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FIXED POINTS FOR REDUCTIVE
GROUP ACTIONS

ON ACYCLIC VARIETIES

by Martin FANKHAUSER ^

1. Introduction.

The Fixed Point Problem. The base field will be the field of complex
numbers C throughout the paper. Let G be a reductive algebraic group
acting algebraically on affine n-space A71. The Fixed Point Problem asks
whether every such action has fixed points, see [Kr89b]. In this paper,
we consider the following, more general problem : Let G be a reductive
group, and X a variety with an algebraic G-action. Then X is called a
G-variety. The variety X has the structure of a complex analytic space
in a canonical way. The corresponding strong topology will be used to
consider the singular cohomology ring Jf*(X;A), where A will always
denote either the integers Z, the rationals Q or the field Zp with p elements.
If jEf*(X;A) = A, i.e., if X has the A-cohomology of a point, then X is
called A-acyclic. Now the problem can be put this way : If X is a smooth
affine and A-acyclic G-variety, what can be said about the set of fixed
points X° ? In particular, is X° -^ 0 ?

The following results are well known.

Smith Theory, see [Br], Chapter III :
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(1) If G is a torus and X is A-acyclic, then X° is A-acyclic.

(2) If G' is a finite p-group and X is Zp-acyclic, then X° is Zp-acyclic.

Petrie-Randall [PR], p.210, see also Verdier [Ve] : Let G be a finite group
having a normal series P C H C G, where P is a p-group, G / H is a g-group
(p, q prime) and H / P is a cyclic group. If X is Zp-acyclic, then the Euler
characteristic of the fixed point set is x^X0) = l(mod g), and x(XG) = 1
if G/H is trivial.

Luna-Kraft-Schwarz [KS], p.4 : If X is A-acyclic and dim X//G = 1,
then X° is either a point, or X° ^ A.

Here X / / G denotes the algebraic quotient for the action of G on X,
i.e., the affine variety corresponding the C-algebra of invariant functions on
X (see [Kr84], II.3.2). Note that in all these cases X° is not empty, and
in the situation of Smith Theory as well as in the Situation of Luna-Kraft-
Schwarz, X° is even connected. We will use Smith Theory and Petrie-
Randall as the cornerstones for fixed point theorems on semi-simple group
actions.

Our first result shows that the dimension of the quotient X//G
behaves reasonably if G is semisimple. Note that the hypothesis is satisfied
\iX is A-acyclic (by Smith Theory), and that for X = A71, the result follows
from the factoriality of X.

THEOREM A. — Let G be a semi-simple group, and X a smooth
affine G-variety with non-empty and connected fixed point set A^, T C G a
maximal torus. Then the generic fiber of the quotient map TTX '' X —> X//G
contains a dense orbit.

There is an extensive literature on differentiable actions of compact
transformation groups on acyclic manifolds. One of the results is, that in
order to get fixed points, one has to impose some kind ofsmallness condition
on the action, e.g. by limiting the number of orbit types (see [HS82]) or
restricting the dimension of the orbit space (see [HS86]). This was the
motivation to study the analogous problem in the algebraic setting. We
prove the following two theorems :

THEOREM B. — Let G be a simple group of rank n, and X a
smooth affine and ^-acyclic G-variety. If G has no fixed points, then
dim X//G > n— log^ n.

This result can be strengthened considerably, see the table on page 4.
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THEOREM C. — Let G be a connected reductive group, and X a
smooth aEne and ^-acyclic G-variety.

(1) JfdimX//G ^ 2, then X° is ^-acyclic.

(2) IfdimX//G = 3, then X° is not empty.

The problem of constructing fixed point free actions for reductive
groups on A71 or even on acyclic varieties is completely open. Note however
that if G is not reductive, then there are anine actions of G on some A71

without fixed points, cf. [KP], p.479.

This paper grew out of the author's thesis [Fa], written under the
direction of Hanspeter Kraft. I thank Hanspeter Kraft and Gerald Schwarz
for their constant support and encouragement, Friedrich Knop, Peter
Littelmann and Eldar Straume for their help.

Conventions and notation. For the rest of this paper, a variety is always
tacitly assumed to be affine and smooth. If G is an algebraic group, we write
G° for its identity component and we use the german letter g to denote
its Lie algebra. If T is a torus, we denote by X(T) its character group.
Let G be connected reductive and T C G is a maximal torus. We denote
R(G) C X(T) the roots of G, and for a G R(G) we have the associated
reflection s^ on X(T) (g)^ M. There is a linear form (a, ?} : X{T) —^ Z such
that 5^(A) = A - (a, A)a for every A e X(T). We call a subset II C X(T)
a-saturated if A — ia € II for every A G II and any integer i between 0 and
(a, A). It is well-known that the weight system of a G-module is a-saturated
for any root a. We always assume chosen a fundamental Weyl chamber
C(G) C X(T) (g)^ R. Note that it makes sense to talk about Weyl chambers
even if G is not semi-simple, e.g. if G is a torus, then C(G) == ^(G) <g)^ R.
For the simple groups, their roots and their weights we use the notation
of Bourbaki [Bo]. For uj € X{T) a dominant weight, we let V^ denote the
irreducible G-module with highest weight uj. If we want to emphasize the
group which is acting, then we write V^{G) instead. 6 will always denote
the one-dimensional trivial representation. The direct sum of m copies of
a representation V will be denoted by mV.

