactions between the particles.
This can occur only for bound states of neutral clusters. We call this
case dispersive^ since the effective kinetic energy of such states is given
by a certain dispersive Hamiltonian. For a more detailed discussion of the
properties of bound states, we refer the reader to [GL1].

It is expected that if an TV-particle system breaks up into clusters
moving away from one another, the asymptotic behaviour of these clusters
will be similar to that described above. Thus, if neutral clusters are present,
there will be scattering channels corresponding to the unbounded motion of
those clusters across the field. The mathematical analysis of these channels
is significantly harder than that of channels involving only charged clusters.
Before we state and prove our results rigorously, let us describe heuristically
the general outline of the paper, the main difficulties we encountered in
solving the problem and the methods we employed to overcome them.

Our main result - asymptotic completeness - is stated in Section 4
(Theorem 4.5). In order to formulate it rigorously, we first need to review
our discussion of the separation of the center of mass ([GL1]), which will
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allow us to introduce a suitable notion of reduced Hamiltonians. We do this
in Section 3. The bound states, scattering states, and channel identification
operators are defined in Section 4. Our assumptions on the pair interactions
Vij are stated in Section 2, where we also review the notation used in this
paper.

The main steps in our proof of asymptotic completeness are the
following. We first prove the Mourre estimate (Sections 6 and 7), from which
the minimal velocity estimate follows (Section 8). This shows that, for
states orthogonal to the bound states of the system, the system breaks up
into clusters moving away from one another with nonzero relative velocities.
To decouple the different scattering channels, we apply standard arguments
(i.e., the construction of the asymptotic velocity - see Section 4) to the
propagation in the direction of the field, and use the methods of [GL2] to
treat the propagation in the transversal directions (Section 9). Finally, in
Section 10 we combine these results to replace the exact evolution e'^11 of
the system by the asymptotic evolutions used in the definition of the wave
operators.

The proof of the Mourre estimate contains most of the new ideas in
this article. Since this part of the paper is also quite technical, we explain
it here in some detail.

Given two selfadjoint operators: H and B, we will say that B ^ c
at H = X if E^(H)BE/^(H) ^ cE^(H)2, provided that the interval
A = (A — <$,A + 6) is sufficiently small (see Definition 5.1). We will also
use the notation :

inf B = sup{c e M B ^ c at H = X}.
H=\

We say that H satisfies the strict Mourre estimate with the conjugate
operator A at energy A if

inf [H, iA] > 0.H^X' J

The importance of the Mourre estimate in spectral and scattering theory for
multiparticle systems is well-known (see e.g., [Mo], [PSS], [SS1-5], [CFKS],
[DG], [HuSi]). If H satisfies the strict Mourre estimate at all points A
in an interval J, its spectrum in this interval is absolutely continuous.
Moreover, one obtains the limiting absorption principle, local decay and
minimal velocity estimates. In particular, the Mourre estimate is a key
part of the existing proofs of asymptotic completeness ([SS1], [Gr], [Del]).
For this purpose, one needs to show the Mourre estimate for all values
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of A, except possibly for a closed and discrete subset of R, consisting of
thresholds and eigenvalues of H. (In fact, one first has to show that, up to
a compact error, a similar estimate holds at all points, including possible
eigenvalues of 7J, away from the threshold set, and then deduce from this
the above statement. This step will not be discussed here; an abstract
version of the argument involved is given in Lemma 5.4.)

In [GL1], where we proved the Mourre estimate for Hamiltonians of
the form (1.1) under the assumption that all proper subsystems are charged,
the main difficulty was that conventional separation of the center of mass
motion was not possible. Instead, we had to exploit the fact that the mag-
netic Hamiltonian has a constant of motion called pseudomomentum, and
define the reduced Hamiltonians using suitable unitary operators Ua- The
rest of the proof of the Mourre estimate was similar to that for TV-particle
Hamiltonians without a magnetic field. For comparison purposes, let us
sketch it briefly. Let A = ^ {{Dz, z ) + {z, D^)) be the generator of dilations
in the direction of the field. A standard argument involving a partition of
unity shows that one can obtain the Mourre estimate for H, with A as
the conjugate operator, from similar estimates for the Hamiltonians Ha of
noninteracting clusters (given a cluster decomposition a, i.e., a partition of
the set {! , . . . , N} into disjoint nonempty sets, Ha is obtained by subtract-
ing from H the interactions Vij between particles belonging to different
clusters). We assume that all clusters in any decomposition a consisting of
at least two of them are charged. We then have

^=|<+^a,

where _ D^ is the kinetic energy of the motion of the centers of mass of
z

the clusters in the direction of the magnetic field, and Ha - the energy of
the motion within clusters together with the energy of the bounded motion
of their centers of mass across the field.

