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A DIFFERENTIAL GEOMETRIC CHARACTERIZATION
OF INVARIANT DOMAINS OF HOLOMORPHY

by Gregor FEES

1. Introduction.

In this paper^ we investigate domains and functions on connected
complex reductive groups invariant by a compact form.

A complex reductive group is a universal complexification of a
compact group, (see [Ho]). Examples of such Lie groups are for instance
complex tori (C*)71 = ((S'1)71)'0 or special and general linear groups
SL(n,C) = (SI^n)^ resp. GL(n,C) = (L^n))^

As a consequence of the Peter and Weyl theorem every compact Lie
group K has an embedding in GL(n,C). The universal complexification
K^ of K is simply the minimal affine algebraic set in GL(n, C) containing
K. This is the same as the minimal complex analytic set containing K.
Furthermore, K is totally real with dimp^ = dimcK^ and K is a
maximal compact subgroup of K^. Of course the underlying complex
manifold structure of K^ is Stein. In all what follows we fix a maximal
compact subgroup K of G = K^ and concern the action

K x G —> G p, x i—^ xg~1.

Let TT : G —^ G / K =: (M, XQ) denote the quotient map and XQ the point
eK C G / K . This map is open and proper.

(*) This paper is an abbreviated version of a part of the author's dissertation.
Key words : Complex Lie group - p.s.h. function - Riemannian symmetric space - Stein
domain.
Math. classification : 32F05 - 32F15 - 53C35.
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The quotient M = G / K carries a natural G-invariant Riemannian
structure (see § 2 below). In the abelian case, where G = (C*)71, K = {S1)71

domains Q. in G, which are JC-invariant are Reinhardt domains. It is well-
known that such a domain is holomorphically convex if and only if its
image in M is geodesically convex. In the general non-abelian setting,
holomorphic convexity of a K -invariant domain implies geodesic convexity
of the corresponding domain in M ([Ro]). The converse also holds for
domains which are invariant under both the left and right translations
by elements of K. In 1985 Loeb constructed a geodesically convex domain
in SL(2,C)/SU(2) such that the corresponding domain in SL(2,C) is not
Stein ([Lol]). Thus it becomes clear that, if holomorphic convexity could
be characterized by a differential geometric property in M, then, in order
to see this, one must analyze the fine structures at hand.

Our main result is a characterization of Stein invariant domains
n C K^ with smooth boundary in terms of sectional curvature of the
boundary 9^1 Mi (see Theorem 5.4).

We also give a characterization of Stein invariant domain without any
boundary condition by using the boundary distance function, (see Theorem
6.3).

Convention. — By f^ we denote a X-invariant domain in Kc and by
^IM C M the image Tr(f^) in M.

Analogously we write JM ^ G°(M) for the push-forward of a contin-
uous, J^-invariant function / : K^ —> C, i.e. / = /M ° TT.

Remark. — Every -K'-orbit in G is a total real maximal submanifold
in G. It follows ©(G)^ = C (identity principle). In contrast notice that the
K -invariant plurisubharmonic functions on G separate all X-orbits. This
remains still true in the context of arbitrary invariant domains in Stein
7^-spaces; (see [F], prop. 4.15).

2. Riemannian structure on G and M.

The construction of metrics on G and M is classical. We recall it
briefly for the convenience of the reader.

Let Q = TeG be the Lie algebra of G and t the Lie subalgebra
of the maximal compact subgroup K C G. Then we have the Cartan
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decomposition

5 == 6 C Jt =: t C p.

Let 0 € Aut^d^) denote the Cartan involution, i.e. conjugation with respect
to t and Ad : G —>• Aut(0, [ , ]) C GLc(fl) be the adjoint representation of
G on 0.

Choose an Euclidean metric g on TgG = fl which is J- and
Ad (jFC)-invariant and such that the decomposition 6 9 JMs orthogonal.
Further let ^ be normalized by the condition

(2.1) g{X^Y) = -re^(X,0(y)), X,V e g7.

Here 5' is the semisimple part of Q and BQ denotes the Killing form of the
complex Lie algebra Q.

The extension g : TK^ C TK^ —^ R of this Euclidean metric by left
translations is (G x jK')-invariant Riemannian metric on K^.

Remarks. — This metric is not Kahler.

We call the subspace tangent to the fibers of TT : G —> M vertical and
the orthogonal complement horizontal. Notice that the complex structure
J maps isometrically the horizontal subbundle of TG onto the vertical
subbundle. If TG = G x Q is the trivialization by left invariant vector fields
then the Cartan decomposition Q == t © p corresponds to the decomposition
of TG in the horizontal and vertical subbundle.

The projection TT induces a fibrewise isomorphic bundle map of
the horizontal subbundle of TG onto TM. Since g : Q C Q —^ K is
Ad (JC)-invariant this induces a well defined Riemannian metric (also called
g) on M.

By construction the projection TT : Kc —^ M is a Riemannian
submersion with respect to this metrics on K^ and M. It is well-known
that (M,p) is a Riemannian globally symmetric Space with non-positive
sectional curvature.