Smoothness of fixed point sets. The following proposition (see [Fa],
p.9) is a corollary of the Slice Theorem [Lu]. We will use it to reduce some
problems to considering actions on the fixed point set of subgroups.

PROPOSITION. — Let G be a reductive group, and X a smooth afHne
G-variety. Then X11 is smooth for any (not necessarily reductive) subgroup
H CG.
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Remark. — Bass [Ba] was the first to construct an action of the
unipotent group (C, +) on C3 which is not triangular : the action has a
singular fixed point set. The corollary implies that an action of (C, +) with
singular fixed point set cannot be extended to an action of a reductive
group containing (C,+).

2. Leitfaden.

We describe the main steps in the proof of Theorems B and C, under
the assumption that Theorem A is already proved.

Let G be a connected reductive group with a maximal torus T.
Let X be a G-variety such that X71 is non-empty and connected. The
following definition, due to Wu-Yi Hsiang (cf. [Hs]), generalizes the well-
known definition of the weight system of a G-module. Choose x e X'11, and
put

S(X) = the isomorphism type of the T-module T^X.

Since by hypothesis X7' is connected, the T-isomorphism type of every
tangential representation T^X, x ^ X71 is the same (cf. [Kr89a], p.112/113),
and so E(X) does not depend upon the choice of x e X71. We call S(X)
the weight system of the action, since we can think of it as a set of weights
of T with multiplicities. We denote by S'(X) the set (with multiplicities)
of non-zero weights in S(X).

Remark. — If X is a G-module, then its weight system S(X) de-
termines the isomorphism type of the representation completely. However,
Schwarz5 counterexample [Sch] to the Linearization Problem shows that
there are families of non-isomorphic actions on A" which have the same
weight system.

Denote W(G) = W the Weyl group of G. There is a canonical action
of W on the character group X{T). Using the action of W on the connected
set X7' induced by the action of the normalizer Nor^r) on X71, one proves
(cf. [Hs], p.37) :

PROPOSITION 2.1. — The weight system S(X) is stable under the
Weyl group W.
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From now on let X be an A-acyclic G-variety. Then X71 is non-
empty and connected by Smith Theory. Thus S(X) is defined, and if G
is semisimple, the hypothesis of Theorem A is satisfied.

The next theorem is a direct translation of a result of Wu-Yi Hsiang
(cf. [HH70], p.207) to the algebraic setting.

THEOREM 2.2. — JfS(X)n.R(G) = 0, then X° = X71. In particular,
X0 is A-acyclic, and dim X° is the multiplicity of the zero weight in S(X).

Proof. — Choose x 6 XT'. Then T^Gx) ^ Q/Qo, C T^X as G^-
modules. Restricting to the T-action on T^X we get that R(G) — R{G°^) C
S(X), hence by hypothesis R(G) = R(G°,). This implies that G°, = G° = G
and X'11 = X°. The rest follows from Smith Theory and Luna's Slice
Theorem. D

Combining Proposition 2.1 and Theorem 2.2 one sees that S(X)
contains at least one IV-orbit of roots if X° is not A-acyclic, e.g. if the
action has no fixed points.

For technical reasons, which will become apparent during the proof
of Theorem C, we have to strengthen slightly the statement of Theorem B.
Let x e X be on a closed G-orbit. We will use the notation N^ for the
largest G^-submodule in the slice N^ without fixed lines, i.e., we decompose
Nx = N^ C Nx. We denote

d(X) := max{dim^//GS | x € X71}.

PROPOSITION 2.3. — Let G be a semi-simple group, and X an A-
acyclic G-variety. Then dimX//G ^ d(X) ̂  dimS'(X) - dimG.

Proof. — Fix x € XT. By the Slice Theorem it follows that

dimX//G = dimA^//G^ = dim^//G^ ^ dimN^//G0^

thus dimXy/G ^ d(X). The second inequality follows from dimA^c —
dim G°, ̂  dim I/(X)-dim G, and by Theorem A we have that dim N^//G°, ̂
dim N^-dimG0,. D

Let now G be a simple group, and denote n its rank. To simplify our
discussion, we assume that G is simply laced. Since W acts transitively on
R(G), our discussion shows that ifX0 is not A-acyclic, then R{G) C ̂ (X).
On the other hand, ifdim(S'(X)-^(G)) ^ 2n, then dimX//G ^ d(X) ̂  n.
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Thus in order to prove Theorem B we only have to consider actions with :
(a) R(G) C S'(X), and (b) dim(^(X) - R(G)) < 2n.

Let X be a Z2-acyclic G- variety, such that S(X) satisfies conditions
(a) and (b). We will determine a reductive subgroup G' C. G with T C G' ^
such that X01 + 0 and dimN^//G°, ̂  n - \og^ n for x e X°\ This yields
Theorem B.

