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0. Introduction.

In this paper we continue the study of hyperdeterminants recently
undertaken in [4], [5], [12]. The hyperdeterminants are analogs of deter-
minants for multi-dimensional "matrices". Their study was initiated by
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Cayley [1] and Schlafli [11] but then was largely abandoned for 150 years.
An immediate goal of the present paper was to prove the following state-
ment conjectured in [4], Section 5: for matrices of dimension >_ 3 and format
different from 2 x 2 x 2 , the singular locus Vgmg of the variety V of "degener-
ate" matrices has codimension 1 in V. As shown in [4], Section 5, this gives
a complete description of the matrix formats for which the hyperdetermi-
nant can be computed by SchlaflPs method of iterating discriminants. Our
main result (Theorem 0.5 below) not only proves the above conjecture, but
presents a classification of irreducible components of Vsing for all matrix
formats.

Even leaving aside applications to Schlani's method, we believe that
the study of Vsing is important on its own right. To illustrate this point,
we remark that the ordinary square matrices have a natural stratification
according to their rank. The set V of degenerate matrices is the largest
closed stratum of this stratification, and the next closed stratum (that is,
the set of matrices of corank > 2) is exactly the singular locus Vsing- Thus,
studying the varieties V and Vsing for multi-dimensional matrices can be
seen as a natural first step towards their meaningful classification. (This
gives an alternative approach to the classification by means of the tensor
rank; the relationships between these two approaches are not clear.)

Our results can be also interpreted in the context of projective
algebraic geometry. For a given matrix format, the variety V is the cone
over the projectively dual variety of the product of several projective spaces
taken in its Segre embedding (see [8], Section JV.D for an overview of
enumerative problems related to projective duality). We hope that the
results and methods of the present paper can be extended to a more
general class of projectively dual varieies. For example, it would be very
interesting to classify irreducible components of the singular loci of the
projectively dual varieties (G/P)^ ^ where G is a complex semisimple group,
P is a parabolic subgroup of G, and G / P is projectively embedded as
the orbit of a highest weight vector in some irreducible representation of
G. Our classification can be seen as the first step in this direction. The
methods that we use involve an analysis of incidence varieties and their
tangent spaces, and a homological approach based on the interpretation
of hyperdeterminant as the determinant of a certain Koszul type complex.
We hope that these methods will prove useful in more general situations.

Now we present a systematic account of our results and introduce
the notation to be used throughout the paper. We fix r > 3 and positive
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integers /Ci, k^..., kr, and denote by M = C^1^-^7'-^ the space of
all matrices A = ||^i,...,zJ|o^<^ of format (k^ + 1) x • • . x {kr + 1). For
each j = 1,... ,r let Vj be a vector space of dimension kj + 1 supplied
with a coordinate system (x^\ x^\..., x^). Each A € M gives rise to a
multilinear form on V\ x • • - x Vr, that we write as

(0.1) F(A^x)= ^ ^,...,^l)•••<r)•
ll,...,lr-

In more invariant terms, we can think of A as an element of V^ (g) • • • 0 Vy*,
or, more geometrically, as a section of the vector bundle 0(1,..., 1) on the
product of projective spaces P(Vi) x • • • x P(Vr). There is a natural left
action of the group

G=GL(Vi) x . . . xGL(Vr)
on V\ x ' • • x Vr and a right action of G on M such that

F{Ag,x)=F{A,gx) (A G M, ^ € Vi x • • • x Vr).
r\

We denote by Q\ the partial derivative —.—. Let Y = (Vi - {0}) x
Qx^

. . . x (y^. _ {0}). We say that x € Y is a critical point of a matrix A C M
if F(A,a-) = aJF(A,a;) = 0 for all z, j . By definition, A € M is degenerate
if it has at least one critical point in V. In a more geometric way, let
X = P(Vi) x • • • x P(Vr). There is a natural projection pr : Y —^ X (so
the coordinates x^ of a point y C Y are the homogeneous coordinates of
pr(y) € X). This projection makes Y a principal fiber bundle over X with
the structure group (C*)^ It is clear that for every A € M the set of critical
points of A in y is a union of fibers of the projection pr : Y —^ X. We shall
say that a point a* € X is a critical point of A if the fiber pr'^o*) C Y
consists of critical points of A. Now we consider the incidence variety
(0.2) Z = {(A, a;) € M x X : x is a critical point of A}.
Then the variety V C M of degenerate matrices is the image pr^Z),
where pr^ is the projection (A, x) ̂  A. This description implies at once
that V is irreducible (the irreduciblity of V follows from that of Z, and Z
is irreducible, since it is a vector bundle over an irreducible variety X). It
is known (see, e.g., [4], [5]) that V is a hypersurface in M if and only if the
matrix format satisfies the "polygon inequality"
(0.3) k,<^ki 0 - = l , . . . , r ) ;

W
in this case the defining equation of V is the hyperdeterminant Det(A).
Unless specifically stated otherwise, we shall always assume that (0.3)
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holds. Our goal in this paper is to describe the irreducible components
of the singular locus Vsing of the hypersurface V.

We shall show that Vsing admits the decomposition

(0.4) Vsing = Vnode U Vcusp

into the union of two closed subsets that we call, respectively, node and cusp
type singularities. The variety Vnode is the closure of the set of matrices
having more than one critical point on X. In other words, consider an
incidence variety

(0.5) Z^ = {(A,rr ,2/) e M x X x X : x ^ y^A^x) e Z,(A^) e Z},

and let V^g C M be the image pri(Z^), where pr^ is the projection
(A, x, y) i-» A. Then Vnode is the Zariski closure of V^g in M.

Informally speaking, Vcusp is the variety of matrices A 6 M having a
critical point x G X which is not a simple quadratic singularity of the form
F(A,a;). To be more precise, let x° G Y be the point with the coordinates
x^ = 8ift. The quadratic part of A at x° is, by definition, the matrix

(0.6) J3(A) = ||^<,F(A,^)||i<^<,;i<,<,,;i^<^;

here the pair (z,j) is considered as the row index, and (^,.7'Q as the column
index. We define H(A,x°) = detB(A) and call H(A,x°) the Hessian of A
at x°. Now consider the variety

(0.7) V^p = {A e M : (A, pr(.r°)) e Z, ^(A, x°) = 0}

and define

(0.8) Vcusp = V^p • G,

the set of matrices obtained from V^sp by the action of the group G on
M. (It is easy to see that Vcusp is closed, so we do not need to take the
Zariski closure here.)

We postpone the proof of (0.4) until Section 6, after we get more
information on the structure of the varieties Vnode and Vcusp (we will
show that the inclusion Vsing c Vnode U Vcusp is a special case of a general
result by N.Katz [7]).

The variety Vnode can be further decomposed into the union of several
irreducible varieties labeled by the subsets J C {1 , . . . ,r} (including the
empty set J but excluding J={ l , . . . , r } ) . Namely, we set

(0.9) Z^(J) = {(A,a;,2/) C Z^ : x^ = y ^ ^ j € J}
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and define Vnode(^) as the Zariski closure of the image pri(Z^(J)). The
same argument as the one used above to establish the irreducibility of V,
shows that each Vnode(^) is irreducible. It is clear that

(0.10) V^de-U^0^)'
j

In view of (0.4) and (0.10), the list of irreducible components of Vsing
can be obtained as follows. We take all the irreducible components of Vcusp
and all the varieties Vnode(^)? and then eliminate from this list all the
varieties that are contained in some other varieties from the list. Our main
result is a complete description of irreducible components of Vsing for all
matrix formats satisfying (0.3) (Theorem 0.5 below).

Without loss of generality, we can assume that k\ > k^ > ' • ' >. kr.
Then (0.3) simply means that ki < k^ + • • • + kr. Following [4], [5], we say
that the matrix format is boundary if k\ = k^ + • • • -t- kr and interior if
ki < A;2 + • • • + fey. We shall see that for the boundary format the singular
locus Vsing is always an irreducible hypersurface in V. This is in sharp
contrast with the case of interior format: we shall see that generically in
this case Vsing has two irreducible components, both of codimension 1 in
V. The origin of this difference between the interior and boundary formats
lies in the fact that for the boundary format the hyperdeterminant has
another interpretation as the resultant of a system of multilinear forms
([4], Section 4).

We start our investigation with the structure of irreducible compo-
nents of Vcusp-

THEOREM 0.1.

(a) If the matrix format is interior and ( f e i , . . . , kr) ^ (1,1,1) then
Vcusp is an irreducible hypersurface in V (that is, an irreducible subvariety
of codimension 2 in the matrix space M). In the exceptional case of 2x2x2
matrices (i.e., when (k^ , . . . , k r ) = (151? l)^ the variety Vcusp h^s three
irreducible components, each of codimension 2 in V.

(b) If the matrix format is boundary then Vcusp is an irreducible
subvariety of codimension 2 in V.

Theorem 0.1 is proved in Section 2. The main ingredient of the
proof is a solution of the following linear algebra problem, that we find
of independent interest. It stems from the observation that the Hessian
matrix in (0.6) is a symmetric (fci + • • • + kr) x (fei + • • • + kr) matrix with
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zero diagonal blocks of sizes k\ x f c i , . . . , kr x kr- In Section 1 we investigate
the prime factorization of the determinant of such a matrix, in particular,
find for which k\,..., kr this determinant is an irreducible polynomial in
matrix entries.

Turning to the node type singularities, we shall call Vnode(0) the
generic node variety, and the varieties Vnode(^) with J ^ 0 the special
ones. It turns out that in most of the cases the special node varieties are
contained either in Vnode(0) o1' m Vcusp- More precisely, in Section 3 we
prove the following.

THEOREM 0.2.

(a) Suppose that either #(J) = r — 1, or #{J) = r — 2 and
kj > ^ ki — 1 for one of the two indices j G { l , . . . , r } — J. Then

W
Vnode(^) C Vcusp-

(b) Suppose that either #(J) < r-2, or #(J) = r-2 and ^ kj > 2.
jeJ

Then Vnode(^) C Vnode(0).

We proceed to consider the generic variety Vnode(0) ^d its relation-
ship with Vcusp- The following theorem is proved in Section 4.

THEOREM 0.3.

(a) If the matrix format is interior and different from 2 x 2 x 2
and 3 x 3 x 2 , then Vnode(0) ls an irreducible hypersurface in V neither
containing nor contained in Vcusp • 1^ the exceptional cases of 2 x 2 x 2 and
3 x 3 x 2 matrices we have Vnode(0) C Vcusp-

(b) If the matrix format is boundary and different from 3 x 2 x 2 ,
then Vnode(0) is an irreducible hypersurface in V containing Vcusp- 1^ the
exceptional case o f 3 x 2 x 2 matrices, Vnode(0) C Vcusp-

An easy check shows that Theorem 0.2 covers all special node varieties
Vnode(^) with the following list of exceptions:

(1) The format 3 x 2 x 2 ; J = {1}.

(2) The format 3 x 3 x 3 ; J = {1}, {2} or {3}.

(3) The format m x m x 3, m > 3; J = {3}.

(4) The format 2 x 2 x 2 x 2 ; J = {ij} (1 < i < j <, 4).

(5) The format m x m x 2 x 2, m > 2, J = {3,4}.
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These exceptional cases are treated in Section 5. The results can be
summarized as follows.

THEOREM 0.4. — In each of the cases (1) to (5) above, Vnode(^) is
an irreducible hypersurface in V, and all these hypersurfaces are different
from each other. In Case (1) (i.e., for 3 x 2 x 2 matrices), Vnode({l})
contains Vcusp- In the remaining cases (2) to (5), all Vnode(^) are different
from Vnode(0) and Vcusp.

Putting together all the above results, we obtain our final classifica-
tion of irreducible components of Vsing •

MAIN THEOREM 0.5.

(a) If the matrix format is boundary then Vsing is an irreducible
hypersurface in V. Furthermore, we have Vsing = Vnode(0) if the format is
different from 3 x 2 x 2; in the exceptional case of 3 x 2 x 2 matrices we
have Vsing = Vnode({l}).

(b) If the format is interior and does not belong to the following list of
exceptions, than Vsing has two irreducible components Vcusp and Vnode(0)?
both having codimension one in V. The list of exceptional cases consists of
the following three- and four-dimensional formats:

(1) For 2 x 2 x 2 matrices, the singular locus Vsing coincides with
Vcusp and has three irreducible components, all of codimension 2 in V.

(2) For 3x3x2 matrices, Vsing coincides with Vcusp and is irreducible.

(3) For 3 x 3 x 3 matrices, the singular locus Vsing has five irreducible
Components Vcusp, Vnode(0), Vnode({l}), Vnode({2}), Vnode({3}).

(4) For m x m x 3 matrices with m > 3, the singular locus Vsing has
three irreducible components Vcusp, Vnode(0), Vnode({3}).

(5) For 2 x 2 x 2 x 2 matrices, Vsing has eight irreducible components
Vcusp, Vnode(0) and Vnode({^'}) (1 < Z < J < 4).

(6) For m x m x 2 x 2 matrices with m > 2, the singular locus Vsing
has three irreducible components Vcusp, Vnode(0), Vnode({3,4}).

In each of the cases (2) to (6), all irreducible components of Vsing
have codimension 1 in V.

Our main tool in proving the above results is an analysis of the tangent
space of each of the varieties Vcusp, Vnode(0) etc., at its generic point.
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Some of the proofs could be simplified if we had explicit representatives of
these varieties. Unfortunately, in most of the cases, these representatives
are not known. In the concluding Section 7 we present some interesting
special matrices: the multi-dimensional analogs of diagonal matrices and
the Vandermonde matrix.

This work was partly done during the visit of A. Zeievinsky to the
University of Marne La Vallee, France, May - June 1994. He is grateful to J.
Desarmenien, A. Lascoux, B. Leclerc, J.-Y. Thibon and other members of
the Phalanstere de Combinatoire Algebrique at Marne La Vallee for their
kind hospitality. We thank the referee for helpful remarks that allowed us
to simplify some of the original arguments.

1. Symmetric matrices with diagonal lacunae.

In this section we present a solution of the following linear algebra
problem. Let A : i , . . . , kr be some positive integers, and suppose for each (%, j)
with 1 < i < j <, r we are given a generic ki x kj matrix Bij. Consider the
symmetric matrix

/ 0 Bi,2 Bi,3 . . . B^r\
^1,2 0 ^2,3 . . . B^r

B= . . / /

VB^r 'B^r 'B^r . . . 0 /

of order k\ + • • • + kr, where tBi^ stands for the transpose matrix. We
will refer to such a matrix as a symmetric matrix of type ( A ; i , . . . , kr).
The determinant det(B) is a polynomial in the matrix entries of all the
Bij. The problem is to decompose this polynomial into the product of
irreducible factors. Without loss of generality we can and will assume that
ki >. k ^ ' > _ • • • >_kr. Then the answer is given by the following theorem.

