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INTEGRABLE ANALYTIC VECTOR FIELDS
WITH A NILPOTENT LINEAR PART

by Xianghong GONG

Introduction.

We are concerned with the normalization of an analytic vector field
v given by

(1.1) ^=y+f(x,y), ^=9{x,y),

where /, g are convergent power series starting with terms of order two.
Since the matrix of the linear part in (1.1) is nilpotent, the Poincare-
Dulac normal form gives no simplification. In [7], F. Takens introduced
a simplification for (1.1) by formal transformations as follows :

d.2) ^=y^ ^^(.).
The above system is subject to further classifications. Using representation
theory of certain Lie algebras, A. Baider and J. C. Sanders [2] gave a
complete classification of (1.2) under suitable non-degeneracy conditions.
However, the normal form of Baider and Sanders excludes the case s{x) = 0.
We shall see that the vanishing of s corresponds to the case that v has a
non-singular formal integral, i.e. a formal power series H(x, y) such that
^(0)^0 and (v^H)=0.

Partially supported by NSF grant DMS-9304580 at the Institute for Advanced Study.
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Math. classification : 58F36 - 32S65.



1450 XIANGHONG GONG

The bifurcation theory on vector fields in the form (1.1) was initially
studied by F. Takens [7] and R. I. Bogdanov [3]. We also refer to [1] for the
survey on vector fields with a nilpotent linear part. In this paper we shall
deal with the convergence of the initial normalization given by Takens for
integrable vector fields. We shall prove the following.

THEOREM 1.1. — Let v be an analytic vector field given by (1.1).
Assume that v has a non-singular formal integral. Then v can be trans-
formed into (1.2) with s = 0 through a convergent transformation.

We cannot give a complete classification for (1.1) under the assump-
tion of formal integrability. As a partial normalization, we have

THEOREM 1.2. — Let v be an analytic vector field given as in
Theorem 1.1. Assume that /, g in (1.1) are real power series. Then there is
a real formal transformation which transforms (1.1) into

d.3) ^'v^'w, ^=o,
where r* = 0, or

r^x)=€xa+ ^ r; '̂,
J>(T,0-tj

and e = 1 for a even, e = ±1 for a odd. Furthermore, when a is even,
all rj (cr < j < 2a) are invariants; when a is odd, e and the coefficients
rj (cr < j < 2cr) are invariants, of which the first non-zero coefficient of
even order is normalized to be positive.

We shall see that there are infinitely many invariants for (1.3) if
2 < a < oo. We are unable to determine whether (1.3) can be realized
by convergent transformations. Neither shall we deal with the convergence
of the normal form of Baider-Sanders. In fact, the convergence proof for
the vector fields considered here depends essentially on the assumption of
the existence of non-singular integrals.

Theorem 1.1 demonstrates a significant difference between real ana-
lytic vector fields with a nilpotent linear part and real analytic mappings
with a unipotent linear part, i.e. parabolic mappings. The parabolic map-
pings arise naturally from glancing hypersurfaces considered by R. B. Mel-
rose [6], and also real analytic Lagrangian surfaces with a complex tangent
studied by S. M. Webster [8]. In [5], it was shown that there exist real ana-
lytic transformations which are formally equivalent to the linear parabolic
mapping T(x,y) = (x + y , y ) , but they are not linearizable through any
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convergent transformation. On the other hand, Theorem 1.1 shows that a
vector field (1.1) is linearizable by convergent transformations if and only
if it is formally linearizable. To further understand the distinct nature of
normalizing analytic vector fields with nilpotent linear parts and parabolic
analytic mappings, we shall prove the following result.

COROLLARY 1.3. — There exists a smoothly linearizable real ana-
lytic transformation (p = T + 0(2) which is not embeddable in any neigh-
borhood of the origin as the time-1 mapping of any real analytic vector
field ( L I ) .

This paper is organized as follows. In section 2, we shall consider the
formal theory of the integrable vector field (1.1). We shall also characterize
the integrability in terms of the formal normal form as well as the singular
points of the vector fields. The proof of Theorem 1.2 will be given in
section 2. In section 3, we shall prove the convergence of solutions to the
approximate equations arising from the normalizing the vector fields in
Theorem 1.1. We complete the proof of Theorem 1 in section 4 through
a KAM argument. In section 5, we shall discuss the embeddability of
a parabolic mapping into the flow of a vector field (1.1). The proof of
Corollary 1.3 will be presented in section 5.

We would like to thank the referee for bringing the article of
D. Cerveau and R. Moussu [4] to our attention. In terms of the vector
fields, the results in [4] contain a complete holomorphic (convergent) clas-
sification for all ideals of holomorphic vector fields in C2 which are formally
equivalent to a given ideal of vector fields defined by uj = 0, where the holo-
morphic 1-form uj is a certain perturbation of ydy — xndx.

