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DISTRIBUTIVE LAWS AND KOSZULNESS

by Martin MARKL

Introduction.

The basic motivation for our work was the following result of Getzler
and Jones [5]. Let Cn = {Cn(rn)\ m >_ 1} be the little n-cubes operad of
Boardman and Vogt [8, Definition 4.1] and let en = {en(m); m ^ 1} be
its homology operad, e^(m) := H{Cn(m)). Then the operad e^ is Koszul
in the sense of [6, Definition 4.1.3].

Both the little cubes operad and the operad Cn are intimately related
to configuration spaces, namely, Qn{rn) = HCFn(m)), where Fyi(m) denotes
the space of configurations of m distinct points in R71. In their original proof
of the above mentioned statement, Getzler and Jones used the Fulton-
MacPherson compactification [3] Fn of F^. Each F^(m) is a real smooth
manifold with corners and the basic trick in their proof was to replace,
using a spectral sequence associated with the stratification of F^(m), the
homological definition of the Koszulness by a purely combinatorial property
of the structure of the strata of F^(m).

The operad en describes so-called n-algebras (in the terminology of
[5]) which are, roughly speaking, Poisson algebras where the Lie bracket is
of degree n — 1, in particular, n-algebras are algebras with a distributive
law. As we already know from our previous work with T. Fox [2], a
distributive law induces a spectral sequence for the related cohomology.

Partially supported by AV CR grant #1019507.
Key words: Distributive law - Operad - Koszulness - Configuration space.
Math. classification: 18C05 - 18C15 - 18G99.



308 MARTIN MARKL

This observation stimulated us to look for an alternative, purely algebraic
and more conceptual proof of the above mentioned theorem of Getzler and
Jones.

Distributive laws were introduced and studied, in terms of triples,
by J. Beck in [1]. They provide a way of composing two algebraic struc-
tures into a more complex one. For example, a Poisson algebra structure
on a vector space V consists of a Lie algebra bracket [—, —] (denoted some-
times more traditionally as { — , — } ) and of an associative commutative
multiplication • . These two operations are related by a 'distributive law'
[a • b, c] = a • [b, c] + [a, c] • b.

Our first aim will be to understand distributive laws in terms of
operads. A distributive law for an operad will be given by a certain map
which has to satisfy a very explicit and verifiable compatibility condition,
see Definition 2.2. We then observe that an algebra over an operad with a
distributive law is an algebra with a distributive law in the sense of J. Beck.

Our next aim will be to prove that an operad C constructed from
operads A and B via a distributive law is Koszul if A and B are (Theo-
rem 4.5). As an immediate corollary we get the above mentioned result of
Getzler and Jones (Corollary 4.6).

Statements about operads are usually motivated by the corresponding
statements about associative algebras. This phenomenon may work also
in the opposite direction: the definition of a distributive law for operads
(motivated by the Beck's definition for triples) led us to the definition of a
'distributive law for associative algebras' as of a process which ties together
two associative algebras into a third one. This gives a method to construct
new examples of Koszul algebras. We do not follow this direction here, a
full exposition can be found in the preliminary version of this paper, which
is available from hepth@xxx.lanl.gov as preprint #9409192.

1. Basic notions.

We will keep the following convention throughout the paper. Capital
roman letters (A, £?, ...) will denote associative algebras, calligraphic letters
(.4, B, ...) will denote operads, 'typewriter' capitals (T, S, ...) will denote
trees and, finally, 'sans serif capitals (T, S, ...) will denote triples. All
algebraic objects are assumed to be defined over a fixed field k which is, to
make the life easier, supposed to be of characteristic zero.



DISTRIBUTIVE LAWS AND KOSZULNESS 309

As the notion of operad and of algebra over an operad have already
become common knowledge, we just fix the necessary notation. By a
nonsymmetric operad we mean a nonsymmetric operad in the monoidal
category of graded vector spaces, i.e. a sequence <? = {<?(n);n ^ 1} of
graded vector spaces together with degree zero linear maps

7 = 7mi,...,m( ; <S(Q 0 5(mi) (g) • • • (g) <S(m/) —> S(m^ + • • • + mi),

given for any f ,mi , . . . ,m ; > 1, satisfying the usual axioms [8, Defini-
tion 3.12]. We also suppose the existence of a unit 1 G <S(1) having the
usual property. Similarly, a symmetric operad will be an operad in the
symmetric monoidal category of graded vector spaces, i.e. a structure con-
sisting of the above data plus an action of the symmetric group Syi on S{n)
given for any n >_ 2, which has again to satisfy the usual axioms [8, Defini-
tion 1.1]. We always assume that <?(!) = k and that algebra structure on
k coincides, under this identification, with the algebra structure on <S(1)
induced from the operad structure of <?.