THEOREM 1.1.

(a) Ifk^ > k^ + • • • + kr then det(B) is identically equal to 0.

(b) Ifk^ = A;2+- • -+kr then det(B) = (-1)^ (det(C))2, where C is the
k-i x k-t matrix (Bi^, ̂ 3,..., Bi^). The polynomial det(G) is obviously
irreducible.

( c ) J f A ; i < A ; 2 + ' - - + kr then det(B) is always irreducible, with the
only exception when r = 3 and (A;i, k^, ks) = (k, k, 1) for some k > 1.
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(d) In the exceptional case r = 3, (A;i, A^ ^3) = (^ ^51) ̂  have

(1.1) det(B) = 2 . (-l^det^) dot f51'2 B].3) .
\ -02,3 0 /

If k > 2 then two determinants in the right side of (1.1) are distinct
irreducible polynomials. Finally, ifk=l then (1.1) takes the form

det(B) = 2Bi,2Bi,3B2,3,

so in this case det(-B) is the product of three distinct irreducible factors.

Proof. — The statements (a) and (b) are obvious because B has a
k\ x k\ block of zeros. The equality (1.1) can be seen by a direct calculation,
for instance, by using the Laplace expansion in the first k rows of B. So it
remains to prove (c).

We start with the case r = 3. Let us put our question in a more
invariant setting. Let E\, E^, £3 be three vector spaces of dimensions
^i i ^2; ^3 5 respectively. We think of each B^j as the matrix of a linear
map Ej —> E^. Using the canonical isomorphism Horn (Ej, E^) = E^ (g)£'J,
we identify the ring of polynomial functions in the entries of B with the
symmetric algebra

5 = S.((E^ (g) £2) © (£'1 ̂  £3) © (£'2 0 E^)).

The group G = GL(E^) x GL(E^) x GL(Es) has a natural representa-
tion in 5'; in the matrix form, each gi C GL(Ei) is represented by an invert-
ibie ki x ki matrix, and for every / C 5' we have ^(B) = ̂ ^^f[B) =
f(B9)^ where (B9)^^ = tgiBi^gj. For every triple of non-negative integers
(a, /?, 7) we say that an element / e S is a relative G-invariant of degree
(a,/3,7)if

^ = (detQ^ndet^^det^))7/.

Clearly, det(B) is a relative G-invariant of degree (2,2,2). Therefore, every
irreducible factor of det(-B) is also a relative G-invariant of some degree
(a,/?, 7) with a,y3,7 <: 2. So our first task will be to describe all relative
G-invariants in low degrees. Looking at the action of the center of G on 5,
we obtain the following necessary condition for an occurence of a relative
G-invariant of given degree.

LEMMA 1.2. — If a non-zero relative G-invariant of degree (a, /3,7)
occurs in S then the triple (p^k\^{3k^^k^) is in the additive semigroup
generated by (1,1,0), (1,0,1), and (0,1,1).
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Using this lemma, we will obtain the existence and uniqueness prop-
erties of relative G-invariants.

LEMMA 1.3.

(a) A non-zero relative G-invariant of degree (a, /?, 0) occurs in S if
and only ifa=f3 and A-i = A;2; in this case it is proportional to det^i^)^
Similarly, an invariant of degree (0,0,7) occurs when 0 = 7 and k\ = k^,
and is proportional to det^i^)0'; an invariant of degree (0,/?,7) occurs
when (3 = 7 and k^ = k^, and is proportional to det(B'z^)^.

(b) A non-zero relative G-invariant of degree (1,1,1) occurs in S if
and only if k\ < k^ + ^3 and k\ + k^. + k^ is even (recall the assumption
k\ > k'z >_ k^); in this case it is proportional to the Pfaffian of the skew-
symmetric matrix

( 0 B\^ ^1,3
(1.2) Baii= -^1,2 0 B2,3

-^1,3 -^2,3 0

Proof. — The "only if part in all the statements follows from
Lemma 1.2. If k\ = k'z then it is clear that det^i^)" is a non-zero relative
G-invariant of degree (a, a, 0). It is also clear that the Pfaffian of the matrix
-Salt given by (1.2) is a relative G-invariant of degree (1,1,1). Let us denote
this Pfaffian by Q(B). Our next task is to show that if k^ < k^ + k^ and
A:i + k<z + A;3 is even, then Q(B) is a non-zero polynomial. To do this, it
suffices to construct B such that del (Bait) 7^ 0.

Notice that in the category of triples of vector spaces (E-^.E^^E^)
endowed by three linear maps Bzj : Ej —> E^ (1 < i < j <^ 3), there
is a natural notion of the direct sum. With some abuse of notation, we
shall denote a triple as above by the same symbol B as the corresponding
symmetric matrix. We write the direct sum of such triples by B = B1' @ B " ' .
Clearly, the ranks of B, Bait and of each Bij are additive with respect to
the direct sum.

Let B^ be the triple with E^ = 0, dim^) = dim^) = 1 and
such that B^ is an isomorphism. We define the triples B^ and B^ in a
similar way, so that each B^ has Ei = 0. Take
(1.3) B = (p - k^)B^ © (p - A^B^ C {p - k3)B^\
where 2p = k^ + k^ + k^. Then B has type (k\, k^.k^). Since for each of the
triples B^~\ B^ and B^ the corresponding matrix Bait has full rank, the
same is true for B. Thus, Q(B) ̂  0, as desired.
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To prove the uniqueness of the above invariants, we shall use the
language of Schur modules (see, e.g. [3]). Using the Cauchy decomposition
of the symmetric algebra of the tensor product of two vector spaces, we
can decompose S as follows:

(1.4) S= (]) (S^{Ei^E^^S^(E^E^(S)S^(E^Es))
dl2 ,d^3 ,d23>0

= (]) {S^(E,)(SS^E^^(S^(E,)®S^(E^)

A12 'A13 'A23 ® (^3(^)8^(^3))

== Q (S^(E^®S^(E,))<S{S^(E^CS>S^(E^)
Al2 1-^13 5^23

^(S^(E,)^S^(E,))^

the summation over all triples of partitions (Ai2, Ais, X^) such that l(\zj) <
min(/^,A^), where l{\) is the number of non-zero parts of a partition
A. Using this language, a relative G-invariant of degree (a,/3,7) is an
occurence of the Schur module

5(^i)(^i) 0 5(^2)(^2) ̂  ̂ 3)(^3)

in the decomposition of (1.4) into irreducible G-modules. Let c^ denote
the multiplicity of Sx{E) in the tensor product S^{E) (g) S^{E). The
multiplicities c^ are given by the well-known Littlewood-Richardson rule;
in particular, it is known that c^ is independent of E when dim(E) >
max(-^(A),^(/^),^(^)). We see that the dimension of the space of relative
G-invariants of degree (a,/?, 7) in 5' is equal to

n ^ X" ^akl) ^k2) r^
^•0) / . ^12,^13 ^12^23 ^13^23 '

^12,^13»^23

the sum over all triples of partitions (Ai2, Ai3,A2s) such that l(\ij) <
mm(ki^kj). In particular, this dimension is equal to 1 when (a,/?, 7) =
(a, a, 0) and A;i = k^ in this case, the only triple (Ai2, Ais, A2s) contributing
to (1.5) is ((o^), (0), (0)). This completes the proof of Lemma 1.3 (a).

To complete the proof of (b), we use the following well-known property
of Littlewood-Richardson coefficients: c^ = 0 unless |A| = |/^| + \v\ and the
diagram of the partition A contains each of the diagrams of 11 and v (see,
e.g., [9]; as usual, |A[ stands for the sum of all the parts of A). It follows that
for (a,/3,7) = (1,1,1), the only non-zero contribution to (1.5) is from the
triple (Ai2, Ai3, A23) = ((P-^3), (l^2), (1^)), where k, + fe + h = 2p.

(-^k+£\
This contribution is 1, because c' / == 1 for all k,£. Lemma 1.3 is
proved.
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According to Lemma 1.3 (a), S has no relative invariants in degrees
(0,0,1), (0,0,2), (0,1,2) and the degrees obtained from them by permuta-
tions of the components. This easily implies that det(B) fails to be irre-
ducible only if it is either divisible by some det(Bij) (in the case when
ki = kj)^ or is a scalar multiple of Q2 == det(Bak) (for instance, the latter
opportunity takes place in the case k\ = k^ + k^.) Recall that we are in the
situation of Theorem 1.1 (c), so we assume that

(1.6) k2 + h > /ci > k<2 > ks > 2;

we have to show that in this case neither det(i^j) nor det(Bait) divide
det(B).

In view of Lemma 1.3, there are three cases to consider:

Case 1. — (A;i,A;2,A;3) = (k,k,() with k > £ > 2. We have to show
that det(2?) is not divisible by det(5i^). It is enough to construct a matrix
B of given type such that del (B) 7^ 0 but det(-£?i^) = 0.

Case 2. — (A;!,^,^) = (k,£,£) with U > k > £ > 2. We have to
show that det(B) is not divisible by det(£?2,3). It is enough to construct a
matrix B of given type such that det(B) 7^ 0 but det(£?2,3) = 0.

Case 3. — k^ + k'z + k^ == 2p is even. We have to show that det(B)
is not proportional to det(J3ait)- It is enough to construct a matrix B of
given type such that det(B) -^ 0 but det(Bait) = 0.

In each of these cases, we construct a desired matrix as a certain direct
sum in the category of triples (cf. (1.3) above). We will use the triples B^\
B^, and B^ defined above, and one more triple B^ with all Ei one-
dimensional and such that each B" is an isomorphism. We can choose a
basis in each Ei so that the matrix representing B^ has the form

/O 1 1\
1 0 1 .

\1 1 O/

Clearly, for each of the triples B^°\..., B^ the corresponding matrix B
has full rank. On the other hand, B\^ obviously does not have full rank
for any triple having B^ or B^ as a direct summand, and similarly for
i?i^3 and JE?2,3. Similarly, £?ait does not have full rank for any triple having
B^ as a direct summand.

Now we can construct a desired matrix B as follows. In Case 1 take

B = (i - 2)B^ © B^ C B^ C (k - £ + 1)B^.
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In Case 2 take

B={2£- k)B^ C (k - £)B^ C (k - £)B^.

Finally, in Case 3 take

B = (k^ + h - h)B^ © (A;i - k^)B^ C {h - h)B^.

This completes the proof of Theorem 1.1 (c) for r = 3.

Now we consider the case r = 4. We assume that k^ + k^ 4- k^ > k\ >
k^ > ^3 ^ ^4 ^ I? ^d we want to show that in this case det(B) is an
irreducible polynomial (in particular, that it is not identically equal to 0).

If we set £?3^ = 0 then our matrix B becomes a symmetric matrix
of type (A;i, A;2, k^ + ^4). Let us denote this specialized matrix by B ' . Since
^3 + A;4 < k\ + A:2, the sizes of zero blocks are such that det^') (and
hence det(B)) is not identically equal to 0. Furthermore, the irreducibility
of de^B') implies that of det(B). By the above analysis of the case r = 3,
det(B') fails to be irreducible only if one of the numbers (A;i, k^, k^ + ^4) is
equal to the sum of two others, or if (A;i, A;2, k^ + fcQ is a permutation of the
triple of the kind (k, k, 1). This leaves us with only two cases to consider:

Case 1. — All the numbers kz are equal to each other, that is,
(/ci, A:2, ^3, k^) = (A;, k, k, k) for some k > 1.

Case 2.— (k^.k^k^k^) = (2,1,1,1).

First we treat Case 1. Consider the specialization

(1.7) Bi,4 = ̂ 2,4 = -83,4 = Id,
the identity k x k matrix. Subtracting the first row block of B from the
second and the third, and doing the same thing with column blocks, we see
that det(B) is equal (up to sign) to the determinant of the 2k x 2k matrix

., ^ ( -?,2 + ̂ 1,2) -02,3 - Bi,3 - ̂ 1,2 \
( ) V(B2,3-^1,3-^1,2) -?,3+^1,3) ) '

Clearly, the matrix in (1.8) can be made an arbitrary symmetric matrix.
Hence, the specialization (1.7) makes det(B) irreducible. This means that
if det(B) has several irreducible factors, then at least one of them (in fact
all but one) specializes under (1.7) to a non-zero constant. Let us denote
this factor by P(B).

Clearly, P(B) must be relative invariant with respect to the natural
action of the group G = GLk x GLk x GLk x GLk. Under this action, a
matrix satisfying (1.7) can be transformed into an arbitrary matrix having
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all blocks Bi^ invertible. Since such matrices form a dense set in the
variety of all matrices B, we conclude that P(B) must be one of the minors
det(B-i^), det(B^) or det(B^). However det(B) is not divisible by either
of these minors: by the obvious symmetry, it is enough to show that det(B)
is not divisible by det(B^), and we have seen this already. This shows that
in Case 1 det(B) is irreducible.

Case 2 can be treated in exactly the same way. We specialize

Bi,4= K ^ , B^=B^=1,

and, after the calculations parallel to those in Case 1, see that this special-
ization makes det(B) irreducible (it becomes, up to sign, the determinant
of a symmetric 3 x 3 matrix with the only restriction that its (1,1) entry is
0). An argument similar to that in Case 1, shows that if del (B) is reducible
then it must be divisible by ^2,4 or ^3,4; we have already seen that this is
not the case.

To complete the proof of Theorem 1.1, it remains to show that det(B)
is irreducible in the case when r ^ 5 and k^ + • • • + kr > h ^ k^ > ' • • ^
kr > 1. We prove this by induction on r starting with the case r = 4
considered above. Setting Br-^r == 0, we obtain the matrix B' of type
(fci , . ..,kr-2,kr-i-}-kr). When r ^ 5, we have kr-i-{-kr < A:i+. • .+A^-2, so
det^B') is irreducible (in particular, non-zero) by the inductive assumption.
Hence, det(B) is also irreducible. Theorem 1.1 is proved.

We conclude this section with one more result about symmetric
matrices B, to be used later for the analysis of cusp type singularities.

LEMMA 1.4.

(a) Suppose k^ + • • • + kr > h > k^ > ' • • > ^. Then there exists a
symmetric matrix B of type ( A ; i , . . . , kr) having rank k^ + • • • + kr - 1 and
such that for every i = 1, . . . , r the ith row block

^.=(^1,, ^2,, • • • ^_i^ 0 B^+i ... B,,,)

ofB has full rank ki.

