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ZETA FUNCTIONS OF JORDAN
ALGEBRAS REPRESENTATIONS

by Dehbia ACHAB

0. Introduction.

Riemann zeta function has been generalized by Epstein as follows :
let 6 be a symmetric positive matrix of order fc, Epstein zeta function is
defined by

Ci(^)= E (̂  Re(.)>||
gez^-{o} vy y )

where g ' is the adjoint of g.

In [15], Koecher has generalized Epstein zeta function as follows :

Cm(©,5)= ^ Det^'eil)-5, (k^m).
^[Zfcxm/G;^(yy^z),rank(U)==m]

Koecher zeta series converges absolutely and is analytic in the half-plane
kRe(s) > - , it admits an analytic continuation as a meromorphic function

on C and satisfies to the functional equation

nm(e,s) - \e\-^nm (<&-1,1 - s\

Key words : Jordan algebra - Symmetric cone - Reductive group - Arithmetic group -
zeta function.
Math. classification : 20.
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where Um(G,s) is a product of <^(©,5) and some gamma factor, more
precisely

TZ^,.)-^"^-^^^-!)...?^-"^1)^(6,.)

T(s) being the usual Euler gamma function.

Later, in [15], A. Krieg studied the Koecher zeta function for the hermitian
matrices with quaternionic coefficients defined by

C(5» = ^ De^AA*)-8

AeGL(m,0)\[M(m,fc,0)|rank(A)=m]

where 0 is the ring of Hurwitz integers.

This work is situated in a more general context. In fact, we define the
Koecher zeta series associated to a self-adjoint Euclidean Jordan algebra
representation and we obtain the above zeta series as particular cases of it.
More precisely, let V be an Euclidean simple Jordan algebra of dimension n
and rank m, E an Euclidean space of dimension N , (j) a regular self-adjoint
representation of V in the space Sym(E) of symmetric morphisms of E. Let
Q be the quadratic form associated to ^>, fl, the symmetric cone associated
to V and G(^) its automorphism group

GW = [g G GL(V) | gW = Q}.

(Jfi) We assume that V and E have Q-structures VQ and EQ respectively
and that (f> is defined over Q.

Let L be a lattice in EQ.

We define the zeta series associated to (j) and L by the following :

0(5)= ^ [det^Or^eC
ler^L'

where L' = {I e L | det(Q(l)) ̂  0} and Fo is some arithmetic subgroup of
GL(E) which we will precise.

Recall that the primitive rank of a Jordan algebra is the cardinality of
a maximal complete system of primitive orthogonal idempotents. A Jordan
algebra is said to be split if its rank equals its primitive rank.
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(H^) We assume that VQ is split.

The fundamental results in this work are :

THEOREM 1. — Under the assumptions (H-^) and (H^), the zeta series
Nconverges absolutely for Re(s) > —.

2m

THEOREM 2. — If the arithmetic subgroup Fo is self-adjoint, then
the zeta function C,L admits an analytic continuation as a meromorphic
function on the whole plane C and satisfies to the functional equation

^-Q-^-r^^)

where F^) is the Koecher-Gindikin gamma function of the symmetric
cone fl, and L* is the dual lattice of L.

This article is composed of three parts; the first consisting in the proof of
Theorem 1 by using reduction theory, the second is an adaptation of the
classical method to prove Theorem 2 and the last one gives some examples.

1. Construction and convergence of the zeta series.

Let V be a simple Euclidean Jordan algebra with unity e, of dimension
n and rank m, E an Euclidean space of dimension N , (f) a representation
of V in the space Sym(£') of self-adjoint endomorphisms of E such that

Va;, y C V, (f>(xy) = J(<^)<^) + 0Q/)<^)),

and Q : E —> V the quadratic form associated to (f) determined by

(Q(0 I x)v = (^)$ I ̂ E V^eV, V$eE.

For x e V, we denote by L(x) the multiplication endomorphism, L(x) :
V —> V,y ^—> xy and by P(x) the quadratic representation of V, i.e
P(x) = 2L(x)2 - L(x2). Let fl. be the symmetric cone associated to V
and G(Sl) the automorphism group of 0,

GW = {g € GL(V) | g(fl) = ̂ }.
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In the sequel, we assume that 0 is regular, that is 3$ e E such that
det(Q(0) 7^ 0; then Q(£') = 0 where 0 is the closure of Q,. We assume too
that 0(e) = id^.