Of course, this strategy needs some modifications if G is not simply-
laced. More precisely, in §5-9 we show the results in the following table :

type
Ai
Ai

An, n = 2,3
An, n = 2,3
An, n > 3

Cn, n= 3,4

Cn, n= 3,4
Cn, n > 4
Bn, n ̂  4

D4

Bn.D,

EG

En, n=7,8
F4

F4

G2

If X° is
not Za-acyclic

empty
not Z2-acyclic

empty
not Z2-acyclic
not Z2-acyclic

empty
not Z2-acyclic
not Z2-acyclic

empty
not Z2-acyclic
not Z2-acyclic
not Z2-acyclic
not Z2-acyclic

empty
not Z2-acyclic

then d(X) is
^ 2
^5
^ n

^ 16,33
> n — log2 n

^ n- 1

^21,44
> n — log2 n

^ 2n- 1

>44
^ n
^5
^ n
^ 2
^44
^12

E(X)
d(X)=2^E(X)=S(y2o, i )

d(X) = n <^ E'(X) = J?(An)

d(X) = n - 1 <^ E(X) =
E(K,JorS(K,J®E(y^)

d(X) < 2n <^
^(^S^J

d(X)=2^S(X)=S(K,J

S(X) contains at least
3 IV-orbits of cardinality 6

Finally, the proof of Theorem C relies on an induction on the
number of simple factors of a connected reductive group, using Theorem B.
However, there are some small groups which need special care, and an
additional acyclicity hypothesis.
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3. Good quotients for semi-simple groups.

We start with a connected reductive group G acting on a variety X.
Moreover, we fix a maximal torus T C G.

PROPOSITION 3.1. — Assume that the fixed point set X7' is non-empty
and connected.

(1) There is a reductive subgroup H C G containing T such that Gj; = H
for all x in an open dense subset of X7'. In particular, X71 = X11.

(2) The roots of H° are R(H°) = R(G) - (S'(X) U R(G)). In particular,
R(H°) is W(G)-invariant and E'(A^) H R(H°) = 0.

(3) The normalizer L := NorG'(^°) acts on X71, and L contains Norc(T).

(4) The representation of H° on the tangent space T^X is independent
ofxe X71 and extends to a representation of L.

Proof. — (1) This is a consequence of the Slice Theorem. All orbits
Gx for x € XT are closed. Since XT is irreducible we can assume that
they belong all to the same Luna stratum. This implies that in the slice
representation N3; (x 6 X7') the stabilizers in Gx of all points y C N^ are
conjugate and in particular conjugate to the stabilizer of 0 G N^ which is
G..

(2) On one hand, for any x ^ XT, Q/Q^ ^ T^Gx) C T^X, and
therefore (R(G) -R{G°,)) C S'pC). This implies R{G) - {R(G) F^'(X)) C
R(G°,). On the other hand, assume that there is an a € R(H°) H S'(X).
Then the slice N^ contains an irreducible G^-submodule V such that
a 6 S(V). Since S(V) is a-saturated, we have that a — a = 0 € S(V), i.e.,
V^^ 7^ {0}. The stabilizer Hy of any vector v € V7^ — {0} does not contain
H°. This is a contradiction to (1), hence R(H°) H S'(X) = 0.

(3) It is clear that L and also Nor^T) both act on X71. For any
x € X7' and g € Norc^T) we have G^ = gG°^g~1^ and the claim follows
from (1).

(4) It is well-known that the representation of H° on the tangent
space T^X is independent of x e X71 (cf. [Kr89a], p.112/113). By (2) and
Proposition 2.1, S(A^) = S(X) - (S'(X) H R(G)) is W (GQ-invariant (as a
set with multiplicities). Now the claim follows from the next lemma.

LEMMA 3.2. — Let H C G a be a connected reductive subgroup con-
taining T, and such that R(H) is a union of W{ G) -orbits. A representation
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p: H —^ GL(V) extends to a representation ofL :== Norc(^) if and only if
S(V) is W(G)-invariant.

Proof. — Given a reductive group G and a reductive subgroup H
containing a maximal torus T of G it is well-known that H has finite
index in its normalizer L := NOTG(H). More precisely, L / H is canonically
isomorphic to W(L)/W(H), the quotient of the corresponding Weyl groups.
In our situation, L contains NorG;(r) hence L / H ^ W(G)/W(H).

Given the fundamental Weyl chamber C(G), one has the following
n

partial order on X(T) : X <c ^ is equivalent to fi - \ = ^ n^, where
i=l

HI G N and the o^ are fundamental roots. For H c G a maximal rank
subgroup, we may assume that C(H) D C(G). Then A <n ^ implies A <c AA.