For convenience of the reader we list here some basic facts about
symmetric spaces (see e.g. [Hel] and [Wo]).

(2.2) The Levi-Civita connection on G is : ([ChE] p. 64)

V^V = ̂ ([X,y] - ad^(Y) - ad^(X)).
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Here X^Y C g are left invariant vector fields on G and ad^
denotes the adjoint endomorphism of adjc which acts on Q via
the identification Q ̂  fl* induced by the metric.

(2.3) If 0 is the Cartan involution, then ad^(V) = -ad^^OQ.
In particular V^X = [0(X),X] = 2[X^],

(2.4) Every geodesic line in M has the form t \—^ gexp(tP)xo P G
p, g € G. Two arbitrary points in M can be connected by a
unique geodesic line.

(2.5) Parallel displacement ^exp(tP) : T^s^M -> Tg^.p^M along
the geodesic line gexp(tP)xo is given by push-forward via the
map M —> M x ^—> gexp{sP)g~lx.

(2.6) The curvature tensor RM(X,Y)Z := V^V^ Z - V^VJ^ Z -
Vr^ yi Z is of the following form :

R(X^Y)Z = -[[x,y],z] v x,r,z e p = T,,M.

3. Levi form of a function.

Let X be a complex manifold and (TX, J) the (real) tangent bundle
with complex structure J. The formal complexification decomposes

T^X := TX 0R C = T15^ © T05^ := Eig(JC, z) C Eig(JC, -i).

The projection 7r1'0 : TX -^ T^°X X ̂  j(X - zJX) yields a canonical
identification of TX and T^-^X which will often be used without explicit
mention.

Let (^1,..., ̂ n) be local holomorphic coordinates on X. The Levi form
of a function (f) can be defined as the Hermitian matrix

^-(dit^)-
For our consideration we need an intrinsic description of L^.

DEFINITION 3.1. — Let (f): X —» R be a C2-^!!^^!!. The Levi-Form
of(f) is the C-bilinear mapping :

L^ '.T^X^T^X -^C
(Z , W) ^ Z{W(f)).

Here W denotes an arbitrary local antiholomorphic extension of W 6
T°^X.
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Remarks 3.2. — Since [^o{X,T^OX),^-Q{X,TQ^X)} = 0, it follows
that ZWcf) = WZ<f)^ where Z denotes a local holomorphic extension of Z.
Hence the definition of L^ does not depends on the choice of extensions
Z,W.

In all what follows we are concerned with the quadratic form (also
called Levi form)

(3.3) ^ : TX -^ R i^(v) := L^v, v) = L^°, V0-1)

rather than the sesquilinear form L^ : TX (D TX —>• C.

It is easy to compute £^{Z). Let Z € TX be a tangent vector and Z
be a local holomorphic extension i.e. a local section in TX such that the
projection Tr1'0^ is a local holomorphic section in T^X. Then

4^(Z) = (Z - iJZ)(Z + iJZ)(f)
(3.4) == Z(Z(f)) + JZ(JZ^) + i[Z, JZ}(f)

=Z(Z<^)+JZ(JZ0).

In our case, where X = K^^ let (j> : K^ —>• R be a JC-invariant, smooth
function, and let Z = T + P € t (D J^ = TgG be the decomposition in the
horizontal and vertical part. Let T1',?1' denote the left invariant vector
fields with T^p) = T, P^) = P. Then we have the following formula :

LEMMA 3.5.

4^(Z) = P(PL0) + JIVT )̂ + 2[T, P]0.

Proof. — The left- and right invariant vector fields Z € F(G, TG) are
holomorphic. Equivalently,

L^ o J = J o LZ'

Keeping in mind that (f) is a JC-invariant function, substitute Z = T + P
in formula 3.4 :
^(r + P) = (r1- + P^2^ + (Jr2- + jp1')2^

= r^^ + rp^ + pr1'̂  + pp1'̂
+ jrjr1'^ + J^JpL0 + JPJT^ + JPJP1'^

= PP^ + rp^^ + jrjr^^ + JPJT^
= PP1'̂  + [T, P]^ + JTJT^^ + [JP, JT]^

= pp1'̂  + jrjr^ + 2[r, P](^.
D
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We would like to formulate the above condition in terms of the
Riemannian geometry on the quotient M.

The first step will be a construction of a R-bilinear operator 1C :
TM C TM -^ TM. It gives an adequate description of the "Lie bracket
term" in the formula 3.5.

Let Xi,^2 C T^M, x = gxo be two tangent vectors and Pi,?2 €
TgK the horizontal lifts of X^X^ respectively at g e 7r-\x). Notice that
the Lie bracket [JP^ P^](g) of the corresponding left invariant extensions
is a horizontal vector.

DEFINITION 3.6. — The operator

1C : TM © TM -. TM /C(Xi, X,) := ̂ {[JP^ P^](g))

is called the directional curvature on M.

Remarks 3.7.—A short computation shows that K, is well defined i.e.
it does not depend on the choice of a point g in the fibre Tr-^). Further
V Xi, X2 € TM we have the following fact :

(̂  Wl,X2)=-/:(X2,Xi)

(3.7b) <7Wi,X2),X,)=0 , j = l , 2

(3.7c) >C(X^X,)f=[JP^p^f^)=^jp^p^^ feC^M).

