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ANOSOV FLOWS AND NON-STEIN
SYMPLECTIC MANIFOLDS

by Yoshihiko MITSUMATSU (*)

1. Introduction.

In her paper [14], McDuff constructed symplectic structures with
contact type boundaries on compact 4-manifolds W* = M3 x [0,1]
where M3 is the unit cotangent bundle S!(T*X,) of closed hyperbolic
surfaces ¥4. In the case of closed manifolds, we already have many examples
of closed symplectic manifolds which do not admit Kahler structures, e.g.,
Kodaira and Thurston’s nilpotent 4-manifolds [16] and so on [14]. The
obstructions to Kahler structures from symplectic structures are usually
found in the Hodge theory.

McDuff’s example shows that in the category of compact manifolds
with boundaries the symplectic geometry admits a different feature of
convex boundaries from that of the complex geometry, i.e., disconnected
convex boundaries can happen. (The greater part of [14] is rather devoted
to show some similarities between the two geometries, using the arguments
on J-holomorphic spheres.)

In Section 2 of the present article, we interpret and simplify McDuff’s
method of construction, i.e., finding and somehow joining two contact
structures with opposite orientations on a single 3-manifold M, in terms of
the linking pairing on the dual of unimodular 3-dimensional Lie algebras.
Then we obtain a slightly wider class of 3-manifolds M such that M x [—1,1]
admits such convex symplectic structures, which includes all compact
quotients of SL(2;R) and of some solvable Lie group by their discrete
cocompact lattices (Theorems 1, 2).

(*) Partially supported by Grant-in-Aid for General Scientific Research N° 07804004.
The Ministry of Education, Science and Culture.
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In the subsequent section, we generalize the construction a little bit
further, however apart from the linking pairing, so that we can start from
any closed 3-manifold which admits Anosov flows with smooth invariant
volumes (Theorem 3).

As to the category of open manifolds, in [4] Eliashberg and Gromov
formulated the notion of complete converity for open symplectic manifolds.
This notion has its origin in Stein manifolds, which satisfy it. They also
showed that contact type boundaries can always be completed as convex
ends. Using this method they modified McDuff’s examples into completely
convex open symplectic manifolds which can not be raised to Stein complex
manifolds. Of course, this method works for our examples as well. Especially
in the case of our main examples in Section 2, this completion is explained
in terms of the linking pairing.

In Section 1, the notions of convexities in symplectic and complex
geometry are reviewed.

To close this article, we raise in the final section some remarks and
problems around bi-contact structures whose existence under the presence
of Anosov flows is the main observation from a dynamical point of view.

Laudenbach recently informed the author that the simplification of
McDuft’s construction in terms of Lie algebra has already been done
by E. Ghys around 1990-1991 and such phenomenon that non-connected
convex boundary can happen has been well-known since then. It is described
in [12]. Independently, H. Geiges has similar results with some generalization
to higher dimensions [6]. The author would like to express his further
gratitude to Etienne Ghys for his numerous suggestions.

1. Review of symplectic convexity.

We review the concept of symplectic convexity which was introduced
in [4]. Bennequin’s exposition [1] is also a nice reference for topics around
the symplectic, contact, and holomorphic convexity.

1.1 Stein manifolds and convexity.

Among a large variety of equivalent definitions the notion of Stein
manifold, one of the most convenient for us might be a theorem of
Remmert and Stein; a complex manifold W is a Stein manifold iff it
can be holomorphically and properly embedded into CM for some N.
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A theorem of Grauert says this is equivalent to the existence of a proper
s.p.s.h. function bounded below. Here a smooth function is said to be strictly
pluri-subharmonic (s.p.s.h.) if it is always strictly subharmonic whenever
restricted to any local holomorphic curve.

As such a function ¢ can be perturbed into a s.p.s.h. Morse function,
a Stein manifold W of dim¢ W = n is homotopically equivalent to a CW-
complex of dimension at most n. Also, this function ¢ provides us a Kéahler
structure w = —dJ*dy on W, where J is the natural almost complex
structure on TW and J* is its dual on T*W. Then the gradient vector field
Z = —Vp of —p is complete and satisfies the relation

Lzw=—w

and the compactness condition (i.e., the forward orbit of any compact
subset remains relatively compact). As we will review soon later, the notion
of complete convezity of symplectic manifolds was extracted from this
situation. If we start from an embedding of a Stein manifold W into CV,
we can take p(z) = %|z|? as a s.p.sh. function on W and the resul-
ting symplectic structure w is nothing but the restriction to W of the
standard symplectic structure on CV.

