Yves Félix

The center of a graded connected Lie algebra is a nice ideal

<http://www.numdam.org/item?id=AIF_1996__46_1_263_0>
THE CENTER OF A GRADED CONNECTED
LIE ALGEBRA IS A NICE IDEAL

by Yves FÉLIX

In this text graded vector spaces and graded Lie algebras are always defined over the field \(\mathbb{Q} \); \(L(V) \) denotes the free graded Lie algebra on the graded connected vector space \(V \). The notation \(L \coprod L' \) means the free product of \(L \) and \(L' \) in the category of graded Lie algebras, \(UL \) denotes the enveloping algebra of the Lie algebra \(L \) and \((UL)_+ \) denotes the canonical augmentation ideal of \(UL \). The operator \(s \) is the usual suspension operator in the category of graded vector spaces, \((sV)_n = V_{n-1} \).

Let \((L(V), d) \) be a graded connected differential Lie algebra and \(\alpha \) be a cycle of degree \(n \) in \(L(V) \). An important problem in differential homological algebra consists to compute the homology of the differential graded Lie algebra \((L(V \oplus \mathbb{Q}x), d), d(x) = \alpha, \) and in particular the kernel and the cokernel of the induced map

\[
\varphi_\alpha : A = H(L(V), d) \rightarrow B = H(L(V \oplus \mathbb{Q}x), d).
\]

Clearly the homology of \((L(V \oplus \mathbb{Q}x), d) \) and the map \(\varphi_\alpha \) depend only on the class \(a \) of \(\alpha \), so that we can write \(\varphi_a \) instead of \(\varphi_\alpha \).

Definitions.

(i) An element \(a \) in the Lie algebra \(A \) is nice if the kernel of the map \(\varphi_a \) is the ideal generated by \(a \).

(ii) An ideal \(I \) in the Lie algebra \(A \) is nice if, for every element \(a \) into \(I \), the kernel of the map \(\varphi_a \) is contained in \(I \).

Our first result reads

Key words: Differential graded Lie algebra – Inertia – Rational homotopy theory.

Theorem 1. — Let \((L(V), d)\) be a graded connected differential Lie algebra and \(a\) be an element in \(A_n\). If \(n\) is even and \(a\) is in the center, then
(1) the element \(a\) is nice,
(2) There is a split short exact sequence of graded Lie algebras:
\[
0 \to L(W) \to B \to A/(a) \to 0,
\]
with \(W\) a graded vector space isomorphic to \(s^{n+1}A/(a)_+\).

In the case \(n\) is odd, the Whitehead bracket \([a, a]\) is zero since \(a\) is in the center, and thus the triple Whitehead bracket \(<a, a, a>\) is well defined. We first remark that \(<a, a, a>\) belongs also to the center. More generally

Proposition 1. — The Whitehead triple bracket \(<\alpha, \beta, \gamma>\) of three elements in the center belongs also to the center.

Theorem 2. — Let \((L(V), d)\) be a graded connected differential Lie algebra and \(a\) be an element in \(A_n\). If \(n\) is odd, \(a\) belongs to the center and \(<a, a, a>\neq 0\), then
(1) the element \(a\) is nice,
(2) \(B\) contains an ideal isomorphic to \(L(W)\) with \(W = s^{n+1}A/(a)_+\),
(3) the Lie algebra \(B\) admits a filtration such that the graded associated Lie algebra \(G\) is an extension
\[
0 \to L(W) \amalg K \to G \to A/(a) \to 0,
\]
with \(K = L(\alpha, \beta)/([\alpha, \beta], [\alpha, \alpha]), |\alpha| = 2n + 1, |\beta| = 3n + 2\).

Theorem 3. — Let \((L(V), d)\) be a graded connected differential Lie algebra and \(a\) be an element in \(A_n\). If \(n\) is odd, \(a\) belongs to the center and \(<a, a, a>\neq 0\), then
(1) the image of \(\varphi_a\) is \(A/(a, <a, a, a>)\),
(2) \(B\) contains an ideal isomorphic to \(L(W)\) with
\[
W = s^{n+1}(A/(a, <a, a, a>))_+,\n\]
(3) the Lie algebra \(B\) admits a filtration such that the graded associated Lie algebra \(G\) is an extension
\[
0 \to L(W) \amalg (\gamma, \rho) \to G \to A/(a, <a, a, a>) \to 0,
\]
with (γ, ρ) an abelian Lie algebra on 2 generators γ and ρ; $|\rho| = 2n + 1$ and $|\gamma| = 4n + 2$.

Corollary 1. — When the element a is in the center, then the kernel of φ_a is always contained in the center and its dimension is at most two. In particular the center is a nice ideal.

Corollary 2. — If $\dim A$ is at least 3 and if a is in the center, then B contains a free Lie algebra on at least 2 generators.