We will try to discuss both symmetric and nonsymmetric cases
simultaneously whenever possible. We also will not mention explicitly the
grading given by the grading of underlying vector spaces if not necessary.
For an operad S we often use also the 'nonunitaP notation based on the
composition maps — o^ — : S(m) 0 S(n) —> S(m + n — 1), given, for any
m, n > 1, 1 <: i < m, by

jji o^ v := /y(^; 1,..., 1, i/, 1,.. . , 1) (y at the i-th place).

These maps again have to satisfy certain axioms which can be found in [7].

By a collection we mean a sequence E = {£'(n); n > 2} of graded
vector spaces; in the symmetric case we suppose moreover that each E{n)
is equipped with an action of the symmetric group Syi. For any collection
E there exists the free operad F{E) on E [6, page 226]; a very explicit
description in terms of trees is given in 1.3.

N
1.1. Suppose the collection E decomposes as E = ® Ez, meaning,

i=l
N

of course, that E{m) = Q Ei(m) for each m >, 2, the decomposition
1=1

being Ey^-invariant in the symmetric case. Then F{E) is naturally N-
multigraded, F(E) = © .^...^(E1), with the multigrading character-

zi,...,^jv
ized by the following two properties:

(i) ^b,.,o(^) = ^(^)(1) = k and E, = ̂ b,...,o,i,o,.,o(^) (1 at the i-th
place), 1 < i < N.
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(ii) Let m,n > 1, 1 < I < m and let a e .?^...^(£')(m), b G
^,.,j^(E)(n). Thenao^e^i,.,^(^)(^+n-l) with A;, =ii-\-ji for
1 < z < TV.

Especially, the trivial decomposition of E gives the grading ^(E) =
e ^z(^).

%>0

1.2. By a presentation of an operad <? we mean a collection E and
a subcollection R C J='(E) such that S = F{E)/{K), where (R) is the
ideal generated by R in ^(X). We write S = {E'^R). An operad «S is
quadratic if there exists a collection jK with E(n) = 0 for n ^ 2, and a
subcollection -R C .F(i?)(3) such that S = {E\R). Quadratic operads are
naturally graded, S = (B Sz, where the pieces Sn are described as follows.

i>:0
Let R be an identical copy of the collection R and let h: F{E@K) —> F(E)
be the map induced by the obvious map i: E (B R —>' F(E) of collections.
Then Sn := FnW/h^n^^E C R)). For a more explicit description,
see 1.4.

1.3. There exists a useful way to describe free operads using trees [6],
[5]. In the nonsymmetric case we shall use the set T of planar trees. By
Tn we denote the subset of T consisting of trees having n input edges. Let
v(T) denote the set of vertices of a tree T € T and let, for v € v(T), val(v)
denote the number of input edges of v. For a collection E = {E(n); n >_ 2}
we put

E(T) := (g) E(val(^)).
^€v(T)

We may interpret the elements of E(T) as 'multilinear5 colorings of the
vertices of T by the elements of E. The free operad F{E) on E may be
then defined as

(1) ^(E)(n) := (D E(T)
TeTn

with the operad structure on ^(E) given by the operation of 'grafting5

trees. In the symmetric case we shall work with the set of (abstract) trees
with input edges indexed by finite ordered sets. The formulas for E(T) and
F{E) are similar but involve also the symmetric group action, the details
may be found in [6], [5]. As mentioned earlier, we try to discuss both the
symmetric and nonsymmetric cases simultaneously whenever possible. In
the special case when E(m) = 0 for m ̂  2, the summation in (1) reduces
to the summation over the subset T^ C Tn consisting of binary trees, i.e.
trees T with val(2;) == 2 for any vertex v C v(T).
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1.4. Let S = {E\ R) be a quadratic operad as in 1.2 and recall that <S is
graded, S = 0 Si. Let X2'31 denote theset of 1-ternary binary n-trees, i.e.

i>0
n-trees whose all vertices have two incoming edges except exactly one which
has three incoming edges. Then we have for the collection ^_2,i(£' © K)
from 1.2

Fn-2^E@K)= (3) Rs,
o ^2,3l
"^n+l

where we denoted Rs := {E Q -R)(S). We may interpret the elements of
RS as 'multilinear' colorings of S such that binary vertices are colored by
elements of E and the only ternary vertex is colored by an element of jR.
Denote finally Rs := h(Rs). Then Sn = Fn{E)/ Span(I?s; S e T^). This
type of description was given, for the symmetric case, in [6, page 262].