2. Formal normalizations.

In this section, we shall first construct a formal transformation <I>
which transforms (1.1) into (1.2). The convergence of <I> will be determined
in section 4. We shall also discuss the formal integrability. Finally, we shall
give a proof for Theorem 1.2.

Throughout the discussion of this paper, we shall decompose a power
series p(x, y) into the following form:

p{x,y) =po(x)+p^(x,y), po(x) =p(x,0).
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Then the mapping p -^ pi defines a projection ILC^,^]] -> yC[[x,y]],
where C[[x,y]] is the ring of formal power series in x,y, and yC[[x, y]] is
the ideal generated by y. For a non-zero power series p(x,y), we denote
by ordp the largest integer k such that p^ = 0 for a + (3 < k. We put
ordp = oo when p == 0. We also write

P(^2/)=0(fc),
if ordp ^ A;.

Let y? be a transformation defined by

(2-1) xt = x + ̂  2/), y ' = y + ^Qr, y),
where n, ?; are power series starting with terms of order two. We say that
(p is normalized if

(2-2) u{^y)=0=v(^y).

One can see that ^ is a normalized transformation if and only if ^
preserves the y-axis, and its restriction to the y-axis is the identity mapping.
Therefore, the normalized transformations form a group.

We shall seek a unique normalized transformation

^: x ' = x + U(x, y), y ' = y + y(^, y),

which transforms (1.1) into (1.2). This leads to the following functional
equations:

(2.3) yU^y)-r(x)= V(x,y) - f(x,y) + E^x.y),
(2-4) yV^x,y)-s(x)= -g(x,y)-^-E^x,y),
where

Ei{x,y) = r{x + (7) - r(a;) - fU^y) - gUy(x,y),
(2.5) E^x,y)= s(x-^U)-s(x)-fV^y)-gVy(x^y).

We shall prove that under the normalizing condition (2.2), the equa-
tions (2.3) and (2.4) have a unique solution {U,V,r,s}. Let us denote by
Ej.^o the coefficient of the term xay(3 of Ej. Then, it is easy to see that
for given a + /3 = n, ^;^ is a polynomial in r^,5^ (a' < n) and
f a ' ^ ' . g a ' ^ ' (a' + /?' < n) with integer coefficients. Comparing the coef-
ficient of a;0-1^1 on the both sides of (2.4), we get

(2.6) V^p = -^ (-^a-1,/3+1 + ^2;a-l,/3+l) , 1 < 0 < n.

By the normalizing condition (2.2), we also have

(2-7) ^0,n=0, Yo,n=0.
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Next, we compare the coefficient of x^^y^^ on the both sides of (2.3),
and obtain

(2.8) Ua,(3 = - 04-l,/3+l - /a-1,/3+1 + ^l;a-l,/3+l) ^ 1 ̂  a ^ n-

Finally, the coefficient of x71 on both sides of (2.3) and (2.4) gives us

(2.9) Tn = fn,0 — l̂;n,0 — ^n,(h Sn == <7n,0 — ^2;n,0-

Notice that ^j;a,/3 = 0 for a + /3 = 2. Thus, the coefficients of r, 5, E7, V of
order 2 are uniquely determined by the coefficients of /, g of order 2 through
formulas (2.6)-(2.9). By induction, one can show that the coefficients of
r, s, £7, y of order n are uniquely determined by the coefficients of /, g of
order n. Therefore, there exists a unique solution {r, s, £7, V} to (2.3) and
(2.4), of which U^V satisfy the condition (2.2). This proves that (1.1) can
be transformed into (1.2) by a unique normalized formal transformation.

For the late use, we observe that if (2.3) and (2.4) are solvable for
r, s, ?7, V with s =. 0, then g must satisfy the condition

(2.10) OTdgo >ord^i.

To see this, we put s = 0 in (2.4) and (2.5). From (2.5), we see that
ord^2 > ordY + 1. By (2.2), we have ordY = ord{yVx(x,y)}. Applying
II to (2.4), we then get ordY >, ordpi. By comparing the orders on both
sides of (2.4), one can see easily that (2.10) holds.

Next, we want to describe the integrability. We have

PROPOSITION 2.1. — Let v be an analytic vector field defined
by (1.1). Assume that (1.1) is transformed into (1.2) through a formal
transformation ip. Then the following are equivalent:

(a) s(x) = 0.

(b) v has a non-singular formal integral.

(c) The set of singular points of v is a curve through the origin.

Remark 2.2. — There exist integrable vector fields with a nilpotent
linear part, which have an isolated singular point at the origin. For instance,
consider

dx dy 2
~ d t = y ' ^ = a ; -

Then H{x^ y ) = 2x3 — 3y2 is an integral of the system. Hence, it is essential
that the integral in Theorem 1.1 is non-singular.
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From Theorem 1.1 and Proposition 2.1, we have the following.