In all cases, B contains a free Lie algebra $L(W)$ with W isomorphic to $(A/(a, <a, a, a>))^+$.

From those results on differential graded Lie algebras we deduce corresponding results for the rational homotopy Lie algebras of spaces.

Let X denote a finite type simply connected CW complex and Y the space obtained by attaching a cell to X along an element u in $\pi_{n+1}(X)$.

$$Y = X \bigcup_ue^{n+2}.$$

The graded vector space $L_X = \pi_*(\Omega X) \otimes \mathbb{Q}$ together with the Whitehead product is then a graded Lie algebra. Moreover by the Milnor-Moore theorem the Hurewicz map induces an isomorphism of Hopf algebras $U\pi_*(\Omega X) \otimes \mathbb{Q} \cong H_*(\Omega X; \mathbb{Q})$.

Now some notations: we denote by Σ the isomorphism $\pi_n(\Omega X) \rightarrow \pi_{n+1}(X)$ and we put $a = \Sigma^{-1}(u)$. For sake of simplicity, an element in $\pi_*(\Omega X) \otimes \mathbb{Q}$ and its image in $H_*(\Omega X; \mathbb{Q})$ will be denoted by the same letter.

Recall that the Quillen minimal model of the space X ([5], [9], [1]) is a differential graded Lie algebra $(\mathbb{L}(V), d)$, unique up to isomorphism, and equiped with natural isomorphisms

1. $V \cong s^{-1}H_*(X; \mathbb{Q})$,
2. $\theta_X : H(\mathbb{L}(V), d) \cong L_X$.

The differential d is an algebrization of the attaching map. More precisely, denote by α a cycle in $(\mathbb{L}(V), d)$ with $\theta_X([\alpha]) = a$, then the differential graded Lie algebra $(\mathbb{L}(V \oplus \mathbb{Q}x), d)$, $d(x) = \alpha$ is a Quillen model of Y and the injection

$$(\mathbb{L}(V), d) \longrightarrow (\mathbb{L}(V \oplus \mathbb{Q}x), d),$$
is a Quillen model for the topological injection \(i \) of \(X \) into \(Y \). In particular \(\varphi_a \) is the induced map \(L_X \to L_Y \).

The injection \(i : X \to Y \) induces a sequence of Hopf algebra morphisms

\[
H_*(\Omega X; \mathbb{Q}) \xrightarrow{f} H_*(\Omega X; \mathbb{Q})/(a) \xrightarrow{g} H_*(\Omega Y; \mathbb{Q}).
\]

The attachment is called inert if \(g \circ f \) is surjective (this is equivalent to the surjectivity of \(g \)), and is called nice if \(g \) is injective ([7]). Clearly the attachment is nice if the element \(a \) is a nice element in \(L_X \).

The structure of the Lie algebra \(L_X = \pi_*(\Omega X) \otimes \mathbb{Q} \), for \(X \) a space with finite Lusternik-Schnirelmann, has been at the origin of a lot of recent works (cf. [3], [2], [4]). In particular the radical of \(L_X \) (union of all solvable ideals) is finite dimensional and each ideal of the form \(I_1 \times \cdots I_r \) satisfies \(r \leq \text{LS cat} \, X \).

We deduce from Theorems 1, 2 and 3 above the following results concerning attachment of a cell along an element in the center.

Theorem 4. — If \(n \) is even and \(a \) is in the center, then

1. the attachment is nice,
2. there is a split short exact sequence of graded Lie algebras:

\[
0 \to L(W) \to L_Y \to L_X/(a) \to 0,
\]

with \(W \) a graded vector space isomorphic to \(s^{n+1}(H_*(\Omega X; \mathbb{Q})/(a))_+ \). The splitting is given by the natural map \(L_X \to L_Y \).

Theorem 5. — If \(n \) is odd, \(a \) belongs to the center and \(\langle a, a, a \rangle \geq 0 \), then

1. the attachment is nice,
2. \(L_Y \) contains an ideal isomorphic to \(L(W) \) with

\[
W = s^{n+1}(H_*(\Omega X; \mathbb{Q})/(a))_+,
\]

3. the Lie algebra \(L_Y \) admits a filtration such that the graded associated Lie algebra \(G \) is an extension

\[
0 \to L(W) \amalg K \to G \to L_X/(a) \to 0,
\]

with \(K = L(\alpha, \beta)/([\alpha, \beta], [\alpha, \alpha]), \ |\alpha| = 2n + 1, |\beta| = 3n + 2 \).
Example 1. — Let $X = P^\infty(C)$ and $u : S^2 \to P^\infty(C)$ be the canonical injection. Then $Y = X/S^2$ and its rational cohomology is $\mathbb{Q}[x_4, y_6]/(x_4^3 - y_6)$. In this case the Lie algebra L_Y is isomorphic to K and the graded vector space W is zero.