(ifi) Assume that V, E and ^ are defined over Q, that is there exists a
Q-Jordan subalgebra VQ of V, and a Q-subspace EQ of £' such that

V = VQ <g)Q R, E=EQ (g)Q R,

and for each a; € VQ we have (j){x) e Sym(E)o.

Let L be a lattice in the space EQ. In all the sequel, we denote by det the
determinant in the Jordan algebra and by Det the usual determinant of
matrices.

1.1. Arithmetic subgroups associated to (f) and L.

Let H = {(h,h) € GL(V) x GL(E) | Q(h.^) = h.Q^),^ € £7}.

ff is non empty because, for each invertible x e V,

WOF)O = P(^)Q(0.

It is clear that H is an algebraic subgroup of GL{V) x GL(E). As 0 is
defined over Q then it is the same for H. If 71-1 and TT^ are the projections
of JEf, then the groups 7Ti(l:f) and TT^H) are algebraic, defined over Q, we
denote them by (7(0) and F((f>) respectively.

Notice that (7(0) C G(^) and that TT^ is injective. Denote by F and G
the identity connected components of F{(J)) and G(0) for the ordinary
topologies respectively. Consider the map

p :FW -^ G(0)

f^f
p is well defined because TT^ is injective and we have :

PROPOSITION I.I.I. — p satisfies to the following :
(1) p(F)=G.

(2) p is a surjective Q-morphism of algebraic groups.

(3) The groups F(0) and G((f>) are self-adjoint p(h*) = p(h)*. So they are
reductive. Moreover |Detp(fa)| = |Det(/i)|"^.
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Proof. — (1) Denote by f and Q the Lie algebras of F and G
respectively. It suffices to show that the differential dp : f —> Q is surjective.
We start by showing the following lemma :

LEMMA 1.1.2. — For each x e V we have (f)(x) e f and dp((f)(x)) =
2L{x).

Proof of the lemma. — For x € V, ̂  € E,t € R,

0(exp(<^)).0 = Q(^(exp(^)).0
= P(exp(to)).Q(0
=exp(2^(rr)).Q(0

then p(exp(^(a;))) = exp(2tL(x)), and,

<WM) = ̂  \t=o[p{expWx)))} = ̂  |,=o[exp(2tL(^))] = 2L(x). D

As 0 is generated by the L(x),x C V, then the lemma shows that dp is
surjective.

(2) As p = TI-I o ̂  where ^2 is the injection F(0) —^H,f\-^ (/, /), then
p is clearly a morphism of algebraic groups. Moreover, as

0(/0 = P(/)Q(OV$ e E ̂  r^x)f = ct>WYx) \fx e y,

then, if (e^)i^n is a basis of VQ, and (cc,)i^a^jv a basis of E, we have
^V n

^ ffta(t>(ei)^f^ = (f) (^p(f)ijei) = ̂ p(f)ij(t>(ei)^.
/3,7=1 j=l

The above formula shows that the coefficients of p(f) are polynomials of
degree 2, with rational coefficients, in the coefficients of /.

(3) Let h C F(0). We know that

Q(h^)=p(h)Q^) V$ C E ̂  h^(x)h = ̂ (h^x) \/x e V

then, for each invertible x € V, we have

h-1^-1)^-1 = 0((p(fa)^)-1).

As (p(/i)*a:)-1 = ^(fa)-1^-1, we find

fa-1^-1)^-1 = ̂ (/i)-1^-1) Va; e Z(Y)
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where I(V) is the set of all invertible elements of V. It follows that

h-1^)^-1 = ̂ (h^x) \/x C V, i.e p(^)-1 = (/W)-1.

The last assertion is a direct consequence of the properties
Det((/){x)) = det(x)^ and det(gx) = Det^^det^)

for x € V and ^ € G'(f^). D

Now consider the arithmetic subgroup Fo of F((f)) defined by

Fo = {/ C F(0) | f(L) = L}.