Notation. — Let X e T^M be a tangent vector. We denote by ̂
the unique geodesic determined by 7(0) = X.

Recall that all geodesic lines in the global symmetric space M have
the following form (see 2.6) :

-r(t) = g exp(tP) . XQ, P e p = ̂  C Q.

Hence we can take the 771th derivative of a function in the direction
of X :

d171

^m/:=^(=0(/07x)•

Further let A(X,V) := X2 + Y2 = A(V,X), X,Y € T,M, denote the
2-dimensional Laplace operator at a; G M.

A word on the decomposition in horizontal and vertical directions :
Let Z = T + P =: JQ + p e TgG be such a decomposition. Here P and Q
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are both horizontal vectors. Then we can define the corresponding tangent
vectors at M :

X := TT^Pg, Y := TT^Qg € Tg^M.

On the other hand let X, Y C T^M and g C G with 7r(g) = x. By
PX^PY € T^jF^ we denote the horizontal liftings of X,Y at g e G. Then
we associate to every pair X, Y G Ta;M the tangent vector Z == JPy-\-Px ^
T^G.

Now we give an explicit description of the Levi form of a JC-invariant
function in terms of the two dimensional Laplacian and the operator 1C :

BASIC FORMULA 3.8. — Let (f) e C^dJ) denote a K-invariant function
which is denned in a K-invariant neighborhood U ofgK C G. Then for all
Z <E TV :

4 ̂ (Z) = A(X, Y)^ + 2 /C(X, Y)^.

Proof. — Recall formula 3.5 :

4^(z) = 4 t^(r + P) = P(PL(|>) + J^(J^L^) + 2[r, p]^.

The terms P(PL(t)) and ./TVT^) can be described as a second
derivative along a geodesic :

Let 7p(^) := gexp(tP) be the 1-PSG of P2- in (3 at ^. Then
7x(^) = ^exp(tP)a;o is a geodesic in M and we have :
(3.8a)

{PL)2(t) = ̂ 2(</)07P) = ̂ 2^M07^0^P) = ̂ ^Mo^) v ^ e (-^£)-

An analogous computation for JT^JT'1^), evaluated at t = 0 together
with (3.8a), yields

(3.8b) P^P^) + ̂ (Jr^^ = X2^ + Y2^.

The remaining term 2[T, P] can be described by the operator /C :

2 [T, P]̂  = 2 [T, P}g(^0 7T) = 2 7T,([r, P],)^

= 27r,([JQ,Py^ = 2/C(V,X)^.

The claim follows by putting 3.8b and 3.8c together. D
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As an immediate consequence, it is possible to give a description of
plurisubharmonic J^-invariant functions on K^ by an inequality formulated
on M.

PROPOSITION 3.9. — A real valued and K-invariant function (f) €
C^(G) is plurisubharmonic if and only if the following two conditions are
fulfilled :

(i) (I>M is geodesic convex, i.e. for every geodesic segment 7 : [0,1] —>- M
it holds :

<M7^)) ^ (i - ̂ )<M7(0)) + ̂ (7(1)) v t e [o, i]

(ii) For all p CM X,Y C TpM

A(X,y)<^2/C(X,y)<^.

Remarks. — Condition (i) of the previous proposition follows from
the (much stronger) condition (ii). We formulate condition (i) explicitly, in
order to underline a question of Rothaus ([Ro]) :

?
OM geodesic convex ==^ f^ C G is Stein.

A counterexample to this was discovered by Loeb ([Lol]). We will
discuss this in detail later.

Notice that a function (f) is strongly plurisubharmonic if and only if
V p e M and (X, Y) C TpM x TpM \ (0,0) it follows that

A(X,Y)0M>2/C(X,y)^.

D

4. Invariant Stein domains with smooth boundary :
The sectional curvature.

Let n C K^ be a J^-invariant domain with C^-boundary. It is well-
known, see [DoGr] that Q. is Stein iff the Levi form of 90, is non-negative
definite.
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In this section we will prove that the Levi condition on the boundary
can be equivalently formulated in terms of the sectional curvature of the
boundary of Q.M (Theorem 5.4).

We begin with some preparations. Let r : U —> R be a local
defining function of 90, M- Then the induced function p on a J^-invariant
neighborhood in K^^ i.e. p := r o TT, is a JC-invariant defining function of
9^.

The first step will be a reformulation of the Levi condition (3.8).
Fixing Xi,X2, we compute in^Yi^)/; Y^Y^ € E; ^(Vi^) =
/C(Xi, X^)} in terms of the Hessian form Hf : TM C TM -^ R of /.

Recall that for Riemannian manifolds it is possible to define the
Hessian form globally (see e.g. [F], Appendix).

LEMMA 4.1.

(i) Let f € C2(M) be a function and X\^X^ be two tangent vectors
which span a plane E C T^M. We assume Hf\j^^Q and /C(Xi, X^) -^ 0.
Then

inf{A(yi,y2)/ l yi,V2 e E, IC(Y^)=]C(X^X^}
=2^Hf(X^X,)Hf(X^X^-Hf{X^X^)Hf(X^X^.