Example 2. — Let $X = P^3(C)$ and $u : S^2 \to P^3(C)$ be the canonical injection. Then $Y = X/S^2 \cong S^4 \vee S^6$. In this case W is the graded vector space generated by the brackets $\text{ad}^n(i_4)(i_6)$, $n \geq 1$, where i_4 and i_6 denote the canonical injections of the spheres S^4 and S^6 into Y.

Theorem 6. — If n is odd, a belongs to the center and $< a, a, a > \neq 0$, then

1. the image of L_X in L_Y is $L_X/(a, < a, a, a >)$,
2. L_Y contains an ideal isomorphic to $L(W)$ with
 \[W = s^{n+1}(H^*(\Omega X; \mathbb{Q})/(a, < a, a, a >))_. \]
3. the Lie algebra L_Y admits a filtration such that the graded associated Lie algebra G is an extension
 \[0 \to L(W) \Join (\gamma, \rho) \to G \to L_X/(a, < a, a, a >) \to 0, \]
 with (γ, ρ) an abelian Lie algebra on 2 generators γ and ρ; $|\rho| = 2n + 1$ and $|\gamma| = 4n + 2$.

Corollary 1'. — When the element a is in the center, then the kernel of the map $L_X \to L_Y$ is always contained in the center and its dimension is at most two.

Corollary 2'. — If $\text{dim } L_X$ is at least 3 and if a is in the center, then L_Y contains a free Lie algebra on at least 2 generators.

Example 3. — Let X be either $S^{2n+1} \times K(Z, 2n)$ or else $P^n(C)$, then the attachment of a cell of dimension $2n + 2$ along a nonzero element generates only one new rational homotopy class of degree $2n + 3$. The space Y has in fact the rational homotopy type either of $S^{2n+3} \times K(Z, 2n)$ or else of $P^{n+1}(C)$. These are rationally the only situations where L_X has dimension two and the attachment does not generate a free Lie algebra.

Example 4. — Let Z be a simply connected finite CW complex not rationally contractible. Then for $n \geq 1$ the rational homotopy Lie algebra
L_Y of $Y = S^{2n+1} \times Z/(S^{2n+1} \times \{\star\})$ contains a free Lie algebra on at least two generators. It is enough to see that Y is obtained by attaching a cell along the sphere S^{2n+1} in $X = S^{2n+1} \times Z$.

In all cases, L_Y contains a free Lie algebra $\mathbb{L}(W)$ with W isomorphic to $(H_*(\Omega X) \otimes \mathbb{Q}/(a, <a, a, a>))$. The elements of W have the following topological description.

Let β be an element of degree $r-1$ in $L_X/(a, <a, a, a>)$ and $b = \Sigma \beta$. The Whitehead bracket

$$S^{n+r}[i_{n+1}, i_r] S^{n+1} \vee S^r u \rightarrow X,$$

extends to D^{n+r+1} because the element a is in the center. On the other hand in Y the map u extends to D^{n+2}, this gives the commutative diagram

$$\begin{array}{ccc}
D^{n+r+1} & \longrightarrow & D^{n+2} \vee S^r \\
\uparrow & & \uparrow \\
S^{n+r} & \longrightarrow & S^{n+1} \vee S^r \\
\downarrow & & \downarrow \\
Y & \longrightarrow & X
\end{array}$$

These two extensions of the Whitehead product to D^{r+n+1} define an element $\varphi(\beta)$ in $\pi_{r+n+1}(Y) \otimes \mathbb{Q}$. Now for every element $\alpha = \alpha_1 \ldots \alpha_n$ in $H_+((\Omega X; \mathbb{Q})/(a, <a, a, a>)$, with α_i in L_X, we define

$$\varphi(\alpha) = [\alpha_n, [\alpha_{n-1}, \ldots, [\alpha_2, \varphi(\alpha_1)] \ldots]].$$

This follows directly from the construction of W given in section 1.

Proposition 2. — When $\{\beta_i\}$ runs along a basis of $H_+((\Omega X; \mathbb{Q})/(a, <a, a, a>)$, the elements $\{\Sigma^{-1}\varphi(\beta_i)\}$ form a basis of a sub free Lie algebra of L_Y.

Corollary 1 means that the center of L_X is a nice ideal. We conjecture:

Conjecture. — Let X be a simply connected finite type CW complex with finite Lusternik-Schnirelmann category, then the radical of L_X is a nice ideal.

We now prove this conjecture in a very particular case.

Theorem 7. — If the ideal I generated by a has dimension two and is contained in $(L_X)_{\text{even}}$, then the element a is nice and L_Y is an extension of a free Lie algebra $\mathbb{L}(W)$ by L_X with $W \supset s^n(U(L_X/I)_+)$.