The existence of a proper s.p.s.h. function also implies that a Stein
manifold is approximated from inside by a sequence of s.p.c. submanifolds. A
relatively compact connected open submanifold D of a complex manifold W
and its boundary M = 9D are said to be strictly pseudo-convez (s.p.c.) if
there exists s.p.s.h. function ¢ on a neighbourhood of D with 0 its regular
value such that D = ¢~1(—00,0) and 8D = »~1(0). A s.p.c. boundary
M has a natural contact structure £ = TM N J(T'M). In general, on
a level hypersurface M = ¢~1(0) of a regular value 0 of some smooth
function ¢, the 1-form a = J* dy|,, defines a hyperplane field £ and the
Levi form L = da(-,J-) defines a symmetric pairing on £. The fact that
@ is s.p.s.h. implies that L is positive definite and also that £ is a contact
plane field. As is well-known in the theory of complex analytic spaces, any
s.p.c. domain can be blown down to some Stein space and therefore has
connected boundadry. See [15] or [9].

1.2. Convexity in symplectic geometry.
A vector field Z on a symplectic manifold (W,w) (or on its open
subset) satisfying

Lzw=—w
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is said to be contracting. Under the relation tzw = —a, a contracting
field is equivalent to a primitive o (which is called Liouville form), of
the symplectic form w = da. If a hypersurface M of W is transverse
to a contracting vector field Z, o)), is a contact 1-form on M. Such a
hypersurface M is said to be of contact type (see [17]). The boundary of a
symplectic manifold is said to be of contact type or convez if there exists a
contracting vector field on some neighbourhood of the boundary which is
inward transverse to the boundary.

An end of an open symplectic manifold is said to be completely
conver if there exists a contracting vector field on some neighbourhood
of the end which is complete and whose backward orbit of some compact
subset fills up the end. As is shown in [4], any convex boundary can be
completed as a completely convex end, because, a contracting field Z defines
a product collar neighbourhood of the boundary such that the symplectic
structure is expanding exponentially along the flow generated by —Z,
therefore we can stack and stack again the collar neighbourhood infinitely
many times to obtain the completion. If there exists a globally defined
contracting complete vector field and whose forward orbit of any compact
subset remains relatively compact, the symplectic manifold is said to be

completely conver. Surely any Stein manifold admits such a contracting
field.

In [4], Eliashberg and Gromov modified McDuff’s example by this
completion procedure to obtain an example of completely convex symplectic
manifold which can not be raised to a Stein structure. If we further impose
the existence of Morse like function which is compatible with the contracting
field Z, the manifold is called Weinstein. As it follows from [2] all Weinstein
structure admits a compatible Stein structure. Therefore we will work only
with the complete convexity.

2. Main examples.

2.1. The linking pairing on 3-dimensional Lie algebras.
Let g be a 3-dimensional unimodular Lie algebra corresponding to a
Lie group G. Here we regard elements of g (resp. of the dual g*) as left
invariant vector fields (resp. 1-forms) on G. We fix an invariant volume

3
element vol in A g*, or may fix a co-compact discrete subgroup I" of G,

3
instead of choosing vol € Ag*. The linking pairing LK(a, 3) € R for a,



ANOSOV FLOWS AND NON-STEIN SYMPLECTIC MANIFOLDS 1411
B € g* is defined by

aAdf=LK(e,5)-vol or LK(a,f)= / aAdp.
G/r
Remarks.

1) For 3-dimensional Lie groups, the existence of co-compact discrete
subgroups of G is equivalent to the unimodularity.

2) If g is unimodular, i.e., vol € /3( g* is adjoint-invariant, then, for any
a,B,v € g* and X € g, we have Lx(aABA+) =0 and thus d(a A B3) = 0.
Therefore the unimodularity implies that this bilinear form LK is symmetric
and adjoint-invariant.