(ii) Under the additional assumption Hf\j^ > 0 for a fixed basis
X\^X^ G £', there exist tangent vectors X\^X^ € E having the following
property :

/C(Xi,X2)=/C(Xi,X2)
A(Xi,X2)/ = inf{A(yi,y2)/ I Yi,y2 e E, 1C(Y^ = )C(X^X^)}.

Of course the choice of X 15X2 depends on f.

Proof. — Let E := {{X\^X^)) C T^M be a 2-dimensional subspace
spanned by Xi, X^. We have seen that the operator /C is bilinear and skew
symmetric, (see 3.7). For A e GL{E)

/C(A(Xi), A(X2)) = det A • /C(Xi, X^).

Our next step is the computation of A(A(Xi), A(X2))/ as a function of A.
First, let Xi, X^ denote the parallel extension of Xi, X^ along the geodesic
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segments centered in x and let A = (^) be the matrix representation of
A w.r.t. the basis X\^X^ of E. It is easy to see that
(4.1a)

A(AXi, AX^)f = (a2 + b^X^f + 2(ac + bd)X^2f 4- (c2 + d^XJf
^ Va h\(Hf(X^X^) Hf{X^X^)\(a h\

\c d)\Hf{X^X^ Hf(X^X^))\c d )
=: tr *A Hf^A.

The last equation is a consequence of the following identity for the Hessian
form :

Vx,d/ W = Hf(X^Xk) = X.Xkf = XkX,f.
Now we compute inf{A(AXi,AX2)/ | del A = 1} = inf{tr *A Hf^A |
detA=l}.

Let Yi,y2 be a basis of E, which arises from the old one after
an orthogonal transformation such that H^^2 is diagonal. Obviously
A(Xi,X2)/ = A(yi,V2)/ and detff^2 = det^^2.

Let a,/? be the (nonnegative) eigenvalues of H^^2. Keeping our
computation as easy as possible we use then the Iwasawa decomposition

CM.'.)̂  kes0^-
First we investigate the case ".H '̂1^2 > 0" :

inf{A(AXi,AX2)/| detA = 1} - mf{tr '(^K^)^) | detA=l}

-^{^^^)W^^\^>0}
= mf{a(A2 + ̂ 2) + /?A-2 | A > 0}

= inf{aA2 + /3A-2 | A > 0} = 2 v/o/5.

The last equation follows from the fact that the function ip(\) :=
a\2 + f3\~2 has its global minimum at A = ^ / / 3 / a .

Now we construct the vectors X\^X^ with the claimed property (ii).

Since

inf{A(AXi,AX2)/ | detA = 1}
^ (^Ja 0 \(aQ\(^Ja 0 \
\ 0 </a73Ao/3A 0 </a73^'
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we have

^:=^Y, and X^.=^Y,.

Finally we consider the remaining cases.

For ^Hf^2 = 0" there is nothing to proof.

Suppose H^^ is semipositive but non positive definite. We can
assume a = 0. From (4. la) it follows

Claim 4. Ib.

inf{A(^Xi^X2)/ | detg = 1} = 0 = detHf^2.

Thus the infimum will not be achieved. D

Motivated by the above lemma we define the two dimensional Laplace
and directional curvature operators so that they depend on the plane E
and not on the generating vectors.

DEFINITION 4.2.

A(^/) : = 2 ^Hf(X^X,)Hf(X^X^- (Hf(X^X^))2

IC{E) : = ±
IXiV^F

-Here \X\ V X^\ denote the area of the parallelogram spanned by X\ and
X2.

Remarks 4.3.

(i) The operator JC(E) is defined only modulo sign. In fact fC(E)f
denotes 2 tangent vectors ±)C(X,Y)f (for an orthonormal basis X,Y).

(ii) Justifying the name "directional curvature", -||/C(E)||2 = .^(E).

Proof. — Let X, Y be an orthonormal basis of E c T^M. We may
assume x = XQ, because /C is invariant by isometries from G. Recall the
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identification T^M = p c fl. Using (2.6), it follows that

KM(E) = KM{X, Y) = g(R(X, Y)Y, X)
= -reB,(-[[x,y],y],-x) = -B,([[x,r],y],x)
= B,([X, y], [x, y]) = B,(J[X, y], -j[x, y])
= -<7(J[x,y],j[x,y]) = -^(/c(x,y),/c(x,y)).

5. The fundamental form of a Riemannian hypersurface.

For convenience we recall some elementary facts about the fundamen-
tal form of a hypersurface in a Riemannian manifold (see [GHL], p. 216-226
for more details).

Let S C M be a hypersurface in a Riemannian manifold (M, g), which
is endowed with the induced metric g. We denote by V5 the Levi-Civita
connection on (5, g) and by NS the normal subbundle of S in M. Locally
there exists a defining function / : U -^ R of S (i.e. S H U = {/ = 0} and
df -^ 0 on S). We can use this function to define a (local) normal vector
field on S :

n : Us -^ NS\u x ̂  Hgrad/11-1 grad/.