Choose a maximal weight p, with respect to <G in S(V). Write
w(G).^nc(^)={/zi,...,^},so

W)|̂  0^^)0(3^),
1=1 AGA

where for each weight in A e A, there is an i such that A <H /^, and
A ^ W(G)fJL. Here we use the fact that there is a unique highest weight
for an irreducible G-module, hence every weight in W(G) ' ^ occurs with

multiplicity one in S(l^(G)). Then V := © V^(H) is an irreducible L-
module, and E(V) is W(G) -invariant. By TV(G)-invariance of S(V), V\n
contains an ff-submodule isomorphic to V. This proves the lemma. D

PROPOSITION 3.3. — Let L be a reductive group and H C L a normal
subgroup containing a maximal torus T of L. Assume that there is a
subgroup N C L normalizing T such that ^(T)^ = {0}. Then for every
representation V of L the quotient TT: V —^ V / / H is good (i.e., the generic
fiber contains a dense orbit).

Proof. — Since invariant rational functions separate generic orbits we
have to show that the field of invariant rational functions C(V)11 is the field
of fractions of the invariant ring C[V]^. Let r = - € C(V)11 and assume

q
that p and q have no common divisors. Then both are eigenfunctions with
respect to a character \ of H : p(gv) = \(g) • p{v) for all v € V, and
similarly for q. Now choose representatives n\ = \,n^...,Um of N / T in
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N. Then the function
m

p(v) := Jjp(n^)
%=i

is an eigenfunction with character \ := ^rii\. Clearly, \ is invariant
under N and so \ = 0 by assumption, i.e., p is an invariant function. Thus

r(v) = p(v! = _____P^_____
q{v) q(v) ' p(ri2v) ' ' ' p(rirnv)

is a quotient of two invariant regular functions. D

Now we are ready to prove the main result of this chapter.

THEOREM A. — Let G be a semi-simple group acting on a smooth
affine variety X. Assume that the fixed point set X71 of a maximal torus
TofG is non-empty and connected. Then the quotient TTX'-X —^ X / / G is
good.

Proof. — Let V := Nx be the slice representation of H := Gx in
a generic point x oi XT. By the Slice Theorem it suffices to prove that
the quotient TTV'-V —^ V / / H is good, or equivalently, that the quotient
TT:V —> V / / H 0 is good. The representation of H° on V extends to a
representation of L := Norc^0) by Proposition 3.1 (4) and L contains
the normalizer N of the maximal torus T in G by Proposition 3.1 (3). It
is well-known that ^(T)^ == {0} for any semi-simple group. Thus, we can
apply Proposition 3.3 above and the claim follows. D

Remark. — The assumption that X71 is connected is essential for the
theorem as shown by the following example. Assume that G is semi-simple
and a e ^(T) - {0}. Let T act on C^ (m > 1) by scalar multiplication
via a. Then the associated bundle

X'^G^C^

is a smooth G-variety of dimension dim G + m — dim T without invariants.
The generic orbit has dimension dim G + 1 - dim T, and XT consists of
\W\ points.

4. Rank one groups.

We look at SOs-actions on a Zs-acyclic variety X. The condition that
Xs03 is empty will force some specific slice representations to occur, for
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various subgroups (see Oliver [01]). This implies that the weight system
cannot be to small.

The list of reductive subgroups - up to conjugacy - of 80s is well-
known : A maximal torus T, its normalizer N , the cyclic subgroup Cn C T
of order n, the dihedral group Vn C N of order 2n, the icosahedral group
Z ̂  ^5, the octahedral group 0 ̂  <?4, and the tetrahedral group T ^ Ai.
Note that N , I and 0 are maximal proper subgroups of SOs. Furthermore,
XN = (X^ is Z2-acyclic because W = N/T ^ ̂  and Smith Theory,
and X° -^ 0 due to the normal series 0 = <?4 D Ai D ^2 and Petrie-
Randall.

Denote by a; a generator of ^(T), i.e., a; = 2a;i(Ai) e ^(Ai) =
^(SOs). Let mi be the multiplicity of iuj in S(X). Then

(4.1) E(X) = mo(9 ® ̂  m,(za; ® -^),
01

due to the IV-invariance of the weight system. Denote Ms := ^ nisi for
Oi

s ̂  1.

LEMMA 4.1 (see [HH74], pp.233/34). — WeAavecodim^TX^ = Mi-
2M2, i.e., dimX^ = mo-Mi+2M2, and dim X^28 = mo-Mi+2M2+M2^,
5 C N - { 0 } .

Proof. — Choose x e X1^. Then the TV-module T^X is a direct sum

T^ ^ m^O C mo'a C ̂  m,p,
Oi

of irreducible Ay-modules. Here a denotes the one-dimensional non-trivial
Ay-module via the projection N —^ N/T ^ Z2, and pi the two-dimensional
irreducible TV-module with pi\r = iuj 0 -%o;. Note that m^ + mo' = mo,
and mo' = codim^rX^. We claim that m'Q = Mi - 2M2. Then the
lemma follows from the fact that X^23 is Z2-acyclic, hence dimX^23 =
dim(r^X)^.

