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ON THE AXIOMATIC OF HARMONIC FUNCTIONS I
by C. CONSTANTINESCU and A. CORNEA (Bucarest)

The aim of the present paper is to present some remarks
on Brelot’s axiomatic of harmonic functions [2] and to show
that any space, which locally has a countable basis and on
which there exists a positive superharmonic function, pos-
sesses a countable basis.

- 1. Let X be a locally compact connected space and % a
sheaf on X, of real vector spaces of continuous functions (%)
called harmonic functions. An open set U c X is called regular
if it 1s non-empty, relatively compact and, if for any continuous
function f on the boundary aU of U, there exists a unique

function on U equal to f on daU and harmonic on U, non-
negative if f is non-negative. The restriction of this function
on U will be denoted by H}. For any x e U the functional

f— Hi(z)

is linear and non-negative on the real vector space of conti-
nuous functions on dU. There exists therefore a measure

ol = w, on dU, called harmonic measure, such that

HY(z) = [ fdw?

for any continuous function f on oU.
We assume that # satisfies the following axioms.

A,. The regular domains form a basis of X.

A,. The limit of any increasing sequence of harmonic func-
tions on a domain is either harmonic or identically infinite.

(Y} The term « function » means, in this paper, « real finite function ».
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374 C. CONSTANTINESCU ET A. CORNEA

If wis a non-negative harmonic function on a domain U,
then it follows from A,, considering the sequence {nu{, that
u 1s either positive or identically zero.

Tueorem 1. — Let W be an increasingly directed set of
harmonic functions on a domain U; the least upper bound of
AU is either harmonic or identically infinite.

We shall prove the assertion using an idea from R. Nevan-
LINNA (Uniformisierung, Springer Verlag, 1953).

Let us suppose the least upper bound of U is not identi-
cally infinite and let  be a point of U at which it is finite.
There exists an increasing sequence f{u,} of U such that

lim w,(z) = sup u(z).
n>oo ue(‘l'

We denote
Uy, = lim u,.
Then uy 1s harmonic by A,. Let y be a point of U different
from z and {v¢,} be an increasing sequence of U such that
u, < v, and
lim ¢,(y) = sup u(y).

n>oo ueqj,
We denote
9o = lim ¢,
n>o
Since ¢, is finite at z it is harmonic. Obviously u, < ¢,. Since
u, and ¢, are equal at z they coincide everywhere. It follows
that '
Ug(y) = sup u(y).
ueq),
y being arbitrary, u, is the least upper bound of U.
The theorem shows that axiom A, i1s equivalent to axiom 3
[2]-
2. A lower semi-continuous numerical function (3) s on
an open set V, which does not take the value— oo, is called

hyperharmonic if for any regular domain U, UcV,and zeU
s(z) > f s dwl.

(3) « Numerical function» will mean a function whose values are real numbers
or £ oo.
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A hyperharmonic function on the open set V is called super-
harmonic 1if it is not identically infinite on any component
of V. A function s is called hypoharmonic (resp. subharmonic)
if —s is hyperharmonic (resp. superharmonic). A non-negative
hyperharmonic function is called a potential if its greatest
harmonic minorant is zero. A set A is called polar if for any
ze X there exists a positive superharmonic function on a

neighbourhood U of z infinite on UnA.

Taeorem 2. — Let U c X be an open non-compact () set on
which there exists a positive superharmonic function. Then any
superharmonic function on U non-negative outside a compact
subset of U is non-negative.

Let s, be a positive superharmonic function on U and s be
a superharmonic function on U non-negative outside a compact
set. For any positive real number a we denote

K, = fzeU| s(x) + aso(z) < 04.

K, is a compact set and we have K, c Ky for « > and

Ko =[ K.
a>p

Suppose s negative at a point. Then since inf s > — o
there exists a real number a > 0 such that K, 5~ ¢ and
Kg= ¢ for B > a. The function s+ as, is superharmonic
and non-negative. Let « be a point of K, and V the compo-
nent of U which contains z. Since s 4+ as, vanishes at z it
vanishes on the whole V ([2] Theorem 3 (1)). It follows V c K,
which 1s a contradiction since V is non-compact. Hence s
1S non-negative.