1.5. Let U and V be two collections and E := U ® V. There is an
alternative way to describe the free operad ^(U, V) := ^(U^V) resembling
the description of the free associative algebra F(XQ)Y) as the free product
of F(X) and F(Y). Let T^ be the set of 2-colored trees. This means that
the elements of T^ are trees (planar in the nonsymmetric case, abstract
in the symmetric case) whose vertices are colored by two colors ('w' from
white, V from black). For T € T^ let v^(T) (resp.Vb(T)) denote the set
of white (resp. black) vertices of T. Let (<7,V)(T) be the subset of E(T)
defined as

(^V)(T):= (g) £/(val(^))0 (g) V(val(^)).
vev^(T) v€vb(T)

Then we may define F(U,V)(n) as ^(U.V^n) := C (^V)(T). If
Ter^

the collections U and V are quadratic, the summation reduces to the
summation over the subset T^'2 of 2-colored binary trees.

1.6. Recall that a tree is, by definition, an oriented graph. Each edge
e has an output vertex out(e) and an input vertex inp(e). This induces, by
inp(e) -< out(e), a partial order -< on the set v(T) of vertices ofT. For a tree
T e T^ define Z(T) to be the number of all couples (^1,^2), v\ € v^(T)
and z»2 ^ Vw(T), such that v^ -< v\.

By a differential graded (dg) collection we mean a collection E =
{E{n)\n >_ 2} such that each E(n) is endowed with a differential da =
de(n) which is, in the symmetric case, supposed to commute with the sym-
metric group action. For such a dg collection we define its (co)homology col-
lection as H{E) := {H{E{n),dE{n)\,n ^ 2}. Let U = {{U{n),du{n))',n >
2} and V = {(V(n), dy(n))', n > 2} be two dg collections. Let E = U C V.



312 MARTIN MARKL

Denote by U 0 V the subcollection of ^{E) generated by (= the smallest
subcollection containing) elements of the form 7(1^ v\,..., Vrn)i u ^ U{m)
and ^ € V(n,), 1 ̂  z <, m. Define on U 0 V the differential C^/QV by

duQv(^{u\ vi,..., ̂ )) := ̂ (du(u)\ z»i,..., Vk)
k

+(_l)deg(.) ̂ (_iy+l^ ̂  ^ ̂ (^ __ ̂

i=l

It can be easily verified that this formula introduces a monoidal structure
on the category of dg collections. We formulate the following variant of
the Kiinneth theorem; recall that we assume the ground field k to be of
characteristic zero.

PROPOSITION 1.7. — There exists a natural isomorphism of collec-
tions, H(U 0 V) ̂  H(U) 0 H(V).

Proof. — In the nonsymmetric case we have the decomposition

(2) {U 0 V){m) = Q)(U Q V)0; f c i , . . . , A;,),

where (UQV){1', f c i , . . . , ki) := U(l)®V{k-i)^'' •0V(^) and the summation
is taken over all I > 2 and A;i + • • • ki = m. The differential (IUQV obviously
preserves the decomposition and agrees on (U 0 V)[l\ k \^ . . . , ki) with the
usual tensor product differential on ?7(/)0V(A;i)0- • '<S>V{ki). The classical
Kiinneth theorem then gives the result.

For the symmetric case we have the same decomposition as in (2),
but the summation is now taken over all I > 2 and A;i + • • • + ki = m
with fci < k'z <. ' " ^ ki, and (U Q V){1\ A; i , . . . ,^) is defined as
^IF x.-xEfc (^(0 0 ̂ (^1) 0 • • • 0 v(kl)) where Sfc, x • • • x S^ acts on
Syn via the canonical inclusion and Indj^ x...xs (—) denotes the induced
action. Since char(k) = 0, 'the (co)homology commutes with finite group
actions' and we may use the same arguments as in the nonsymmetric
case. D
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2. Distributive laws.

2.1. Let A = (U',S) and B = (V;T) be two quadratic operads. Let
V • U denote the subcollection of F(U^ V) generated by elements of the
form 7(2;; IA, 1) or 7(2;; 1, it), 11 G £7 and v € V. Clearly (V • U)(m) = 0 for
m 7^ 3. The notation L^ • V has the obvious similar meaning. Suppose we
have a map d ' . V ^ U — ^ U ^ V o f collections and let D := {z — d{z}\ z €
V • U} C F{U,V){3) and C := (U,V',S,D,T) (== an abbreviation for
(U C V; S © D C T)). The inclusion F(U) Q F(V) C F(U, V) induces a
map ^ : A Q B —> C of collections. The collection F(U, V) is bigraded
(see 1.1) and the relations 5',r and D obviously preserve this bigrading,
hence the operad C is naturally bigraded as well. Also the collection A©B is
bigraded: (A© B)ij is generated by elements of the form 7(0; & i , . . . , ̂ +1),
a e Ai (= A{i + 1)) and bk G Bj, (= B(jk + 1)) for 1 < k < i + 1 and
J'i+- • •+Ji+i = J. We write more suggestively Ai©Bj instead of {A©B)ij,
abusing the notation a bit.

The map ^ introduced above obviously preserves the bigrading,
$(A 0 Bj) C Cij, and we put ^j := ̂ |^o^-

DEFINITION 2.2. — The map d : V^U —> U^V defines a distributive
law if

(3) ^j : Ai 0 Bj —^ Czj is an isomorphism for (i,j) e {(1,2), (2,1)}.