To prove that m'o = Mi -2M2 we consider the action ofT^- There are
four irreducible representations of this group, each of dimension one. Let
EQ denote the trivial representation, £1 the non-trivial one with kernel €2,
and £25^3 the remaining two. Then of course 6\^ == eo, a\^ = £1, pi\^ =
£o^£i for i even, and pi\^ = £"2 0^3 for i odd. Moreover V^ C 0 is normal
and the elements of ^2 - {e} are all 0-conjugate. Thus the multiplicities in
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the Pa-representation T^X satisfy mult(£i) = mult^) = mult^s). Since
mult(^i) = m'Q + Ma and mult^) = Mi — Ma, the claim follows. D

LEMMA 4.2 (compare also [HH74], pp.233/34).

(1) JfM2 = Mi, then Xs03 = XN is ^-acyclic, and M^ = 0.

(2) JfMi = 0, then Xs03 = X ° ̂  0, and M^ = m^.

Proof. — (1) Because M^ = M^ we have that dimX^2 = dimX^4,
hence X^2 = X^4 since X^4 C X^2 and X^2 is irreducible. This holds
for all of the three subgroups of 0 which are conjugate to Z>4. Since they
generate 0, we have X° = X^2. Since N and 0 are maximal closed
proper subgroups of SOs, it follows that X° H X^ = Xs03. But here
X° = X^2 D X^, hence Xs03 = X^. The tangential representation in a
fixed point x of SOs is

(4.2) T^X ^ Q)(mi - m,+i)y^ C (mo - mi)(9,
i>0

hence mi ^ yn^+i. In particular, if M^ = M^ then ?7ii = 0 for i > 1.

(2) Because Mi = 0 we find that X^4 = X^. Hence Xs03 =
X° H X1^ == X°. By (4.2) it follows that m, = 0 for i ̂  4, so M^ = m^ D

The following proposition should be compared to Theorem 2.1 in
[HS86].

PROPOSITION 4.3. — Let X be a. ̂ -acyclic SO^-variety.

(1) codim^T^X^) = Mi — 2M2 ^ 0, and m\ ^ 1 if the action is not
trivial.

(2) JfM2=0 then Xs03 = X^ is Z2-acychc.

(3) Ifm^i -^ 0 for only one i ̂  1, then in fact m^ ̂  0 and Xs03 = X ° ̂
0. If in addition m^ = ms, then Xs03 = X^ is Z2-acych'c.

(4) IfX is also Zs-acychc and Ms = 0, then Xs03 = XT ^ 0; in fact,
its Euler characteristic is ^(X803) = 1.

Proof. — (1) By Lemma 4.1, codim^X^) = Mi - 2M2. If mi = 0,
then SOs has fixed points on X by Theorem 2.2, and E(X) = mQ0 by
equation (4.2). Hence the action is trivial.

(2) It is obvious that Mz = 0 implies Ma = M4, and Lemma 4.2(1)
implies the claim.
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(3) If i is even, then M^ = M^ = 0 by Lemma 4.2(1), a contradiction
to m-2i -^ 0. Hence z is odd and M^ == 0, so Xs03 = X° and 7712 = Ms by
Lemma 4.2(2). For x € Xs03 the character of the 0-representation on T^X
can be computed from the weight system (see [01], p.232). In particular, if
m2 = 7723 it follows that dim(T^X)0 = dim^X)^, and the irreducibility
of X^ implies that XN = X°.

(4) Let 7 be a 3-cycle in the tetrahedral group T ^ Ai, and
T ' c SOg a torus containing 7. Because X is Zs-acyclic, so is X7, and
dimX^ = TTio + 2Ms = TUQ = dimX^, so X7" = X^. For any x € X7',
T' c G^, hence Ga; = SOs and Xs03 = Xr. On the other hand, A^V^W
is a normal series for the tetrahedral group, and by Petrie-Randall it follows
that ^(X^ =1. D

COROLLARY 4.4. — Let G be a simple group of rank 1, and X a
^-acyclic G-variety.

(1) IfX° is not Z2-acydic, then d(X) ̂  2. Moreover, d(X) = 2 implies
thatS(X)=S(y4oJ.

(2) IfX0 = 0, then d{X) ̂  5, and in particular dimX//G ^ 5.

Proof. — The center C is either trivial or C ^ Z2, so X° is Z2-
acyclic. Hence the action of G/C ^ SOs on X° satisfies the hypothesis,
and X° = (XC)S03. Moreover, d(X) ^ d(X0), so we may assume that
G = SOs. If Xs03 = 0, then M^ ^ 2 by Proposition 4.3(3), and Mi ^
2M2 ^ 4 by Proposition 4.3(1). Therefore d(X) ^ dimS'(X) - dimSOs =
2Mi - 3 ^ 5 by Proposition 2.3. To prove (1), assume that X° is not
Z2-acyclic and d(X) ^ 2, hence dimS'(X) ^ 5. We have that M^ > 0 by
Proposition 4.3(2), hence 7711 = 7712 = 1 by Proposition 4.3(1) and (3) and
771, = 0 for i > 2. It follows that T^X ̂  V^ for x € Xs03, and we are
done. Q

5. Rank 1 subgroups and saturatedness.

Throughout this chapter, we let G be a connected reductive group
with a fixed maximal torus T. For a e R(G) define Ta := ker(a) C T.
Its identity component T^ is a corank 1 torus, and the centralizer Ga =
Cc(T^) is connected, cf. [Hu], p.140. Of course, Ga is a reductive group
of semisimple rank 1, with center T^, and Ga := G^/Ta is isomorphic
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to SOs. The normalizer Na := Nor^CF) is contained in N := NorG?(T)
by definition, and it is clear that Na = Na/Ta is just Nor^ (T), where
f := r/TQ is a maximal torus in Go. Therefore Wa := Na/T is the Weyl
group of Gai and since Wo. = Na/T C N/T = W, it is the subgroup of W
generated by the reflection corresponding to the root a.