Example 5. — Let X be the geometric realization of the commutative differential graded algebra $(\wedge(x, c, y, z, t), d)$ with $d(x) = d(c) = 0, d(y) = \ldots$
The center of a graded connected Lie algebra 269

\[xc, d(z) = yc, d(t) = xyz, |x| = |c| = 3, |y| = 5, |z| = 7, \text{ and } |t| = 14. \]

We denote by \(u \) the element of \(\pi_3(X) \) satisfying \(\langle u, x \rangle = 1 \) and \(\langle u, c \rangle = 0 \). The ideal generated by \(a = \Sigma^{-1} u \) has dimension three and is concentrated in even degrees, but the element \(a \) is not nice.

The rest of the paper is concerned with the proof of Theorems 1, 2, 3 and 7.

1. Proof of Theorem 1.

Denote by \((L(V), d)\) and \((L(V \oplus \mathbb{Q}x), d)\) free differential graded connected Lie algebras, \(d(x) = \alpha, [\alpha] = a \).

By putting \(V \) in gradation 0 and \(x \) in gradation 1, we make \((L(V \oplus \mathbb{Q}x), d)\) into a filtered differential graded algebra. The term \((E^1, d^1)\) of the associated spectral sequence has the form

\[(E^1, d^1) = (A \coprod L(x), d), \quad A = H_*(L(V), d) = L_X, \quad d(x) = a. \]

The ideal \(I \) generated by \(x \) is the free Lie algebra on the elements \([x, \beta_i]\), with \(\{\beta_i\} \) a graded basis of \(UA \) and where by definition, we have

\[[x, 1] = x \]

\[[x, \alpha_1 \alpha_2 \ldots \alpha_n] = \ldots [x, \alpha_1], \alpha_2, \ldots \alpha_n, \quad \alpha_i \in L_X. \]

Since \(a \) is in the center, if \(\beta_i \in (UA)_+ \), then \(d([x, \beta_i]) = 0 \). Therefore the ideal \(J \) generated by \([x, x]\) and the \([x, \beta_i], \beta_i \in (UA)_+ \) is a subdifferential graded Lie algebra. The ideal \(J \) is in fact the free Lie algebra on \([x, x]\) and the elements \([x, \beta_i]\) and \([x, [x, \beta_i]]\), with \(\{\beta_i\} \) a basis of \((UA)_+\).

A simple computation shows that

\[d[x, x] = 2[a, x] \]

\[d[x, \beta_i] = 0 \]

\[d[x, [x, \beta_i]] = -[x, \beta_i a]. \]

This shows that \(H(J, d) \) is isomorphic to the free graded Lie algebra \(\mathbb{L}(W) \) where \(W \) is the vector space formed by the elements \([x, \beta_i]\) with \(\beta_i \in (UA/(a))_+ \).

The short exact sequence \(0 \rightarrow J \rightarrow A \coprod L(x) \rightarrow A \oplus (x) \rightarrow 0 \) yields thus a short exact sequence in homology

\[0 \rightarrow \mathbb{L}(W) \rightarrow H(A \coprod L(x)) \rightarrow A/(a) \rightarrow 0. \]
This implies that the term E^2 is generated in degrees 0 and 1. The spectral sequence degenerates thus at the E^2 level: $E^2 = E^\infty$.

Denote now by u_{β_i} a class in $H(\mathbb{L}(V \oplus \mathbb{Q}x), d)$ whose representative in $E^\infty_{1,*}$ is $[x, \beta_i]$. The Lie algebra generated by the u_{β_i} admits a filtration such that the graded associated Lie algebra is free. This Lie algebra is therefore free, and its quotient is $A/(a)$. This proves the theorem. \qed

2. Proof of Proposition 1.

The elements α, β and γ are represented by cycles x, y and z in $(\mathbb{L}(V), d)$. Since the elements α, β and γ are in the center, there exist elements a, b and c in $\mathbb{L}(V)$ such that

$$d(a) = [x, y], \quad d(b) = [y, z], \quad d(c) = [z, x].$$

The triple Whitehead product is then represented by the element

$$\omega = (-1)^{|x|} [c, y] + (-1)^{|x|} [b, x] + (-1)^{|x|} [a, z].$$

We will show that the class of ω is central, i.e. for every cycle t the bracket $[\omega, t]$ is a boundary. First of all, since α, β and γ are in the center there exists elements x_1, y_1 and z_1 such that

$$d(x_1) = [x, t], \quad d(y_1) = [y, t], \quad d(z_1) = [z, t].$$

We now easily check that the three following elements α_1, α_2 and α_3 are cycles:

$$\alpha_1 = (-1)^{|x|+|t|} [t, c] + (-1)^{|x|+|x|+|t|+1} [x, x_1] + (-1)^{|x|+|x|} [z, x_1],$$

$$\alpha_2 = (-1)^{|x|+|x|} [t, b] + (-1)^{|x|+|x|+|t|} [z, y_1] + (-1)^{|y|+|t|+1} [y, y_1],$$

$$\alpha_3 = (-1)^{|x|+|x|} [t, a] + (-1)^{|y|+|t|+|x|} [y, x_1] + (-1)^{|z|+|x|} [x, y_1].$$