As p is a surjective Q-morphism of algebraic groups, then F = p(ro) is an
arithmetic subgroup of G((f)). Moreover,

V7 € Fo, det(Q(7.Q) = det(Q(Q), V^ e ̂ .

1.2. Reduction theory.

The following hypothesis is essential to use in this context reduction
theory and to obtain some Minkowski inequality.

(H'z) In all the sequel, we assume that VQ is a split Jordan algebra,
that is, its primitive rank (which is the cardinality of maximal system of
primitive orthogonal idempotents), equals its rank.

As rank(V) = m, then the assumption (H^) implies that there exists
in VQ a complete system of orthogonal primitive idempotents { c i , . . . , Cm}
which we will fix along this paper.

The corresponding Peirce decomposition V = ® Vij is defined over Q, that
i^J

is
^Q=©^Q.

^j

Let P be the subgroup of G((f)) defined by

P = {g C G((f>) | (gxij)i, = X i j X i , \/iJ {gx^ki = 0 V(A;, I) < (ij)}

where the A^ are reals, and for each y in V, the y^ are the Peirce
components of y , with respect to the Jordan frame { c i , . . . , Cm}- The order
on the pairs (z,j) is the lexicographic one.
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PROPOSITION 1.2.1. — P is a Borel subgroup ofG(^) denned over Q.

Proof— As the Peirce decomposition is defined over Q, then there
exists some basis of VQ whose each element lies in some V^Q- An element
of G{(f)) lies in P iff its matrix in such a basis is upper triangular. D

Now consider the subgroup A of G defined by

f m 1A = ^ P(a) | a = Y^ di.Ci^ 0.1 > 0 Vi, 1 ^ i ^ m ̂  .
I 1=1 J

PROPOSITION 1.2.2. — A is a maximal Q-split algebraic torus ofP
(cf. [15], chapter 2, proposition 3.5).

We denote by N the unipotent radical of P,

N={teP\\i,=l Vzj}.

We know (cf.[15]), that
N = {n{z) | z €N = { n { z ) \ z € ©V,4

1 J<k )

n^)^^1))...^771-1))

' J<k

where

m

z^= ^ z^ r(^)=exp(2^ DC,)
fc=j+i

the operation D being defined by

xny=L(xy)-^[L(x),L{y)}

(cf [15], Chapter 6, Theorem 6.3.6).

Let K be the maximal compact subgroup of G((f)) defined by

K = [g C GW | g.e = e},

where e is the unity of V. Then we have the Iwasawa decomposition of
G(0),

G((/)) = N.A.K.
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DEFINITION 1.2.3. — A Siegel set ofG((f>) (with respect to K,N,A)
is the cartesian product Gt,u = Nu.At.K with

At = ^ P(a) e A\di ^ ̂ +i,Vl ̂ i ^m-1 , a= Ya^ >
I z=l J

Nn={n(z)EN\\\Zkj\\^u},

where t, n are two positive constants.

PROPOSITION 1.2.4. — There exist positive constants t and u and
some finite subset B ofG((f))o such that

GW = T.B.Gt^

moreover, as fl, = G { ( J ) ) / K , then

Q = FB.Nn.At.e.

Proof. — It is a direct consequence of Theorem 13.1 of [15], page 90,
applicated to the Q-reductive group G((j>) under the action of the arithmetic
subgroup r. D

m
PROPOSITION 1.2.5 (Minkowski inequality). — Let x = ^ XiCi +

i=l
^ Xij be the Peirce decomposition of x € V. For positive reals t^u, there
i<j
exists a positive constant Ct,u such that, for each x € ©t,n.e,

771

JJ^ ^ Ct,u •det(a?).
z==l

Proof. — Let x = n ' P(o)(e) be an element of the Siegel set ©t,u-e
of the symmetric cone 0, i.e.

n==T(^l))...T(^m-l))

with

^ = E ̂  IMI ̂
fc=J+l

u

m
and a = ]̂  a^ such that

i==i
di ^ tOi-n Vi, 1 ^ i ^ m — 1.
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The Peirce componants of x are as follows :

^•-^jE^ii2
fe=i

j-i
X j k = ajzjk + 2 ̂  afzijZik.