Cororrary 1. — Let Uc X be an open non-compact set
and s, a superharmonic function on U such that
inf s; > 0.
Then any superharmonic function s on U for which
lim inf s(z) > 0,

z>au

where ay is the Alexandroff point of U, is non-negative.

() This means either X non-compact or U = X.
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Indeed for any e > 0 the function s + es, is non-negative
outside a compact set and therefore non-negative on U.

Tueorem 3. — Let f be a lower semi-continuous numerical
function on X, which does not take the value — oo. The greatest
lower bound of the set of hyperharmonic functions which domi-
nate [ s hyperharmonic, continuous at any point x where f is
continuous; if, moreover, it is superharmonic and different at x
from f(z) then it is harmonic on a neighbourhood of x(*).

Let 9 denote the set of hyperharmonic functions which
dominate f, s, be its greatest lower bound, U a regular domain
and y e U. We have

so(y) =1nf s(y) >inf |sdw) > f so dwy.
sey sey
From this relation it follows that the regularised function §,
is hyperharmonic ([2] Theorem 7). Since f is lower semi-conti-
nuous Sy ¥, 8§ = s,.
Let z be a point at which f is continuous and sed such

that
s(z) # f(z).

There exists a harmonic functions u, defined on a neigh-
bourhood of z, for which

flz) < u(z) < s(z).

Let U be a regular neighbourhood of z, where these inequa-
lities still hold. For any y € U we have

Jsdof > [wdo} = uly) >fy)
and therefore the balayaged function of s relative to
| X—U, R,

belongs to 9. Herefrom it follows that if s, 1s superharmonic
and s¢(z) 5= f(z), then s, 1s harmonic on a neighbourhood
of z. Further we get

lim sup s(y) <lim sup RXY(y) = RXY(y) < s(a).

y>z y>x

(4) This theorem was proved in the classical case by M. Brerot, Journ. de Math.
Pures et Appl., 24, 1945, 1-32.
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Let U’ be a domain, K a compact set in U’ and f” the func-
tion defined on U’ equal to fon K and equal to s, on U — K.
We denote by 9’ the set of hyperharmonic functions on U’
which dominate f’ and by s, its greatest lower bound.
Obviously s; < s, on U’ and s, = s, on U' — K. The function
on X equal to s, on X — K and equal to s; on U’ is hyper-
harmonic ([2] Theorem 4) and dominates f. Hence s, =s,
on U’

We take U’ as being a regular neighbourhood of z and K
a compact neighbourhood of z. For any ¢ > 0 we have

s)+ eHY e 9’
so(z) + eHY'(z) = f'(2).

From the preceding considerations we have, since f’ is conti-
nuous at z,

and

lim sup s,(y) = hm sup sy(y) << sp(@) + <HY (2)
7>z y>z = so(x) + ¢HY ().

¢ being arbitrary s is continuous at z.

Cororrary 2. — A superharmonic function which dominates
a continuous function is equal to the least upper bound of the
set of ils continuous finite superharmonic minorants.

Cororrary 3([2] Proposition 12). — Let F be a closed set
with a non-empty interior. If there exists a potential on X then
there exists a continuous positive potential on X harmonic on
X —F.

It 1s sufficient to take f as being a continuous non-nega-
tive function, f=£0, whose carrier lies in F.

3. We shall denote by B (resp. §)) the class of spaces (X, #6)
for which there exists at least a positive potential (resp. a posi-
tive harmonic function) on X. The type B (resp. §) of X is
not altered by the multiplication of all the functions of #
by a positive continuous function. An open set Uc X is
said to be of type P (resp. §) if any componeni of U belongs
to P (resp. H). The spaces of type P u H (resp. P) are exactly
those on which there exists a positive superharmonic (resp.
positive superharmonic non-harmonic) function. On a space
of type § — P any two positive superharmonic functions are
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proportional. If X e (resp. §) and U is a domain in X,
then U e (resp. §). This is trivial for & and for P it results
from the fact that there exits a positive superharmonic func-
tion on X which i1s not harmonic on U. If Uc X, Ue B and
X — U 1s polar, then X also belongs to P since any poten-
tial can be extended to a superharmonic function on X, ([2]
page 125) which i1s obviously a potential. This result does
not hold if we take § instead of L.