The main result of this section is the following 'coherence theorem.'

THEOREM 2.3. — Suppose d is a distributive law as in Defini-
tion 2.2. Then the map ^j : Az Q Bj —^ Czj is an isomorphism for all
(^•).

Proof. — It is clear that ̂ j is an epimorphism, the difficult part is to
prove that it is a monomorphism. We must prove that a € Fi(U)QFj{V} C
Fi^(U, V) is zero mod (5, D, T) if and only if it is zero mod (5, T).

Let Twbf'2{^J) denote the subset of T^'2 consisting of trees hav-
ing exactly i white and j black vertices; we observe that Fij(U,V) =

® (U, V)(T), see 1.5 for the notation.
Ter^'2^,.?)

Let T € T^^^i.j), v C v(T) and e be an input edge of v. We say
that the couple (z^e) is T-admissible if v G Vfc(T) and inp(e) € v^(T).
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Sometimes we also say that (v,e) is 6-admissible if b e (U,V)(T) and if
(v, e) is T-admissible.

Let us suppose that (v,e) is T-admissible. Let us denote by S the
minimal binary subtree of T containing v and w := inp(e). Clearly
S € T^^l.l) and J(S) = 1 (for the definition of J(S) see 1.6). Let
b € (U, V)(T) be of the form b = 0 Uy 0 0 ^ for some u., e U

v€v^(T) vevb(T)
and ^ G V. We call elements of this form monomials and we observe
that monomials generate (U,V)(T). For a monomial b as above let bs €
(U,V)(S) C V • U be defined as bs := 0 ^ 0 0 Vy (observe

^ev^(S) vevb(S)
however that both v^(S) and v^(S) consist of one element). Let 2 := {R e
T^ ' (1,1);J(R) = 0}, we note that 5 consist of exactly two (resp. three)
trees in the symmetric (resp. nonsymmetric) case. Then d(bs) = ̂  b^ for

_, Res
some b^ e (U,V)(R) C U •V. Let TR denote the tree obtained from T
by replacing the subtree S by R; observe that J(TR) < J(T). Let finally
^R e (^ ̂ X^) be, for R € 5, an element obtained by substituting b^ to b
at the vertices of R. Let us define d(v, e){b) := ^ ^ e ^ij(U, V) and let

Re5
us extend this definition linearly (and equivariantly in the symmetric case)
to the whole (U,V){T). Loosely speaking, d(v,e)(b) is obtained from b by
making the 'surgery' prescribed by the distributive law at the couple (v, e).

Under the above notation the condition a = Omod(S,D,T) means
that there exist a finite set K, trees T^ e T^^J), elements a^ e
(^y)(Tj, vertices ^ e v(T^) and edges e^ such that (v^e^) is In-
admissible and

(4) a=Y, ̂  - d^ ̂ )(^)) mod(^ T).
KCK

We say that a = 0 mod^y (5, T) if max{J(T^); i ^ e K } ^ N . Theorem 2.3
will obviously follow from the following lemma.

LEMMA 2.4. — If a = Omod^y (S,T) for some N > 1, then
a = 0 mod^-i {S,T).

Before proving the lemma, we formulate and prove the following
statement.

CLAIM 2.5. — Let b e (U,V)(1), 1(1) = N and suppose (v^ 61)
and (^2,62) are two b-admissible couples. Then

(5) b-d(v^e^)(b) = b - d^e^b) mod^_i (^T).
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Proof of the claim. — The claim is trivial for (^i,ei) = (^2^2), so
suppose (2:1, ei) ^(^2,62).

Let us discuss the case 1:1 ^ 2:2 first. Then (^2,62) is admissi-
ble for each monomial in c?(^i,ei)(6) because the rearrangements made
by d(^i,ei) does not change the vertex v^ and the edge €2. Similarly,
(z»i, ei) is admissible for each monomial in d(v^, e^)(b). We also notice that
d(z'i,ei)d(i'2^2)(6) = ̂ 2^2)^1, ei)(&). We therefore have

(1 - d(v^ 6i))(&) = (1 - d(^, C2))(&) + (1 - d(v^ ei))d(^ 62)^)

-(l-d(^62))d(^,6i)(&),

which implies (5).