COROLLARY 2.3. — Let v be an analytic vector field given by (1.1).
Then v is linearizable by convergent transformations if and only if it is
formally linearizable.

Proof of Proposition 2.1. — It is obvious that (a)=^(b). To show that
(b)=^(a), we assume that s(x) does not vanish identically and write

S(x) = SrX7' + . . . , ST 7^ 0-

We want to prove that r is the largest positive integer k such that there
exists a formal power series H with

(2.11) ord((^ Vff)) > k, dH{0) ̂  0.

First, the existence of such power series H does not depend on
the choice of formal coordinates. Hence, we may assume that v is a
formal vector field in the form (1.2). Moreover, if H ( x ^ y ) = y , then
ord((z;,V^))=r.

Next, we want to show that there is no power series H such that
(2.11) holds for some k > r. Assume that such a power series H exists, and
put

00

H(x^y)=^H,{y)x^
j=0

From (2.11), we get

yH^x, y) = -r(x)H^x, y) - s(x)Hy(x, y) + 0(fc).

Expanding both sides as power series in x and comparing the coefficient of
.r-9"1, we obtain

j-i j-i
(1.12) jyH,(y) = - ̂ (j - l)nH^(y) - ̂  s,H'^(y) + 0(k - j + 1)

1=2 l=r

for 1 < j} < k. In particular, we have

(2.13) H,(y)=0(k-j)
for j = 1,2. In fact, we want to show that (2.13) holds for 1 ̂  j <^ r.
For the induction, we assume that (2.13) holds for 1 < j < r^r' < r.
Then for 2 < ; < r', we get Hr'-i = 0(k - r ' - 1 + I ) . It is clear that
k - T' - 1 + / > k - T ' + 1 for I ^ 2. Hence

Hr'-i =0(^-^+1).
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Set j = r'+1 in (2.12). Then the first summation on the right side of (2.12)
can be replaced by O(A;-T'+ 1). The second summation in (2.12) vanishes,
since r ' < r. Hence, (2.13) holds for j = r1. Therefore, we have verified by
induction that (2.13) holds for 1 ̂  j <, r. We now take j = r+1 for (2.12),
and get

(r + l)yH^(y) = -SrH'^y) + 0(k - r).

Since dH(0) -^ 0, we have HQ^O) -^ 0. Hence, the above identity cannot
hold if k > r. Therefore, the order r of s is an invariant.

Now, the formal integrability implies that there is a formal power
series H such that (2.11) holds for all integer fc, which yields 5=0 .

(b)<^(c). Notice that the origin is not an isolated singular point of v,
if and only if g(x, y) can be divided by y + f(x, y). We have<2-14' TO-^C:^).
where D(p is the Jacobian matrix of the transformation ( x ^ y ' ) = y(x,y).
We first assume that (b) holds. Then (2.14) implies that y ' + r ( x ' ) and
s{x1) can be divided by y + f(x, y) for (x, y) = ip~l(x/, y ' ) . Since y ' + r ( x ' )
is irreducible, then s(x/) must be divided by y ' ^-r(x'). Hence, we can write

(2.15) s{xf)=a{xl,yl){yt+r{xl))

for some convergent power series a { x ' , y ' ) . Assume for contradiction that
a -^ 0. As power series in x ' , y ' , we compare orders on both sides of (2.15)
and get

ord5 = orda + 1.

Next, we set y = 0 in (2.15). Then as power series in x alone, we obtain

ord5 > orda+ 2.

Thus, the contradiction implies that a = 0, i.e. s = 0. Conversely, let us
assume that (c) holds. Then from (2.14), we see that both y + f(x,y) and
s(x) can be divided by so<p(x,y). Since y+f{x,y) is irreducible, then s{x)
must be divided by y+f(x,y). Hence, we get (b). This completes the proof
of Proposition 2.1. D

Next, we assume that s(x) = 0. By a linear transformation

(x,y) -^ {ax, ay),

one can achieve that
1, if a is even,

Ta =e= =bl, if a is odd.
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With the normalization for r^, we have a = 1 if a is even, and a = ±1 if a
is odd.

From the proof of Proposition 2.1, we see that the vanishing order of
s(x) is an invariant of the system (1.2). One can also give a characterization
for the vanishing order of r(x) when 5 = 0 . Here, we need Theorem 1.1.
First, Theorem 1.1 implies that v is actually integrable. The curve of the
singular points of v is

S:y-^-f(x,y)=0.

Let 7 be the level curve of integral passing through the origin. Then a is
the order of contact of 7 and S at the origin. When a is even, S is located
on one side of 7. If a is odd and e = —1, then the orbits of the vector field
are attracted to S. When a is odd and e = +1, the orbits will leave S along
level curves of integral.