Let X, denote the real axis and X, the unit circumference
in the complex plane and let #, (resp. #6,) be the sheaf of
solutions of the equation u” + au =0 on X; (resp. X;),
where a 1s a real number. If « is positive, no positive super-
harmonic function exists on the spaces (X;, #6,), (X,, #6,).
If & 1s positive and irrational, the only harmonic function
on X, is identically zero. For « = 0 we obtain examples of
spaces of the type § — PB. For « << 0, X, belongs to P n &
and X, belongs to B — . We do not know if there exists
non-compact. spaces of the type B — §.

Lemma 1 (°). — If % satisfies axiom A, the axiom A, is equi-
valent to the following assertion. Let U be a domain, V< U an
open set, K <V a compact set and x € U. There exists a positive
number « = « (U, V, K, z) such that for any non-negative
superharmonic function s on U harmonic on V

sup s(y) < as(z).
yeK

Suppose A, fulfilled. If & does not exist there exists for any
natural number n a non-negative superharmonic function
s, on U, harmonic on V and such that

sup s,(y) >n,  s(@) <

yek n?

This leads to a contradiction since the function
@
2 s
n=1
is superharmonic on U and infinite on a component of V.

(5) This lemma was inspired by a similar result of R.-M. Herve ([3] n° 2; pro-
prieté 7).
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Suppose now the existence of an a asserted in the lemma,
and let {u,} be an increasing sequence of harmonic functions
on U. If there exists a point x € U for which {u,(z)} is conver-
gent, then {u,(x) — u,,(z)| converges to zero. Hence

3un — un—l%

converges to zero uniformly on any compact set of U. It
follows immediately that lim wu, is harmonic.

n>>®

The axiom A, can be strengthened by requiring

lim «(U, U, K, z) =1.

Ko
This assertion was called axiom 3’ ([2], page 147). From this
axiom it follows that the positive harmonic functions on U
equal to 1 at a point of U form an equicontinuous set of func-
tions.

Lemma 2. — Let x € X, | be an increasingly directed ordered
set and for any ve 1 let U, be a domain on X containing z, V,
be an open subset of U, and s, a non-negative superharmonic
function on U, harmonic on V, equal to 1 at xz. We suppose
U, c U, VeV, for any « < x. Let U be an ultrafilter on 1
finer than the filter of sections of I (%). If 36 satisfies the axiom 3’
then s, converges uniformely along Wl on any compact subset
of l lV( to a harmonic function.

tel
Let K be a compact set in l | V. and x €I such that K< V,.

iel
Since {s|t>x{ is an equicontinuous family of functions
on K, s, converges uniformly along Il on K. Its limit is there-

fore harmonic on ‘ ’Vl.
tel

TaeorEmM 4. — Let X be non-compact. If # satisfies the
axiom 3’ and any relatively compact domain of X belongs to
§ then X belongs to §).

Let ze X, I be the set of relatively compact domains
containing x ordered by the inclusion relation and for any
tel denote U =V, =1 and let s, be a positive harmonic

(®) This is filter generated by the family of sets {teljt > x}.er
4
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function on U, equal to 1 at . By means of lemma 2 one can
construct a positive harmonic function on X.

Cororrary 4 [3] (7). — If % satisfies the axiom 3’ and X
belongs to ‘B and ts non-compact, then X belongs to ).

Taeorem 5 [3] (7). — If # satisfies the axiom 3" and X belongs
to ‘B then there exists for any point z € X a positive potential
on X harmonic on X — {z}{.

Let p be a positive potential on X and I be the set of compact
neighbourhoods of # ordered by the inverse inclusion relation.
For any 1«1 we denote

U'.——‘X, Vl‘:X——L,

14
o= Rp

~ Ryao)

’

where z, 1s a fixed point different from z. Let Ul be an ultra-
filter on I finer than the filter of sections of I and for any y e X

s(y) = lli'gl s(y)-

By lemma 2 s is harmonic on X — {z}.