To prove the Mourre estimate, we proceed by induction in a. If
^ = ^min is the decomposition into N clusters, each consisting of one
particle, H^^ has only pure point spectrum (the Landau levels of the
noninteracting particles). Then

^J^,,.A]=^^>0,
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if A ^ crpp^""""). For a ̂  amm; we obtain that

inf [H^iA] = mf « + [H^iA])
Ha—A -"a—• / l

= inf ( inf D2, + inf [i^.zA])
Xi+\2=\^D^=\i ° ^a=A2L J/

inf (2Ai+ inf [^.zA]).
Ai+A2=A,Ai^O v ^=^2 /

By the previous step of induction (i.e., the Mourre estimate for jy"),
inf [Ha,iA} > 0 if Aa is not a threshold or eigenvalue of H0^^ Hence

H0' ==A2

the right-hand side of the above equation is strictly positive unless Ai = 0
and A = Aa is a threshold or eigenvalue of ft".

If the total charge Q = ̂  ̂  of the system is nonzero, one eventually
obtains the Mourre estimate for H with the conjugate operator A at all
energy values A € R\T, where the set r (consisting of the eigenvalues of Ha
for all a) is closed and discrete. If the system is neutral (Q = 0), the result
is similar, except that the Mourre estimate is localized not only in energy,
but also in pseudomomentum. Consequently, for all scattering states of the
system (defined in Section 4), the clusters separate with nonzero relative
velocities in the direction of the field.

This picture changes radically if we allow the system to have neutral
subsystems. Let N = 3, and consider the Hamiltonian Ha of noninteracting
clusters for a cluster decomposition a = {(1,2), (3)} containing a neutral
pair (1,2). We have

TT j~)2 i rja.c i rra.n-"a = -^D^ -\-H ^ +H ^

where - D^ is, as before, the kinetic energy of the motion of centers of^
mass of clusters along the field, H01^ is the kinetic energy of the motion
of the third particle across the field (the spectrum of H0'^ consists of its
Landau levels Aj), and H0'^ is the Hamiltonian of the neutral pair (1,2)
with its center of mass motion along the field removed.

The separation of the center of mass motion across the field, and the
corresponding notion of reduced Hamiltonians, for the neutral pair is rather
different from either the charged case or the free case (with no magnetic
field). We use the fact that the pseudomomentum k of the neutral pair
commutes with Jf"'", to write H01^ as a direct integral

rw
= / H(k)dk,11^=

Jp2
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where each H(k) acts on L2^3). If, as before, we let A = , ( (Z^,^) +
z

(^Z^)), we may have

inf [^A]= inf DJ =0,
Ha=\ J J^a=A ^

whenever A — Aj € o-pp(H(k)) for some j G N and fc € M. The set of such
values of A cannot be expected to be discrete. In fact, suppose that there is
an eigenvalue E(k) of H(k) with the corresponding eigenprojection P(A;),
satisfying suitable regularity assumptions (stated in detail in Section 4).
Let

re
= / P(k)dk.

Ju
P=

Ju
Since A commutes with fc, we have

/.e
P[HaJn,^A]P= / P(k)[H(k),A]P(k)dk=0,

Ju

by the virial theorem. (The same argument shows that the Mourre estimate
cannot hold for Ha with any conjugate operator commuting with k.)

Let Ba,p = ̂ P^kE{k),Dk) + {D^kE(k)))P. Then

/•©
P[Ha-n,iBa,p]P= / \^E(k)\2P(k)dk,

Ju

and its infimum at Ha = A is strictly positive, provided that A — Aj is not
a critical point of E(k) for any j € N. The set of such critical points can
be excluded as a secondary threshold set (Definition 6.6).