3) Among 3-dimensional unimodular Lie algebras, only psl(2;R) and a
solvable one (see Example 3) below), have non-definite linking pairing LK.

4) The pairing LK is non-degenerate only for psl(2;R) or su(2), the
simple Lie algebras, and of course essentially coincides with the Killing
form. In the solvable or nilpotent cases, LK and the Killing form have in
general different ranks.

5) The unimodularity also implies that this linking is essentially defined

on the space of exact 2-forms B?(g) = d(g*) € /2\(g*) by
k(de, dB) = LK(«, 8)

and is then non-degenerate. The choice of the volume element vol gives a

2
bijective correspondence between g and A(g*), through which the pairing 1k
is in fact interpreted as an asymptotic linking of corresponding vector fields.
This is the reason why we call LK the linking pairing.

Examples.
1) The Lie algebra su(2) has a basis (X1, X2, X3) and its dual basis
(XT,X3,X3) for su(2)* which satisfy

[Xi, Xiy1] = Xiya, dXio= XA AXS, i=1,2,3 (mod 3).

(3

Therefore (X7,X5,X3) is ortho-normal w.r.t. LK. Thus, su(2) has
(positive) definite linking pairing. Every non-trivial element o € su(2)*
defines essentially the same contact structure on SU(2).

2) As to the other simple Lie algebra psl(2; R), the dual basis (h*, £*, k*)

(n=3(-1) =3 o) *=3(0))

to
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is orthogonal and satisfy
LK(h*,h*) = -1, LK(¢£*,¢*)=-1, LK(k*,k*)=1,

for vol = h* A £* A k*, and thus LK is non-definite. The negative
(resp. positive) 1-form (e.g., ¢* (resp. k*)) defines a negative (resp.
positive) contact structure on SL(2;R)/T". Any point on the light cone
L = {a € g*;LK(a,a) = 0} except for the origin is dual to a parabolic
element in psl(2; R) and defines an Anosov weak (un)stable foliation.

3) Fix a unimodular hyperbolic matrix A € SL(2;Z), traceA > 2, and
take semi-direct products S4 of Lie groups and I'y4 of their co-compact
lattices

0 - R — S4 — R — 0
U U U
0 - 22 — Ty — Z — 0

defined by the action exp(rlogA) of 7 € R on R?. Then we obtain a
solvable Lie group S4. Changing the coordinate according to the eigen
decomposition of the automorphism A, we see that its Lie algebra s4 is,
independently of the choice of A, always isomorphic to the solvable Lie
algebra solv :

0 - R? — solv— R —0,

the semi-direct product defined by the action (] _?) of 7 € R on R2. We can
take a basis (X,Y,T) of solv according to the above semi-direct product
decomposition, so that [T, X] = X, [T,Y] = —Y, and [X,Y] = 0 hold. Then
the self-linking of o = zX* 4+ yY™* + 7T™* € solv is given by LK(a, o) = zy.
Thus LK is non-definite and degenerate.

2.2. Constructions of convex non-Stein manifolds.
Following McDuff’s construction, we join two invariant contact forms
a_1 = h* and a3 = k* on M = PSL(2;R)/T" by a smooth curve a; in
psl(2; R)*, in order to obtain a smooth 1-form o = {@;} on M x [—1,1] such
that w = da defines a symplectic structure with contact type boundaries.
The linking pairing tells us that we simply have to join them by the
segment.

THEOREM 1. — Let g be one of two Lie algebras psl(2;R) or solv
and M = G/T be a quotient of corresponding Lie group by a co-compact
lattice. Then, any smooth curve oy, —1 <t < 1, in g* which satisfies

d
T LK(at,a¢) >0, LK(a-1,a-1) <0< LK(a1,01),
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defines a symplectic strucuture w = da with contact type boundaries
on M x [-1,1]. For example, in the case of g = psl(2;R) (resp. solv),
a = {1+ t)k* + (1 — t)h*}, (resp. oy = X* + tY*) defines such a
structure.

psl(2,R)* solv*
LEMMA. — For any 3-dimensional unimodular Lie algebra g, we have
the followings:
2 3
1) dg: Ag* — A g* vanishes.
d d
2) -a (at AN dat) = 2(Eat) A dat.