Let IIs{X,Y) := VxV - V|V, VX,V € TS, be the ^5-valued
second fundamental form of S and

(5.1a) qs : TS C TS -^ R with qs(X, Y) ns = -IIs(X, Y)

the corresponding real valued second fundamental form.

We list now some basic properties of qs and the Gaussian curvature K.

(5.1b) qs{X,Y)=g(QsX,Y),
where the symmetric operator Qs is defined by Qs(X) := Vx^.

The Gaussian curvature is defined by

(5.1c) ^E) = .(X, Y) := gs(x-x^ r) - ̂  y)
' ' g(X,X)g(Y,Y)-g^(X,Y) •

It is well-known, (see [GHL])
(5.1d) K^E) = KM(E) + K{E),
where

(5.1e) K(E) = K(X, Y) = ———9WW^)
' ' ' ' 9(X,X)g(Y,Y)-g^X,Y)
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denotes the sectional curvature of the plane E. The index refers to the
corresponding Riemannian manifold S (resp. M).

The following lemma relates the (real valued) second fundamental
form of S to the Hessian form Hr of a (local) defining function r : M —> R
of S C M.

LEMMA 5.2.

qs{x-y) = l^d^^ y) v x? y e Ts'

Proof. — For arbitrary X, Y e TpS let V denote an extension of Y
in TS and let V be the Levi-Civita covariant derivation of (M^g). From
the definition of V it follows that V^ = 0, i.e.

0 = X ^(gradr, V) = ̂ (Vx gradr, Y) + ̂ (gradr, VxV).

Thus

(5.2a) -^(gradr,VxV) == ^(Vx(gradr),V).

Further we have

-dr(VxY) = -^(gradr,VxV) = p(Vx gradr, V)
(5.2b) = ||gradr|| ^(Vxn,r) + (X||gradr||) g(^Y)

= ||gradr|| ^(Vxn,y)5=lb||gradr|| ^(X,V).

Recall the definition of the dual connection V* : for X, Y € T5,

(5.2c) Vx(dr)(V) = X(Vr) - dr(VxV) = -dr^xY).

Summarizing the above we obtain

Hr(X^Y) = Vx(dr)(Y) = ||gradr|| qs(X^Y). D

We use the above result to prove the equivalence of two inequalities
which will be of use in our context.

LEMMA 5.3. — Let S C M be a hyperplane and r a defining function
of S. We assume X^r ^0, V X C TS. Then the following two inequalities

(i) A(E, r) ^ 2 |/C(E)r|, V E C T^ p € 5,

(ii) /^) > \fC(E)r\2 = |^(/C(^),r^)|2 , V E C Tp5, p G S

are equivalent.
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Proof. — Let YI,^ be an orthonormal basis of E. Lemma 4.1(i)
implies that the inequality (i) is equivalent to

2 ^/detHy. ^2|/C(E)r|
^=^ detH^ |/C(^)r|2

^ Hr(Y^)Hr(Y^) - Hr(Y^Y2)2 ̂  \IC(E)r\2

Lemma 5.2 ^ ^(YI, Vl)^^ ̂ ) - Qs(Y^ Vs)2 ^ ̂ ^̂

(5.ic) ̂  K(E) > |/C(^)r|2 = |^(/C(E),7i5)|2 .

D

Now we are able to prove the main result of this paper. Throughout
we will use the notation local defining function for S = Q^IM for a function
r : U -^ R with 5' D U = {r = 0} , U D ^M = {r < 0} , C^OM 7^ ° and

normalized by |[gradr|| = 1 on S'. Let p := ropr be the corresponding local
defining function of 9H. Notice that p is also of (72.

THEOREM 5.4. — Let fl, C G = ̂ c be a K-invariant domain with
a C2-boundary and r and p be local denning function for 9Q.M 8ind 9fl,
respectively.

The domain Q, is Stein if and only if the two following conditions are
fulfilled :

(i) Q.M is geodesic convex.

(ii) The (smooth) boundary S := 9^1 M satisfies one of the following
equivalent conditions, for all two dimensional planes E C TS :

(iia) K(E)^\g(ns,lC(E))\2

(iib) K^E) ̂  KM(E) + \g{ns^fC(E))\2 = -||/C(E)||2 + \g(ns^(E))\2

(iic) ^(E, r) ^ 2 !C(E)r {resp. A(X, Y)r ^ 2 /C(X, Y)r V X, Y € TS).

The condition : "90, is strongly Levi convex" is equivalent to the corre-
sponding conditions on the curvature ofQ^IM^ i-e. in this case in (ii) it^'
can be replaced by ">'\

The proof of this theorem breaks into several lemmas. From Lemma
5.3 and (5. Id) it follows that the curvature conditions (iia), (iib) and (iic)
are equivalent.
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First we show that, if for an invariant domain fl, C K^ the conditions
(i) and (ii) hold, then ^ is Stein. By a theorem of Docquier and Grauert,
(see [DoGr]) it is enough to show that the boundary of ^ is Levi convex.