Let X be a Za-acyclic G- variety. Then X^ := X70 is Za-acyclic, since
Ta/T^ ^ Zs or trivial. Xa has an induced action of Go, ^ SOs. Note
that the weight system is S(X^) = S(^) Fl Za, as a subset of S(X) with
multiplicities : For x € X^, T^X^ = T^X^) = (T^X)7- by the Slice
Theorem.

PROPOSITION 5.1. — Let X be a ̂ -acyclic G-variety and a € R{G). If
S'(X) FiNa contains no more than three (not necessarily distinct) weights,
or there is no i ^ 2 with 2ia € S(X), <Aen S(X) is a-saturated as a set
without multiplicities.

Proof. — Consider the action of Ga on Xa. Under both assumptions
we are either in case (2) or (3) of Proposition 4.3, hence the action of Ga
on Xa has fixed points. Choose x € XGa = X^. Then S(T^X) = E(X)
is a-saturated. D

For the rest of this chapter we assume that G is a simple group. Let
X be an A-acyclic G-variety, A = Z, Zp or Q. We extend the notation
introduced in §4. If G is non-simply laced, we have R(G) = Ri(G) © Rs(G)
where Ri(G) are the long and Rs{G) are the short roots. If G is simply
laced we consider all the roots as long roots. For a G Ri{G), respectively
a € -Rs(G), and i € N the multiplicity of ia in S(X) is independent of the
choice of a and will be denoted by m^, respectively by n^ :

S(X) == mo0 C (3)m, (Cae^) ® Q^ (^OeRs^) ® r.
1^1 %^i

where F denotes those weights which are not integral multiples of roots.
The multiplicities rii are - by our convention - always zero for a simply
laced group G. We put Ms := ^rrisi, Ns := ^risi. Note that dimX =

i^l i^l

mo + Mi dim(Ri(G)) + A^i dim(^(G)) + dimF.

The following proposition shows that if S(X) contains a long root,
then it contains all roots.

PROPOSITION 5.2. — Let X be an A-acyclic variety, G a simple group
of type Bn, Cn, F^ or G^ acting on X. Ifn^ = 0, then m\ = 0.



1262 MARTIN FANKHAUSER

Proof. — The special case that X is a G- module is an easy exercise,
using the fact that the weight system of a G-module is saturated. For
the general case, take y € X7', T C G a maximal torus. The hypothesis
n\ = 0 implies that R(Gy) contains all the short roots. But Qy is a Lie-
subalgebra of Q so for two root spaces Qa and 0/3, it also contains their
bracket [50,5/3] = Qa-{-(3 if a 4- /? € -R(G). It is well-known that every long
root is the sum of two short roots, hence Gy = G and the proposition now
follows from the special case. D

Together with Theorem 2.2 we obtain the following result.

COROLLARY 5.3. — Let X be an A-acyclic G-variety, G simple.

(1) IfGis simply laced and m\ = 0, then X ° is A-acyclic and dimX0 =
mQ.

(2) If G is non-simply laced and n\ = 0, then X° is A-acyclic and
dimX0 = mo.

If G is non-simply laced, denote W C W the subgroup generated by
the Wa^ 01. € Rs(G), and let N ' C N be the subgroup generated by the N^,
a C Rs(G).

PROPOSITION 5.4. — Let X be a ̂ -acylic G-variety, G simple.

(1) If G is simply laced, m^ = 7713 and mi = 0 for i ^ 4, then
x° = {x^.

(2) If G is non-simply laced, n^ = 713 and rii = 0 for i ^ 4, then
XG^^)^.

Proof. — We only carry out the proof in case (2), because the other
case is proved similarly. For a € -Rs(G), look at the induced action of Ga
on XQ- The hypothesis on S(X) means that we are in the situation of
Proposition 4.3(2), or (3) with 1712=1713. Thus X00- = X^ = X^01 =
(X^)^ = {X^01. The Go (respectively the W^), a € Rs(G), generate
G (respectively W). This implies the claim. D

By Proposition 5.1, the multiples of a root have to occur in strings
as long as the weight system is "small". This makes the following lemma a
pretty useful complement to Proposition 5.4.

LEMMA 5.5. — Let X be a Za-acyh'c G-variety.

(1) If G is simply laced, mi = 7712 and mi == 0 for i ^ 3, then X° -^ 0.
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(2) If G is of type Cn (n > 2), F4 or G^, n^ = 77,2 and n, = 0 for i ^ 3,
then X° ^ 0.