We deduce elements β_1, β_2 and β_3 satisfying

$$d(\beta_1) = [\alpha_1, y], \quad d(\beta_2) = [\alpha_2, x], \quad d(\beta_3) = [\alpha_3, z].$$

Now we verify that $[\omega, t]$ is the boundary of

$$(-1)^{|x|+|t|+|t|}[y_1, c] + (-1)^{|x|+|t|+|t|} [x_1, b]$$

$$+ (-1)^{|x|+|t|+|t|+1} [z_1, a] + (-1)^{|y|+|t|+|x|} \beta_2$$

$$+ (-1)^{|x|+|t|+|t|+1} [z_1, a] + (-1)^{|x|+|t|+|t|+1} [z_1, a].$$
3. Proof of Theorems 2 and 3.

We filter the Lie algebra \((L(V \oplus \mathbb{Q}x), d)\) by putting \(V\) in gradation 0 and \(x\) in gradation 1. We obtain a spectral sequence \(E^r_{*,*}\). We will first compute the term \((E^1_{*,*}, d^1)\) and its homology \(E^2\). We will see that \(E^2\) is generated only in filtration degrees 0, 1 and 2. The differential \(d^2\) is thus defined by its value on \(E^2_{2,*}\). Under the hypothesis of Theorem 2, we show that \(d^2 = 0\) and that the spectral sequence collapses at the \(E^2\)-level. Under the hypothesis of Theorem 3, we show that the image of \(d^2 : E^2_{2,*} \to E^3_{0,*}\) has dimension 1 and that a basis is given by the class of the Whitehead bracket \(\langle a, a, a \rangle\). We will compute explicitly the term \(E^3_{*,*}\). This term is generated only in filtration degrees 0 and 1, so that the spectral sequence collapses at the \(E^3\)-level in that case.

3.1. Description of \((E^1, d^1)\).

The term \((E^1, d^1)\) has the form

\[
(E^1, d^1) = (A \coprod L(x), d), \quad A = H_*(L(V), d) = L_X, \quad d(x) = a.
\]

We denote by \(I\) the ideal generated by \(x\),

\[
I = L([x, \beta_1], \text{ with } \{\beta_1\} \text{ a basis of } UA),
\]

and by \(J\) the ideal of \(I\) generated by the \([x, \beta_i]\) with \(\beta_i \in (UA)_+\).

\[
J = L([x, [x, \cdots [x, \beta_i] \cdots]], \text{ with } \{\beta_i\} \text{ a basis of } (UA)_+).
\]

For sake of simplicity we introduce the notation

\[
\varphi_1(\beta) = [x, \beta], \quad \varphi_n(\beta) = [x, \varphi_{n-1}(\beta)], n \geq 2.
\]

Lemma 1.

1. \(d(\varphi_1(\beta)) = 0\) for \(\beta \in (UA)_+\).
2. \([a, \varphi_n(\beta)] = (J^2) - \varphi_n(a\beta), n \geq 1.\)
3. \(d(\varphi_n(\beta)) = (J^2) - (n - 1)\varphi_{n-1}(a\beta), n \geq 2.\)

In the above formulas \((J^2)\) means equality modulo decomposable elements in the Lie algebra \(J\).
Proof.

(1) \(d\varphi_1(\beta) = d[x, \beta] = [a, \beta] = 0 \).

(2) The Jacobi identity shows that \([a, \varphi_1(\beta)] = [a, [x, \beta]] = -[[x, a], \beta] = -[x, a\beta] \). By induction we deduce \([a, \varphi_n(\beta)] = (J^2) [x, [a, \varphi_n-1(\beta)]] = -\varphi_n(a\beta) \).

(3) \(d\varphi_n(\beta)) = [a, \varphi_{n-1}(\beta)] + [x, d\varphi_{n-1}(\beta)] = (J^2) -(n-1)\varphi_{n-1}(a\beta). \)

\(\square\)

Lemma 2.

(1) \(d\varphi_1(a) = 0, d\varphi_2(a) = 0 \)

(2) \(d\varphi_n(a) \in \mathbb{L}(\varphi_1(a), \cdots, \varphi_{n-2}(a)) \)

(3) \(d\varphi_n(a) + \alpha_n[\varphi_1(a), \varphi_{n-2}(a)] \) is a decomposable element in \(\mathbb{L}(\varphi_2(a), \cdots, \varphi_{n-3}(a)) \), for \(n \geq 3 \), with \(\alpha_3 = 1 \) and for \(n \geq 4 \), \(\alpha_n = 5 + \frac{(n+3)(n-4)}{2} \).