1=1

So we find the following inequality :

^^^F^W2
: ̂  + ^- a^

fc=i

a; 1 1 + ̂  ̂ -̂ IMI2 < a,2 fl + lu2^
fc=l \ fc=l

^a} V + ^ E '̂̂ iMi2 ^a.2 1 + ̂ u2 E^20"^
\ fc=l \ k=l >

m
Otherwise, as det(a:) = Y[ aj, we find

.7=1

m
I | X j ^ ^t.nJJ ̂  ^ Ct,udet(x)
J=l

where
- m—l

Ct,n= l+-"2E t2a-fe) • D
2 .=1

1.3. Convergence of the zeta series <^.

The zeta series associated to the representation (f> and the lattice L is
defined by

0(5)= ^ det(Q(0)-8, seC
^ro\i/

where L' is the set V = {/ € L | det(Q(0) 7^ 0}.

THEOREM 1.3.1. — Under the assumptions (H-^) (section 1.1) and
(H^) (section 1.2), the zeta series CL^) converges absolutely for Re(s) >
N
2m'
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Proof. — For a e ̂ , we set

v(a) = #{Z e L1 | Q(Q = a}

e(a) = #{7 € r | 7(0) = a}

/ \ ^W'"a)=^)•
Assume s real. By Proposition 1.2.4, there exist a Siegel set 6t,u and a
finite subset B of G^Q such that ^ = FB.e^.e and then

0(5) = ^ ^(oOde^a)-8 ^ ^ ^(a).det(a)-s.
aerYQ^o aeQCLQn^.et^.e

Before getting to the proof of the theorem, we will show the following
lemma :

( m \
LEMMA 1.3.2. — The series S = ^ ^(a) n ̂ s converges for

aeQ(L/) i=l )
Ns > —.

2m

Proof of the lemma. — Let Ei = (f){ci)E. We have E = S Ei and
z=l

this decomposition is defined over Q. Then we can find lattices Ri C (Ei)o
such that

m
LCR=@R,.

i=l

For $ € £', denote by ^ = ^(c,)$ e E,. The series S becomes

( m \

^=E ?1-"
zei/ 1=1 /

then
m __ m m / ^^E E nii^ii-'-n E ii^r"

^=1 ^z€A,-{o}i=i %=i ^eJ?z-{o} ^

Each one of these series is an Epstein zeta series which converges for
s > ̂ dim(Ei) = ̂ . n

Let's now return to the proof of the theorem. For each equivalence
class of Q{L') modulo F, we choose a representant of the form a = ba, be
B, a e Gtu'e.
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By the Minkowski inequality, we have

det(a) == Det(6)^det(a) ^ Det^C^ {Ja,
1=1

and if s > 0, then
m

det(a)-8 < M8 TT a,-', with M = C, „ sup Det^)-^.
i=l ''€6

Set ff ={&i,..., br], by = p(fj), Lj = fj~\L). If a = bj-Q, then

v(a) = #{l e £;. | Q(l) =a}= v,(a).

Otherwise, if /i, /2 € FW, then

(*) P(A) = P(/2) ̂  Va; 6 V, ff.<f>(x).fi = K.(f>(x).h

so, if b <= G(<^>), then

x € b-\Q(L')) ̂  31 € L ' , 3f £ F(^). a; = fr-1^^) = Q(fl).

m
Notice that / is not unique, but if x = ^ ^.c^ + ^ a;fef is the Peirce

j=i fc<z
decomposition of .r, then

^ = Q(/.O, = m' o i c,) = (0(c,)/.z i /.z) = (r' <i>(cj). /.^ i o
and Xj = \\(f)(cj)f -1\\2 does not depend on the choice of the antecedent /
of b~1 by the map p.

Finally, we find
r m r

OO^M^ ^ ^(0)11^=^^5,,
J=laeQ(Lp z=l j=l

and the announced result is just a consequence of the above lemma. D
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2. Analytic continuation and the functional equation.

We use the classical method which consists to see the zeta series as the
Mellin transform of the theta series associated to the representation (/)
and the lattice L, and the functional equation is a consequence of the
transformation formula of the theta series.

First recall some results about zeta integrals.