Proof of Theorem 1.2. — We put i + jo- to be the weight of x^y3.
For a power series p(^,2/), we denote by pn-j the coefficient of x^y:) with
weight n, and also by wtp the largest integer n such that all coefficients of
p of weight less than n vanish.

Assume that y? is a transformation which transforms (1.2) into

j-'̂ I;^. $-»•
J=<T+1

Then (p has the form
f ^=ax-^-u(x,y), wtu>2,

(2.16) \ , .[ r j =ay-^-v(y),

where a = 1 if a is even, and a = ±1 if a is odd. Notice that a^"1 = 1.
Then we have the following functional equation:

(2.17) yu^ + ex^Ux - eax^u - r^ax) + aro{x) = v{y) + E{x, y),

where
^0 (x) == ̂  T j X 3 , r$ (x) = ̂  r]x3,

J>(T J>0"

E(x^y) = r^arr + u) — r^(arc) — VQUx + e ((arr + uY — ax0 — (TXa~lu).

We want to show that wt u > a. Let

u(x, y) = Uk-ftX1^ + ..., 1 < k < a.

Notice that the weight of terms in E is at least k + o~. On the other hand,
the coefficient of xk~ly on the left side of (2.17) is kuk,o. Hence, Uk;o = 0.
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This shows that the weight of u is at least a. By collecting terms in (2.17)
with weight less than 2a — 1, we get

r^a3 = arj, a < j < 2a - 1.
Next, by comparing the coefficients of terms of weight 2a — 1 in (2.17), we
obtain

Ua;0 = €Ua;l, 7^_i = r^a-l-

Therefore, the coefficients TJ (a + 1 < j <, 2a - 1) are invariants, if we
restrict the first non-zero coefficient of even order to be positive when a is
odd.

We now assume that a = 1 in (2.16). To achieve that r ^ , ^ = 0
for m > 1, we compare the coefficients of weight (m + l)a on both sides of
(2.17), which gives

^n;0 = ————— (r-n+^-i - En+<7-l;o) , n = 771(7 + 1,

^^^^^^•^.y Kj<^e(n-0+l)a) - J - ^

^m+l = Un;m ~ -E'n+o'-^m+l-

Therefore, the coefficients of u of weight ma + 1 and the coefficient of v of
weight (m + l)a are uniquely determined by rjc (k < {m + l)a) and the
coefficients of u with weight less than ma + 1.

Next, consider the coefficients of u of weight
n==ma-{-k, 0 < k < a, k ^ 1.

From (2.17), we get
kUn^m = ̂ n+or-l;m+l? k > 1,

^•-l=£;n+g-l;3,^.:(^l)a)^";J•, l ^ j ^ m ,

r^+^.i = rn+a-i + e (n - a) Un;o - En-^-a-i-,0-

Hence, r^^^^_^ and coefficients of u with weight ma + A;, except for
^mo-;m5 are uniquely determined by rj with j < (m + l)cr + k — 1 and the
coefficients of u with weight less than ma + k. Therefore, one can achieve
that r^ = 0 for j = 2 ,3 , . . . , m through a formal transformation (2.16), of
which the coefficients of u with weight up to (m — l)a + 1 and coefficients
of v with weight up to ma are uniquely determined by the coefficients
'^a;l5'^2a;25 • • • ^(m-l)cr;m-l- D

Furthermore, by counting the number of coefficients, we see that the
system (1.3) has infinitely many invariants when a >, 3.
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3. Solutions to approximate equations.

The convergence of transformation <1> cannot be determined directly
from the functional equations (2.3) and (2.4). In this section, we shall give
some estimates of solutions to the approximate equations.

We shall consider the following approximate equations:

(3.1) -yux(x,y)+fo(x) = f(x,y)-}-fo(x)u^(x,y)

- foW^(x,y) -v(x,y),

(3.2) -yvx(x, y) + go(x) = g(x, y) + fo(x)v^(x, y),

in which /o and go are added to adjust terms purely in x.

One can see that under the normalizing condition (2.2), power series
n? ̂ 5/0^0 are determined uniquely from (3.1) and (3.2). The proof can
be given by an argument similar to the proof of the existence and the
uniqueness of solutions r.s.U.V to (2.3) and (2.4). We left the details to
the reader.

With the above solution {u^v}^ we define a formal transformation (p
by (2.1). Assume that (p transforms (1.1) into

(3.3) d ^ = y ' + p ^ , y ' ) , d^=q^,y').

Then we have the following identities:

(3.4) p { x ' , y ' ) = f(x,y)^-(y-}-f(x,y))u^(x,y)+g(x,y)uy(x,y)-v(x,y),
(3.5) q(xf,yf) = g(x,y)+(y-}-f(x,y))v^(x,y)-^-g(x,y)vy(x,y)

with ( x ^ y ) = (^-l(a;/,^/). We denote

do = min{ord /i, ord g}, d\ = min{ord pi, ord q}.