Suppose z>i = z>2 =: v, then, of course, ei 7^ e2. Let wi = inp(ei)
and W2 = inp(e2). Let T' be the smallest binary subtree of T containing
v.wi and W2. Obviously T' c T^6^,!) and J(T') = 2. Because the
surgery made by both d(^i, ei) and d(^2, ^2) takes place inside T7, we may
suppose that in fact T' = T € T^'^, 1). Then b <E ^(V) © ^(U) and
d(^i,6i)(&) = E ^ + E ^. where ̂  = {R € T^^, 1);J(R) = Q,

Re^o Re^i
&R € (L/',y)(R), % = 1,2. Applying on the summands of the second sum
the distributive law once again (which can be done in exactly one way as
there is exactly one admissible couple for any R C f^i) we obtain some
ft' € ^(U) Q ^i(V), 6' = &mod(5',D,r). By the same process with the
roles of ^(z>i,6i) and ^(^2^2) interchanged we construct another element
b" e ^(U) Q^i{V). But y = y'mod(5',r), by (3) with (z,j) = (2,1).
This finishes the proof of the claim. D

Proof of Lemma 2.4. — Relation (5) says that the concrete values of
the couples (z^^) in (4) are not substantial. Let us denote by "p^2^3!
the set of 2-colored binary 1-ternary trees such that the ternary vertex is
white. The notation T^6'2'631 will have the obvious similar meaning.

Let KN := {^ € K\ J(T^) = N}. Then necessarily ON := E a^ =
K€KN

Omod(5',r) which means that ON = S as; + S a^ where a^ is an
o;ef2 <$eA

element of Ss^, S ,̂ C T^^^'2^31 and, similarly, aj^ is an element of Ts,,
Sg C T^6'2'631; see 1.4 for the notation.

Let us discuss the term a^ for a fixed (j G fl first. Suppose there
exists a black vertex v <E Vfc(S^) and an edge e with out(6) = v such that
w := inp(e) is white and binary. Then obviously d(v,e)(a^) makes sense
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and d(v, e)(a^) = Omod(5) since d(v, e) does not change the ternary vertex
of S^. We can delete a^ — d(v, e)(af) from the right-hand side of (4).

Suppose that the only edge e of S^ such that out(e) is black is the
output edge of the ternary white vertex ^3. Let us pick this edge e and
denote v := out(e) its black output vertex. Let R € T^2'^^ i) be the
minimal tree containing v^ and v. Using the same locality argument as
before we may suppose that in fact S^/ = R. Then a^ € ^2,i(^^) and
we may replace a^ modulo (D) by some a13^ € ^(U) Q ^\(V). We infer
from (3) with (%,^') = (2,1) that a'^ = Omod(5'), so we may delete a^
from the right-hand side of (4). The discussion of the second type terms is
similar. This finishes the proof of Lemma 2.4. D

In the rest of this paragraph we discuss the relation between our
definitions and the original triple definition of distributive law. As it can
be expected, both definitions coincide; the hard part of this statement is
provided by Theorem 2.3.

Recall that each operad S generates a triple T = (T,//1",^1") on the
category of vector spaces having the property that algebras over the operad
<S are the same as algebras over the triple T. The details may be found in
[5], recall only that the functor T is defined by T(V) := C (<S(n) (^T^Y))

n>l

in the nonsymmetric case and T(V) := (B {S{n) 0 T^Y))^, where
n>l

(-)En indicates the coinvariants of the symmetric group action on the
product S(n) 0 ̂ (V) given by the operad action on the first factor and
by permuting the variables of the second factor, in the symmetric case.

Let S = (S,^,?7^) and T == (T,/^7,^7) be two triples. Let us recall
that a distributive law of S over T is a natural transformation C. : TS —>• ST
which has to satisfy some functoriality conditions, see [1, page 120] for
details. Let C -==- {U, V; 5, jD, r) be an operad with a distributive law in the
sense of Definition 2.2, A :=• (U,S} and B := {V,T). Let S = (S,/^5)
(resp. T == (T,//1",^1")) be the triple associated to the operad A (resp. B).
We have, in the nonsymmetric case,

ST(V) := (^((^o^Kn^T^y)) and TS(V) := (^((^©CKn^r^y)),
n>l n>_l

while obvious similar formulas hold, after taking the coinvariants, also in
the symmetric case. There is a natural map of collections A : B©A —^ A©B
given as the composition

BOA -^C ^AQB
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where \ is induced by the inclusion ^(V) © F(U) C F(1J, V) and $ :
AOB —^ C is the map introduced in 2.1. Here we use the nontrivial fact that
the map $ is an isomorphism (Theorem 2.3). The map ^:BQA—^A©B
then induces, by i{x (g) y) := A (a:) (g) ^/, a- (g) y e (B © .4)(n) 0 T^Y), a
natural transformation { - : TS —> ST. We leave it to the reader to prove the
following proposition.

PROPOSITION 2.6. — Under the notation above, the transformation
£ : TS —^ ST is a distributive law in the sense of J. Beck.

3. Examples.

Example 3.1. — Let us consider a vector space V with two associa-
tive multiplications, • and ( — , — } , such that

(6) (a • 6, c) = a - (&, c), and (a, 6 • c) = (a, b} - c.