(b) I f r = 3 and (k^k^k^) = (k,k,l) for some k > 1 then there
exists a symmetric matrix B of type ( f c i , . . . , kr) satisfying the conditions
in (a) and the additional conditions

det(^)=0, detf^- 2 ^^O.
\ -"2,3 U /
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Proof. — First we give another description of the types ( A " i , . . . , kr)
for which det(JE?) is not identically equal to 0. Let ^>r denote the semigroup
of all non-negative integer vectors k = ( A : i , . . . , kr) such that

(1.9) ^ < E ̂
r-j^i

for all i = 1,.. . , r. For every subset of indices I C [1, r] let 61 € Z!j_ denote
the indicator vector of J, that is, 61^ is 1 for i e I and is 0 for i e [1, r] — I .

LEMMA 1.5. — The semigroup ^r is generated by the vectors 61 for
all the subsets I C [l,r] of cardinality 2 or 3. Furthermore, ifk € ^r is
such that all the inequalities (1.9) are strict, and k is not of the form 61 for
#(J) = 4, then k can be represented as a sum 61^ + - • • + ̂ , where each
of the subsets Ij C [1, r] has cardinality 2 or 3 and # (A) = 3.

Proof of Lemma 1.5. — Without loss of generality, we can assume
that k C ^r has k\ > " • >, kr. If k\ = k^ + • - - + kr then we have

r
k == ^ ^{1,1} • So let us assume that k\ < k^ + • • • + kr. Clearly, in this

1=2
case we have k^ > 1, so the vector k' = k — ^{1,2,3} has all components
non-negative. Proceeding by induction on k\ + • • • + kr; we see that our
lemma is a consequence of the following statement: if k 7^ <^{ 1,2,3,4} then
k' € ^r- To prove this statement, we observe that the only condition in
(1.9) that is not automatically fulfilled for k' is

(1.10) A;4 < (h - 1) + (A;2 - 1) + (A;3 - 1) + ̂  k,.
i=5

Rewriting (1.10) in the form
r

(A;i - 1) + (^ - 1) + (h - k^) + Y^k, > 0,
%=5

we see that it can fail only when k = ̂ {1,2,3,4}- Lemma 1.5 is proved.

Returning to the proof of Lemma 1.4, let us put the question into
a more invariant setting, just as in the proof of Theorem 1.1 above. A
symmetric matrix B of type (A; i , . . . ,kr) represents an r-tuple of vector
spaces E\,..., Er of dimensions k\,..., kr, endowed with a collection of
linear maps Bij : Ej —» E^ for all i ̂ - j such that Bj^ = t BiJ . There is an
obvious notion of the direct sum of such r-tuples, and the ranks in Lemma
1.4 are additive with respect to this direct sum. As above, we shall write
the direct sum simply as B © B ' .
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We shall construct a matrix B with desired properties as the direct
sum of some standard matrices. First, for each subset I C [l,y1] of
cardinality 2 or 3 we consider a symmetric matrix B^ of type 61 such that
all the maps B^j for % , j € J, i 7^ j are isomorphisms of (one-dimensional)
vector spaces. If #{I) = 3, I = {z,?7,?"}, we also consider another matrix
BQ of type 61 such that Bi^i and Bi^ii are isomorphisms but i?^,^/ = 0.
Clearly, for each of these matrices the ranks in Lemma 1.4 (a) have their
maximal possible value, with the exception of the matrix B for B^ ) that
has corank 1.

Now suppose that k = ( A ; i , . . . , kr) is as in Lemma 1.4 (a). First we
assume that k -^ (1,1,1,1). By Lemma 1.5, there exists a decomposition
k = 61^ + • - • + 61^, where each of the subsets Ij C [1, r] has cardinality 2 or
3 and ^ (A) == 3- Then we can choose a matrix B satisfying the properties
in Lemma 1.4 (a), in the following way:
(i.ii) B = B^ © ̂ (J2) e • • • e ̂ (Ja).
For k = (1,1,1,1) an obvious check shows that we can choose

/O 1 1 1\

B= \1 ° 1 1 .1 1 0 0
\1 1 0 O/

This completes the proof of Lemma 1.4 (a). Finally, a matrix B satisfying
the conditions in Lemma 1.4 (b) can be constructed by the same decompo-
sition (1.11), where we choose the first summand BQ in such a way that
its component B\^ is an isomorphism.

2. Cusp type singularities.

In this section we study the cusp type variety Vcusp introduced in
(0.8); our goal is to prove Theorem 0.1 that provides a description of
the irreducible components of Vcusp- We shall use the notation of the
Introduction. In particular, we denote by x° 6 Y = (V\ — {0}) x • • • x
(Vr — {0}) the point with the coordinates x^ = <^o- It will be convenient
for us to dehomogenize the multilinear form

F ( A ^\ —\^ n /J1) ^(r)^ [ ^ x ) — ^^i,...,^^ x^

corresponding to a matrix A, by setting all x'^ equal to 1. More precisely,
consider the subset

E ^ { x e Y : x y = l ( .7=l , . . . , r )}.
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Clearly, E is isomorphic to the affine space
pfei+-+fc. = c^ x • • • x C^

with the coordinates x^\ j € [l,r], i € [1,^-]; this is an affine chart in
X = P^ x ' • • x P^ near the point ((1 : 0 : • • • : 0 ) , . . . , (1 : 0 : • • • : 0))
which is the image of x° under the natural projection Y —> X.

In order to write down the form F{A,x) for x € E in a more
convenient way, we shall use another notation for the matrix entries of
A. Namely, we shall write an entry a^,...,^ of A as ^/••^/,/, where the lower
indices stand for the positions j G [l,r] for which ij -=f=- 0, and the upper
indices are these non-zero values ij in the same order. Thus, we write simply
a for ao,...,o? ^ fo1' ^o,...,z,...,o with a non-zero i in the jth place, and so on.
In this notation, for x € E we have
(2.1) F(A, x) = a + ̂  ̂  + ̂  a^M^ + • • • •

For every x € Y let V(.r) denote the set of matrices A G M having x
as a critical point; equivalently, V(a;) = {A : (A,pr(a;)) G Z}, where Z is
the incidence variety in (0.2). In particular, in view of (2.1), we have
(2.2) V(a:°) = {A € M : a = a} = 0 for all zj}.

Let £? = -B(A) be the quadratic part of A at x° (see (0.6)). Thus, B
has matrix entries (a^-/), with (z,j) the row index and { i ' , j ' ) the column
index. In this notation, the definition (0.7) takes the form
(2.3) V^p = {A e V(^°) : det(B(A)) = 0}.
According to (0.8), the variety Vcusp is equal to V^sp • G^ where

G = GLfci+i x • • • x GLfc,+i.

In view of the equality Vcusp = V^usp ' ̂  to show that Vcusp
is irreducible it is sufficient (but not necessary!) to show that V^sp is

irreducible. In the terminology of Section 1, the quadratic part B of a
matrix A € M is a symmetric matrix of type ( A ; i , . . . , kr). In view of (2.1)
and (2.2), Theorem 1.1 implies that V^sp (^d hence Vcusp) is irreducible
for all the interior and boundary formats except ( A ; i , . . . , kr) = (A;, A:, 1) for
some k > 1.

In our treatment of the exceptional case ( A ; i , . . . , kr) == (k, /c, 1) and
in a subsequent computation of the dimension of Vcusp 5 we shall replace G
by the subgroup C^1 x • • • x C^, where each factor C^ is the subgroup of
matrices of the form

/ I 0\
\x IkJ
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in GLfc.+i (here x C C^', and JA; is the identity kj x kj matrix). Clearly,
the subgroup C^1 x • • • x C^ acts simply transitively by translations on
the affine space E. With some abuse of notation, we identify this subgroup
with E: thus, for every x = (x^\... ̂ x ^ ) e E we denote by the same
symbol x the element

(^.....^eC^ x . - . x C ^ c G ,
where each ^j has the first column x^. An easy calculation shows that the
right action of E on the matrix space M is given by the following formula:

(2.4) (A • x)^. = Q1^, • . . 4:F(A, x).

Returning to the cusp type singularities, it is clear from the definitions
that for g G G the variety V^sp • 9 depends only on the point g~lxo. It
follows that

(2.5) Vcusp = V^p • E,
the bar meaning Zariski closure.

Now let us consider the exceptional case ( A ; i , . . . , A;r) = (A;, A;, 1) for
some k > 2. By Theorem 1.1 (d), in this case V^sp nas ^wo irreducible
components. To show that Vcusp is stm irreducible, we shall prove that
one of the components of V^sp ls contained in the closure of the image of
another one under the action of E.

To keep up with the notation of Section 1, we shall represent a matrix
A € V(^°) as a pair of ordinary (k-{-l) x (k-{-l) matrices written as follows:
^ . /O 0 \ / 0 ^2,3 \
(2.6) ^.0=^ ^J, ^^{B^ B' ) '

Here B\^ and B' are k x k matrices, and B^^ and jE?2,3 are columns of
length k. By Theorem 1.1 (d), two irreducible components of V^gp are

given by
V' = {A e V(^°) : det(Bi,2) = 0},

^ V / /={AeV(.o) :detfB l '2 ^^O}.
'- \ -02,3 0 / J

The irreducibility of Vcusp becomes a consequence of the following lemma.

LEMMA 2.1. — The set of matrices A 6 V such that A ' x € V" for
some x 6 E, is dense in V. Therefore, Vcusp = V" • E.

Proof. — The group E has the natural direct sum decomposition
E = Ei©^2©C, where dim(Ei) = dim^E^) = k. We can think of B\^ and
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B' as representing linear maps E^ —^ E^ or, equivalently, bilinear forms on
E\ x E^\ we can think of B\^ and ^2,3 as lying in E^ and E^ respectively.
We write x G E as a triple (u,v,z) with u G E^, v C E^, z C C. Using
(2.4), we see that the matrix A • x has the following form:

( A \ - (Bi^u,v)+z(B'{u,'u)+B^(u)+B^(v)) tBl,2(^)+^B/(^)+;^;B2,3^
(A.rr)..o-^ Bi^M+^B'^+^Bi^ 51,2+^B' ;'

( A \ _ (B/(u,v)+B^3(u)+B2^(v) tB /(^)+B2,3^
(A.^..i-^ B'^+Bi^ B' ;•

The matrix A • .r lies in V(a:°) if all the components of (A • x)..o except
B\ 2 + ^-S' ^e equal to 0. These conditions can be rewritten as follows:

(2.8) t{B^+zBf)(u)=-zB^

(2.9) (Bi,2 + zB'){v) = -zB^,

(2.10) (BI^+^^^O.

Now let us assume that B\ 2 + ̂ ^/ is invertible for some ^ 7^ 0. Then
(2.8) and (2.9) imply

u = -z\B^ + zB')-\B^, v = -z(B^ + zB^-^B^).

Substituting this to (2.10), we get

(2.11) B^({B^ + zB^-^B^)) = 0.

If one of Bi,3 and ^2,3 is equal to 0 then (2.11) is trivially true. If both
Bi^3 and ^2,3 are non-zero, then (by changing bases in E\ and E^} we can
assume that both of them are represented by a column vector (1,0,0, . . . . 0).
Then (2.11) means simply that the cofactor of the matrix B\^ + z B '
corresponding to its (1,1) entry is equal to 0. Let us denote this cofactor
by det'(Bi,2 + z B ' ) . Thus, if det^Bi^ + z B ' ) = 0 then A - x belongs to
V^sp but not to V since B\^-\-zB' is assumed to be invertible. Therefore,
A • x G V". To complete the proof of the lemma it remains to establish the
following elementary statement:

(*) every pair (B^^^B') of k x k matrices such that det(Bi^) = 0,
lies in the closure of the set

(2.12) {(Bi,2, B ' ) : det(£?i,2) = 0, det'(Bi,2 + z B ' ) = 0,
det(5i,2 + z B ' ) -^ 0 for some z e C}.

To prove (*), we construct explicitly a polynomial function R(B^^, B ' )
such that the set (2.12) contains the set

{(^1,2, B ' ) '. det(£?i,2) = 0, R(B^ B ' ) + 0}.
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If k > 3 then we define R{B^, B ' ) to be the resultant of two polynomials

of degree < {k - 1) in one variable z given by z ^ det^l;2 + ZBI^ and
z >-> det'^i^ -^-zB') (the first map is indeed a polynomial since we assume
det(Bi^) = 0). For k = 2, two above polynomials are linear functions of z',
if they are written as az+b and cz-^-d then we define R{B^^, B ' ) = ad-be.
The function R(B^^, B ' ) has the desired property by the definition of the
resultant. It remains to prove that R{B^B') is not identically equal to
0. We can take B' = -4 (where h is the identity k x k matrix). Then

- , .det^is+^BQ
the roots ot ————'——— are the non-zero eigenvalues of B^^, and the
roots ofdet'^i^+^B') are the eigenvalues of the submatrix B[ 3 obtained
from Bi,2 by taking off the first row and the first column. Adding to Bi 2 a
scalar matrix alk, we shift all the eigenvalues of ^1,2 and B[ 3 by a. So it is
enough to exhibit a, k x k matrix C having k distinct non-zero eigenvalues
and such that the truncated matrix C' has all eigenvalues distinct from
those of C. We can choose C to be the companion matrix

/O 0 • • • 0 ao \
1 0 • • • 0 ai
0 1 • • • 0 02

\0 0 ... 1 dk-J
with generic coefficients do , . . . , a^-i. Then the characteristic polynomials
of C and C' are

P(A) = det(A4 - C) = ̂  - ak-i^-1 - • • • - ao
and

Q(A) = det(A4 - C1) = A^-1 - a^iA^-2 - .. . - ai.

They are related by P(A) = AQ(A) - ao, hence have no common roots
if ao 7^ 0. This completes the proof of the lemma (we are grateful to
A. Lascoux and M. Nazarov for suggesting the use of companion matrices
in the above argument).

We leave the exceptional case when ( A ; i , . . . , kr) = (1,1,1) until the
end of the section, and turn to the computation of dim (Vcusp). Our strategy
will be to find the tangent space TA Vcusp at a generic point A of V^sp-
This tangent space is a subspace in TAM\ we shall use the differentials
da, da^ ... as the coordinates in TAM.

PROPOSITION 2.2. — If the matrix format is interior and ( A ; i , . . . ,
kr) + (1,1,1) then the tangent space TA Vcusp at a generic point A ofV^sp
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has codimension 2 in TAM. One linear equation denning TAVcusp in TAM
is da = 0, and another one has the form

E^^0
^j

for some coefficients c^.

Proof. — The first part of the argument makes sense for arbitrary
interior or boundary format. Let

(2.13) Z = {(A, x ) ( E M x E : A ' x e V(;r°)}.

In view of (2.2) and (2.4), for every A G V(.r°) the tangent space T^x0)^
is given by the equations

(2.14) da = 0, da} + ̂ a^d^P = 0 for all z,j,
i ' j '

where the differentials da, da},... and the dx^ are the usual coordinates
in TAM and T^oE^ respectively.