We need the following.

LEMMA 3.1. — Assume that /, g in (1.1) are holomorphic in Ay. Let
ZA, v be solutions to (3.1) and (3.2), which satisfy the normalizing condition
(2.2). Assume that (p denned by (2.1) transforms (1.1) into (3.3). Ifv defined
by (1.1) has a non-singular formal integral, then

(3.6) di > 2do - 1.

Proof. — Applying II to (3.2), we get

ovd{yvx} > min{ord^,ord{/o^r}}-
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By (2.2), we also have ordur = ordv - 1. Notice that ord/ > 2. Hence

(3.7) ord v^ do.

We now apply II to (3.1) and get

(3.8) oidu>do.

Adding yu^{x,y) - fo(x) to both sides of (3.1), we see that

(3.9) ord(/o - /o) > do.

Eliminating v from (3.1) and (3.4), we get

p{x + n, y +v)= fo(x) + f^x, y) + fiu^(x, y) + guy(x, y).

From (3.7) and (3.8), we see that

(3.10) P{x,y)=fo(x)+0{do),

(3.11) p(x + u, y + v) = fo(x) + fo{x)u(x, y) + 0(2do - 1).

Combining (3.10) and (3.9), we obtain that p(x,y) == fo{x) + 0(do), i.e.

pi(a;, 2/) = 0(do), po{x) = /oM + 0(do).

Thus, we get

p(rr + u, y + v) = p(a;, 2/) + fo(x)u{x, y) + 0(2do - 1).

Now (3.11) yields
P(^)=/o(^)+0(2do-l).

In particular, we have

(3.12) ordpi > 2do - 1.

From (3.2) and (3.5), it follows that

q(x + u,y + v) = go{x) + 0(2do - 1).

This implies that ordq > do, and

q{x +u,y+v)= q(x, y) + 0(2do - 1).

Therefore, we have q{x,y) = go(x) + 0(2do - 1). In particular, we obtain
that

(3.13) ordgi > 2do - 1.

Notice that (3.3) also has a non-singular formal integral. From (2.10),
it follows that

ord qo > ord q\.
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Hence, (3.12) and (3.13) give us (3.6). D

We now want to show the convergence of u and v. We need the
following notations :

0'n = |/n+l,oh P"n = max {I^Q,/?!},
Q;-(-/3==n,a>l

bn = max{\fa,p\,\ga,0\}, Vn = max {\v^\}.
o;+/3=n,/3>l Q!-(-/3=n,o;>l

Given two power series p{x^y) and q(x^y\ we shall denote p -< g, if
\Poc^\ <. 9a,/3 fo1' all a,/3 > 0. We shall also denote

p(x,y) =^\pa,(^\xay(3.

Comparing the coefRcient of xay^ on both sides of (3.2), we have

-(a + 1)^+1,/3-1 = ^a,/3 + ^ (a/ + l^+l^/a^O
Q!/+Q!//==Q

for /3 > 1 and a + /? = n. Let 7 = a" - 1. Then a '+l+^n-^. Hence

I'L^+1,/3-11 < bn + ̂  Vn-^'

Therefore, we have
z/^) ^a(t)y(t}+b(t},

which gives us

(3.14) ^t) -< b(t—1 — a{t)

Solving (3.1) for n, one gets

li(t) -< v(t) + 2a(t)/^) + b(t).

From (3.4), it follows that

^^(T^C)).
which yields

(3.15) ii(f) -< ——2bw——.{ ' pu (l-2a(t))2

Remark 3.2. — The results in this paper, except for Theorem 1.2
which needs obvious modifications, are valid for holomorphic vector fields.
In fact, for the proof of Theorem 1.1, we shall introduce holomorphic
coordinates.
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From now on, we shall treat all variables as complex variables until
we finish the proof of Theorem 1.1. Let us introduce

||/||^ = max{|/0r, i/)|; (^ y) € A^}, A^ == {(x, y) € C2; |a;| < r, H < r}.

Assume that / and g are holomorphic on Ay.. Denote

Bo=max{||/i|U|^||r}.
Assume also that

(3.16) Ao=| | /o | | r^- 0 < r < l , 0 < 6 < 1/4.