Let U be a regular neighbourhood of z# and y e U. Since
by lemma 2 s, converges uniformly along ll to u on dU we
have

s(y) =hm s(y) >lim [s do) = |sdoy.
L L

The regularised function § of s is therefore superharmonic.
From the above uniform convergence we deduce the existence
of a positive number « and a x eI such that

s, < ap
on dU for any t > x. It follows ([3] Lemma 3.1)
s, < ap, s ap

on X — U. Hence § is a potential. It cannot be harmonic
on a neighbourhood of z since then it would be harmonic
on X and therefore zero. '

() Théoréme 16-1.
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TaeEoREM 6. — On a compact space of the type ‘B any super-
harmonic functwn is a potential. Particularly any superharmomc
functwn s non-negative.

If s 1s a superharmonic function then—min (s, o) is a subhar-
monic function. Since the space is compact and of type P
1t 1s dominated by a potential. Hence it vanishes and s 1s
non-negative. The greatest harmonic minorant of s vanishes
being dominated by a potential. s is therefore a potential.

ReMaRrk. — A space of the type P n § is non-compact.

Taeorem 7. — Let X e Bu § and U be a domain on X. If
X — U s non-polar then Ue P n §H.

Let s be a positive superharmonic function on X. Suppose
1ts restriction on U is a potential. There exists then a positive
superharmonic function s’ on U such that

lim §'(z) = o
Usz>dU
([1] Lemma 1). If we extend s’ to a function on X equal to
+ o on X — U we obtain a superharmonic function. This
is a contradiction since X — U is non -polar. Hence the restric-

tion of s on U is not a potential and Ue §.
dU is non-polar. This is obvious if 30U = X — U. If

U £ X — 1,

dU 1s non-polar since X — U is non-connected. There exists
therefore a point z€dU such that the intersection of any
neighbourhood V of z with dU is non-polar in V. Let V be
a regular domain which contains # and K be a compact non-
polar set, K ¢ V ndU. The reduced function (R¥)y of s relative
to K, where the operation is made on V, does not vanish, 1t
converges to zero at the boundary of V and is harmonic on
V — K. The function s’ on U equal to s on U — V and equal
to s —(R¥v on Vn U is superharmonic and non-proportional
to s. Hence Ue .

CoroLrLary 5. — If X e B u § and U is an open non-connected
set, then U is of the type P n H.

Let V be a component of U. Since X — V has interior points
it is non-polar. V is therefore of the type L n 9.
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4. Lemma 3. — The sum of a sequence of potentials convergent
at a point is a potential.
Let {p,| be a sequence of potentials such that

s= 2 pa
n=1

be finite at a point. Let u be a harmonic minorant of s. We
shall prove inductively that

u < 2 Pn-
Suppose
u<< X pa
Then u— 3 p,1s a subharmonic minorant of p, and there-

n=m+1
fore non-positive.

A sequence {U,} of relatively compact domains on X is called a
pseuso-exhaustion of X if

Un < Un+1

X-CJU,.

for any n and

s polar.

Tueorem 8. — Any space of the type Bu H possesses a
pseudo-exhaustion.

Let K< X be a compact non-polar set such that X — K
contains only a finite number of components, let p be a
positive potential on X — K and 4 be the set of functions
(fllf—v)x_x, where U 1is a relatively compact domain which
contains K. The greatest lower bound of ¥, being a non-
negative harmonic minorant of p, is equal to zero. There
exists therefore a sequence {U,}{ of relatively compact domains
containing K, such that for any » U,c U,; and

3]

3 (RF)xx

n=1

co
1s a superharmonic function on X — K, infinite on X— ‘ ' U,.

n=1
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Taeorem 9. — If XeB and {U,} is a pseudo-exaustion
of X there exists a continuous potential on X, which is infinite

ezactly on X — U U,.

Let p be a continuous finite potential on X and, for any n,
let f, denote a continuous non-negative function on X equal
to 0 on U, equal at most to p on U,,; — U, and equal to p
on X — U,;,. The function

X
n— an

1s a continuous finite potential, harmonic on U, (Theorem 3)
and p, > p,4;. Let u denote the limit of the sequence {p,,g.