This is the main idea behind the construction in Section 6.2. Namely,
we define the conjugate operator for Ha as A+cBa, where Ba is essentially
the sum of operators Ba,p of the above form for all possible eigenvalues and
eigenprojections E(k) and P(k). One then has to use the local inequalities
for commutators (for a fixed value of A;, or for k in a neighbourhood of
a point) and continuity of the operators involved to obtain inequalities
uniform in k. This part of the proof is rather technical.

Note that the definition and properties of the operator Dk appearing
above depend on the choice of the direct integral representation of Jf"'".
Throughout this paper, we will use the representation described in Section
3, and it is in this representation that Dk will always be defined.
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The physical interpretation of the above argument is as follows. It was
shown in [GL1, Proposition 6.4] that, for a bound state u of the neutral
pair such that Pu = n, ̂ kE(k) is the average velocity of the center of mass
of the pair. Thus Ba can be understood as (^, z^), where y^ is the position
of the center of mass of the pair, and v^ - its velocity. However, we must
warn the reader not to take this too literally, since v^ is only the average
velocity over long periods of time (the actual velocity is not constant), and
neither is Dk simply identical to y^.

The conjugate operator for H is obtained by gluing together the
different conjugate operators for the channel Hamiltonians Ha : A + cBa
for the cluster decompositions which contain a neutral pair, and A for
those consisting of only charged clusters. The details of this construction
are explained in Section 7. In particular, our argument showing that the
"cross-terms" ([^, Ba} for a -^ b) are small uses that for 3-particle systems
the regions of configuration space corresponding to different two-cluster
decompositions are disjoint.

Another point which we would like to mention here is the decoupling
of the channels transversally to the magnetic field. To prove asymptotic
completeness, we must show that the system cannot oscillate between
various configurations containing neutral clusters. Once more, we use
in an essential way the fact that we deal with a 3—particle system.
Different 2—cluster configurations can then interact only through the free
region where all three particles are well separated. However, since these
particles are charged, an argument from [GL2] shows that the free region
is inaccessible to scattering, which leads to the asymptotic decoupling of
the 2—cluster channels.

The last step in the proof of asymptotic completeness is the analysis
of the dynamics of the clusters moving away from one another with nonzero
relative velocities. It is well-known that, while for short-range systems the
motion of the centers of mass is asymptotically free, in the long-range case
a modified asymptotic dynamics has to be used instead. More precisely,
one shows that for large time the evolution of the system is approximated
by

^iSa^Da^^-itH0'

where 5a($a^) is an approximate solution of the classical Hamilton-Jacobi
equation, and e~^tHa is the internal dynamics of the clusters. A key point
is that Sa and H0^ commute, so that the internal and external dynamics
are decoupled.
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For a neutral cluster in a magnetic field, its internal structure and
the motion of its center of mass in directions transversal to the field
are interdependent. If an additional long-range time-dependent force (the
intercluster interaction) is present, we expect that, as for standard TV-
particle systems, the center of mass dynamics has to be modified. This,
however, cannot be done without altering the internal structure of the
cluster.

For the physically important Coulomb potentials (or, more generally,
for Coulomb-type interactions - see Definition 2.1), the problem becomes
much easier. Given a cluster decomposition consisting of a neutral pair (1,2)
and a charged particle (3), we first replace the coordinates of the particles
1,2 by the coordinates of the center of mass of the pair. We then use that,
for such potentials, the total interaction between the pair (1,2) and the
particle (3) is short-range. Hence, although the neutral pair can escape
to infinity across the field, no modification of the asymptotic evolution in
transversal directions will be needed. We do not know how to solve the
general long-range 3-body problem, which seems to be much more difficult.

The phase-space analysis of scattering and time-dependent approach
to proving asymptotic completeness was initiated by Enss [El]. This
approach turned out to be particularly successful in the TV-body scattering.
The three-body long range problem was solved by Enss in [E2]. Asymptotic
completeness for TV-body systems with short-range potentials was proved
by Sigal and Softer [SS1], who also developed many of the techniques used
in the long-range case [SS2], [SS3], [SS4]. A geometrical construction due
to Graf [Gr] simplified considerably the original proof of [SS1]. Finally,
asymptotic completeness in the long-range case was proved by Derezinski
[De] and Sigal and Softer [SS5].