The Cauchy inequalities give
\f | ^ 11/lllr , i .. \\9l\\r r, ^ -,
1^1 ^ ~^^ \9^\ ̂  TO^' '3 ̂  L

Hence, we get

(3.17) ||&||(i-^ < f^ ̂ ((1 - 0)7-)^ < ̂ .
fc=2

We now have

||^ll(i-2,)r < E^ + 1)^1 - 20)r)fc < 2r^fc^((l - 20)r)k-l

k>2 k>2

^ o » l l , / n ^ 2||/^||(i_^
^ ^ll/^ ll(l-2(?)r ^ ————^————,

in which the last inequality comes from the Cauchy formula. Now (3.15)-
(3.17) yield

(3.18) Nl(i-2^ <. ̂ °,

where, and also in the rest of discussion, Cj > 1 stands for a constant. With
a similar computation, one can also obtain the following estimate:

(3.19) IHI(i-2^ < c^0.

We are ready to prove the following.

LEMMA 3.3. — Let (p be as in Lemma 3.1. Suppose that, for
C3 =max{ci,C2},

r ffir(3.20) Ao < -, Bo < —.4 4c3
Then we have

(3.21) <^:A(i_20)r —> A(i_0)^, (R~ :A(i_4<9)r —^ A(i_3(9)^.
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Proof. — From (3.18)-(3.20), it is easy to see that ^.^_^y -^
A(i_0)^. To show the existence of the inverse mapping, we fix { x ' , y ' ) e
^(i-4<9)r and consider the mapping

T(x, y) = {x' - u(x, 2/), y ' - v{x, y)).

It is clear that T maps \^e)r into itself. From (3.18) and (3.20), we get

I I - || . INI(l-2<?)r 1
\\^x\\{l-36)r < ———-———— < -.or 4

Similarly, we can verify that IM(i-30)rJM(i-3(?)r and \\Vy\\^_^ are
less than 1/4. This implies that with the norm

||(̂ )|| =max{|^|,|^|},

T is a contraction mapping. By the fixed-point theorem, T has a unique
fixed point (x,y) in A(i_3^, which is clearly ^ ( x ' . y ' ) . n

Let us keep the notations and assumptions given in Lemma 3.3. Fix
{ x ' , y ' ) e A(i_4^. Then (x,y) = ^~ l(a• /,2/ /) G A(i_4^. From (3.4), we
have

/.i 7
1/(^ y'} - f{x, y) | = | y -^f{x' - tu{x, y), y' - tv(x, y)) dt\

^ ll/a:|l(l-30)r||^|l(l-30)r + \\fy H(l-30)rlMI(l-30)r.

From (3.20), it follows that \\f\\r < r. Now the Cauchy formula gives

ll/a;|l(l-30)r ^ -^•

A similar estimate also holds for fy. From (3.18) and (3.19), we now get

(3.22) \f^^)-f^y)\^^±^.

From (3.20), we have

\V + f{x,y)\ ^ (1 - 3(9)r + Ao + Bo < 3r.

Using (3.18) and the Cauchy formula, we get

IMI(1-3<,),. <. ̂ , ||^|1(1-3^ ^ ̂ .

Hence

(3.23) \(y+f{x,y))u^x,y)\<,3^.

We also have

(3.24) \g(x,y)uy(x,y)\ ^ B^ < Bo,
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in which the last inequality is obtained by using (3.20) to get rid of one of
two Bo's.

Substituting (3.22), (3.23) and (3.24) into (3.4), we get

11 f\\ ^ C^BQ
lb-/|l(l-40)r ^ -^3-.

In particular, we have the estimates

(3.25) ||po - /o||(i-4^ <. c^0, |hi - A||(i-4^ <. 2C^0.

From (3.5), one also gets

(3.26) hki-^r < c^0.

We are ready to prove the following.

PROPOSITION 3.4. — Let f,g,p,q be as in Lemma 3.1. Then there
exist two positive constants CQ and €Q satisfying the following property. If

(3.27) Ao = H/o l l r < r/4, Bo - max{||/i||,, \\g\\,} < eo^r,

then ip, denned by (2.1), transforms (1.1) into (3.3) such that

(3.28) Ai=| |po| |(i-5^<Ao+^Bo,

(3.29) Bi =max{||pi||(i_5^,||g||(i_5,).} < ^B^l-e)^^

in which di = max{ordpi,ord9}.

Proof. — We choose eo = l/(4c3). Then (3.27) implies that (3.20)
holds. From (3.25) and Cauchy inequalities, we get

I , . i . c^Bo 1
|PM-/^-^.^_^.

Hence
— — C 4 B o ̂  fl-50^ c^Bo

1|PO-/0|1(1-50)<-^-^I^^J <-^.
k=2 v /

This gives us (3.28), if we choose CQ > 04.

From (3.25), we have

l|Pl|l(l-4^ < ||/l|l(l-4^ + UPl - /l|l(l-4,)r < 3^0.
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Now, the Schwarz lemma yields
/1 _ 5^ \ dl

||Pl|l(l-50)r < |bl|l(l-40)r :,——^
\i -W )

Notice that (1 - 5(9)/(1 - 4(9) < 1 - 0. Therefore, we get

Ihilld-^)^3^0^-^1.
From (3.26) and the Schwarz inequality, we also have

N1(1-5^ ̂ ^(l-^.