LEMMA 5.5. — Let Q C K^ be a K-invariant domain, such that
condition (i) is fulfilled. If^y^ is a geodesic in M such that 7(0) = X e TpS,
then for all X eTS

d?_
dt2 (ro^(t))=X2r^O.

t=0

Proof of the lemma. — Let us assume the claim is false. If X e TS
with X2r < 0, then

7x(-e,e)n5={p} and 7x(-e,e) C HM

for e small enough. The group of isometries G acts transitively on M. Using
a small such isometry, we can move 7^ to a geodesic segment with ends in
Q.M but which is not contained in this domain. This gives a contradiction.

D

Let TcQQ, := TQfl, D JTQQ. denote the complex tangent bundle on
Ofl,. The following lemma explains the connection between tangent vectors
Z e Tc90 and tangent vectors in the (real)bundle TS = TQ^IM'

LEMMA 5.6. — Let Z = T -h P e TK^ be the decomposition in the
vertical and horizontal part.

z = r + p e Tc9^ 4==^ T^jr, ̂ p e TS.
In particular if Z = T + P is contained in TcQfl., then also Z ' := T - P e
Tco^l.

Proof of the lemma. — The boundary 90. is JC-invariant. This
implies :

T^QO = p n T^QO e t c p e ^ = T^G.
Since the subspaces p = J^ and ^ are maximally totally real it follows

that

Tc^QO = (T^ n p) e (JT^QO n Jp) = (Tc,^ n p) e J(T^Q^ n p).
On the other hand we have the following isomorphism :

TL, : (T^90 n p) -^ 7^5', 7r(^) = x. Hence the claim follows. D
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Now we will estimate the Levi form of p by using the curvature
conditions (ii).

Let Z = JPi + ?2 C TcQ^l be arbitrary. The above lemma implies
that Xj := TT^PJ e TS. Our goal is to show that 9^1 is Levi convex, i.e. for
all Z e TcQ^t

e?(z) ̂  o.

Consider the basic formula 3.8

£p(Z) = A(Xi,X2)r + 2 )C(X^X^r.

Either we have /C(Xi, X^)r ^ 0 in which case £p(Z) ̂  0 follows from
Lemma 5.5, or 1C{X^X^)r < 0. In this case let ~X^,~X^ ^ E := ((Xi.J^))
be chosen as in Lemma 4.1. We conclude

W = A(Xi,X2)r + 2 /C(Xi,X2)r
4^11A(Xl,X2)r+2A:(Xl,X2)r
=|^iVX2|(A(^r)+2/C(^)r)

(see also (4.2)), and the Levi convexity then follows from the curvature
assumption. Hence ^ must be Stein.

To show the other direction we recall the following well known
property of a J^-invariant Stein domain ^ c K^ (see [Ro], [Lol] or [F]) :

PROPOSITION 5.7. — The corresponding domain ̂ M C M is geodesic
convex.

We finish the proof of the theorem by showing that, for a Stein
invariant domain Q C ^c, the boundary QQ.M fulfilled the curvature
condition (iic).

First we remark that, from the geodesic convexity of f^ it follows
from Lemma 5.5 that X2r ^ 0 V X e TS i.e. Hr\^ ^ 0 for all two
dimensional planes E c TS. Here we use the notation explained previous
to the statement of the theorem.

Let Xi,X2 C E c T^S be an orthonormal basis and Pi,?2 C T^
the corresponding horizontal lifts. We can assume 1C{X^,X^ ^ 0 as
otherwise the curvature condition follows trivially.

There are two possibilities :
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Case 1^ Hr\E > 0. Let ~X\,~X^ G E be a basis of E as in Lemma
4.1 and Pi, Pa G p the corresponding horizontal lifts. Consider the tangent
vectors Z := JPi + ?2 and Z ' := JPi - ~P^ contained in TcQfl (Lemma
5.6). Due to the Levi convexity of <9^2 and the basic formula 3.7 we get :

(*) A(Xi,X2)r±2/C(Xi,X2)r=^(Z),^(Z') ^ 0,

which is equivalent to A(£',r) ^ 2JC(E)r.

Case 2 : Jf^ ^ 0 but not Jf^ > 0.

In this situation by Lemma 4.1i inf{A(yi, Y^)r\)C(Y^, Y^) = const.} =0.
Choose Xf^e^ such that )C(X^Xj)=JC(X,Y) and lim A^XI^
0=A(E,r) . Define Z, :=JPf+Pf; ̂  := JPf-Pf ; As^usual P; denotes
the horizontal lifts of the corresponding vectors X^. Taking the appropriate
limit in (*), it follows that ^(E, r) == 2 )C(E)r (=0). D

Remarks 5.8. — Let fl, be QL K x J^-invariant domain in K^ i.e.
^M is ^-invariant in M. It is well-known, (see [Las] or [FH]) that complex
analytic properties of such domains can be characterized by the intersection
fl. D T^ where T*0 is a maximal torus in K^. For example such a domain is
Stein if and only if the corresponding domain in M is geodesically convex.
The original proof of this fact uses representation theory. For domains with
smooth boundary this can be also shown via a straight-forward differential
geometric calculation using methods developed in this paper.