The functlon u 1s locally bounded and harmonic onUU

n=1
Since X — l ’U 18 polar there exists a harmonic function on
n=1
X equal to u onl ,U Being a harmonlc minorant of p 1t
n=1
vanishes. Hence uis equal to zero 0n| |U We may therefore
assume that the function n=1

Po= 2 P

n=1

1s fimte at a certain point. Since p. 1s harmonic on
U,, po1s continuous and finite onl 'U According to lemma 3

pis a potential and it is equal to mﬁmte on X — l 'U

n=1

CoroLLARY 6. — Let f be a finite non-negative upper semi-
continuous function on X eP. Rf is the greatest lower bound

of the set of continuous hyperharmonic majorants of f. If f{}‘
is a potential, R} is the greatest lower bound of the set of continuous
potentials which dominate f.

Let ze X and s be a superharmonic majorant of f. Let

further {U,{ be a pseudo-exhaustion of X, U; a2, U = UU,,

n=1
and let p be a continuous potential on X finite at  and equal
to o on X — U. Since U is a normal space there exists a
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continuous finite function g on U, f<C g <Cs. Let g, be the
lower semi-continuous function on X equal to g on U and
equal to 0 on X — U. The function Rj is superharmonic
and continuous on U according to theorem 3. Hence the func-
tion s, = Rj + ep is a continuous superharmonic majorant
of f for any ¢ > 0 and we have

$o(2) < s(x) + ep(a).

In order to prove the last assertion it is sufficient to show
that there exists a potential which dominates f. The function

u = lim R}"’Un

n>

1s a harmonic function on U. Since ﬁ}‘ 1s locally bounded u 1s
locally bounded. There exists therefore a harmonic function

on X equal to u on U. This function is a minorant of fo
Hence u vanishes on U. We may therefore assume that

% RE(z)
n=1

1s convergent. Let us denote

Uo = g, G, = Un+1 — U,

We have
) Ré:(z) < .
The function
p+ 3 R

1s a potential which dominates f.

5. LEmma 4. — Let X be a locally compact locally connected
space, F a closed nowhere disconnecting set in X, and X a car-
dinal number. If X —F possesses a basis whose cardinal is
at most equal to N and if there exists a set of continuous functions
on X whose cardinal is at most equal to N and which separates
the points of F, then X possesses a basis whose cardinal is at
most equal to N.

Let U be an open set on X and {U.{,c: the family of compo-
nents of U. Since F i1s nowhere disconnecting, {U,_—~F'§IEL



ON THE AXIOMATIC OF HARMONIC FUNCTIONS 385

are exactly the family of components of U — F. Since X — F
possesses a basis whose cardinal 1s most equal to N, the cardi-
nal of I is at most equal to N.

There exists a set § whose cardinal is at most equal to N
of continuous functions on X which separates the points of X.
For any fe & and any two rational numbers «, § we denote

Uf; 2, B) = {z = X]a < f(z) < B
Let B’ denote the family
B = {U(f; o, B)If =, «, B rational numbers}.

The cardinal number of B’ is at most N. Let us denote by B

the system of components of the sets of the formmU,-,
i=1
U; e B'. According to the above remark the cardinal number
of B is at most equal to N.
We want to prove that B is a basis of X. Let z be a point
of X and U be a relatively compact neighbourhood of =z.
For any y edU let f, be a function of & such that '

fs(@) # f,(y)

There exist two rational numbers a,, (3, such that

zeU(fy; o, B), y‘EUfy: Y By)-

Since dU is compact we may find a finite number of points
fydi =1, ... n} on dU such that

Te m U(fy; ay By, <D U(fy; oy, B,,)> ndU = g¢.

i=1

Let Vdenote the component of ' | U(f,,; &y, B,,) which contains

2. Since VndU = & we have V c U B 1s hence a basis, since
Ve$.

Tarorem 10. — Let X e Bu §, F be a closed polar set on X
and let 8 be a cardinal number. If for any point of X — F there
exists a neighbourhood which possesses a basis whose cardinal
s at most equal to N, then X possesses a basis whose cardinal
s at most equal to N.
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Since any space of the type P u § can be covered with a
finite system of domains of the type %, 1t 1s sufficient to prove
the theorem for the case X e .