Proof. — Again we only do case (2). Note that W permutes transi-
tively the short roots. Thus for every short root ao,

G = (G, | a e Rs(G)} = {G^ \ w e W'} == {N^G^}.

The action of Ga on Xa satisfies m\ = 777,2, and the other m^s are zero,
hence XT = X^ by Proposition 4.3(1). It follows that X^ = XT', and
that X° = X^ H X^o =XTn X^o = X^o + 0. D

Remark. — This proof fails if G is of type Byi, because then W does
not act transitively on the short roots.

6. The special linear groups.

We start with a lemma which is a translation of Lemma 3.3 in [HS86],
p.27 to the algebraic setting (see also [Fa], pp.27/28).

LEMMA 6.1. — Let X be an affine SLn-variety. Let T C SLn be the
diagonal torus, and define the 1-PSG \: C* ̂  S C T by

A^^diagO,^^,...,^,^,...^-2^-1) torn odd,
\((i)t = diag($, $3,... c, f1-1, ̂ -n,..., r3, r1) for n even.

Let tn := A(e~^1) for n odd, respectively tn ''= A(e^) for n even, and
assume that Xs = X^. Then X8^ = (X^, where Cn e W(SLn) is a
Coxeter element.

LEMMA 6.2. — Let p be a prime number, and X a ^p-acyclic variety.
Let q = p8 for some s C N, and assume that SLq acts on X. If for every
[i € S(X) with p.(tq) = 1 it holds that J L A O A = 1, then X8^ = (X71)^, and
the fixed point set is Zp-acydic.

Proof. — By Smith Theory, Xs and X^ are both Zp-acyclic, hence
irreducible. Since dim Xs = dimX*9 for the given weight system, and
Xs C Xtq^ we have the equality Xs = Xtq. By Lemma 6.1 we conclude
thatX8^ ̂ X^. D
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Let X be a Za-acyclic SLyi-variety, n a power of 2. If ^'(X) =
.R(An-i), then Xs1'71 is Za-acyclic. In a fixed point x of SL^ we have that
Nx = AdsLn, so d(X) = dimAdsLny/SLn = n - 1. This observation is the
clue for the following proof.

PROPOSITION 6.3. — Let G be a simple group of type An, n ^ 2, and
X a ̂ -acyclic G-variety.

(1) IfX0 is not ^-acyclic, then d(X) > n- \og^ n. Moreover, ifn ^ 5,
then d{X) ̂  4.

(2) Assume that X° = 0. Ifn= 2, then d(X) ̂  16, and ifn = 3, then
d(X) ̂  33.

Proof. — (1) We may assume (see §2) that R(G) C S'(X) and
dim(S'(X) — R{An)) < 2n. One easily computes that the only non-trivial
lV(Ayi)-orbits in X(T) of cardinality < 2n are of the form { z £ i , . . . , ̂ n+i}
for some i e Z. There can be at most one such orbit in S'(X), and by
Proposition 5.1, S(X) is a-saturated for every root a. It follows that i = ±1
if{^5l, . . . ,^+l}cS /(X).

We construct a maximal rank subgroup GI of G with semisimple rank
> n — log2 n. Write n + 1 in the binary system : n + 1 = (&j&j- i . . . &i&o)2?
with 0 ^ ^ < 2 for H = 0 , . . . J and n + 1 = ^ 6^. Define J :=

^o
{^ € {! , . . . , n} | there is no i ^ 2 with A; = ^^2^1, and I := {^ €1 W J

N>o | ̂  7^ 0}. Number the elements in I such that J = {^ i , . . . ,^r} with
i\ > ^2 > • • • > f-r- Denoting Ok = e^ — e^+i the A:th simple root, put
TI = H r^fc. Now the connected group GI = CG(T^) has maximal rank,

kei
and Gi/T^ is of type Ag^-i x ... x A^-i, where ^ = 2^1 unless % = r and
^ = bo = 1, in which case qr = 3. Put HI = SLg^ x ... x SLg^,, and consider
the finite group homomorphism Hi -» Gj/T?. Denote by Ti the maximal
torus in SL^ with image in T / T ^ . By construction, rank If j > n — \og^ n,
and in case n = 5, HI = SL^ x SL^ is of rank 4. Note that rank-Hj equals
the semisimple rank of GI.

Since GI normalizes 7^, it acts on Xi := X^. Look at the induced
action of HI on Xi. This turns Xi into a smooth, affine and Za-acyclic
Ifj-variety, and its non-zero weight system is

r ' ( x } r/m^i JR(HI)' ifj^0'S(XJ)=S(X) ^-^'tEm if 1=^.
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If qi = 2^, then the hypothesis of Lemma 6.2 is fulfilled for the SLq^ -actions
on Xj, hence (Xj^)^ = Xj8^. If ^ = 3, then Xi^ = (Xj^)^2)
by Proposition 5.4(1). Therefore we get that

^Gi ^j^SL^x...xSLg, ^ /j^TiX...xT^F

where F is a finite group. In fact, F is the 2-group (cq^) x ... x (cq^} if
^ = 2^, and F' ̂  (cq^} x ... x (cg^) x ($3 if q^ = 3. In any case, there are
fixed points by Petrie-Randall.