The following proposition follows immediately from this lemma, which
assures the non-degeneracy of the 2-form w under the condition of the

theorem. This will complete the proof of Theorem 1. O
3
ProposiTiON 1. — For any fixed volume element dvol € Ag*, we
have
9 d
wi= LK(a¢, ) - dt Advol.

As was mentioned in Section 1.2 we complete the two boundary
components M x {1} as completely convex ends to obtain a complete
convex symplectic structure on M x R. This is done in an explicit way in
terms of the linking pairing LK.

THEOREM 2. — Any smooth curve a; : R — g* which satisfies

d .
a LK(at, at) >0, t—l}gloo LK(at,at) — +00
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defines ‘a complete convex symplectic structure w = da on M x R. For
example, in the case of g = psl(2;R) (resp. solv),

ap = Z{(L+t)k" + (1 - t)h*},

(resp. oy = X* + tY™) defines such a structure. This cannot be raised to a
Stein manifold because of H3(M x R) # 0.

Remarks.

1) The curve a; hits the light cone £ at some point which defines an
Anosov foliation. As we will observe in the next section, any Anosov flow
on a 3-manifold gives rise to a pair of contact structures with opposite
orientations.

2) Theoretically Theorem 2 is of no interest, because, up to symplecto-
morphism, the structure only depends on the germ of the curve oy around
the point of transverse intersection with the light cone and does not depend
on any prolongation of it.

To prove Theorem 2, it suffices to see the behaviour in the #-direction

of the contracting vector field Z of w = da (i.e., tzw = —a). The followings
do it, where 3) is deduced from Lemma 2) above, while 4) is an independent
fact. O
LEMMA.
3) One has

-1
—dt(Z2) = {% LK(at,at)} LK(o4, o).

4) For any smooth function which satisfies
d .
Tﬁf(t) >0 and t_l}gloo f(t) — %oo,
the vector field
d -1 d
(Hf@) @

on the real line R is complete.

3. Volume preserving Anosov flows.

We generalize the construction in the previous section to closed
oriented 3-manifolds which admit nice Anosov flows.
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THEOREM 3. — If a closed oriented 3-manifold M admits a smooth
Anosov flow ¢ which preserves a smooth volume d vol of M, then M x [—1, 1]
carries a symplectic structure with contact type boundaries, and thus
M x R carries a complete convex symplectic structure which cannot be
raised to a Stein manifold.

It suffices to construct a symplectic structure with a Liouville form «
on M x [-1,1] corresponding to a contracting field which assures the
boundaries of contact type.

First we take an arbitrary Riemannian metric gg. Let
TM =T¢® E"™ @ E**
be the Anosov decomposition, i.e.,
T¢ = {tangent vector along the flow lines},
E™ = {v € TM; |[Té:(v)]| < A- e®*|lv], t <0},
E* = {ve€ TM;|T¢:(v)| > A~ - ®*||v|, t > 0},

for some constants A > 1 and B > 0. We call E** (E**) strong (un)stable
direction.

The C"-section theorem (see [11]) says that weakly (un)stable two
2-plane fields E* = T¢® E** and E° = T'¢® E°° have their differentiability
at least of class C!, so that we obtain two codimension 1 foliations F*
and F° with their tangent bundles E* and E° respectively. The following
lemma is a kind of folklore.

LeEmMmMA. — For some Riemannian metric, we can assume the constant
A in the definition of the Anosov splitting to be 1, i.e., we can assume that
any non-zero tangent vector in the strong unstable direction begins growing
bigger immediately along the flow.

We call such a metric adapted. This is given by replacing any metric gy
with an average g = T~! fOT ¢* go for sufficiently large T'. This lemma and
the following proposition is independent of the presence of smooth invariant
volume.

PropoSITION 2. — For any Anosov flow ¢ on M3 with an adapted
Riemannian metric, let £ be a plane field defined by rotating E* around T'¢
as the axis by an angle of 45°, and 1 be another one by —45°. Then the
pair (£,n) of those plane fields defines a bi-contact structure.
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A bi-contact structure (€,m) on a 3-manifold M is defined to be a
transverse pair of contact plane fields £ and 7 with different orientations,
i.e., £ and 7 are defined by 1-forms « and  respectively such that a A da
and B A df are volume forms of M of opposite orientations.