Let {U,} be a pseudo-exhaustion on X — F. Since F is

polar {U,{ isa pseudo-exhaustion of X. We denote U = U U,
and assume F = X — U U. Let p be a continuous potentlal

on X such that p1s mfimte exactly on F. Since any U, possesses
a basis whose cardinal i1s at most equal to N, U possesses a
basis B whose cardinal is at most equal to ¥. For any two
relatively compact sets V, We B, Vc W, let fyw denote a
continuous function on X, 0 < fyvw << 1,equalto 1 onV and
equal to 0 on X — W. We denote by F the set of functions
of the form

max fv‘.'wi.

1<ign
The cardinal number of # is at most equal to 8. We denote
further for any fe &

and § = {sif «F}.

The cardinal number of ¥ is at most equal to N. Hence, accor-
ding to the preceding lemma, it remains only to prove that
¥ separates the points of F.

Let z, ye F, z =~y and V be a neighbourhood of z, y ¢ V.
We denote by $y the family of functions s;ed for which the
carrier of fis contained in V. Jy 1s an upper directed family of
superharmonic functions. Its least upper bound s is there-
fore superharmonic. We have

s<<R}, sy) <Ry <=

and s = p on V—F. Since F is polar we have s=p on V
and therefore s(x) = oo. There exists therefore an s;edy
such that

sfx) > s{y).

CororLLary 7. — If X e B u § and any point of X possesses
a neighbourhood with a countable basis, X possesses a countable
basis. Particularly iof X is a manifold, and X € B v §, X posses-
ses a countable basis.
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There exist for any cardinal number N examples of spaces
on which the constants are harmonic and which possess
points for which the cardinal number of any fundamental
system of neighbourhoods i1s at least equal to ¥. Let M be
a set whose cardinal is & and [' the set of points of the
complex plane {e?| 6 real number}{. For any finite set IcM
we denote by X; the topological space obtained from the
topological space I' X I, where I is considered with the dis-
crete topology, identifying the points (1, ) with teI. We
denote by a; this point of X; The harmonic functions on
Xi— {ar} will be the functions which are linear in 6. A
continuous function u defined on a neighbourhood of a;
1s harmonic if it is harmonic outside {a;{ and for sufficiently
small ¢ > 0
=S [ule, ) + (e, ),

u(ax) = i‘r'; 2

where n is the cardinal number of I. It is easy to verify that
the harmonic functions satisfy the axions A, A,.

For any I < J we denote by ¢1; the map X; — X; defined
by

€
e N

The system {Xj, g5} is a projective system of topological
spaces. Let §X, ¢f, be its projective limit and a the point
of X corresponding to the points a;.X is compact and the
cardinal number of any fundamental system of neighbourhoods
of a is at least equal to N. The harmonic functions on X will
be the functions of the form wo ¢;, where uis a harmonic
function on X;. It can be verified that the sheaf of harmonic
functions on X satisfies the required axioms (and even the
axiom 3').

Tueorem 11. — The set of non-relatively compact compo-
nenis of an open set on X e B u §H ts at most countable.

Let {G.}.a be a family of pairwise disjoint domains on X
and U be a relatively compact domain on X. We denote
by Iy the set of el for which

GnU=£9g¢ G —Us=£g
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For any te Iy we denote by f, the function on d3U equal to
1 on G,ndU and equal to 0 on dU — G,. This function is
resolutive with respect to U [1] and let Hf denote its solu-
tion. This function doesn’t vanish since in the contrary case
there would exist a non-negative superharmonic function s
on U converging to infinite at any point of G, ndU. The func-
tion on U u G, equal to s on U and equal to infinite on G, — U
would be a superharmonic function infinite on an open set.
This 1s a contradiction. From

% Hf <H/

rely
1s follows that Iy is at most countable.

Let G be an open set {G,},o be the family of its non-rela-

tively compact components and {U,} be a pseudo-exhaustion

of X. From the above proof its follows that I = UIU 18
at most countable.
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