Now consider the variety

(2.15) Zcusp = {(A, x ) e M x E : A ' x e V^p}.

In view of (2.3), we have

(2.16) Zcusp = {(A, x) e Z : det(B(A • x)) = 0}.

At this point we would like to use the assumption that the matrix
format is interior. Let us also assume that ( A ; i , . . . , kr) 7^ (A;, A;, 1). According
to Theorem 1.1 (c), the polynomial det(£?(A)) in (2.3) is irreducible. By
(2.16), T(A,a;o)Zcusp is given by the equations (2.14) combined with the
additional equation

(2.17) d(det(B(A • x))) = 0.

Let B3^, denote the cofactor of the quadratic part B = B(A) corresponding
to the entry a^.,. Then the equation (2.17) evaluated at x = x° can be
written as

(2.18) ^ BH: (d4. + ̂  a}̂ P) == 0.
ij^'J' i " ^ "

In view of (2.5), the tangent space TAVcusp at a generic point A of
V^sp ls tne image of T^A^^cusp under the map pr^ induced by the first
projection. In other words, TAVcusp is defined by all the linear relations
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between the coordinates da,da^./,..., that are the consequences of (2.14)
and (2.18), that is, by the linear combinations of the equations in (2.14)
and (2.18) not containing the terms with the dx\ . One of these defining
equations for T^Vcusp is, of course, the equation da = 0 in (2.14). According
to Lemma 1.4 (a), for A generic we can assume that B has corank 1. This
implies that the second group of equations in (2.14) produces exactly one
linear relation between the coordinates da^. This relation has the form

(2.19) ^c^o}=0,
i j

where the c| are the coefficients of the linear dependency between the rows
of B.

To complete the proof of Proposition 2.2 in our case, it remains to
show that we can choose A so that the linear form in the variables dx'^
appearing in (2.18), is not a linear combination of the rows of B, and so,
does not produce additional equations for TAVcusp- Since B is symmetric,
its columns satisfy the same linear relation as its rows. So it is enough to
produce a matrix A satisfying the single inequality

(2.20) ^ '̂4':a .̂:,̂ 0.
i J j i ' J ' ^ ' J "

Since B has corank 1, its cofactor matrix B has rank 1, and we can
choose any non-zero row of B as the vector of the coefficients c^ in (2.19).
Let (%"\j") be the index of this row, so we have

(2.21) 4 = B^
for all i^j. To prove (2.20), we observe that a generic matrix A also satisfies
the last condition in Lemma 1.4 (a). This means that there exist at least
two pairs of indices (%,j ) and ( i ^ j ' ) such that j ̂  j ' and c^ -^ 0, c^/ ^ 0.
In view of (2.21), this can be written as

(2.22) ^^0, B^^O.
Now, if we choose (z",^") according to (2.21) and choose (^.7'),(^,./)
satisfying (2.22), then we see that the coefficient ofa^y.// in (2.20) is equal
to

W r ^ " -L B33" r 3 1 4- B 3 ' 3 " ^ - IB33" B 3 ' 3 "
^ii' ^z" "' JD^^// S' ' ^i'i" ^i ~ ̂ ii" ^i'i" ^

and so is non-zero. Since we do not have any restrictions on the matrix
entries of type a^V-,/, the last statement allows us to satisfy (2.20).
This completes the proof of Proposition 2.2 under the assumption that
( f c i , . . . , ^ ) ^ ( f e , A ; , l ) .
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Now let us assume that (A;i , . . . ,kr) = ( k ^ k ^ l ) for some k > 1. In
this case the argument is practically the same as above, with the following
modification. Now, in accordance with Theorem 1.1 (d), the polynomial
det[B{A • x)) in (2.16) is the product of two irreducible factors H ' { A ^ x )
and ^"(A,^), . Since we have

d(det(B(A • x))) == H ' d H " + H " d H ' ,

the equation (2.17) evaluated at x = 0 is equivalent to dH"{A^x) = 0
provided a matrix A is chosen in such a way that its quadratic part B
satisfies the conditions in Lemma 1.4 (b). For such a matrix A the above
analysis shows that TAVcusp is given by the same equations da = 0 and
(2.19) as above. Proposition 2.2 is proved.

PROPOSITION 2.3. — If the matrix format is boundary then the
tangent space TAVcusp ^ a generic point A ofV^sp nas codimension 3 in
TAM.

Proof. — The proof is quite similar to that of Proposition 2.2. In the
case of the boundary format, the matrix B = B(A) has the form

/ 0 G(A)\
^-WA) Bf ) -

where C{A) and B' are k\ x k\ matrices, and B' is a symmetric matrix
of type ( f c2 , . . . ,M- Th^ det(B(A)) = (-l^det^A)))2, and so, the
equation (2.17) is replaced by

(2.23) d(det(G(A • x))) = 0.

Computing the differential in (2.23) at x = x°, we see that (2.18) is now
replaced by

(2.24) ^ C^ « + ̂  a ;̂̂ P) = 0,
i,i'J' i " , 3 "

where the terms C^, are the cofactors of C = C(A).

It is easy to see that if C is a generic matrix of corank 1, and B' is a
generic symmetric matrix of type (A;2, . . • , kr) then B has corank 1, and the
unique linear dependency between rows of B involves only the first fci rows.
(This is the place where the condition r > 3 is needed; if r = 2 then B'
= 0, and B has generically corank 2.) As in Proposition 2.2, the equations
(2.14) give rise to two linear equations for the subspace TAVcusp C T^M.
One of them is again da = 0, and another one has the form (2.19), where
now all the coefficients c^ with j ̂  1 are equal to 0.
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The condition that (2.24) does not give rise to an additional equation
for TA Vcusp 5 is equivalent to the fact that it is possible to choose a matrix
A satisfying the following analog of (2.20):

(2.25) ^ C^c(:,a^;,, + 0.
3 ̂ , 3 ' ^ " . 3 "

However, since c ,̂, = 0 for j" ^ 1, the left hand side of (2.25) is always
equal to 0. We conclude that there is a linear combination of (2.24) and
the second group of equations in (2.14) that produces one more linear
equation for TA Vcusp C TAM. Hence, TA Vcusp has codimension 3 in TAM.
Proposition 2.3 is proved.

To complete the proof of Theorem 0.1, it remains to treat the case
(A: i , . . . , kr) = (1,1,1), that is, the 2 x 2 x 2 matrix format. In this case it is
known and easy to check (see [4], [5]) that the group G = GL^ x GL^ x GL^
has six orbits on the set M — {0} of non-zero matrices. The variety
Vcusp—{0} is the union of four G-orbits that we shall denote f^i, ^2? ^3 and
f2o; their representatives are, respectively, eno+eioi, eno +60115 eioi+eoii
and cm, where the e^ are the standard basis ("matrix units") in M. Each
of the orbits ^1, ^2, f^g has dimension 5, i.e., is of codimension 3 in M, and
contains f^o in its closure. Thus, Vcusp has three irreducible components,
namely, the closures ^1, ^2? ^3- This completes the proof of Theorem 0.1.

Before leaving the case of 2 x 2 x 2 matrices, let us make two more
remarks. First, it is easy to see that f^i is the set of all matrices A such
that the "flattened" matrix

(aooo ^001 ^010 ^on\
\aioo ^101 ^iio ^in )

has rank < 1. The components f^2 and ^3 have similar descriptions,
using flattenings in two other directions. Thus, each of the components
is isomorphic to the determinantal variety of 2 x 4 matrices of rank < 1.

Finally, the remaining two G-orbits whose union is M — Vcusp 5 are
the 8-dimensional orbit M — V (with a representative eooo + em) and the
7-dimensional orbit V — Vcusp (with a representative eno + eioi + eon).
Since all the points in V — Vcusp are G-conjugate, it follows that all of them
are smooth points of V. Thus, we conclude that

(2.26) Vsing = Vcusp.
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3. Eliminating special node components.

In this section we prove Theorem 0.2. We need some notation. We
denote by [1, r] the set { 1 , . . . , r}, and for every subset J C [1, r] let J be
the complement [l,r] — J. Let x ( J ) C V be the point with components
x^ = (1,0, . . . , 0) for j C J and x^ = (0,0, . . . ,0,1) for j <E J (in
particular, ^([l,r]) is the point previously denoted by x°). Recall from
Section 2 that for every x C Y we denote by V(aQ the set of matrices having
a; as a critical point. Clearly, V(rr) is a vector subspace in M of codimension
^ -^... + ̂  +1. in particular, for x = x ( J ) this subspace has the following
description. Following [4], we call the star of a multi-index (z i , . . . ,^r) the
set of all multi-indices %,.. . ,^) that differ from (z i , . . . ,Zr) m at most
one position. We denote by i(J) the multi-index (^ i , . . . ,Zr) having ij = 0
for j C J and ij = kj for j C J. Then we have
(3.1)

V(;r(J)) = {AcM:a^,,.^=0 for all (z i , . . . ,^) in the star of i(J)}.

(In particular, when J = [l,r], (3.1) amounts to (2.2).) Now the definition
of the varieties Vnode(^) given in the Introduction can be rewritten as
follows:

(3.2) Vnode(-7) == (VCc([l,r]))nV(^(J))).G,

where G is the group GL^-{-I x " - x GL^+i naturally acting on M, and
the bar stands for the Zariski closure.

Now we are ready for the proof of Theorem 0.2 (a). In view of (3.2),
to show that Vnode(^) C Vcusp it is enough to prove that for every
A € V(^([l,r])) H V(a;(J)) the quadratic part B(A) is degenerate. We
recall from Section 2 that B = B(A) is a symmetric square matrix of order
fci + • • • + kr with entries d^, {j,j1 C [1, r], i C [1, kj}, i1 € [1, ^-/]), where
(z,j) is the row index and (z^f) the column index. Now suppose that
^(J) = r - 1, and let J = {j}. By (3.1), we have a^f == 0 for all i ' , j ' as
above. This means that the row of B indexed by (kjj) is equal to 0, hence
det(B) = 0, as required.

The second statement in Theorem 0.2 (a) is only slightly more
complicated. So suppose that #(J) = r-2, J = {j,f}, and kj > ̂  kz -1.

W
It follows from (3.1) that a^ = a.3,' = 0 for all %, i ' . Hence the submatrix
ofB with the set of row and column indices {(z , j ) : 1 <. i < kj}U{{kj^f)}
is identically zero. Since this submatrix is of size {kj + 1) x (kj + 1), and
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2{kj 4- 1) > fci + • • • 4- fcy., we conclude that in this case we have again
det(B) = 0. This completes the proof of Theorem 0.2 (a).

Let us turn to the proof of Theorem 0.2 (b). We start with an
observation that the stars of the multi-indices i([l,r]) = (0,0, . . . ,0) and
i(0) = (A;i, A ; 2 , . . . , kr) do not meet each other (this is where the assumption
r > 3 comes into play). It follows that the vector space V(a;([l, r]))nV(a-(0))
has codimension 2(A;i + - • • + kr + 1) in M. Using the action of the group
G on M, we see that V(;r) D V(?/) has codimension 2(A;i + • • • + kr + 1)
in M whenever V(a;) D V(^/) C Vnode(0). The same argument with the
stars as above shows that V(a;([l,r])) D ^7{x(J)) also has codimension
2_(/ci + • • • + kr + 1) in M whenever #(J) < r - 3. If #(J) = r - 2 and
J = {3^3"} then the intersection of the stars of i([l,r]) and i(J) consists
of two multi-indices i(J U {j'}) and i(J U {3"})', therefore, in this case
V(rr([l, r])) H V(^(J)) has codimension 2(A;i + • • • + kr) in M.

For every J and every t ^ 0 we define the point x{J,t) C Y as
follows: its component x^ is equal to (1,0,... ,0,^) for j e J and is
equal to (1,0,.. . ,0,^~1) for j e J. The above arguments show that
V(a;([l,r])) D V(a;(J,t)) is a vector subspace contained in Vnode(0) and
having codimension 2(fci + • • • + kr + 1) in M.

LEMMA 3.1.

(a) Jf#(J) < r -2 then

(3.3) hi%(V(rr([l, r])) H V(^(J, ̂ ))) = V(^([l, r])) H V(^(J)),

the limit taken in the Grassmannian of subspaces of codimension 2{k\ +
• • • + kr + 1) in M.

(b) If#{J) = r-2 andJ={j/J//} then jin^(V(^([l,r]))nV(^(J,^)))

exists and is equal to the subspace in V(a;([l,r])) D V(a;(J^)) g-iyen by two
additional equations

(3.4) E0^' = E^" = 0.
j'e^ j'eJ

Proof. — In both cases (a) and (b) we shall exhibit a system of linear
forms (p^t (i = 1,. . . , 2(fci + • • • + kr + 1)) on M defining the subspace
V(.r([l,r])) H V(a;(J,t)) and having the following property:

(*) Each (pi^ is a polynomial function of t, and the linear forms
^,o = ^,t|t=o are linearly independent.
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Clearly, (*) implies the existence of lmit-^o(V(a;([l,r])) D V(:r(J,t))),
and the limit subspace is denned by the linear forms ̂ o (^ = I? • • • ? 2(fci +
• • • + ^ + 1 ) ) .

The first (A;i+- - •+A;y.+l) forms ̂ ^ will be independent oft: these are
simply the forms a and a1- defining V(;r([l, r])). As for the remaining forms,
in case (a) we take the forms A ̂  F(A,x(J,t)) and A ̂  c^F(A,:r(J,t))
defining V(rr(J,t)) and multiply each of them by an appropriate power of
t (here we take i = 1, . . . , kj for j € J and % = 0 , . . . , kj — 1 for j € J). For
instance, we have
(3.5) F(A,^))= ^ ^nJ)-^nJ)a^).

JC[l,r]

As t —)- 0, the leading term in (3.5) corresponds to I = J and
is equal to t'^^a'^jy^ so, taking the corresponding form y?^ to be
A i—)- t^^F^A^x^^t)), we see that (/^o = ^i(J)- All the forms A I—)-
c^-F^A,^./,^)) are treated in a similar way, and we obtain from them in
the limit t —^ 0 the forms a^,...^ for all ( % i , . . . , ir) in the star of i(J). This
proves (3.3), since these forms a^,...,^ together with a^j^ define V(a;(J))
(see (3.1)).

In case (b) we proceed in the same manner, with the following
modification. When we normalize as above the form A i—^ ^°//jF(A,.r(J,^)),
that is, multiply it by the appropriate power of t, we obtain the form (^
whose two first leading terms are

f c - / / v-^ kjk./\

^ ^(^E^y )'
j'eJ

Since the forms a 3 / and a lie in our set of forms defining V(.r([l,r])), we
can replace (p[ by

(pt ̂ f^-a^ -ta).