We call this object a nonsymmetric Poisson algebra. Let us describe the
corresponding nonsymmetric operad. Let U (resp. V) be the vector space
spanned by an element ^ (resp. ^). Let S C .F(£7)(3) be the subspace
generated by fio^^—^o^^ (the associativity) and, similarly, let T C ^(y)(3)
be generated by VQ\V—VQ^V. Define d : V^U —>• U^V by d{yo^p) := iio^y
and d(z/ 03 /^) := p, 0^ i/, and let AT? be the nonsymmetric operad
J\fp := ([/,V;5,P,r), see 2.1 for the notation. Algebras over this operad
are exactly nonsymmetric Poisson algebras, with ^ corresponding to • and
v corresponding to ( — , — ) . Let us verify the condition of Definition 2.2.

Consider the monomial (a • b ^ c ' d), a ,&,c,d € V. Relation (6) gives
either (a • b, c • d} = a ' (6, c • d) = a ' ((&, c) • d) or (a • &, c ' d} = { a ' 6, c) • d =
(a • (6,c)) • d. But a • {{b,c) - d) = (a • (&,c)) • d by the associativity of •,
so we did not introduce new relations in this way. Relation (6) gives also
(a-(^c),d) = = a - ( & - c , d ) = a-(^(c,d)), while { ( a ' b ) ' c , d ) =(a-6).(c,d) (and
similarly for (a,b-(c'd)} vs. (a, ( b ' c ) ' d ) ) which means that (6) is compatible
with the associativity of •. By the same argument, it is compatible with
the associativity of ( — , — ) . We leave it to the reader to convince him/
herself that we have just proven that the map ^j is an isomorphism for
(z , j )=( l ,2 ) , (2 , l ) .

Example 3.2. — Let us give another, very strange example of a
distributive law. Consider a vector space V and two bilinear operations,
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• and (—, —), such that, for each a, &, c € V,

(a • b) - c = 0, { a ' b . c } =3a' (6, c), (a,b - c} == 0 and (a, {b, c)} = 0.

We recommend it to the reader to verify, using the same pattern as in
Example 3.1, that the condition of Definition 2.2 is satisfied.

Example 3.3. — In this example we give an innocuous generalization
of such classical objects as Poisson or Gerstenhaber algebras. Let us fix two
natural numbers, m and n. Let U be the graded vector space spanned on an
element p, of degree m and let V be the graded vector space spanned on an
element v of degree n. Define La-actions on U and V by ap, := (—l)771-/^ and
ov := —(—1)^ • v. Let S C ^(U)^) be the Ss-invariant subset generated
by ^ °i ^ - (-l)m • ^ °2 ^ (the associativity) and let T C ^(V)^) be the
S3-invariant subset generated by v 02 v + (y 01 ^/)(1 0 a) + (-1)71 • ^ °i ^
(the Jacobi identity). Finally, let d : V • U —> U • V be given by
d(y 02 [t) := [L Q\ v + (—I)771 • (AA °i ^)(1 ̂  ^)- The reader will easily verify
that this gives a distributive law.

An algebra over the operad P(m, n) := {U, V\ S, D, T) defined above
consists of a (graded) vector space P together with two bilinear maps,
— U — : P ( g ) P — > P o f degree m, and [ — , — ] : P 0 P —^ P of degree n such
that, for any homogeneous a, &, c € P,

(i) a U & = ( - l ) l a l • l b l + m • & U a ,

(ii) [^^-(-l^H^.^a],

(iii) — U — is associative in the sense that

a U (6 U c) = (-l)m•(lal+ l) . (a U &) U c,

(iv) [—, —] satisfies the following form of the Jacobi identity:
(_^|a|.(|c|+n).^j^^^_^H-(|a|+n).^J^^^(_^|c|.(H+^

(v) the operations — U — and [—, —] are compatible in the sense that

(-1)^1 • [a, b U c] = [a, b} U c + (-l)(16HCI+m) . [a, c] U b.

Following [2] we call these algebras (m^n)-algebras. Obviously (0,0)-
algebras are exactly (graded) Poisson algebras, (0,—l)-algebras are Ger-
stenhaber algebras introduced in [4] while (O.n — l)-algebras are the n-
algebras of [5]. For a more detailed analysis of this example from an op-
eradic point of view, see [2].
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4. Distributive laws and the Koszulness.

For a nonsymmetric collection {(7(n);n > 1} we define the dual #C
by (#G)(n) := #((7(n)). In the symmetric case the definition is the same
with the action of Eyi on #C(n) being the induced action multiplied by
the sign representation. In both cases we have a canonical isomorphism
of collections #^(G) = f(#C). The Koszul dual S ' of a quadratic
operad S = {E',R) is then, following [6], defined as <?' := {#E\R^),
where R^ C ^(#^)(3) = #.F(E)(3) is the annihilator of the subspace
R C ̂ (^)(3).