As it can be seen from the figures, neither of the two plane fields £
and 7 is preserved by the flow, while they are tangent to it. Therefore they
are non-integrable and define contact structures. Because the rotational
movements of T¢.(£) and T¢.(n) around the axis T'¢ are in the opposite
directions, the two contact structures have different orientations.

Proof of Theorem 3. — A smooth invariant volume d vol gives rise to
a transverse invariant volume tq /dt( dvol) on the normal bundle TM/T¢
to the flow. Independently, applying the previous lemma, take any adapted
metric hg on TM/T¢. Then, we obtain a unique C! metric h on TM/T¢
such that E* @ E° is an orthogonal decomposition w.r.t. b, hjg« = hg) g,
and vol, = tg/4¢(dvol). Remark that this C'-metric h is adapted. Then
take C! 1-forms w* and w® which define weak (un)stable foliations F*
and F* respectively and satisfy ||w¥||p = ||w®|ln = 1.

Now we Cl-approximate w* and w® by C*® 1-forms Q% and Q°
respectively. Then, the contact structures £ and 7 are defined by the C*°
1-forms

of = 1@ +07), "= (" -
and we define a 1-form a = {a:} on M x [-1,1] by

a; = (1—t)a + (1 +t)a = Q¥ —tQ°.
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The symplectic 2-form w on M x [—1, 1] is defined to be w = da as before.
A direct calculation shows

w? = dt A {2(a" A da” — of A daf) + d(Q¥ A QF) — 2tQ° A dQ°T.

In the process of Cl-approximation of w* and w® by smooth forms Q%
and Q°, the first term remains close to a volume form coming from C*
contact structures. On the other hand, thanks to the invariance of the
volume and the integrability, the second and the third ones can be made
arbitrarily small. Thus we obtain a symplectic structure on M x [—1,1]
with contact type boundaries. O

Remark. — If we impose the smoothness on the strong Anosov
splitting as well as on the invariant volume, a theorem of Ghys (see [7])
tells us that there exists no such Anosov flow other than the examples 1)
and 2) in Section 2.1.

On the other hand, the Dehn surgery method to produce new
manifolds carrying Anosov flows, which was initiated by Handel and
Thurston in [10] and developed by Goodman in (8], shows us that there exist
much more graph manifolds which admit Anosov flows other than quotients
of 3-dimensional Lie groups. Some of them admit invariant smooth volumes,
so that we can apply Theorem 3, while the others do not. Recently Foulon
introduced the idea of contact Anosov flow to establish a wider class of
Anosov flows with invariant smooth volumes. For the moment, his result [5]
seems to give us the widest such class, to which we can apply our theorem.

4. Bi-contact structures and projectively Anosov flows.

Even though it is nearly trivial, Proposition 2 in the previous section
seems to have some independent interest. Therefore we close this article
by raising some remarks and problems around bi-contact structures. More
detailed discussions will find their place in a forthcoming paper.

The converse to Proposition 2 is not true in general. A bi-contact
structure (£,7) provides us a vector field X as the intersection of £ and 7
and a flow ¢; generated by X. If we apply the following lemma with a help
of the compactness of M to the time one map of the flow which is induced
on the oriented projectified S'-bundle S1(TM/T¢) (i.e., the associated
(R2\ {0})/R.-bundle of the set of oriented lines) of the normal bundle, we
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obtain an almost converse of Proposition 2, i.e., we can find two invariant
continuous plane fields

E* = t—lfﬁo(T@)*g = t_lfToo(Tfﬁt)*n

and
E° = lim (T¢)& = lLm (T'ds)sn
t——oo t——o0

like Anosov weak splitting, by the standard argument to find an invariant
section under a fiber contraction. This is the first half of Proposition 3
below. However, the flow thus obtained is not necessarily Anosov.