2.1. Zeta integrals associated to (/).

For each function / in the Schwartz space S{E)^ the zeta integral
associated to the representation 0 is defined by

Z(/, s) = ( [detO(0]V(0^ V^ € C.
JE

PROPOSITION 2.1.1. — The zeta integral Z(/, s) converges absolutely
d Nfor Re(s) > - (m — 1) — — (d denotes the dimension of the subspaces2i Am

Vij for i ^ j in the Peirce decomposition of V). It admits an analytic
continuation as a meromorphic function on the whole plane C, and satisfies
to the functional equation

z(f,s-^\=^s)Z(f,-s),

where

^-^ms__W___

" ( ) M^-)'

FQ being the Koecher-Gindikin gamma function of the cone Q,, that is

Fo(s) = / e-^deW^dx,
Jn

and

AO = / e-^^fWdr^
J E

is the Fourier transform off (cf [15], Chapter 16, Theorem 16.4.3).
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2.2. Theta series associated to (f) and L.

For each / € S{E), the theta series associated to (f> and L is defined
by

e(^/,L)=^/[^^)fl, v^e^
;eL

It is clear that this series converges absolutely for x € ^.

PROPOSITION 2.2.1 (Transformation formula).

Q(x-\ /, L) = vol^-Met^^G^, /, L*),

where / is the Fourier transform of / and L* is the dual lattice of L, that
is

V = {b C E | (b | a) € Z, Va C L},

andvol(L)=vol(^/L).

Proof. — It is a consequence of the Poisson summation formula. If
^ G (S(£J), then

^^(O^voKL)-1^^).
<€L ZCL*

If^)=/[^-2)$],then

^(77) = Det(^^))/[^2)77] = det(rr)^/[<^)77]. D

2.3. Invariance property of theta series.

LEMMA 2.3.1. — IfF is a K-invariant function denned on 0,, then
there exists a kernel F ' ( x ^ y ) denned onClxd, such that

F/(x^)=F(x)^
F'Q^^F7^,^),
F ' ( x , y ) = F\y,x), \/x,y G ̂ g € G(0).
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Proof. — The function Fi defined on 0 x G(^) by Fi(rc^) = .F(^)
is right-invariant by K as a function of g.

The function F ' defined by F ' { x , g - e) = F^(x,g) satisfies to the
announced properties; in fact, it is clear that F ' ( x ^ e ) = F(x) and

F\gi' x^g.e)) = Fi(̂ i . x^g) = F(̂ i . ̂

=F{(g!g)^x)=F^g^g)

=F'(rr,^.e).

Moreover, as there exists k e K such that

P(^==A;P(^)a:

(cf.[15], Chapter 14, Lemma 14.1.2), then

F'{x^y) = F(P(.r^)2/) = F(P(y^)x) = F'^,^). D

PROPOSITION 2.3.2. — Let F e «5(f2), a K-invariant function on ^
and Jet / be defined by /($) = i7'(0($)). If the arithmetic subgroup To is
self-adjoint, then the theta series ©(^, /, L) is F-invariant i.e.

e(rr,/,^)=e(a;,/,L) V7er.

Proof. — Let F ' be the kernel of Lemma 2.3.1. We have

/(<^)0 = F(W(^)O) = F(P(^)O(O)

=F/(P(.r^O(0,e)=F/(Q(0,^,

and then

e(a;,/,L)=^F'(^0(a)).
aCL

Moreover, for h in F'(0),

Q(p(h)x,f,L) =Y^F\p{K)x,Q(a]) = ̂ F^/W^a))
aCL aeL

=^F/(a;,0(/^*a))=e(a;,/.^L),
aei^

and, as we assumed that 1̂  = Fo, then 6(a:, /, L) is r-invariant. D
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2.4. Mellin transform of theta series.

The Mellin transform of the theta series 0(x, /, L) is defined by

S(5, /, L) = / 9(:r, /, ̂ detCr)5^, V^ C C
Jr\^t

where d*x is the G-invariant measure on f2, d*rc = det(x)~^dx^ dx
denoting the Euclidean measure on V.

(H^) In all the sequel, we assume that N > m(m — l)d and then the
image of the Euclidean measure on E under the quadratic form Q has a
density with respect to the Euclidean measure of V.