One of the most important tools in scattering theory, which also turns
out to be essential in our work, is the method of positive commutators.
Although it can be traced back to earlier work of Kato, Putnam, and
Lavine, its usefulness was limited until the discovery of the Mourre estimate
[Mo]. For TV-body systems the Mourre estimate was first proved in [PSS];
a simpler proof was given later in [FH]. This method was further developed
in numerous papers, including [BG] and [SS1], [SS2], [SS3].

Prior to our work ([GL1], [GL2]), very little was known about
multiparticle scattering in a magnetic field. In the case of one particle
in a constant field, asymptotic completeness for short-range and Coulomb
potentials was shown in [AHS1]; a different proof was given in [S]. The
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separation of the center of mass in the presence of a magnetic field
was considered in [AHS2]. The general long-range one-body problem was
solved in [LI] and [II]. Long-range two-particle systems with total charge
zero were studied in [L2] and [II]. In [12], Iwashita obtained the Mourre
estimate for reduced 3—particle Hamiltonians in certain special cases.
Asymptotic completeness for TV-particle systems containing no neutral
proper subsystems with short and long range interactions was proved in
[GL1] and [GL2] respectively. Let us also mention the paper [VZ] on the
spectral theory of TV-particle Hamiltonians with a constant magnetic field,
and several articles on one-particle scattering in a magnetic field vanishing
at infinity ([BP], [E3], [LT1], [LT2], [Ni], [NR]). In this paper, we also
draw upon certain ideas used by Derezinski in his study of dispersive
Hamiltonians ([De2]).

2. Notation.

We will first review the notation of [GL1] and formulate the hypothe-
ses we will impose on the interactions.

The coordinates in the configuration space X = R3^ will be denoted
by

x = (a;i,...,;r^v), X i = { y i , Z i ) ,

where (^, z^) = (yi^Vi^Zi) € M2 x R are the coordinates of the z-th particle
in the plane transversal to B and along the direction of B respectively. We
equip X with the metric

N

g{x,x) =^miXiXi.
i

Let us also introduce the TV-particle vector potential A:

A(a;i, . . . ,a;7v) = ( q - t J x - t , . . . , q N J x N ) '

A is a antisymmetric mapping A : X —> X' ^ which we will also consider as
an antisymmetric bilinear form on X x X.

We consider the following subspaces of X:

Z := {x <E X | Ax = 0} = {x 6 X | yi = 0, 1 < i ^ N},
Y := Z1- = {x € X | Zi = 0, 1 ̂  i ̂  N}.
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Then

X=Y^-L Z,

and the projections of a vector x e X onto these subspaces will be denoted
by y € Y and z € Z respectively.

We can now rewrite H as

(2.1) H=^D-Ax)2+V(x)=^+^Dy-Ay)2+V(x),

where

V(x):=^Vi,(xi-x,).
i<3

Let us recall some of the standard notation used in the JV-body
theory. A will stand for the set of all cluster decompositions, i.e., partitions
a = (Ci , . . . ,Cfe ) of {! , . . . , N} into disjoint non-empty sets Q called
clusters. The number of clusters of a will be denoted by #a. We will say
that a is a refinement of b and write a ^ b if all clusters of a are subsets of
clusters of b. The relation ^ defines a natural lattice structure on A with
the maximal and minimal elements

amax = ( {1 , . . . , N}), a^ = ({!},..., {N}).

The finest cluster decomposition c such that a ^ c and b ^ c will be
denoted by a V b. We will also write a < b if a ^ b and a 7^ &. For a pair
{ij} C { 1 , . . . , TV}, {ij) will stand for the N - 1-cluster partition

(<7) =({!},..., {Q,...,U},..., {TV}, {zj}).