LEMMA 4.1. — Let Rs C ^(E) be, for S € T^31, the same as in 1.4.
Then

fn^s; SeT,2^}, for n>3,
#<S'(n) = { E, for n= 2, and

k, for n = 1.

Proof. — An easy linear algebra. The symmetric case of the state-
ment was formulated in [6, page 262]. D

4.2. We are going to define the Koszul complex of an operad, rephras-
ing, in fact, a definition of [6]. The Koszul complex of an operad <S == (£'; R)
is a differential graded collection K^(S) = (JC»(<S),d<s) with K^(S) :=
S 0 #<S'. The component Kn{S){m) C (<S 0 #(S')(m) is generated by el-
ements of the form 7(s;^i, . . . ,^), s € S{k), ti € #<?^(m^), 1 <_ i <, k,
where m\ + • • • + m^ == m and ji + • • • + jk == ^- As #<S' C ^F(U) by
Lemma 4.1, we may in fact suppose that ti € F{E) (or, in a more compact
notation, that K.{S) C SQ^(E)). The differential is defined as follows. Let
x = 7(55^1, . . . , t fc ) , ti e F^E^mi) be as above. If mi = 1 put di(x) = 0.
For mi > 1, x can be obviously rewritten as x = 7(5 o^ r ^ ;^ / i , . . . ,1/^+1)
with ri e E and with some ^ / i , . . . ,^/fc+i ^ *^(^) (m ^^5 % =1 tj for
j < i and %+i = ^ for j > i). Define then di := 7(5 o, [r,];^/i, . . . ,^+i),
where [-] : E —^ <S maps e e £^ to its class [e] in <S = ^(E)/(R). Then
we put d(.r) := ^ di(x). The differential d^ on -^•(<5) is defined as the

l<i<k

restriction of d to K^(S) C S o ^F{E). We can verify that d^ = 0; for the
symmetric case it was done in [6], the nonsymmetric case is even easier. As
in [6] we say that <S is Koszul if the complex (JC»(<?)(m), d,s(m)) is acyclic
for any m ̂  2. Observe that, by definition, K.(S){1) = Ko{S)(l) = k.

The following lemma was formulated in [2]; the verification is imme-
diate.
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LEMMA 4.3. — Let C = (£7, V; 5, D, T) be an operad with a dis-
tributive law d : V • U -^ U • V. Let #d : #U • #V -> #V • #U be the
dual of d and let D-L := {a • / 3 - #d{a • /?); a • f3 C #U • #V}. Then
C' = (#V, #U\ T^, D^, S1-} and #d is a distributive law.

Consider the Koszul complex K^(C) of an operad C = {[/, V\«?, D, T)
with a distributive law. By Lemma 4.3, C' = (#V^U',T-L,D-L,S-L}, and
we have the bigrading C^ = (B C\. which induces the decomposition

i+j=n '"

-^C^ = C #C\, with #C\ o = V and #CQ i = £/ of the dual collection.
z+j=n 'J

We may use these data to define the convergent decreasing filtration
F.K.(C) of K.(C) as follows. Let FpKn(C) C Kn(C) be generated by

i k
elements 7(5;^,... ,4), s € C(k), tz € #C^.^., 1 < % < A;, ^ ̂  ^ p

1=1
k

and ^(a^ 4- ^) = n. We can easily see that the differential dc preserves
i=l

the filtration, dc{rn)FpKn{C)(m) C FpKn-i(C)(m)^ therefore there is a
spectral sequence E(m) = (i^(m),cT(m)) converging to ^•(JC»(C))(m),
for any m >_ 1.

Let us observe that, for any three collections X^Y and Z, the
collection X QYQZ is naturally bigraded by (Xoy0^)p,g := ^i,p,g(Xe
V C ̂ ) H (X C V C Z) and we write X 0 Yp Q Zq instead of (X Q Y 0 Z)p,g.

PROPOSITION 4.4. — For the spectral sequence

E(m)=(^(m),(f(m))

defined above we have, for each rn > 1,

«.(m), d°(m)) ̂  (( l̂ © K.(B) 0 #4)(m), (1 0 ̂  0 l)(m)).

Proof. — By Theorem 2.3 we have the isomorphism of collections
^ : A 0 -S —^ C and, because C' is, by Lemma 4.3, also an operad
with a distributive law, by the same theorem we have an isomorphism
^ : 23'OA' -^ C' inducing the dual isomorphism #^p : #C^p -^ #BqO#^p
of bigraded collections.

We have the identification E^q = C © C^p (= the space generated
by elements 7(s;^i, . . . ,4) with s e C(k), ti e #C^^, 1 < z < k,

k k
^ Oi = q and ̂  bi = p). We may thus define an isomorphism of collections

^ : E^ -^ A 0 B Q #B\ 0 #^ by ̂  := ̂  0 #^,p. We must show
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that this map commutes with the differential, i.e. that, for z e C 0 #C'

(7) <^,g-l(^)) =(10^0 1)(<W^)).