Proof. — We first check that \([a, \varphi_1(a)] = 0 \) and that

\[
[a, \varphi_2(\beta)] = -[\varphi_1(\beta), \varphi_1(\beta)].
\]

Now, using Jacobi identity we find that

\[
[a, \varphi_n(a)] = -\sum_{p=1}^{n-1} \binom{n-1}{p} [\varphi_p(a), \varphi_{n-p}(a)].
\]

Using once again Jacobi identity we find

\[
[x, [\varphi_n(a), \varphi_m(a)]] = [\varphi_{n+1}(a), \varphi_m(a)] + [\varphi_n(a), \varphi_{m+1}(a)].
\]

The derivation formula valid for \(n \geq 2 \)

\[
d\varphi_{n+1}(a) = [a, \varphi_n(a)] + [x, d\varphi_n(a)],
\]

gives now point (3) of the lemma. \(\square\)

3.2. Computation of \(E^2 = H(E^1, d^1) \).

Lemma 3. — The homology \(H(\mathbb{L}(\varphi_n(a), n \geq 1), d) \) is the quotient of the free Lie algebra \(\mathbb{L}(\varphi_1(a), \varphi_2(a)) \) by the ideal generated by the relations \([\varphi_1(a), \varphi_1(a)]\) and \([\varphi_1(a), \varphi_2(a)]\).
Proof. — Since the differential d is purely quadratic, the graded Lie algebra $(L(\varphi_n(a), n \geq 1), d)$ represents a formal space Z with rational cohomology $H^*(Z; \mathbb{Q})$ isomorphic to the dual of the suspension of the graded vector space generated by the $\varphi_n(a)$, $n \geq 1$.

The rational cup product in $H^*(Z; \mathbb{Q})$ is given by the dual of the differential. This means that $H^*(Z; \mathbb{Q})$ is generated by elements u_1 and u_2 defined by $\langle u_i, s\varphi_j(a) \rangle = 1$ if $i = j$ and 0 otherwise. The description of $d(\varphi_5(a))$ yields the relation $u_1^3 = \frac{9}{8} u_2^2$. Now since the Poincaré series of $H^*(Z; \mathbb{Q})$ and $\mathbb{Q}[u_1, u_2]/\left(u_1^3 - \frac{9}{8} u_2^2\right)$ are both equal to $\frac{1}{1 - t^{n+1}} - t^{n+1}$, there is no other relation. Therefore

$$H^*(Z; \mathbb{Q}) \cong \mathbb{Q}[u_1, u_2]/\left(u_1^3 - \frac{9}{8} u_2^2\right).$$

The Lie algebra $H(L(\varphi_n(a), n \geq 1), d)$ is thus isomorphic to the rational homotopy Lie algebra L_Z; its dimension is three and a basis is given by the elements $\varphi_1(a), \varphi_2(a)$ and $[\varphi_2(a), \varphi_2(a)]$. This implies the result. \qed

The differential ideal J is thus the free product of two differential ideals

$$J = L((\varphi_n(a)), n \geq 1) \coprod L((\varphi_n(\beta_i), \varphi_n(a\beta_i), n \geq 1,$$

with $\{\beta_i\}$ a basis of $(UA/a)_+)$.

Each factor is stable for the differential. Therefore

$$H(J) = \frac{L(\varphi_1(a), \varphi_2(a))}{([\varphi_1(a), \varphi_1(a)], [\varphi_1(a), \varphi_2(a)])} \coprod L((\varphi_1(\beta_i)),$$

with $\{\beta_i\}$ a basis of $(UA/a)_+)$.

The short exact sequence of Lie algebras

$$0 \to J \to A \coprod L(x) \to A \oplus \mathbb{Q}x \to 0,$$

closes the description of the term E^2 of the spectral sequence.

Corollary. The term E^2 satisfies $E^2_{0,*} = A/(a)$, and $E^2_{+,*} = H(J)$. In particular E^2 is generated in filtration degrees 0, 1 and 2.
3.3. Description of the differential d^2.

Recall that a is in the center. The element $[a, a]$ is thus a boundary: there exists some element b with $d(b) = [a, a]$. Then the element $[b, a]$ is also a cycle and its homology class is the triple Whitehead bracket $<a, a, a>$.

Lemma 4. Denote by $[\varphi_2(\alpha)]$ the class of $\varphi_2(\alpha)$ in the E^2-term of the spectral sequence. We then have

$$d^2([\varphi_2(a)]) = -\frac{3}{2}([\alpha, b]),$$

where $\langle \cdot \rangle$ means the class of a cycle in the E^2 term.

Proof. We easily verify that in the differential Lie algebra $(L(V \oplus \mathbb{Q}x), d)$, we have

$$d \left(\varphi_2(\alpha) - \frac{3}{2} [x, b] \right) = -\frac{3}{2} [\alpha, b].$$

Since $[x, b]$ is in filtration degree 1, and $[\alpha, b]$ in filtration degree 0, this gives the result by definition of the differential d^2. \square

3.4. End of the proof of Theorem 2.

If $\langle [b, \alpha] \rangle = 0$, then $d^2 = 0$, the spectral sequence degenerates at the E^2 level and Theorem 2 is proved. \square

3.5. Computation of the term $E^3_{*,*}$.

Henceforth, we suppose $\langle [b, \alpha] \rangle \neq 0$. A simple computation using Jacobi identity gives the following identity.