PROPOSITION 2.4.1. — Let F € S(^l\ K-invariant, null on 9fl. Let
f be the function defined by /(Q = F{Q(^)). For s e C, if Re(s) >

max ^ —, (m — 1)— >, then the integral 2(s,/,L) converges absolutely
^ 2m 2 J

and satisfies to

,/ f n - ^ ^ c . ( c } z ( f c N }-Y5^ J) L/) — ———}v——SL^J.Z/ I J, S — _— I
7T12" \ zlm/

Proof. — Assume / positive and s real, then

e^J,L)= ^ ^(a)F'(^,a)= ^ /.(a) ̂  F'^,6),
aeQCi/Q ae^\Q(L/) ber-a

and as

r \ r
/ V" F'^.^) dei(xYd^x= \ F\x, a)det(^)5d^x
^^ [b^a J </Q

= det(a)-s /* F(^)det(.r)s^a: <
Jfl

a) I F\x)a^\x) a x < oo,
^
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;(5, /, L) = / ^ ^(a) [ ̂  p'(^ fr)] de^d^x
</^\" _a€r\Q(Z/) Wr.a /J

= Z^ /^) / ^ F\x,V) del^Y^x
aer^z/) 7^\" Lfcer-a

^ ^(a)det(a)-s /* F^det^^.r
^(^(LO Jfla€r\Q(LQ

= CL(5) / F^det^)5^^ < +00,
Jfl

and we find
S(s, /, L) = ̂ (5). ̂  F^det^)5^^.

Recall that for N > m(m - l)d, the image of the measure df under Q is
^ s v<

d^) = T^ ^f N \ det(x)^~^dx,
^l^)"^ V2m>'

(cf.[15], Chapter.16, Proposition.16.1.1), we find

S(5,/,L) = ̂ ^fi-^s) I fW^m))}8-^^
7r'2" */£7

.M^L ̂ 7 ^ ^\
- ———JV——CL(5) • Z /, 5 - —— .

7r7 \ 2m}

Recall the following lemma :

LEMMA 2.4.2. — Let f e S_(E) be a radial function, namely, there
exists a function F defined on ^, such that /($) = F(Q(0), then the
Fourier transform f off is radial (cf.[15], Chapter 16, Proposition 16.2.5).

Moreover, we can find a radial function f such that f and its Fourier
transform f vanish on the set

{$€F[det(Q(0)=0}.

PROPOSITION 2.4.3. — Let F e SW, K-invariant, and /($) =
F(Q($)). If f and f vanish on the set {$ e E | det(Q(0) = 0}, then
^^ /»L)is an analytic function on its convergence domain, it admits an
analytic continuation as analytic function on the whole C, and it satisfies
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to the functional equation

2 (— - ̂  /, L^} = vol(L)S(^, /, L).

Proof. — Set
Q+ == {a: € ^2 | det(a;) ^ 1}
Q_ = {rr € ^ | det(a;) ^ 1}

and we define

2+(5, /, L) = / e(a;, /, ̂ det^)^*^
Jr/^

2- (5, /, L) = { Q(x, /, ̂ det^)^^.
Jr/n-

The integral defining 5+(s,/,L) converges for each 5 € C and is
analytic on the whole C. Indeed, for each positive constant A,B there
exists a positive constant C such that

iF^I^Cdet^^O+tr^))-5,

and

\F\x,a)\ ^ C detOzO^de^a)-^! + (a | x))-3.

If Re{s) ^ A, and det(o-) ^ 1, then [det^)8] ^ det(a:)A,

and

\F/(x,a)det(x)s-^\ ̂  C de^a)-^! + (a | re))-5.

Otherwise,

/ (1 + (a | x^dx ^ det(a)-^ ( (1 + tr^))-5^.
Jn+ J^i

NSo, if A > -—, then2m

^ /^de^a)-^ ( (1 + (a | a;))-5^ < oo.
a6r\Q(LO '"+

On an other side, as

Q{x-\ /, L) = vol^-^et^^G^, /, L*),
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then if 5-(s, /, L) converges, i.e. if 5(s, /, L) converges, then

2-(5,/,L)= ( eC^J.I^detCr)-5^
Jr/^+

=vol(L)-1 I eOrJ.L^det^)^-5^
Jr/fl+

=vol(L)-^(^-.,/,L-)

i.e.