Given a cluster decomposition a, X can be written as

Y — Y (^-L Ya
-A- — -^a W -A ,

where

Xa= {x ^ X \ Xi= Xj for all i,j such that (zj) ^ a},

X a = [ x^x e X | ̂  m,^ = 0 for all Cj, € a ^
I zeCfe J

It is easy to check that

a ̂  b iff Xb C Xa,
-^ax ={xeX \Xi=Xj for all ij}, Xa^ = X.
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For a € *A, we will denote

Ya:=Xa^Y, z,:=x,nz,
ya ̂  ̂ -a ̂  y ^a ̂  j^a ̂  ̂

Note that the projections on Z and Xa commute for all a € A, so that

Y — V ffi 7 Y01 — V0' a^ 7°'•AO, — I a W ^ai •/Y — JL W ^ •

The symbols

^a ? VCL 5 ^a 5
a a a

x '> V i z i

will stand for the orthogonal projections of re G X on the above
spaces. We will denote by (Ax)a the restriction of Ax to Xa, and by
Aa a,Aaa,Aaa,Aaa the restrictions of the bilinear form A to X01 x Xa, Xa x
X0,^ x X^X" x Xa respectively.

For any a € A, we can write

H = Ha + -^05

where

Ha :== |(D - A.r)2 + V0^), V^) := ̂  .̂(̂  - ̂ ),
(^)^a

is the cluster Hamiltonian, and

la := V(X) - V^X^ = ̂  V^X, - X,)

{iMa

is the intercluster interaction.

As we mentioned in the introduction, we assume in this paper that
all particles are charged, i.e.,

(0) qi ̂  0 for all i.

In particular, our system is allowed to have neutral proper subsystems
(pairs). We will say that a € A11 if a contains a neutral pair, and a ^ Ac

otherwise.

Let us now state the hypotheses that we will impose on the interac-
tions.
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(VI) Vij is a multiplication operator on L^R3) such that Vy i s — A
bounded with relative bound 0.

(V2) zV^Vij(x) is -A bounded. Moreover,

i) ^(^iW-A+l)-1!!^!),^^,

ii) IF^^I^V^-A+I)-1!!^!), R ̂  oo.

(V3)

||(-A + ir^yyK-A + I)-1]] < oo, |a| ^ 2.

(V')

Vij=V^+V^ where

liy^X.^-A+i)-1!!^,
|^y/,(^)| ̂  c^x}-^, e > o, |a| > o.

r^
^•(a-)=^+^-, where

IIF (^ ^ 0 ̂ (-A + 1)-111 € £l(^)'

IIF (^1 ^ 1) %^'11 ̂  <7J?-IQI-'1' ^ > ()' I"! ^ L

Finally, we will assume that the interactions are of Coulomb type.

DEFINITION 2.1 — The interactions Vij are said to be of Coulomb
type if:

V^x) = qiq,V\x).

The key property of the Coulomb interactions which we will use in
this paper is that if Ci is a neutral cluster, then ^ ^(^i ~ x) vanishes if

ieCi
Xi = X j for (ij) £ Ci.

Hypothesis (VI) and a result of [GL1], which we state below as
Proposition 2.2, ensure that H is self-adjoint.
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PROPOSITION 2.2 — Assume that (VI) holds. Then V is -{D- Ax)2

bounded with relative bound 0. Consequently,

H= l(D-Ax)2-{-V(x)
Zi

is selfadjoint with the magnetic Sobolev space

H^R^) := {u € L2^) | (D - Ax^u e L2^)}

as its domain.

Other consequences of hypotheses (V) will be given later in Lemma
3.1 in Section 3.

We use the following convention for cut-off functions. F ( ' € f^) will
stand for a smoothed out characteristic function of ^, equal to 0 outside fl,
and to 1 in a slightly smaller set, and 1̂  will denote the sharp characteristic
function of Q,. Finally, {x) is a smooth function greater than some e > 0
for all x and equal to \x\ for \x\ > 1.

3. The pseudomomentum and the reduced Hamiltonians.

To formulate our main result, we will need some of the definitions of
[GL1], in particular, the concepts of the bound and scattering states and
the reduced Hamiltonians.

Let

K := D + Ax.

The observable K is the generator of the magnetic translations :

e^'^u^x) = e^^u^x + x ' ) , W € X,

and satisfies

(3.1) kJ^-A^^O.

One deduces from (3.1) and from the fact that

V(x+x/)=V(x^ x'^X^

that the pseudomomentum

Ka^ ••= D^^ + (Ax)a^