Then we have

E k jk . f
^0 = ^ •

jeJ

In a similar way, starting from the form A ̂  9°/F(A,.r(J,^)) we obtain a
form whose leading term at t = 0 is the second sum in (3.4). Now Lemma
3.1 (b) follows from the obvious fact that the two forms in (3.4) and all
the forms a^,...^ for ( z i , . . . ,Zy.) in the stars of i(J) and i(0) are linearly
independent.

Theorem 0.2 (b) in the case when #(J) < r — 2 follows from Lemma
3.1 (a). Now assume that we are in the situation of Lemma 3.1 (b), and that
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^ kj > 2. To complete the proof of Theorem 0.2, we have only to show
j'eJ
that there exists a dense Zariski open set U C V(a*([l, r])) D V(.z-(J)) with
the following property: for every matrix A € U there exists g € G such that
A^ also belongs to V(a;([l, r]))HV(a;(J)) and in addition satisfies (3.4). Let
us recall from [4], [5] that the action of each GL^.+i on M can be described
as follows. We call the %th slice of A in direction j and denote by A1 the
set of all matrix entries a^,...,^ with ij = i. Then GL^.+i acts by linear
transformations of the slices of A in direction j. We are going to choose an
element g = (^i,. . . ,<^.) e G with the following properties:

(1) The components g^i and g^i ofg are identity transformations.

(2) Each g. for j e J leaves unchanged the slices A1 with i < kn and, j J

transforms A^ into a linear combination of the slices A1- with 1 < i < kj,
that is,

(A(?)? =E^•A}
for some constants c^- with Cfc.,j 7^ 0.

Clearly, every g e G satisfying (1) and (2) preserves the subspace
V(;r([l, r])) H V(a;(J)) C M. For a given A the conditions that Ag satisfies
(3.4), are two linear equations on the coefficients c^. Since the number
of unknowns is ^ kj > 3, it is easy to see that the set of matrices

j'eJ
A G V(a;([l,r])) D V(a:(J)) for which these two equations have a solution
with all Ckjj 7^ 0, is indeed Zariski open and dense in V(.r([l, r]))nV(a-(J)).
This completes the proof of Theorem 0.2.

Remark 3.2. — The above arguments actually show that, under the
conditions in Theorem 0.2 (b), the incidence variety Z^\J) (see (0.9))
lies in the closure of Z^(0). A simple dimension count shows that if
#(J) = r - 2 and ^ kj ^ 2 then dim^2)^)) ^ dim(Z(2)(0)), and

3^J
so, Z^\J) cannot lie in the closure of Z^(0). Unfortunately, this does
not yet prove that in the latter case Vnode(^) is not contained in Vnode(0);
the proof that this is indeed the case will be given in the next section.

4. The generic node component.

In this section we study the generic node variety Vnode(0) and, in
particular, prove Theorem 0.3 from the Introduction. Specializing (3.2), we
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see that

(4.1) Vnode(0)=(V(;rO)nV(^)).G,

where x° = a;([l,r]) has the coordinates x^ = <^o, and x ' == x(9) is the
"opposite" point with the coordinates x ' ^ = Si^j • As in Section 2, we shall
study the tangent space TAVnode(0) for a generic A e V(a;°) H V(a/).

PROPOSITION 4.1.

(a) Suppose the matrix format is such that k'z + • • • + kr >. k\ >_
k'2 > ' • • > kr ^ 1, and it is different from 2 x 2 x 2 , 3 x 2 x 2 or
3 x 3 x 2 (that is, (k^,...,kr) ^ (1,1,1), (2,1,1), (2,2,1)/ Then, for a
generic A € V(n;0) D V^') the tangent space TAVnode(0) is the subspace
of codimension 2 in TA.M given by the equations

(4.2) riao,o,...,o = ri^fci,A;2,...,fcr. = 0-

(b) In each of the exceptional cases of 2 x 2 x 2 , 3 x 2 x 2 or 3 x 3 x 2
matrices we have Vnode(0) C Vcusp-

Proof. — Let w = (wi , . . . ,Wy.) € (3 be the element such that for
j = 1,... ,r the component wj G GL^^\ of w is the permutation matrix
interchanging the first and last coordinate. Clearly, w is an involution
interchanging x° and x ' . Let E C Y be the affine subspace in Y given
by the equations x^ = 1 (j = 1,... ,r) (see Section 2); then wE C Y is
the affine subspace in Y given by the equations Xf! = 1 {j = 1,..., r). The
natural coordinates in E are the x'^ for j = 1,... , r, z C [1, kj}\ for a point
2/ € w£1 we take as its coordinates the (wy)^3 , where '̂ and z are as above.

Consider the variety

(4.3) ^(2) = {{A,x,y) e M x E x w E : (A,pr(.r),pr(2/)) e Z^\9)}

(see (0.5), (0.9)). In other words, a point ( A ^ x ^ y ) C M x E x wE belongs
to Z^ if and only if A C V(a;) H V(^/) and the components x^\ y^ of re
and y are not proportional to each other for j = 1,..., r. Since both E and
wE are affine charts for X = P^1 x • • • x P^, it follows that

(4.4) Vnode(0)=pri^2).

Therefore, for a generic A 6 V(a:°) D V(a/) the tangent space TAVnode(0)
is the image of T^x0^')^^ under the map pr^ induced by the first
projection.
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Let B = B(A) = 11 a^,| | be the quadratic part of A at a;0 (see
Section 2). We shall also consider the matrix C = B(A • w); it is natural
to call C the quadratic part of A at a;'. We write the entries of C as
wa^]^3/ (•75J/ == ^ • • •^^ ^ [^^'L^ ^ I1^']); f01' instance, we have
wa^ = a^fcs,...,^ if^fci,^ A;2, and ̂ 2^ = 00,0,^3,...,^.

Using this notation, we see that T^x0^'}^2^ ^s the subspace in
T^A,x°,x'){^ x £' x wE) given by the equations (2.14) and similar equations
obtained from (2.14) by replacing (A, a;) with (A • w,y). More precisely,
^(A^o,^)^2^ is given by two equations (4.2) and the equations
(4.5) da} + ̂  o^P = 0, d-a} + ̂  -a^w^P = 0

^'/ i'J'

for all j = 1,..., r and i e [1, kj\.

As in Section 2, we see that Vnode(0) has codimension 2 in M if
and only if its tangent space at a generic A € V(a;°) D V(a/) is given by
(4.2), and this happens if and only if the equations (4.5) do not produce
additional relations between the da^ and d^a^ This happens exactly when
both matrices B{A) and B(A'w) are invertible. Furthermore, ifB(A) is not
invertible, then by definition, A e Vcusp- Thus, Proposition 4.1 becomes a
consequence of the following lemma.

LEMMA 4.2.

(a) Under the conditions of Proposition 4.1 (a), for a generic A e
V(a*°) n V(:z/) both matrices B(A) and B(A' w) are invertible.

(b) In each of the exceptional cases in Proposition 4.1 (b),
det(B(A)) = 0 for every A e V(a:°) H V(a/).

Proof. — The condition that A € V(a*°) n V(a/) means that
^i,...,^ = 0 whenever the multi-index ( z i , . . . , Z r ) differs in at most one
position from either (0 , . . . , 0) or ( A ; i , . . . , kr). On the other hand, the en-
tries of B(A) are those a^,...^ for which ( z i , . . . , ir) differs from (0 , . . . , 0)
in exactly two positions. Similarly, the entries of B(A - w) are those a^ ^
for which (21 , . . . , %r) differs from ( f c i , . . . , kr) in exactly two positions. We
see that if r > 5, then the condition that A C V(a:°) D V^7) imposes no
restrictions on the matrix entries of B(A) and B(A' w). Thus, for r > 5
the statement (a) is obvious.

If r = 4 then the condition that A € V(a10) n V(a/) forces B(A) and
B(A' w) to have some common entries. Namely, we have the relation

kik-2 _ _ w k3k^
"•12 — ^1,^2,0,0 — 0^34
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and all the relations obtained from it by a permutation of indices 1,2,3,4.
Thus, in this case our statement is a consequence of the following lemma
(where we use the terminology and notation of Section 1).

LEMMA 4.3. — Suppose A;2 + A;3 4- A;4 ^ A;i > fc2 > A;3 >:
fei > 1. Then there exist two invertible symmetric matrices B and C of
type (^1,^:2,^3,^4) with the following property: whenever {a,/?, 7,<?} =
{1,2,3,4}, the (ka^kft) entry of the component B^ of B is equal to the
(A;^, kg) entry of the component C^g of C.

We prefer to prove Lemma 4.3 after treating the most complicated
case r = 3 in Lemma 4.2. In this case the condition that A € V{x°) nV(a:')
imposes the restrictions of two kinds on the matrix entires of B(A) and
B(A - w). First, we have the relation

^k^i _ _ w ik3al2 ~ ^1^,0 — "23
for 0 < i < A;2, and all the relations obtained from it by a permutation of
indices 1,2,3. Second, we have

^ = ̂ 1^2,0 = 0, wak^k2 = ao,o,fc3 = 0
and again, all the relations obtained from them by a permutation of
indices 1,2,3. As in Section 1, we shall write the matrices B = B{A)
and C = B(A • w) in the block form

/ 0 Bi,2 5i,3\ / 0 Ci,2 Ci,3\

B = *Bi,2 0 B2,3 , C = ^1,2 0 C2,3 .

\^1,3 ^2,3 0 / VCl,3 'C2,3 0 7
Then the above conditions can be formulated as follows.

(1) The last row of ^1,2 (respectively, of ^1,3, ̂ 2,3, ̂ i,2, ̂ 1,3, ̂ 2,3)
coincides with the last row of tCr2,3 (respectively, of 62,3, Ci,3, *Ci,3, *Ci,2,
^1,2).

(2) Each of the matrices B^j^Cij has the entry in the last row and
the last column equal to 0.

Let us call a triple (^1,^2,^3) roomy if there exist two invertible
symmetric matrices J3, C of type (fci, k<z, k^) satisfying (1) and (2). Lemma
4.2 in the case r = 3 can now be reformulated as follows.

LEMMA 4.4. — A triple (A;i, k^, ks) with k^-^-ks > k\ > k^ > ks > 1
is roomy if and only if it is different from (1,1,1), (2,1,1) and (2,2,1).

Proof of Lemma 4.4. — First, let us show that in each of the three
exceptional cases, a matrix B satisfying (2) has det(B) = 0. Indeed, if
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(A;i, k'2, h) = (1,1,1) then B = 0; if (k^k^ k^} == (2,1,1) then the second
row of B is 0; finally, if (A:i, k^ k^) = (2,2,1) then B has the 3 x 3 block of
zeros in the rows and columns 2,4,5.

Clearly, the exceptional cases are exactly those for which k^ +
k2 + ks < 6. Our next step is to show that (k-^,k^,k^) is roomy if
ki + k^ + A;3 is equal to 6 or 7. There are four such triples (^1,^2,^3),
namely, (3,2,1), (2,2,2), (3,3,1) and (3,2, 2). In each of these cases we just
exhibit invertible B and C satisfying (1) and (2).

When (A;i, A;2, ^3) = (3,2,1), we set
/O

0
0
0
0

\1

0
0
0
0
1
0

0
0
0
1
0
0

0
0
1
0
0
1

0
1
0
0
0
0

1 \
0
0
1
0
O/

B= C=

/O
0
0
0
1

\0

0
0
0
0
0
1

0
0
0
1
0
0

0
0
1
0
0
1

1
0
0
0
0
0

0\
1
0
1
0
O/

When (A:i, k^ k^) = (2,2,2), we set

B=

/O
0
0
1
0

\0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
0
0
0

0
1
0
0
0
0

0\
0
1
0
0
o7

c=

/O
0
0
0
0

M

0
0
1
0
0
0

0
1
0
0
0
0

0
0
0
0
1
0

0
0
0
1
0
0

1 \
0
0
0
0
O/

When (A;i, A;2, ^3) = (3,3,1), we set

B=

Finally, when (/ci, k^, k^) = (3, 2,2), we set

D

/O 0 0 1 0 0 1\
0 0 0 0 0 1 0
0 0 0 0 1 0 0
1 0 0 0 0 0 1
0 0 1 0 0 0 0
0 1 0 0 0 0 0

U 0 0 1 0 0 O/

/O 0 0 0 0 0 1\
0 0 0 0 1 1 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 1 0
0 1 0 0 1 0 0

U 0 0 0 0 0 O/

, c=

/O 0 0 0 1 0 0\

, c=

/O 0 0 0 0 1 0\
0 0 0 0 1 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 0 0

\0 1 0 0 1 0 O/

0 0 0 1 0 0 1
0 0 0 0 0 1 0
0 1 0 0 0 0 1
1 0 0 0 0 0 0
0 0 1 0 0 0 0

\0 1 0 1 0 0 O/
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It is immediately seen by inspection that all the above pairs (JE?, C)
satisfy (1) and (2). The check that all these matrices are invertible, is also
easy. For instance, the matrix B in the case (fci, k^ k^) = (3,2,2) has only
one non-zero entry in each of the rows and columns 1,3,4,7; the remaining
submatrix lying in the rows and columns 2,5,6 is

/O 1 1\
1 0 1 ,

\1 1 O/
hence is invertible.

To complete the proof of Lemma 4.4, it remains to show that all the
triples (fci, k-z.ks) with fci + k^ + k^ > 7 are also roomy. Let us recall from
Section 1 the notation ^3 for the semigroup of triples k = (fci, fc2, ^3) € Z^_
satisfying the "triangle" inequality. Let

^3 == {k e ^3 : A;i > k2 ^ A;3 > 1}.

We claim that the following statement holds:

(A) If k e ^3 can be represented as a sum k' + k" in such a way that
k7 € ^3, k" € ^3 and k" is roomy, then k is roomy.

To prove (A), we choose B' and C' to be invertible symmetric matrices
of type k', and B" and C" to be invertible symmetric matrices of type k"
satisfying (1) and (2). Then we form the direct sums B = B/ @ B" and
C = C' @C" (as defined in Section 1). Clearly, both B and C are invertible
symmetric matrices of type k' + k" = k. To complete the proof of (A), it
remains to observe that the conditions (1) and (2) for B and C depend
only on the last rows of all the components of B and (7, and so, follow from
the corresponding conditions for B" and C " .

We shall also use the following almost obvious statement:

(B) If k belongs to ^3 and is different from (1,1,1) and (2,1,1) then
at least one of the triples k - (1,1,0), k - (1,0,1) and k - (0,1,1) also
belongs to ^3.

Now the statement that all the triples (A;i, k^, ks) e ^3 with k^ +A;2 +
A;3 > 6 are roomy, follows by induction on k\ + k^ + ^3, where the base of
induction is provided by the cases k\ + k^ + k^ = 6,7 treated above, and
the induction step follows from (A) and (B). This completes the proof of
Lemma 4.4.