The case SL(2,C)

For K := SU2 and K^ == SL^(C), the quotient M = SL2(C)/SU2 is
isometric equivalent to the 3-dimensional hyperbolic plane

E3 :={(x,y,z) CM 3 ] z>0} g= -^ {dx (g) dx + dy 0 dy + dz (g) dz)
z

with constant negative sectional curvature equal to -1.

A hypersurface 5 in M is two dimensional. Hence the directional
curvature )C(T^S) is parallel to the normal vector field ns of 5, (see 3.7b).
The right hand part of the curvature formula 5.4 (iib) is zero.

PROPOSITION 5.9. — Let ̂  c SL2(C) be a SU^-invariant domain with
smooth boundary such that the corresponding domain Q.M in the quotient
M is geodesically convex. Then fl. is Stein if and only if it holds :

K(TQ^M) > 0.
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The boundary 90, is in a point p semipositive if and only if
K(T^Q^M) = 0.

Remarks 5.10. — Berteloot investigated the behavior of plurisubhar-
monic functions on SL(2, C) invariant by action of cyclic discrete subgroup
F and he showed that such functions are invariant also by the Zariski clo-
sure r. The main step in [B] is the proof of the following fact by using "L2

- methods" of Hormander and Skoda :

A ^R ^= { ( o ^ ) | a; C R }- invariant psh. function is also Uc :=
{ ( i 0 I z e ̂  }~ invariant.
The following stronger result can be proved via 5.9 and an elementary
computation of the sectional curvature of 90 M in M, (see [F]).

A Stein U^-invariant domain is also Uc -in variant.

It should be also remarked that the domain ^ C SL2(C) for Loeb's
counterexample mentioned above corresponds to a domain in M = H3

which is bounded by a two dimensional totally geodesic submanifold 5,
which is isometric to E2. In particular S has everywhere sectional curvature
K = -1. The Stein holomorphic hull of this ^ C SL(2,C) is SL(2,C)
itself. In fact, for an arbitrary JC-invariant domain in an arbitrary complex
reductive Lie group G = K^ it can be shown that the envelope of
holomorphy lies in G. (this is true for any invariant domain in an arbitrary
complex reductive group G) and is the whole SL(2,C), see [F].

We conclude this section by observing that in a complex semisimple
group K^ there exists no Levi flat hypersurface, which is also J^-invariant.

PROPOSITION 5.11. — The Levi form of a K-invariant real hyper-
surface H in a semisimple group K^ is not identically zero at every point
z e H .

Proof of the proposition. — Let H C K^ be a J^-invariant hypersur-
face in ̂  and S the corresponding hypersurface in M. Assume the Levi
form of H vanish in e € H. From the basic formula 3.7 it follows that for
aiix,yer^5

!C(X,Y)r=0.

As usual r denotes a local defining function of S. Identifying T^M =
p = Jt C ^c, if follows from the definition of /C that

there exists a hypersurface V C p with the property J[V, V] C V;
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here, for instance V := ker dp D p, p = r o TT. The following lemma shows
that this cannot happen.

LEMMA 5.12. — Let V be a hypersurface in a compact semisimple Lie
algebra t Then [V, V\ ̂  V.

Proof of the lemma. — Since K is compact and semisimple, the Killing
form JE?e of ^ is negative definite. Assume there exists V C ^ with [V, V] C V.
Then let R-T be the orthogonal complement in t. For all 'y, w C V it follows
that

V ^,w e V 0 == Be(T, M) = Be([7>],w),

thus adr(^) CRT. Since adr(T) = 0, this implies

B((T, T) = tr (adr o adr) = tr 0 = 0,

in contradiction to the assumption that B^ is negative definite. D

6. Invariant Stein domains in K^ and -log d.

In this section we study on (M,^) the induced distance function
d: M x M —> R^o- As usual we consider

(6.1) d(p^q):= inf [ ^/g(c(t^c(t))dt.ceCpq j

Here the infimum is taken over all piecewise smooth curves in M connecting
p and q. Recall that M is a complete, simply connected Riemannian
manifold of non-positive sectional curvature. Thus any two points can be
connect by a unique geodesic. The length of such geodesic is equal to the
distance between its end points. This metric structure is compatible with
the original topological structure on M, (see [Hel]). The isometries of the
Riemannian metric g are isometries of the distance d and vice versa.

Example. — Let de : C71 x C71 —^ R be the Euclidean metric. For
a domain f^ C C71 the boundary distance function d^ can be defined as
follows :

dfl(x) = inf de(x,y) = sup{r| Br{x) C f2}.
yEoQ,
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It is a classical result that a domain ^ C C71 is Stein if and only if - log d^
is a plurisubharmonic function.

In this section we will prove that an analogous result holds for
invariant domains in K^.

The distance function.