LEMMA. — For any € > 0, any positive integer k, and any
a;, bi ) .
= ; =1,...,k
A; (ci, o) €SLER), =1k,
which satisfy a;, b;, c;,d; > €, we have

Tr(A; --- Ag) > (1 + 2e2)F/2,

n ST - four invariant sections
TM/T¢ SHTM/T4)

A flow ¢; on a closed 3-manifold M is said to be projectively
Anosov (pA for short), iff the oriented projectified S'-bundle S*(TM/T¢)
admits four continuous sections £% and £ which are invariant under the
projectified action of T'¢; and any other orbit not contained in £} nor in £3
is attracted to £ ast — oo and to £ as t — —oo. Necessarily, £} and £1
are antipodal two by two. We can show the latter half of the following
proposition in the same way as we did in the previous section by passing
through adapted metrics.

ProposITION 3. — If M3 admits a bi-contact structure, the vector
field defined by their intersection generates a projectively Anosov flow.
Conversely, if M admits a projectively Anosov flow, there exists a bi-
contact structure whose intersection is tangent to the flow.
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The followings are some examples of pA flows which are not Anosov.
We call such a flow essential pA or EpA.

Examples.

1) Any Anosov flow can be deformed around its closed orbit into a new
EpA flow in such a way that the first return map is contracting in a small
neighbourhood of the periodic point.

2) Any T2-bundle over S' admits EpA flows, constructed as follows.
A pair II = (€, n9) of contact plane fields with opposite orientations on a
3-manifold is called pre-bi-contact (pbC for short) structure if there exists
a common smooth non-singular Legendrian vector field Xpj. Its singular set
Y is defined to be {z | &, = 70, }, Which easily turns out to be smooth tori
transverse to Xp. A pbC structure with non-empty singular set is called
essential pbC (EpbC for short) structure.

Any EpbC structures can be modified into a bi-contact structure
as follows. Let oy and By be contact 1-forms which define & and 7o
respectively and 7 be a non singular 1-form such that y(Xp) > 0. Then
it is easy to see that for sufficiently small ¢ > 0 a new pair of contact
1-forms (o, 3) = (ap, Bo + €y) defines a bi-contact structure. On T2 with
its standard coordinate (z,y, z), a pair of contact 1-forms

(@0, Bo) = (cos (2mz) dz + sin (27z) dy, cos (27z) dz — sin (27z) dy)

defines the most typical EpbC structure II = (&g, 1) with its singular set
g = {z € }TZ}, and the common Legendrian vector field is given by
Xn = d/dz- Fortunately, the resulting bi-contact structure (£,7) has a
real analytic Anosov like splitting E* and E*® which gives rise to analytic
foliations F* and F*. The singular set ¥ coincides with the union of
compact leaves of these foliations. See also remarks below.

Similar construction works for any 72-bundle on S*.

Remarks and problems.

1) Neither T2 nor Nil-manifolds admits Anosov flows, because their
fundamental groups do not grow exponentially. Therefore, EpA flows on
such manifolds can not be obtained by the deformation method as in
Example 1) above.

Moreover, pA flows obtained by the modification from EpbC
structures have compact leaves in the weak Anosov-like splitting with
hyperbolic holonomies (in some sense), which never happen in Anosov
flows.
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2) In general the weak splitting E* + E* (or equivalently, the invariant
sections £ and £1) of a pA flow does not have the differentiability of class
C'. Therefore, in spite of the fact that the plane fields E* and E° are
integrable, we do not know whether the unique integrability holds or not.

3) If we assume the splitting of class C!, we see that weak (un)stable
foliation does not have Reeb components. Especially S admits no pA flows
with C1-splitting. As to the general case, nothing about the (non)existence
on S2 is known.

4) The concept of (E)pA diffeomorphism on 7?2 is defined likewise.
Only known EpA diffeomorphisms are obtained by the deformation method
from Anosov diffeomorphisms. It is conjectured that there exists no pA
diffeomorphism in any isotopy class which is represented by a non-
hyperbolic matrix in SL(2;Z).

5) If we try to follow the similar construction of symplectic structures in
Section 3 starting from the EpA flow on T above, the symplectic structure
degenerates exactly on the compact leaves. This degeneration seems rather
essential, while it is totally unclear whether the construction works for
Anosov flows in general or no. The symplectic fillability (see [3]) for Anosov
flows in general is unknown.

6) A related problem is to know which 3-manifold can (not) be realized
as the boundary of a convex symplectic 4-manifold, especially of those
with disconnected boundary or of type M3 x [0, 1]. Reference [14] says it is
impossible to realize S3 [[ (other components).
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