We have a very explicit description of #$g,p. As in 1.4, ^(V, U) =
© (V,[/)(T) which gives the canonical direct sum decompositionTeT^'2 ^

WU) = C W<7)(o with W£/)(z) := C 0^)(T). Ob-
z>o - / v / TeT^'V(T)=z

serving that F{y, U)^ = JF(V) © F(U) we conclude that ^(V) © ̂ (£7)
is a canonical direct summand of J^q^U.V). Let TT : Fq^(y,U) —^
^q{V) 0 fp(U) be the corresponding projection. Using the identification
of #C\^ with a subspace of fq,p(V, U) provided by Lemma 4.1, the map
#$g,p coincides with the restriction of TT to -#-Cq .

It is obviously enough to prove (7) for elements z of the form
k

z = 7(s;^i , . . . ,^) with ti G #C^^ for 1 < i < k, ^ a, = g and
z=l

k
J^bi=p. We may also suppose that s = 7(0; & i , . . . , &/) for some a € .4(0,
i=i

^
^ G B(mi), for 1 < % < ^ and J^mi = k. We may also take ^ to be of

1=1
the form ^ = w, + r, with r, = ^ 7(^,0;; ̂ ,1,^,2), for v,^ e V

ajC^i

and ?/,^j € #Ci,^^.,^,^,^ ^ = ^ 2 ^ with ^,0;,! + 0^2 = a, - 1 and
^,o/,i + ^,o;,2 = ^, and Wi C U 0 J^a^bi-i^V, U). Any other element
z C C © #Cp ̂  can be expressed as a linear combination (and using the
symmetric group action in the symmetric case) of elements of the above
form.

We also denote, for each 1 <, i <, k, by s(i) the unique number
such that mi + • • • + rns^_-^ < i ^ mi + • • • + m^), let us then put
t(z) := i - mi + • • • + m^)_i. For any given z, 1 ̂  i ̂  /c, we have

z= ̂  a"^{soiv^^tl^"^^-l,yi^^,yi^^,ti^,..^tk)
o/C^z

+ 7(«s; ^i, • • • , ̂ -i, w,, ̂ +1,. . . , 4)
therefore
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^-i(A^))
= ^ a - 0p^-i(7(so, [z^];^i,...,^-i,^,o/,1^,^,2^+1,.. .,4))

we^i,i<,i<:k

= ^ Q!/?-7(7(0; 61,... A(z)-l^s(i) 0^ [^,a/]^s(z)+l,... ,60;
a;e^z,l^^A;

#$(n), • . . , #^-i), ̂ Q/^,i). #^,2), #^+i),..., ̂ (r,))
with a := (-l)l t l l+•••+l^-ll and ^ := (- l ) l^(z)+i l+--+l^l . Here we used the
clear fact that #^) = #$(^). On the other hand,

(10^0 l)(^,g(^)) =(10^0 1)7(7(^; ̂  . • . , ̂ ); ?1),..., #$(n0)

and this expression coincides, taking into the account the relation

#^)= ̂  #^(7(^,a;; yi^,l,Vi^,2))= ̂  7( ,̂0;; #^Q/wl),#$Q/z,o;,2)),
^€^2 o;e^i

with the right-hand side term of the equation above. D

The following theorem, which is one of the central results of the paper,
easily follows from the previous proposition and from the Kunneth formula
for collections (Proposition 1.7).

THEOREM 4.5. — Let C = (U, V; 6', D, T) be an operad with a
distributive law and let A := (U;S) and B := (V;T). If the operads A
and B are Koszul, then C is Koszul as well.

The theorem immediately implies that the operad AfP for non-
symmetric Poisson algebras from Example 3.1 is Koszul; in this case
A = B = A 55, the operad for associative algebras, which is known to
be Koszul [6, Corollary 4.2.7].

For an operad <S, let s <S (the suspension) be the operad with
(s S){n) ^f^"1 <S(n), n > 1, with the composition maps defined in an ob-
vious way; here ̂ n~l denotes the usual (n — l)-fold suspension of a graded
vector space. It follows from the computation of [7] that S is Koszul if and
only if its suspension s S(n) is Koszul.

Let V{m^ n) = {U^ V\ 5, P, T) be the operad for (m, n)-algebras as in
Example 3.3. It is immediate to see that A = snComm and that B = s^Lie
while both Comm (the operad for commutative associative algebras) and
Lie (the operad for Lie algebras) are well-known to be Koszul, see [6,
Corollary 4.2.7]. Theorem 2.3 then implies:



DISTRIBUTIVE LAWS AND KOSZULNESS 323

COROLLARY 4.6. — The operad P(m,n) for (m,n) -algebras is
Koszul for all m and n. In particular, the operads for Poisson, Gersten-
haber and n-algebras are Koszul.
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