Let f2 be a ^-invariant domain in K^ without any regularity condi-
tions and let Q.M be the corresponding domain in M. Define

(6.2) d^{x):= inf d(x,y) = sup{r| Br{x) C ̂ }V^O^IM

to be the boundary distance function with respect to d : M x M -^ R^o.
Here Br (x) denotes the metric ball in M with radius r and center x. Notice
that d^ is continuous on ^IM and d^(xn) —^ 0 if {xn) —^ 9^1 M'

THEOREM 6.3. — A K-invariant domain fl. is Stein if and only if the
function — logd^ o TT is plurisubharmonic.

Proof. — ("^=")

Let fl, be an invariant domain such that — log do^ o TT =: — log d^ o TT
is plurisubharmonic. Since :

-\ogdfl(xn) —> oo for each sequence Xn € ^M? Xn —^ p € 9^1 M,
the function (/) := -\ogd^(x) + d^^x^xo) is an exhaustion function. The
induced function ^OTT is also an exhaustion function and plurisubharmonic,
because g ̂  d2(7^{g), xo) is also one (see [Lo2]). The domain ̂  is contained
in a Stein manifold K^ so that, from the affirmative solution of the Levi
problem ([DoGr]), it follows that ^ is Stein.

(W)

We must show that - log d^ o TT is plurisubharmonic. For this we
must show that the maps

z i-̂  - log cfo o 7r(g ' exp zX)

from the disc A^ := {z e C| \z\ < r} (r small enough) are subharmonic
V g e ^ l and X e TeG = fl. Here A^; A = Ai.

It is well-known (see [N]) that 0 : U -^ R, U C C is plurisubharmonic
if and only if for every disc Ay. (2:0) C U and every h € 0(U) the following
condition is fulfilled :

(*) ^ ^ re h on <9Ay- => cj) ^ re /i on Ar.
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We will now show that the function z \—> — log d^ o 7r(g • exp zX)
satisfies the condition (*).

First we reformulate the inequality in (*) :

— log do o 7r{g • exp zX) ^ re h{z)
(6.3a) 4==^ d^ o 7r(g • expzX) ̂  e-^^ = le-^l

^==> B^-h(z)^n(g • expzX)) C ̂ M.

(By a standard technique of a suitable limit process applied to h + e, we
can assume B|e-M^) ) ( • • • ) C ^M.)

The idea of the proof is a construction of a suitable Hartogs figure
F in f2. The question on plurisubharmonicity of —logd^ o TT can then be
reduced to the question when the hull of F is also contained in fl,. Of course,
for a Stein domain this is clearly the case.

Construction of a Hartogs figure. Let g € ^2 and X e TgG be
arbitrarily chosen. Let be r > 0 small enough such that exp(Ay. X) - g C f^.
Further let h C 0(U(&r)) fulfill the inequality

— log d^ o 7r(g ' exp zX) < re h{z) on 9Ay..

Define

(6.3b) Hp : ~Kr x A -^ G (z, w) ̂  g ' exp zX ' exp(we~h{z) P).

Here P € Q = TpG is an arbitrary horizontal tangent vectors of length
1. Notice that Hp is a holomorphic map, because the group theoretical
exponential mapping is holomorphic. We assert :

Claim Hartogs :

Hp(Sr^)C^

Hp(9Sr^) CO

Proof of the claim. — The first inclusion is clear. To show the second
inclusion we will study 7r(g ' expzX ' exp(we-/l^P)).

Due to [P, JP] = J[P, P] = 0, we conclude

exp(we-M^)P) = exp ( re (we-^)? + im (we-^JP )
= exp(re (we-^)?) • exp(im (we-^^JP).
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Thus for all (z, w) G Ay. x A,

(6.3c) 7^(^•exp^X•exp(we~M2;)P)) = g'expzX'exp(Te(we~h{z))P) ' X Q .

Prom our assumption, it follows that B^-h(z)\(7r(g • exp2;X)) C QM
for z 6 <9Ay. This means that for all T e p with ||T|| ^ le'^l
the geodesic segment t i—^ g ' exp2;X • exptT XQ^ t € [0,1], must be
contained in ^M. Since ||re (we-^^P^ ^ le-^1, it follows from 6.3c that
7r(p • expzX ' exp(we~h^P)) is contained in Q.M and the claim follows.

Let F := Ay. x {0}u9^r x A. be a Hartogs figure. Because of claim (H)
there exists a neighbourhood U(F) C Ay. x A such that U{F) C Hp1^).
By assumption, the domain Q, is Stein. Thus, since it contains Hp(U(F))^
it also contains the hull Hp(&r x A) of Hp(U(F)) i.e. :

g • exp zX ' exp^e"^^?) C ̂  V {z, w) € Ar x A
4=^ g - exp ̂ X • exp(re {we'^^P) XQ C Q.M V (z, w) € Ay. x A.

For a suitable choice o f w c A , the geodesic 11—^ ^-exp ̂ X•exp(t|e-/l^^ [P) XQ
t € [0,1] must be contained in ^IM' This holds for all P e p , ||P|| = 1.
Therefore for all z € Ay.

B[e-M^)|(7r(^ • exp^X)) C Q.M-

Due to (*) and 6.3a, this inclusion implies our claim : — log d^ OTTQ OTT
is plurisubharmonic. D
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