Lemma 5. $d^2([\varphi_2(a), \varphi_2(a)]) = 3[\varphi_1(a), \varphi_1([\alpha, b])].$

Let $\{\beta_i\}$, $i \in I$, denote a basis of $(UA/a)_{+}$ such that $\langle [\alpha, b] \rangle = \beta_{i_0}$ for some index i_0. The elements $\varphi_1(a)$ and $[\varphi_2(a), \varphi_2(a)]$ together with the elements $\varphi_1(\beta_i)$ generate an ideal M in the graded Lie algebra $E^3_{*,*}$. The Lie algebra M is generated by the elements $\varphi_1(\beta_i)$, $[\varphi_2(a), \varphi_1(\beta_i)]$, $[\varphi_2(a), \varphi_2(a)]$ and $\varphi_1(a)$ and satisfies the two relations $[\varphi_1(a), \varphi_1(a)] = 0$ and $[[\varphi_2(a), \varphi_2(a)], \varphi_1(a)] = 0$. Denote by N the graded
Lie algebra

\[N = \mathbb{L}(\varphi_1(\beta_i), [\varphi_2(a), \varphi_1(\beta_i)]) \prod \mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a)) \frac{\mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a))}{([\varphi_1(a), \varphi_1(a)], [[\varphi_2(a), \varphi_2(a)], \varphi_1(a)])}. \]

Since \(M \) and \(N \) have the same Poincaré series they coincide. Therefore as a Lie algebra, \(M \) can be written

\[M = \mathbb{L}(\varphi_1(\beta_i), [\varphi_2(a), \varphi_1(\beta_i)]) \prod \mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a)) \frac{\mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a))}{([\varphi_1(a), \varphi_1(a)], [[\varphi_2(a), \varphi_2(a)], \varphi_1(a)])}. \]

The equation

\[d^2[\varphi_2(a), \varphi_1(\beta_i)] = \frac{3}{2} \varphi_1(\beta_i[a, b]). \]

shows that the Lie algebra \(M \) decomposes into the free product of three differential graded Lie algebras, the first one being acyclic:

\[M = \mathbb{L}(\varphi_1(\beta_i), ([a, b]), [\varphi_2(a), \varphi_1(\beta_i)], i \in I) \prod \mathbb{L}(\varphi_1(\beta_i), i \in I \setminus \{i_0\}) \prod K, \]

\[K = \mathbb{L}(\varphi_1([a, b])) \prod \mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a)) \frac{\mathbb{L}([\varphi_2(a), \varphi_2(a)], \varphi_1(a))}{([\varphi_2(a), \varphi_2(a)], \varphi_1(a), [\varphi_1(a), \varphi_1(a)])}. \]

We thus have

\[H(M) = \mathbb{L}(\varphi_1(\beta_i), i \in I \setminus \{i_0\}) \prod H(K). \]

To compute the homology of \(K \) we put \(t = \varphi_1([a, b]), y = \varphi_1(a) \) and \(z = [\varphi_2(a), \varphi_2(a)] \).

Lemma 6. — Let \((\mathcal{L}, d) = (\mathbb{L}(y, z, t)/(y, z, [y, z]), d)\) be a differential graded Lie algebra with \(t \) and \(z \) in \(\mathcal{L}_{\text{even}}, y \) in \(\mathcal{L}_{\text{odd}}, \) and where the differential \(d \) is defined by \(d(t) = d(y) = 0 \) and \(d(z) = [t, y] \). Then \(H(\mathcal{L}, d) \) is a \(\mathbb{Q} \)-vector space of dimension two generated by the classes of \(t \) and \(y \).

Proof. — Denote by \(R \) the ideal generated by \(t \). As a Lie algebra \(R \) is the free Lie algebra generated by \(t, w = [t, y], \) the elements \(u_n = ad^n(z)(t), \) for \(n \geq 1 \) and the elements \(w_n = ad^n(z)[t, y], \) for \(n \geq 1 \).
Using the Jacobi identity, we get the following sequence of identities:

\[
\begin{align*}
 d(t) &= 0 \\
 d(w) &= 0 \\
 d(u_1) &= [t, w] \\
 d(u_2) &= 2[u_1, w] - [w, t] \\
 \vdots \\
 d(u_n) &= n[u_{n-1}, w], \mod L(u_1, \ldots, u_{n-2}, t, w_i) \\
 d(w_1) &= -[w, w] \\
 d(w_2) &= -3[w_1, w] \\
 \vdots \\
 d(w_n) &= -(n + 1)[w_{n-1}, w], \mod L(w_1, \ldots, w_{n-2}).
\end{align*}
\]

This shows that the cohomology of the cochain algebra on \(R \) is \(\mathbb{Q}[w^v] \otimes \wedge(t^v) \), with \(w^v \) and \(t^v \) 1-cochains satisfying \(\langle w^v, w \rangle = 1 \) and \(\langle t^v, t \rangle = 1 \). The interpretation of \(H(R, d) \) as the dual of the vector space of indecomposable elements of the Sullivan minimal model of \(C^*(R) \) shows that \(H(R, d) \cong \mathbb{Q}w \oplus \mathbb{Q}t \).