Let us put Co = max{3c4,C5}. Then the last two inequalities yield
(3.29). D

4. A KAM argument.

In this section, we shall first construct a sequence of formal trans-
formations <I>n such that (1.1) is transformed into (1.2) under the limit
transformation of {^n}. We shall use a KAM argument to show the con-
vergence of the sequence ^n •

We shall construct a sequence of systems
dx dy
-^ =y+Pn(x,y), -^ =qn{x,y),

where po(x, y) = f{x, y) and qo(x, y) = g(x, y) give the initial system (1.1).
Recursively, pn.Qn are obtained through the transformation (pn constructed
through the approximate equations in section 3.

Let us decompose

Pn(x,y) =Pn^(x)+p^l{x,y), Pn;o{x) =pn{x,0).

Put dn = min{ordp^;i,ord^}. We have do > 2. From 3.1, we know that

dn > 271 + 1.

We now put

rn = J ̂  + nil) r0' 7 ^ = 0 ' 1 ' • • • '
in which i-o < 1 will be determined late. Rewrite

r»+i = (1 - 50n)rn, 6n= g^^a' "=0,1,. . .
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We need to choose ro so small that the following norms are well-defined:

An = ||pn;olk, Bn = max{||^;i ||̂ , ||gn||^}.

Let us first prove a numerical result.

LEMMA 4.1. — Let r^^ni dn be given as above, and let eo, Co be as
in Lemma 3.3. Then there exists ei < eo, which is independent ofro, such
that for two sequences of non-negative numbers {A^}^o aj2^ {B!l}'n=o^ w^
have

(4.1) A:<r»/4, B^^^, n = l , 2 , . . . ,

provided that for all n

(4.2) A^A^^, B^^Al-V^,
" n ^n

(4.3) AS < r-o/16, Bo* < ei^ro.

Proof. — We put
€0^4^B.=

n~ Co27l+2•

Clearly, we see that Bn^i/Bn —^ 1 as n —^ oo. On the other hand, dn > T'
implies that for large n, one has dn-^-i > O^2' Hence, we have

(1 - On)^ < (1 - On}11021 < (1/2)1/^,

if n is sufficiently large. Now, it is easy to see that

^(l-^i^O.

Hence, it follows from (4.2) that there exists no independent of the choice
of ro such that

(4.4) B:^<B:^±1, forn>no.
^>n

Choose ei so small that if B^ satisfies the condition (4.3), then

B^ < Bn, 0 ^ n <, no.
Thus, (4.4) yields the estimate of B^ in (4.1).

As for the estimate of A*^, we have
n rue

A;<A;+E°^-
3=0 3
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Using the estimate of B^ obtained above, we get

A* < ro 4- V" eorn
^S ̂ +Z^^2'

j=0

Notice that ro/2 < r^ < ro. Hence
n oo -.

Y^ rn . V-^ 1E^^E^2^47171'
3=0 j=0

Thus, we obtain
A^<rn/8+eorn.

We may assume that 60, chosen in the proof of Lemma 3.3, is less than 1/8.
Therefore, we obtain the desired estimate of A^. D

Proof of Theorem 1.1. — In order to apply Lemma 4.1 to {Ayj^o
and {Bn}^Q, we need to choose ro. Since ord/o > 2, we may choose ro so
small that /o converges for \x\ < ro, and

(4.5) ||/o||ro<^o/16.

By choosing a smaller ro if it is necessary, we may also assume that /i, g
are holomorphic functions on Ary, and

(4.6) ||/i|k<ei^ro, \\g\\r, < e^ro.

From (4.5) and (4.6), it follows that (3.27) is satisfied. Hence, Propo-
sition 3.4 says that {Ao,Ai} and {BQ^B\} satisfy (4.2). One also sees that
two initial conditions in (4.3) follow from (4.5) and (4.6). Now, Lemma 4.1
implies that

A,,n/4, B,,̂ i.

In particular, this gives us two initial conditions in (3.20) for the new
system defined by p\ and q\. Hence, we may apply Proposition 3.4 again.
By repeating this process, we can prove that

(4.7) A,<r,/4, ^<^|^, n=0,l,...

Therefore, Lemma 3.3 gives us

(^A^, -^A^, n = 0 , l , . . .

Notice that r^ > ̂ 0/2. We have

^n1 = ^ 0 - l o ^ ^ l o • • • o ^ n l : A ^ o -^ro-
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Hence
ll^l-^ll^o^O.

where the norm on the left side is denned to be the maximum of norms
of two components. On the other hand, we know from (3.9) that each
component of ^n^i ~ ^n1 vanishes with order at least dn > 2n. From
Schwarz Lemma, it follows that

ii^i-^ii^o^oQ)2.
Therefore, the sequence <I>^1 converges to a transformation $^1.