5-(5,/,L) ̂ voKL)-^ (— -5,/,L^ .

We deduce that 5_(5,/,L) is analytic on its convergence domain and as
24-(s,/,L) is analytic on C, then the above equation gives the analytic
continuation of 5_(s,/,L) as analytic function on C. It is also the same
for the Mellin transform 5(5, /, L) which is given by

2(5j,L)=5+(5j,L)+5-(5j,L)

^S+^/.^+VOI^-^+^-^AL^.

Moreover, it satisfies to the functional equation

5 ( — -5,/,L^ =vol(L)5(5,/,L). D

2.5. Analytic continuation and functional equation.

From the above, we deduce

=(£ -'•/''-)= ̂ ^(^ -)^.(/•-') —w'-w
^oW^l&.M^/,.-^)

^V^^ (^) /• (^Vr-^rns ^(g) ^ / r x
= VOl(L) ———^—— CL* (5)7r2 . ̂ ————r Z(/, -5)

7T'7 ^^l^"^

and finally, we have the theorem :
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THEOREM 2.5.1. — Under the assumptions :

{Hs) N > m(m - l)d,

(H^) the arithmetic subgroup Fo is self-adjoint,

the zeta function CL^) admits an analytic continuation as a meromorphic
function on the whole C and satisfies to the functional equation

a^-^o^-^a.,,

Remark. — If Fo is a finite-index subgroup of Fo, then the zeta series
defined by

000= ^ det(Q(l))-8

ler^L'

has the same properties than CL^).

3. Examples.

In this section we look at some examples of zeta functions.

3.1. Case of symmetric real matrices.

Let V = Sym(m, R) be the Jordan algebra with the product A o B =
- (AB+BA), then the symmetric associated cone is the cone ̂  of positive

definite symmetric real matrices. Let E = M(m,n,R) (with n ^ m), and
(f) the representation

(f): V —^ Sym(E), x \-> (f)(x) : $ ̂  x^.

The associated quadratic form Q is given by Q($) = ^',V$ C E. ($' is the
adjoint of ^.) Let VQ = Sym(m,Q), then VQ is a split Q-structure of V,
and let EQ = M(m,n,Q) and L the lattice L = M(m,n,Z). It is clear
that (f) is defined over Q, moreover, the arithmetic group GL(m^7i) is a
finite-index subgroup of To, where

Fo = {/ € FW | f{L) = L},
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and the zeta series is

0(5) = ^ De^AA')-8,
AeGL(m,Z)\M(m,n,Z),rank(A)=m

which is the classical Koecher zeta function.

3.2. Case of Hermitian complex matrices.

Let V = Herm(m, C) be the Jordan algebra with the above product
"o", E = M(m, 7i, C) (with n ̂  m), and 0 the representation

^(^=.r^v^ey,$e^.

The associated quadratic form is given by Q(^) = ̂ '.

Let K be an imaginary quadratic field and 0 its ring of integers.
Then VQ = Herm(m, K) is a split Q-structure of V and the space EQ =
M{m^n^K) is a Q-structure of £'. Let L be the lattice L = M(m,7i,0),
then it is clear that the representation (f) is defined over Q, and the group
GL(m^ 0) is of finite index in Fo, and we obtain the zeta series

W = ^ [De^AA')]-5,
AeGL(m,0)\M(m,n,0),rank(A)=m

and this case gives a new example of zeta function.

3.3. Case of Hermitian quaternionic matrices.

Let V = Herm(m, H) with the Jordan product, E = M(m, n, H) and
0 the representation <^(.r)$ = x^\/x e V^ e E. If 0 denotes the ring of
Hurwitz integers, then L == M(m,n,0) is a lattice in E and the group
GL(m, 0) is of finite-index in the arithmetic subgroup To associated to (f).
The zeta series is the one studied by A. Krieg in [15], and is given by

W = ^ De^AAQ-8.
AeGL(m,0)\M(m,n,0),rank(A)=m

The case of zeta functions of representations of rank 2-Jordan algebras gives
new examples of zeta functions and constitutes for itself an other article
(cf. [1]).
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