Proof of Lemma 4.3. — If the triple (A;i, A;2, ^3+^4) is roomy, then we
can take as B and C invertible matrices of type (A;i, A;2, ^3+^4) satisfying (1)
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and (2); the condition (2) ensures that all the matrix entries that we have
to worry about, are equal to 0. This leaves us only two cases to consider:
(A;i, A;2, A;3, fei) equals (1,1,1,1) or (2,1,1,1). In the first case we can take

/O 1 1 1\

B=C= 1 0 1 1
1 1 0 1
1 1 1 0 ,

and in the second case we take
/O 0 0 0 1\

0 0 1 1 1
B=C= 0 1 0 1 1

0 1 1 0 1
\1 1 1 1 O/

It is easy to see that both matrices are invertible; since all the entries
appearing in Lemma 4.3, are now equal to 1, we are done. This completes
the proof of Lemma 4.3, Lemma 4.2 and Preposition 4.1.

Our next goal is to prove the first statement in Theorem 0.3 (a). So
we assume that the matrix format is interior and different from 2 x 2 x 2
and 3 x 3 x 2 . We know already that in this case both Vnode(0) and Vcusp
are irreducible hypersurfaces in V (Propositions 4.1, 2.2). So it is enough
tO Show that Vnode(0) 7^ Vcusp-

We will show that the conormal bundles of Vnode(0) and Vcusp m
the matrix space M cannot coincide because they have different generic
fibers. To do this, we put the question in a more invariant setting. Recall
that M is identified with V^ 0 • • • 0 Vy*, where each Vj is a vector space
of dimension kj + 1. The coordinates xff , x^ , . . . , xf! form a basis in V*
for j = 1, . . . , r. The cotangent space of M at every point A is canonically
identified with M\ under this identification, a covector c?a^...^ corresponds
to a decomposable tensor x\ 0 • • • 0 xf .

In this notation, Proposition 4.1 says that for a generic A G V(a;0) D
V^), the conormal space TJ[ ̂  (^\^ ls ^ne 2-dimensional subspace in
M spanned by x ' ^ ^ ' • '(^x^ and ^^W • '^i;;- Using (4.1), we conclude
that the generic fiber of the conormal bundle r* (^M is a 2-dimensionalv node y V )

subspace in M spanned by two decomposable tensors u^ 0 • • - 0 u^
and v^ (g) • • • 0 v^\ where u^\v^ 6 K* are linearly independent for
j = l , . . . , r .

Reformulating in the same way Proposition 2.2, we see that the
generic fiber of the conormal bundle T^ M is a 2-dimensional subspace
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of a vector space of the form
r

(4.6) W = ̂  w^ (g • • • (g) w0'-^ (g) V^ (g) w0'4-^ (g) • • • (g) w^,
j=i

where 0 7^ w^ € V,* for '̂ = 1,... ,r. An easy check shows that if W
contains a decomposable tensor u^ (g) • • • 0 n^, then u^ is proportional
to w^ for all values of j except, maybe, one. Therefore, for any two
decomposable tensors u^ (g • • • (g) u^ and v^ (g) • • • (g) v^ contained in W,
there is an index j such that u^ is proportional to v^\ Hence, W cannot
contain a generic fiber of K (^\M. This shows that Vnode(0) ¥- Vcusp5v node v.'",/
and so completes the proof of Theorem 0.3 (a).

Let us turn to the proof of Theorem 0.3 (b). The case of the format
3 x 2 x 2 is covered by Proposition 4.1 (b). So it remains to prove that
Vcusp C Vnode(0) if the matrix format is boundary and different from
3 x 2 x 2 . We shall deduce this from the following statement, that holds for
arbitary boundary format (including 3 x 2 x 2 ) .

LEMMA 4.5. — In the case of boundary format we have Vcusp C
Vnode(0)UVnode({l}).

If our boundary format is different from 3 x 2 x 2 , then Vnode({l}) C
Vnode(0) by Theorem 0.2 (b); so in this case Lemma 4.5 implies that
Vcusp C Vnode(0), as required.

Proof of Lemma 4.5. — First we show that in the case of boundary
format, the variety Vnode(0) ̂  Vnode({l}) admits another interpretation,
more convenient for our purposes. We shall say that x € Y is a semi-critical
point of a matrix A e M if F(A, x) = 9[F{A, x) = 0 for all i = 0 ,1 , . . . , k^
(cf. the definition of a critical point in the Introduction). The following
property is crucial for us.

LEMMA 4.6. — Suppose A is a matrix of boundary format. A point
x C Y is a semi-critical point of A if and only if there exists a critical point
yofA such that all the components y(j) ofy except, maybe, y^\ coincide
with the corresponding components of x.

Proof. — The "if part is obvious. The "only if5 part (that is, the
statement that every semi-critical point can be made critical by changing
its first component) is the "Cayley trick" proved in [4], Section 3 (see also
[6], [13]).
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Lemma 4.6 implies at once the following description of Vnode(0) U
Vnode({l}).

LEMMA 4.7. — In the case of boundary format, Vnode(0)UVnode({l})
is the closure of the set of matrices having two semi-critical points x, y C Y
such that fo r j '=2 , . . . , r the components x^ and y^ are not proportional
to each other.

Now everything is ready for the proof of Lemma 4.5. Our method will
be similar to that used in the proof of Theorem 0.2 (b) in Section 3. For
every t ̂  0 we define the point y(t) € Y as follows: its component y(t}^ is
equal to (1,0,. . . , 0, t) for j = 2 , . . . , r and is equal to (1,0, . . . , 0) for j = 1.
Let W(t} C M denote the space of matrices having x° as a critical point and
y ( t ) as a semi-critical point. By Lemma 4.7, W(t) C Vnode(0) UVnode({l})
for all t -^ 0. By definition, W(t} is a vector subspace in M defined by the
equations

(4.7) a = a] = 0 (j = 1,. . . , r; i = 1,.. . , ̂ -);

(4.8) a + t^a^3 +12 ̂  of31 + ... = 0;
jVi jj^i

(4.9) t^a[^t2 ̂  a^ / +. . •=0 ( z = l , . . . , ^ ) .
j^i j'J^i

Clearly, all these equations are linearly independent, so the codimension of
W(t} in M is

(A;i + A;2 + • • • + kr + 1) + (fci + 1) = 3A;i + 2.

Now let us pass to the limit t —> 0. The same argument as in
Lemma 3.1 shows that lim W(t) exists in the Grassmannian of subspaces
of codimension 3k]_ + 2 in M, and that the limit subspace W(0) is given by
the equations (4.7) and

(4.10) ^ ^=0;
j'JVi

(4.11) Y,^ =0 ( z = l , . . . , f c i ) .
j^i

(As t —> 0, (4.8) becomes (4.10), since, in view of (4.7), the first two terms
in (4.8) are 0.)
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It remains to show that for almost all matrices A € Vcusp (that is,
lying in some dense Zariski open set U C Vcusp) there exists g C G such that
Ag C TV(0). In view of (0.8), we can assume that A € V^sp- This means
that A satisfies (4.7), and the matrix C = ||a^/1| (having i = 1,. . . , k\ as the
row index, and (z', j ' ) with j ' = 2 , . . . , r; i' = 1,... , kj' as the column index)
is degenerate. Since we are only interested in a dense set of matrices, we
can assume that C has corank 1, and that a non-zero vector (x^\..., x^)
from the kernel of C has all components x^ non-zero. By the action of
the subgroup GL^+i x • • • x GL^+i C G, we can transform each x^ to
the vector (0 , . . . , 0,1), hence transform A into a matrix satisfying (4.11).
Furthermore, acting on A by the subgroup GL/^+i, we can transform the
kernel of tC to C(0, . . . , 0,1), and so assume that A also satisfies

(4.12) a^=0 for all ij.

To complete the proof, it remains to observe that every matrix A satisfying
(4.7), (4.11) and (4.12) can also be made to satisfy (4.10) by a linear
transformation

A; ̂  aA; + bA^, A^ ^ cA? + dA^

of two slices A^ and A^ in the first direction (for the definition of slices see
the proof of Theorem 0.2 (b) in Section 3). This proves Lemma 4.5, and
hence completes the proof of Theorem 0.3.

5. Exceptional cases: the zoo of three-
and four-dimensional matrices.

In this section we investigate the variety Vnode(-0 m the exceptional
cases (1)-(5) listed in the introduction; in particular, we shall prove
Theorem 0.4.

In fact, rearranging if necessary the indices 1 ,2 , . . . , r, we reduce the
five exceptional cases to the following two:

(A) The format (fc + 1) x (k + 1) x 3, k > 1; J = {3}.

(B) The format (k + 1) x (k + 1) x 2 x 2, k ̂  1, J = {3,4}.

Our first goal is to give a unified description of Vnode(^) m both cases.
In case (A) we shall represent a matrix A of format (fc + 1) x (k + 1) x 3
as an (k + 1) x (fc + 1) matrix A{y) whose entries are linear forms
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on C3. In an explicit matrix form, if A = ||a^||o<a,/3<fc;o<7<2, and
V = (2/0? 2/i? 2/2) e C3, then the matrix entries of A(y) are

2
Oa/3(2/) = y^Qo^72/7-

7=0

For future use, we set YQ = C3 - {0}.

In a similar way, in case (B) we represent a matrix A of format
(k + 1) x [k + 1) x 2 x 2 as an {k + 1) x (k + 1) matrix A{y) whose
entries are linear forms on C2 (g) C2. In an explicit matrix form, if A =
ll^a/37<$||o<a,/?<fc;o<7,<5<i, and y = (2/7<$)7,<$=o,i € C2 <g) C2, then the matrix
entries of A(y) are

aa/3{y) = ^ a^sy^-
7,<5=0,1

In this case we denote by YQ C C2 (g) C2 the set of non-zero decomposable
tensors; thus,

YO= {y = Q/7<$) 7^ 0 ^ 2/002/n - 2/oi2/io = 0}.

PROPOSITION 5.1. — In each of the cases (A) and (B), we have
(5.1) Vnode(^) = {A C M : corankA(2/) > 2 for some y e Yo}.

Proof. — Let us temporarily denote by V the variety in the right
hand side of (5.1). It is easy to see that V is Zariski closed in M; this
follows from the fact that YQ U {0} is the cone over a projective variety S
(in case (A) we have S = P2, and in case (B) S = P1 x P1 in the Segre
embedding). Clearly, V7 is invariant under the action of G, where G =
GLfc+i x GLfc+i x GLs in case (A), and G = GL^+i x GL^+i x GL^ x GL^
in case (B).

In view of (3.2), to prove that Vnode(^) C V, it is enough to show
that V(a:°) H V(a-(J)) C V. But this follows at once from the definitions:
if we set y° e YQ to be (1,0,0) in case (A) and (1,0) (g) (1,0) in case (B),
then for A e V(:r°) H V(a;(J)) the matrix A(y°) has the first and the last
row and column equal to 0.

To prove the reverse inclusion, we denote by TV C M the subspace of
matrices A such that A(y°) has the first and the last row and column equal
to 0. Clearly, V = W ' G. Therefore, it is enough to show that there exists
a dense Zariski open subset U C W such that U C (V(.z;°) D V(.r(J))) • G.
By definition, the subspace V(a;°)nV(.r(J)) in W is given by the equations

0^007 = 0'kk^ =0 for 7 = 1,2
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in case (A), and by the equations

aoo^6 = akk-ys = 0 for (7,8) = (1,0), (0,1)
in case (B). Thus, in both cases it is enough to prove the following statement
about 2 x 2 x 2 matrices.

LEMMA 5.2. — Let G denote the subgroup GL^ x GL^ x {e} of
the group G = GL^ x GL^ x GL^ acting on the space C2^2 of 2 x 2 x 2
matrices. Then there exists a dense subset U C C2^^ such that every
A € U can be transformed by the action of G' into a matrix having

(5.2) aooo = Q'ooi == ^110 = ^in = 0.

Proof of the lemma. — Since the conditions (5.2) are preserved by
the action of the subgroup {e} x {e} x GL^ C G, it is enough to prove that
almost every A € C2^^ is G-conjugate to a matrix satisfying (5.2). But it
is known (see [4], Section 5, or the end of Section 2 above) that G has a dense
orbit U C C^2^, whose representative can be chosen to be the matrix
with the only non-zero entries 0100 = ^011 = 1- Since this representative
satisfies (5.2), we are done. Lemma 5.2 and hence Proposition 5.1 are
proved.

The fact that in each of the cases (A) and (B), Vnode(^) is an
irreducible hypersurface in V, is a consequence of the following.

PROPOSITION 5.3. — In each of the cases (A) and (B), the tangent
space TAVnode(^) ̂  a generic A e V(a;°) D V(a;(J)) has codimension 2 in
TAM. In case (A), it is given by the equations

(5.3) ddooo = ddkko = 0;

in case (B) it is given by

(5.4) daoooo = dctkkoo = 0.

Proof. — We shall treat only case (A), the case (B) being completely
similar. The argument is basically the same as that in the proof of
Proposition 4.1, so we shall be brief. First, it is easy to see that TAVnode(^)
at a generic A € V(.r°) HV(a:(J)) has the following description. This is the
image under the first projection of the tangent space T^,x°,x{J))^\ where
Z ' is the variety of triples (A^x^y) such that x ^ y e Y are vectors of the
form

^=((l,^ l ),...,41)),(l,^2),...,42)),(l,zl,^)),
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y = ((^1),..., y^ 1), (^2),..., ̂ , 1), (1, ̂ , ̂ )),

and A' C V(^) H V(2/). The space T^x^x{j})Z' is given by (5.3) and the
following set of equations:

k k

(5.5) -daoo^ = ̂  a^dx^ + ̂  ao/^cb^ (7 = 1,2),
a=l (3=1

k-1

(5.6) -dao^o = ̂  a^o^^ + ^0/31^1 + ao^dz'2 (/? = 1,. . . , k - 1),
Q=l

fc-i
(5.7) -da^oo = ̂  cia^odxy + aaoi^i + ̂ 02^2 (a = 1,. . . , /c - 1),

/3=1

fe-i fc-i
(5.8) -dafc^ = Y^ a^dy^ + ̂  a^dy^ (7 = 1,2),

a=0 (3=0

k-1

(5.9) -ddk^o = ̂  a^ody^ + a^id^i + 0^/32^2 (/3 = 1,.. . , A: - 1),
Qi=l

fe-1

(5.10) -da^ko = ̂  a^ody^ + a^i^i + a^dz^ (a = 1,. . . , A; - 1),
/3=1

(5.11) —ddkoo = akQidz\ + afco2^2?