It is clear that <I>oo transforms the system (1.1) into a system of the
form (1.2). Since the normalized transformations form a group, we see
that <l>oo is still a normalized transformation. In section 2, we have seen
that <I> is the unique formal transformation which transforms (1.1) into
(1.2). Therefore, we obtain that <E> = <I>oo, so ^ is a convergent transfor-
mation. D

5. Embeddability of parabolic mappings.

In this section, we shall investigate the relation between the embed-
dability of parabolic mappings as time-1 mappings and the convergence
of normalization for parabolic transformations. We shall first show that a
parabolic mapping is formally linearizable if and only if it is embeddable
as a time-1 mapping of a formally linearizable vector field.

Let us put
fxA , /O \>

x = , A =
W VO 0>

Rewrite (1.1) as
d^=Ax+^FIXI==F(x^dt

m>2

where each Fi is a constant matrix of 2 by 1, and x1 = x^x^ for I = (a, /?).

We first assume that F(x) is only given by formal power series. Let
ipt be a family of formal transformations generated by the formal vector
field (5.1), i.e.

(5.2) . ( ^ = F O ( ^ , ( /?o=Id.
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Since the linear part of <^ with respect to x^ and x^ is determined by the
matrix A, then we have the expansion

^(x) = e^x + ̂  Bi(t)x1, Bj(0) = 0,
m>2

where Bj(^) is a matrix of 2 by 1 given by formal power series, and

e^-f^n-P^
-2^ ^ t -^o J-

n=0 v /

Now, (5.2) takes the form

(5.3) B^t) = ABi(t) + bi(t), Bj(0) = 0,
where bi(t) depends only on A and Bj(t) with |J| < |J|. More precisely,
we have

(5-4) W=\ E Fj^x)} +b^
[\JHi\ } i

where {-}j denotes the matrix of coefficients for x1, and
bi(t) = 0, if Fj = 0, for all \J\ < \I\.

The solution Bi to (5.3) is given by

(5.5) BI(t}=eAt fe-^id) dt.
Jo

Hence, Bi(t) are real analytic functions defined on the whole real line. In
particular, we see that ̂  is a family of formal transformations defined for
-oo < t < oo. One also notices that if v = ̂ z> for a formal transformation
^, then the 1-parameter family of formal transformations generated by v
are given by ^ o ̂  o v^~1.

We need the following lemma.

LEMMA 5.1.— Let v be a formal vector field defined by (5.1), and (^
the 1-parameter family of formal transformations generated by v. Assume
that (5.1) is not a linear system. Then (pt is not a linear transformation for
all t ̂  0.

Proof. — We assume that there is Jo = (o^A)) such that

Fio ^ 0, Fj = 0,
for |J| < |Jo|, or for J = (a, |Jo| - a) with a > ao. Then from (5.4), it
follows that

bia(t)=Fi^O.
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Next, we use the formula (5.5) and get

BIoW=(t ^Y^O, for^O,
\u t /

which implies that ̂  is not a linear transformation for each t ̂  0. D

We now consider a parabolic transformation

(5.6) ^ y) = T{x^ y) + 0(2), T{x, y) = (x + 2/, y).

In [5], it was proved that there exist real analytic parabolic mappings
which are not linearizable by any convergent transformation. In fact, the
parabolic mappings are constructed through a pair of real analytic glancing
hypersurfaces. On the other hand, Melrose [6] showed that a pair of smooth
glancing hypersurfaces can always be put into a certain normal form by
smooth transformations; and consequently, the parabolic mappings coming
from a pair of smooth glancing hypersurfaces are always linearizable by
smooth transformations. Therefore, we can state the following.

THEOREM 5.2. — There exists a smoothly linearizable real analytic
transformation ^p of the form (5.6), which cannot be transformed into T by
any convergent transformation.

Now, we see that Corollary 1.3 follows from the following.

PROPOSITION 5.3. — Let (p be a real analytic transformation of the
form (5.6). Assume that (p is formally equivalent to T. Then (p is a time-1
mapping of a real analytic vector field of the form (5.1), if and only if y
can be transformed into T through a convergent transformation.

Proof. — Obviously, y is embeddable if it is linearizable through con-
vergent transformations. We now assume that y? = ^p\ for a 1-parameter
family of transformations ^i generated by a real analytic v of the form
(5.1). Let <I> be a formal transformation which linearizes </?. This implies
that the time-1 mapping of the formal vector field <^v is a linear transfor-
mation. From Lemma 5.1, it follows that ^^v is a linear vector field. Now,
Theorem 1.1 implies that v is linearizable by a convergent transformation
0. Using Lemma 5.1 again, we know that y is also linearizable by the same
transformation (f). D
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