The examination of the short exact sequence of differential complexes

\[
0 \to (R, d) \to (L, d) \to (\mathbb{Qy} \oplus \mathbb{Qz}, 0) \to 0,
\]

shows that \(H(L, d) \cong \mathbb{Q}t \oplus \mathbb{Q}y. \)

This shows that \(H(M) \) is isomorphic to the free product of \(\mathbb{L}(\varphi_1(\beta_i), i \in I \setminus \{i_0\}) \) with the abelian Lie algebra on the two elements \(\varphi_1(a) \) and \(\varphi_1(\langle[a, b]\rangle) \).

3.6. End of the proof of Theorem 3.

From the short exact sequence of chain complexes

\[
0 \to M \to E^2 \to E^2_0, \oplus \varphi_2(a)\mathbb{Q} \to 0,
\]

we deduce the isomorphism of graded vector spaces

\[
E^3 = H(E^2, d^2) \cong H(M) \oplus A/(a, \langle[a, b]\rangle).
\]

Since \(E^3 \) is generated by elements in gradation 0 and 1, the spectral sequence degenerates at the term \(E^3, E^3 = E^\infty \). This closes the proof of Theorem 3. \(\square \)

We suppose that the ideal generated by a is composed of a and $b = [a, c]$. We choose an ordered basis $\{u_i\}$, $i = 1, \ldots$ of L_X with $u_1 = c$, $u_2 = a$ and $u_3 = b$. We consider the set of monomials of UL_X of the form $\beta_i = u_{i_1} u_{i_2} \cdots u_{i_n}$ with $i_n \leq i_{n-1} \leq \cdots \leq i_2 \leq i_1$ and $i_j \neq i_{j+1}$ when the degree of u_j is odd. This set of monomials forms a basis of UL_X.

The ideal generated by x in $L_X \bigoplus \mathbb{L}(x)$ is then the free Lie algebra on the elements $[x, \beta_i]$. For sake of simplicity, we denote $x' = [x, c]$.

In particular the ideal J generated by the elements $[x, x], [x', x']$ and the $[x, \beta_i]$ for $\beta_i \notin \{1, c\}$ is a differential sub Lie algebra that is a free Lie algebra on two types of elements:

First type: $[x, x], [x, x'], [x', x'][x', [x, x']], [x', [x, x]]$

Second type: $[x, \beta_i], [x, [x, \beta_i]], [x', [x, \beta_i]], [x', [x, [x, \beta_i]]], \beta_i \neq 1, c.$

We have

\[
\begin{align*}
 d([x, x]) &= -2[x, a] \\
 d([x', x']) &= -2[x, cb] \\
 d([x, x']) &= -[x, ca] - [x, b] \\
 d([x', [x, x]]) &= -2[x, [x, b]] + 2[x', [x, a]] \\
 d([x, \beta_i]) &= 0 \\
 d([x, [x, \beta_i]]) &= -[x, \beta_i a] \\
 d([x', [x, \beta_i]]) &= -[x, \beta_i b] \\
 d([x', [x, [x, \beta_i]]]) &= -[x, [x, \beta_i b]] + [x', [x, \beta_i a]] \text{ modulo decomposable elements.}
\end{align*}
\]

Looking at the linear part of the differential we see directly that $H(J)$ is isomorphic to the free Lie algebra on the element $[x, ca]$ and the elements $[x, \beta_i]$ with β_i a non empty word in the variables u_j different of a and b. \hfill \Box

Example 6. Let X be the total space of the fibration with fibre S^7 and base $S^3 \times S^5$ whose Sullivan minimal model is $(\wedge(x, y, z), d)$, $d(x) = d(y) = 0$, $d(z) = xy$, $|x| = 3$, $|y| = 5$ and $|z| = 7$. If we attach a cell along the sphere S^3 we obtain the space $Y = (S^5 \times S^{10}) \vee S^{12}$.
BIBLIOGRAPHY

Manuscrit reçu le 3 avril 1995,
accepté le 6 septembre 1995.

Yves FÉLIX,
Institut de Mathématique
2, Chemin du Cyclotron
1348 Louvain-La-Neuve (Belgique).
felix@agel.ucl.ac.be