(5.12) —c?aofco = aofci^i + ̂ 2^2 •

It remains to show that for a generic A G V(a;°) D V(a*(J)), the
equations (5.5)-(5.12) do not produce additional relations between the
daa/3-y Clearly, the condition that A e V(a;0) H V(.r(J)), does not impose
any restrictions on the coefficients of the linear forms that appear in the
right hand sides of (5.5)-(5.12). So we need only to show that the (4k +
2) x (4A; + 2) matrix of coefficients of these linear forms is generically non-
degenerate. However, this matrix becomes block-triangular if we arrange
the variables in the following order:

dx^\dx^\dx^ (a = 1,... ,A: - l),^ {f3 = 1,... ,A; - 1),

dy^\ dy^\ dy^ (a = 1,.. . , k - 1), dyf (/? = 1, . . . , k - 1), dz^dz^.
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There are four diagonal blocks of size (fc — 1) x (k — I): two of them are
equal to the matrix C\ = ||aa/3o||a,/3=i,...,A;-i; and ^wo equal to *Ci. There
are also three 2 x 2 blocks: the matrix

^ / QkOl ^k02 \
02 = [ ) '\QOkl ^Ok2 j

and two other blocks obtained from C^ by the transposition or a permu-
tation of columns. Therefore, if we choose A so that both C\ and Cs be
non-degenerate, then TAVnode(^) will be given by (5.3). Proposition 5.3 is
proved.

To complete the proof of Theorem 0.4, it remains to study how the
special node components Vnode(^) are related to each other (for the formats
such that there are several such components) and to Vcusp and Vnode(0)-
We shall do this case by case.

Case 1. — The format 3 x 2 x 2. In this case the most transparent
way to describe V and Vsing is probably the following. We represent a
matrix A of format 3 x 2 x 2 as a 3-linear form

A(x, y,z)= ̂  aa^XaVpz^
^,/3,7

on C3 x C2 x C2.

PROPOSITION 5.4. — For the format 3 x 2 x 2 we have the following:

(a) A matrix A € M belongs to V if and only if there exist some
non-zero y and z such that A(.r, y , z) = 0 for all x € C3.

(b) A matrix A € M belongs to Vsing if ̂ d only if there exists some
non-zero x such that A(rz*, y^ z) = 0 for all (^/, z) e C2 x C2.

(c) The singular locus Vsing is isomorphic to the determinantal
variety o f 3 x 4 matrices of rank < 2; in particular, this is an irreducible
hypersurface in V.

Proof. — The description of V in (a) is a special case of the general
description for the boundary format. In view of Proposition 5.1 (applied
to the format 2 x 2 x 3 ) , part (b) is simply another way to say that
Vsing = Vnode ({!})• So we need to show that Vnode({l}) contains both
Vnode(0) and Vcusp- However, this follows at once from the inclusions

Vnode(0) C Vcusp C Vnode(0) U Vnode({l})

that we already proved (see Proposition 4.1 (b) and Lemma 4.5). Finally,
part (c) follows at once from (b).
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Before passing to other matrix formats, we want to present "typical"
representatives of M - V, V - Vsing and Vsing - Vcusp. Namely, we claim
that

(5.13) eooo + eioi + eno + e2ii e M - V;

(5.14) eooo + eioi + 6211 G V - Vsing;

(5-15) (°000 + ^211 € Vsing - Vcusp,

where the e^^ are "matrix units". We leave the proof as an (easy) exercise
for the reader; note that the matrix in (5.13) is the "identity" matrix
constructed in [4] for every boundary format.

Case 2. — The format 3 x 3 x 3. We have seen that in this case there
are five potential irreducible components of V, namely Vcusp, Vnode(0),
Vnode({l}), Vnode({2}), Vnode({3}). All of them have codimension 1 in
V: for Vcusp this was shown in Section 2, for Vnode(0) m Section 4, for
Vnode({3}) this is Proposition 5.3, and for Vnode({l}), and Vnode({2})
follows from Proposition 5.3 by obvious symmetry.

PROPOSITION 5.5. — In the case of 3x3x3 matrices, the five vari-
eties Vcusp, Vnode(0), Vnode({l}), Vnode({2}), Vnode({3}) are all different.

Proof. — The statement that Vcusp 7^ Vnode(0), was proved in
Section 4, by showing that the conormal bundles of these two varieties
have different generic fibers. It is possible to use the same method for
proving that the varieties Vnode({l}), Vnode({2}), Vnode({3}) are different
from each other and from Vcusp, Vnode(0) (we shall in fact use it for the
analysis of the next case). We prefer, however, to give another proof, by
giving explicit matrices representing these varieties.

As in the previous case, we represent a matrix A of format 3 x 3 x 3
as a 3-linear form

A^, V^) = ̂  CLa^X^yftZ^

o;A7

on C3 x C3 x C3. Consider two matrices Ai and A2 represented by the
forms

A^(x,y,z)= ^ X i y j Z j ,
i+j+fc=3

= xoyiZ2+xoy^ +^1^0^2+^1^1^1+^1^/2^0+^22/0^1+^22/1^0,
A^(x,y,z) = a;l2/1^0+^02/l ̂ 1+^12/2^1+^22/0^1+^02/2^2+^12/0^2+^22/1 ̂ 2-
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LEMMA 5.6.

(a) The matrix A\ belongs to Vnode(0) ^d does not belong to any
of the other four varieties in Proposition 5.5.

(b) The matrix A^ belongs to Vnode({3}) and does not belong to
Vcusp U Vnode({l}) U Vnode({2}).

Proof. — Let X{A) stand for the set of critical points of a matrix
A on X = P2 x P2 x P2. In terms of the 3-linear form A ( x ^ y ^ z ) ^ the set
X{A) is the image under the projection Y —^ X of the set

(5.16) V(A) = { ( x ^ y ^ z ) e (C3 - {O})3 :
A(xf,y,z)=A{x,yl,z)=A{x,y,zf) for all x ' . y ' . z ' } .

We claim that

(5.17) X(Ai) = {((1:0:0), (1:0:0), (1:0:0)), ((0:0:1), (0:0:1), (0:0:1))}.

Indeed, for A = Ai the system of equations in (5.16) takes the form

yi^2 + 2/2^1 = yo^2 + y\z\ + 2/2^0 = yo^i + yi^o = ̂ 1^2 + x^z\
(5.18) = xoz-2 + x\z\ + a^o = xoz-i + a;i^o = ^1^/2 + ^2?/i

= ^0^/2 + «^l + ^2^/0 = ^02/1 + ^12/0 = 0.

Now suppose that ( x ^ y ^ z ) € Y(A-t) and let a,/3,7 be the maximal
indices such that Xa^Vf3 and ^ are non-zero. Then none of the terms
XaVp^aZ^ or y^z^ can appear in the equations (5.18). This leaves only
two opportunities (a,/3,7) = (0,0,0) or (a,/3,7) = (2,2,2). If (a,/3,7) =
(0,0,0), then {x,y,z] has the form ((a, 0,0), (&,0,0), (c.0,0)), which is
obviously a solution of (5.18). So we can assume that (a, ̂ ,7) = (2,2,2) ,
that is, x^y^z^ ^ 0. We can write three of the equations (5.18) in the matrix
form as

( 0 z^ 2/2 \ /a*i\
(5.19) ^2 0 x^ 2/1 = 0.

2/2 3;2 0 / \Zl )

Since the matrix in (5.19) has determinant Ix^y^z^ -^ 0, we conclude that
x^ = 2/1 = z\ = 0. Substituting this to the remaining equations in (5.18)
leaves us with the three equations which can be written as

( 0 ^2 V2 \ /^o\
Z2 0 a-2 2/o = 0.
V2 X<2 0 / \ ZQ )

As above, this implies XQ = yo = ZQ = 0. This completes the proof of (5.17).
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In view of (5.17), A\ 6 Vnode(0)- To show that A\ does not lie in
Vcusp? we have to prove that it has non-zero Hessian at ((1,0,0), (1,0,0),
(1,0,0)) and at ((0,0,1), (0,0,1), (0,0,1)). The quadratic part of Ai at
both points (see Section 2) has the same form

/O 0 0 1 0 1\
0 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0 '
0 1 0 1 0 0

U 0 1 0 0 O/

and it is easy to see that this matrix is non-degenerate.

To complete the proof of (a), it remains to show that Ai does not
belong to Vnode({l}),Vnode({2}) or Vnode({3}). In view of Proposition
5.1, this means that no non-trivial linear combination of the slices of A\
in each direction can have rank < 1. By the obvious symmetry, the slices
of Ai in each direction are the same, and their linear combination with
coefficients a, 6, c has the form

/O c b\
c b a ) .

\b a O/

This matrix has three diagonal 2 x 2 minors equal to —c2, —62, —a2; so it
can be of rank < 1 only when a = b = c = 0. This completes the proof of
Lemma 5.6 (a).

The proof of part (b) is quite similar. First we show that

X(A2) = {((1:0:0), (1:0:0), (1:0:0)), ((0:0:1), (0:0:1), (1:0:0))};

this implies that As G Vnode({3}). Then we compute the Hessians of Aa
at the points ((1,0,0), (1,0,0), (1,0,0)) and ((0,0,1), (0,0,1), (1,0,0)), and
find both of them to be non-zero; thus, As ^ Vcusp- Finally, by analyzing
linear combinations of the slices of As in the first and second direction, we
show that As does not belong to Vnode({l}) or Vnode({2}). We leave the
details to the reader.

The proof of Proposition 5.5 is now completed as follows. By Lemma
5.6 (a), Vnode(0) is different from the other four varieties in Proposition 5.5.
By Lemma 5.6 (b), Vnode({3}) is different from each of Vcusp? Vnode({l})
or Vnode({2}). Using symmetry, we see that Vnode({l}) and Vnode({2}) are
also different from each other and from Vcusp- Proposition 5.5 is proved.



SINGULARITIES OF HYPERDETERMINANTS 635

Case 3. — The format {k + 1) x {k +1) x 3, k > 3. In this case there
are three potential irreducible components of V, namely Vcusp, Vnode(0)
and Vnode({3}). All of them have codimension 1 in V.

PROPOSITION 5.7. — In the case of(/c+l) x (k +1) x3 matrices with
k > 3, the three varieties Vcusp, Vnode(0) and Vnode({3}) are all different.

Proof. — The fact that Vcusp 7^ Vnode(0), was proved in Section 4.
Using the notation introduced there, we deduce from (5.3) the following
description of the generic fiber of the conormal bundle ^Vnode({3})^'
This is a 2-dimensional vector subspace A in Y]* (g) V^ (g) V^ spanned
by two decomposable tensors ^1) (g) u^ (g) w and ^1) (g) v^ (g) w, where
^O')^(j) ^ v" are linearly independent for j = 1,2. It is easy to see that,
up to proportionality, the above two tensors are the only decomposable
tensors in A. Comparing this with the description of the generic fibers of
T^ M and T* ,^M given in Section 4, we conclude that A is differentVcusp Vnode^/
from each of these fibers. Proposition 5.7 is proved.

Case 4. — The format 2 x 2 x 2 x 2 . In this case there are eight
potential irreducible components of V, namely Vcusp 5 Vnode(0) and six
special node varieties Vnode({^j})^ 1 < z < '̂ < 4. As in the previous
cases, we know that all of them have codimension 1 in V.

PROPOSITION 5.8. — In the case of 2 x 2 x 2 x 2 matrices, the eight
varieties Vcusp, Vnode(0) and Vnode({^j}), 1 < i < J < 4 are all different.

Proof. — Our argument will be very similar to that in Case 2 above.
We represent a matrix A of format 2 x 2 x 2 x 2 as a 4-linear form

i
A{x,y,Z,w)= ^ da^6Xayf3^6

o:,/3,7,<$=0

on C2 x C2 x C2 x C2. Consider two matrices A\ and As represented by
the forms

A^{x,y,z,w) = Y^ x^y^z^ws = ̂ o^/o^i^i + • • • +^i2/i^o^o,
Q+/3+7+<$=2

A^(x, y, z, w) = xoy^zow-t + X^QZQW^ + xoy^z^wo - X^QZ^WQ
+ XQVQZ^W^ + .Ti^iWi.

LEMMA 5.9.

(a) The matrix Ai belongs to Vnode(0) but not to any of the other
seven varieties in Proposition 5.8.
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(b) The matrix A^ belongs to Vnode({3,4}) but not to Vcusp or any
Vnode({^^})witA{z, j}^{3,4}.

Proof. — The proof of part (a) is parallel to the argument in the
proof of Lemma 5.6 (a), so we shall only indicate the necessary modifica-
tions. We claim that
(5.20) X(Ai) = {((1:0), (1:0), (1:0), (1:0)), ((0:1), (0:1), (0:1), (0:1))}.
This is proved in the same way as (5.17) above, with the following
modification. The system (5.19) is replaced by

( 0 /ziwi ^/iwi 2/1 z-i \ /^o\
/ K o - n ^1^1 ° ^i^i ^1^1 1 I Vo -n\o-^^) ^ || | — u,2/iWi rciwi 0 o-12/i j I ZQ \

yi^i ^1^1 ^i2/i 0 / \wo/
and the matrix in (5.21) has determinant —3(rci^/i^iWi)2.

The rest of the proof of (a) and the proof of (b) are straightforward,
and we leave them to the reader. Note that in (b) one has to show that

X(A^) = {((1:0), (1:0), (1:0), (1:0)), ((0:1), (0:1), (1:0), (1:0))}.

Proposition 5.8 is deduced from Lemma 5.9 in the same way as
Proposition 5.5 from Lemma 5.6.

Case 5. — The format (k + 1) x {k + 1) x 2 x 2, k > 2. As in
Case 3, there are three potential irreducible components of V, namely
Vcusp5 Vnode(0) and Vnode({3,4}). All of them have codimension 1 in V.
The following result is proved in exactly the same way as Proposition 5.7.

PROPOSITION 5.10. — In the case of(fc+l) x (A;+l) x 2 x 2 matrices
with k > 2, the three varieties Vcusp^ Vnode(0) ^d Vnode({3,4}) are all
different.

Combining all the above results, we see that Theorem 0.4 is proved.

6. Decomposition of the singular locus
into cusp and node parts.

The purpose of this section is to prove the decomposition (0.4); more
precisely, we shall show that

(6.1) Vsing=VLieU Vcusp,
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where V^g is the variety of matrices having more than one critical point
on X. We shall deduce the inclusion

(6.2) Vsing C VLie U Vcusp

from a general criterion due to N. Katz [7]. Let Vsm == V — Vsing be the
set of smooth points of V, and let U be the complement of V^g U Vcusp
in V. Then (6.2) is equivalent to U C Vsm- By definition, a matrix A € V
belongs to U if and only if A has exactly one critical point x C X, and
the Hessian of A at a; is non-zero. In other words, U is the set of all points
A € V, where the projection pr^ : Z —> V (see (0.2)) is unramified. Clearly,
U is open in V. If U ^ 0 (and so, U is dense in V since V is irreducible),
then we say that pr^ : Z —^ V is generically unramified. It is proved in [7],
Proposition 3.5 that pr^ : Z —^ V is generically unramified if and only if
V has codimension 1 in M. In our situation, this happens exactly when
the matrix format satisfies (0.3). We see that (6.2) is a consequence of
the following criterion of N. Katz (which is valid for an arbitrary smooth
projective variety X).

PROPOSITION 6.1 ([7], Proposition 3.5). — Suppose the projection
pr^ : Z —> V is generically unramified. Then this projection is birational.
Furthermore, U consists of smooth points ofV and is the biggest open set
in V for which the projection pr^ : pr^^U) —> U is an isomorphism.

The rest of the section is devoted to the proof of the reverse inclusion

(6.3) Vnode U Vcusp S Vsing.

We will need two preparatory statements.

LEMMA 6.2. — The variety of matrices A having infinitely many
critical points in X is of codimension > 2 in V.

Proof. — This is a general statement valid for an arbitrary smooth
projective variety X such that its projectively dual is a hypersurface. The
proof is done by a simple dimension count. By definition, the set of critical
points in X of A € V is the fiber pr^A) of the projection pr^ : Z —> V. If
this fiber is infinite then it has positive dimension; so the variety of matrices
with infinitely many critical points can be written as

(6.4) V = {A e V : dim (pr^A)) > 1}.

Obviously, V is disjoint from the open set U C V considered above (see
Proposition 6.1). Let Z' = pr^V) and U = pr^t/) be the inverse
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images of V and U in Z. Since Z is irreducible, and U is open in Z, it
follows that dim(Z') < dim(Z). By (6.8), we have din^V) < dim(Z').
Finally, in view of Proposition 6.1, we have dim (V) = dim (Z). Therefore,

dim (V') < dim (Z') - 1 ̂  dim (Z) - 2 = dim (V) - 2,

as required.

The other statement we need is a special case of the general result of
A. Dimca [2] on dual varieties (see also [10], formula 1 on p. 433).

PROPOSITION 6.3. — Suppose a matrix A € V has finitely many
critical points in X. Let HA be the hyperplane in P(V^ 0 • • • 0 Vr) defined
by A. Then the multiplicity of ̂ 7 at A is equal to

(6.5) multA(V)= ^ /^(Xn^A^),
xex(A)

where the sum is over all critical points of A in X , and ii{X H H.AI x) is the
Milnor number ofXn HA at x. In particular, ^i(X H HA, x) >_ 1 for every
x C X(A), and ii{X D HA^X) == 1 if and only if the Hessian of A at x is
nondegenerate.

Now we have all the necessary tools to prove (6.3). Let us look at
Main Theorem 0.5, where, for a moment, we have to replace Vsing by
Vnode 1-1 Vcusp- We see that for all interior and boundary matrix formats
except 2 x 2 x 2 , all the irreducible components of Vnode U Vcusp ^e
of codimension 1 in V. By Lemma 6.2, a generic point A of every such
component has finitely many critical points in X. By (6.5), the multiplicity
of V at A is > 2, so A is a singular point of V, and (6.3) follows. Combined
with (6.2), this completes the proof of (6.1) for all the formats except
2 x 2 x 2. In the exceptional case of 2 x 2 x 2 matrices, the equality (6.1)
takes the form

(6.6) Vnode C Vcusp = Vsing 5

where the first inclusion is a consequence of Theorems 0.2 and 0.3, and the
last equality is (2.26).

7. Multi-dimensional "diagonal" matrices
and the Vandermonde matrix.

In this section we exhibit multi-dimensional analogs of the diagonal
matrices for all boundary and interior matrix formats, and an analog of
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the Vandermonde matrix for boundary format. We start with the diagonal
matrices.

Recall from Section 1 that ^r denotes the semigroup of vectors
k = ( f c i , . . . ,kr) e ZIj. satisfying the "polygon" inequality (1.9). We say
that a multi-index i = ( z i , . . . , ir) is diagonal for k if both i and k — i lie in
^r- We call a matrix A = ||a^...^J|o<^^ of format (fci+1) x • • • x (fcy+l)
diagonal if a^,...^ = 0 unless ( z i , . . . , Z y ) is a diagonal multi-index for
( A ; i , . . . , kr). For r = 2 this is the usual notion of diagonal matrices. Notice
also that for boundary format when k\ = k^ + • • • + k^ a multi-index
( % i , . . . , ir) with 0 < ij <: kj is diagonal if and only if zi = ^2 + • • • + ^r; m
particular, the "identity" matrix having a^,...,^ = (^^+...+^ is diagonal.

We shall see that a generic diagonal matrix A is non-degenerate,
i.e., has non-zero hyperdeterminant. This is a consequence of the following
statement: there exists an extreme monomial

(T.I) n a?(i>k)
i=(n,...,^)

appearing in Det (A) such that d(i, k) > 0 if and only if i is diagonal for
k. (Recall that a monomial is extreme if it corresponds to a vertex of the
Newton polytope of Det (A).) To construct such a monomial, we recall that
if N ( k - ^ , . . . , kr) stands for the degree of the hyperdeterminant of format
(A;i + 1) x • • • x (kr + 1), then the generating function for the numbers
7V(A: i , . . . , f cy ) is given by

(7.2) ^ JV(fci,...A)^1...^ = (l-^-l)e,(^,...,^))~2,
fci,...,^>0 z=2

where the e^i,..., Zr) are elementary symmetric polynomials (see [4], (3.1)
or [5], Chapter 14, (2.5)). As shown in [4], [5], any coefficient A/ ' (A:i , . . . , kr)
in (7.2) has a combinatorial expression as a sum of positive summands; fur-
thermore, a combinatorial argument shows that N ( k ^ ^ . . . , kr) > 0 exactly
when ( f c i , . . . , kr) € ^r-

Now consider the square root of the generating function (7.2), i.e.,
the series

__ r _,
(7.3) ^ M^i,...,^)^...^ = (l-^(z-l)e^i,...,^)) .

ki,...,kr>.0 »=2

For any two non-negative integer vectors i = ( z i , . . . , Zy-), k = ( A ; i , . . . , kr)
we set

(7.4) d(i,k) =M(zi , . . . ,^)M(A;i -z i , . . . , /^ -ir).
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THEOREM 7.1. — For every interior or boundary matrix format, the
monomial (7.1) with the exponents given by (7.4) is an extreme monomial
in Det(A) appearing with the coefficient ±1. The exponent d(i,k) is
positive if and only if i is diagonal for k.

Proof. — The hyperdeterminant is a special case of the so-called
Adiscriminant (see [5]), in the case when A is the set of vertices of the
product of standard simplices Q = A^ x . • . x A^. Thus, the points of A
correspond to multi-indices i = ( z i , . . . , i^) with 0 < ij < kj for j = 1,..., r;
with some abuse of notation, we denote a vertex by the same symbol i as
the corresponding multi-index. We shall use the description of the extreme
monomials in the .4-discriminant given in [5], Chapter 11, Theorem 3.2.
According to this description, every extreme monomial corresponds to a
coherent triangulation T of Q having all vertices in A. If we write the
monomial corresponding to T in the form (7.1), then the exponents d(i, k)
are given by

(7.5) d(i, k) = ^(_l)dim(Q)-dim(a)vol (^

<7

Here the sum is over all massive simplices a of T having i as a vertex (recall
from [5] that a is massive if the minimal face r(cr) of Q that contains cr, has
the same dimension as cr); the volume form Vol(a) in (7.5) is normalized
so that an elementary simplex corresponding to the lattice spanned by
A D r(cr) has volume 1.

It is well-known that Q = A^ x • • • x A^ has a coherent triangulation
T whose simplices correspond to the chains of A in the product order. In
other words, a subset {io, i i , . . . , ip} C A is the set of vertices of a simplex
from T if and only if io < ii < • • • < ip, with respect to the order relation

l=(^l^..^r)<i/=(^^...^^ ^ i,<i^ (j=l,...,r).

Let us apply (7.5) to this triangulation. First, it is easy to see that the
simplex corresponding to a chain (io < ii < • • • < ip) is massive if and only
if for each t = 1,... ,p the multi-index it differs from if_i in exactly one
position. Let us call the chains with this property also massive. Second, it
is easy to see that all the massive simplices in T have volume 1 in the above
normalization. So, we can rewrite (7.5) as follows:

(7.6) ^(i ,k)= ^ (_i)fci+-+^
io<ii< <ip

the sum over all massive chains in [0, k^} x • • • x [0, kr] containing i.
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It should not be too hard to deduce (7.4) from (7.6) in a direct way.
However, the following trick leads to the goal quicker. Note that every
massive chain contributing to (7.6) is the union of two massive chains,
one having i as its maximal element and another having i as its minimal
element; furthermore, these two chains can be chosen independently of each
other. It follows that d(i, k) can be factored as

(7.7) d(i, k) = d(i, i) d(k - i, k - i).

On the other hand, the degree of the monomial (7.1) is equal to

(7.8) ^d(i ,k)=7v(^i , . . . ,^) .
i

Substituting (7.7) into (7.8) and translating this statement into the lan-
guage of generating functions, we obtain

(7.9) ( ^ ^.k)^...^)^ ^ A^i,...,^1...^.
k-i,...,kr>0 ki,...,kr>0

Comparing (7.9) with (7.2) and (7.3), we conclude that d(k,k) =
M(A:i,. . . ,fcy.) for all k = (A; i , . . . ,A;y). Substituting this into (7.7) yields
(7.4). This proves that the monomial (7.1) with the exponents given by
(7.4) is indeed an extreme monomial in Det (A). The fact that it appears
in Del (A) with coefficient ±1, also follows from the general result about
the A-discriminant (see [5], Chapter 11, Theorem 3.2 (b)).

In view of (7.4), the last statement in Theorem 7.1 is equivalent to
the following:

(7.10) M ( f c i , . . . , ^ ) > 0 ^ (A;i , . . . ,A; , )c^.

This is proved in exactly the same way as the corresponding statement
for 7V(A: i , . . . , kr) in [4], Section 3 (using the Gale-Ryser theorem on (0,1)-
matrices); we leave the details to the reader. Theorem 7.1 is proved.

Remarks 7.2.

(a) So far, the hyperdeterminant was denned only up to sign. Theorem
7.1 gives us a natural choice of the sign, by requiring that the monomial
given by (7.1), (7.4) occurs in Del (A) with coefficient 1.

(b) All the results about the degree N ( k \ ^ . . . , kr) obtained in [4], [5]
have obvious analogs for M(fc i , . . . , kr) and hence, for the exponents in the
"diagonal" monomial (7.1). The proofs are exactly the same. We leave the
formulations and proofs to the reader.
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(c) If the matrix format is boundary, then the determinantal formula
for Det(A) given in [4], Theorem 4.3, implies that the hyperdeterminant
of a diagonal matrix is just the monomial (7.1). This is no longer true for
interior format. Using computer algebra system MACAULAY, we found
that the hyperdeterminant of a diagonal 3 x 3 x 3 matrix is given by

(7.11) Del (A) =(aoo0^222)8(all0^101^01lall2^12la21l)2 X (o^OO^ll0^

+ 80000^111^222(^000^112^121^211 + ̂ 222^110^101^011)

+ 16(ao00^112ai2lfl21l)2 + 16(a222^110^10l001l)2

— 320000^110^101^011^112^121^211^222)-

Here the diagonal monomial is the only one occuring in (7.11) with coeffi-
cient 1. There are two other extreme monomials occuring in (7.11): both of
them have coefficient 16. These two monomials do not contain the variable
am. It follows that there exists a non-degenerate diagonal matrix having
^111 = 0. It would be interesting to investigate the hyperdeterminant for
diagonal matrices of arbitrary interior format, in particular, to classify its
extreme monomials.

Now we assume that the matrix format is boundary, that is, k\ =
A;2 + • • • + fey.. We shall construct another special class of matrices, the
analogs of the classical Vandermonde matrix. Let A = {^ij)o<,i<ki,2<,j<r
be a (k-^ + 1) x (r — 1) complex matrix. We define the Vandermonde-type
matrix A = A(A) of format (k\ + 1) x • • • x {kr + 1) by the formula

(7.12) ^,...^=^A%..•A^.

If r = 2, k\ = A;2 = k then A(A) is the usual (fc +1) x (fc +1) Vandermonde
matrix

/I Ao A2 ... A§\
1 Ai A2 ... A^

\1 A, A2 ... X^f

PROPOSITION 7.3. — The matrix A(A) is non-degenerate if and
only if for each j = 2 , . . . , r the numbers Ao,j, A i j , . . . , X^j are mutually
distinct.

Proof. — By Lemma 4.6, a matrix of boundary format is non-
degenerate if and only if it has no semi-critical points in Y = (Vi — {0}) x
• • - x (Vr — {0}). For j = 2 , . . . , r we shall represent a point x^ € Vj by a
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polynomial
k,

E^
i=0

P,W=^xu)Xi.

Then the conditions that x = (x^\ x^\..., x^) is a semi-critical point of
A(A), take the form

(7.13) P2(A,,2)P3(A,,3) • • • Pr(A^) =0 (Z = 0, . . . , fci).

Let Ij denote the set of indices i such that Pj{^ij) = 0. Clearly, (7.13) is
equivalent to

(7.14) I ^ U l 3 U ' - U l r = [ 0 , h } .

Since
#([0, h}) = h + 1 = k^ + • • • + kr + 1,

it follows that at least for one j we have #(Ij) > kj.

Now suppose that all the numbers \ij for a given j are distinct. We
see that the polynomial Pj(A) has more than kj roots. Since deg {Pj) = kj,
it follows that Pj = 0, hence x^ = 0. Therefore, A(A) has no semi-critical
points in Y.

Conversely, suppose for some j not all the numbers \ij are distinct.
Without loss of generality, we can assume that Ao,2 = Ai^- Then there exist
non-zero polynomials ?2,..., Py such that ?2(Az,2) = 0 for 0 < % < A;2, and
Pj^ij) = 0 for 3 < j < r, A;2 + • • • + A^'-i < i < k^ + • • • + kj. Such
polynomials Pj satisfy (7.14), hence give rise to a semi-critical point of
A(A). Proposition 7.3 is proved.

Remark 7.4. — Suppose the conditions in Proposition 7.3 hold with
the only exception that Ao,2 = Ai^. Then the above proof shows that, up
to proportionality and changing the first component x^\ the matrix A(A)
has a finite number of semi-critical points.
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