Choose x € X01. Then Ad^ C N^, so dimA^/G^ ^ the semisimple
rank of G^. Since GI C G^, this is > the semisimple rank of Gj.

(2) For n = 2,3, W(A^) ^ <?^+i has fixed points on XT by Petrie-
Randall. Thus Propositions 5.1, 5.4(1) and Lemma 5.5(1) imply that Mi ^
3. Moreover, if Mi = 3, then mi = 2 and 7712 = 1, thus dimF ^ n(n2 — 1)
by saturatedness. This implies that dimI/(X) — dimAyi ^ 16 if n = 2,
respectively ^ 33 if n = 3. D

We complement Proposition 6.3 by a result which takes care of SL5-
actions, to get a general lower bound dim X//An > 4 for fixed point
free actions on Z-acyclic varieties. The Weyl group W(A4) ^ SQ has no
decomposition series that would allow the application of Petrie-Randall.
But if we assume that X is also Z5-acyclic, we get fixed points for SL5 as
long as the conditions of Lemma 6.2 are satisfied.

PROPOSITION 6.4. — Let G be a simple group of type A^, and X
a Za- and ^-acyclic variety. If G acts on X without fixed points, then
d(X) ̂  26.

Proof. — Since SL5 is the simply connected group of type A4, we can
assume that G = SLa. If Mi ^ 4, then d(X) ^ dimS^X) - dimG ^ 56,
so we assume that Mi ^ 3. Then the weight system satisfies the following
conditions : (a) It is a-saturated for every a € R^A^) (by Proposition 5.1),
(b) R(A^) C S'(X) (by Theorem 2.2), and (c) there is a weight ^ € S'(X)
such that ^(t^) = 1 but fJ, o \ -^ 1 (by Lemma 6.2). Now it is easy
to see that a weight system which satisfies conditions (a) to (c) has
dimS'(X) ^ 50, which is enough to prove the claim. E.g. if /^ = 5£2,
then also ^ == 5^ - (^2 - ̂ i) - (^2 - £3) e S'(X), and \W(A^)^\ = 30.
The bound comes from the weight ^ = —e\ + £2 + ^3 ~~ ^4- D
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7. The symplectic groups.

Fix a maximal torus T in the symplectic group Sp^, the simply
connected group of type Cn. Sp^ has a maximal rank subgroup isomorphic
to GLn corresponding to the roots ±(^-^.), l ^ i < j ^ ̂  Thus, using the
notation of Lemma 6.1, it makes sense to talk about tn € S C SLn C Sp
and Cn € IV(SL,) C ̂ (Spj.

LEMMA 7.1. — Let p be a prime number, and X a Z-^- and Zp-acyclic
variety. Let q = p8 for some s e N, and assume that Spy acts on X. If
ri2 = ns, rn = 0 for i ^ 4, and every ^ C S(X) H ( C Zfe+i - £,))

l^i^q-l
which satisfies p.(tq) = 1 also satisfies IJLO\ EE 1, then X8^ = ((X7)^"1)^
andx{XS^)=l. v v ^ ^

Proof. — By Proposition 5.4(2), we know that X^ = (J^)^^) =
((X71)^ 1)^. Denoting by (7 the center of GLq C Sp^, the weight system
E^0) for the SLg-action on X0 is

^x°) = s(x)0 = E(X) 0 ( 9 z(^i - ̂ )) .
\l^g-l j

By Lemma 6.2, the hypothesis implies that X0^ = {X0)^ = (X71)^,
and in particular (X^ = (X71)^. Therefore X^ = ((X71)^1)0^ and
^(X^) = 1 by Petrie-Randall. ' Q

PROPOSITION 7.2. — Let G be a simple group of type Cn, and X a
^-acyclic G- variety.

(1) IfX° is not Z2-acydic, then d(X) >n- loga n.

(2) Assume that X° = 0. Ifn = 3, then d(X) ^ 21, and ifn = 4, then
d(X) ̂  44.

Proof. — (1) By Corollary 5.3(2), R,(Cn) C E'(X). We may assume
that dimS'(X) - dim^(Cn) < 4n, since otherwise d(X) ^ n by Propo-
sition 2.3. The only TV(Cn)-orbits of cardinality < 4n are of the form
{ze-i, -^i,..., ion, -ion} for some i e N if n ̂  4. Moreover, such a weight
system is a-saturated for every a e A(Cn), hence z = 1 or 2 (if such an
orbit occurs at all).

For n = 3, the orbit W(C^){z^) has also cardinality < 4n = 12.
If such an orbit occurs in S'(X), then we get that S'(X) = ^(€3) e
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W(C3)(zo;3). By Proposition 5.4(2) and Petrie-Randall, the action has fixed
points, hence E(X) is the weight system of a Cs-representation. This is
absurd

So for any n, we have to consider two cases.

CASE 1 : S'(X) = R,(Cn) C {2^i, -25i,.... 2^n, -2en} = R(Cn).

The subgroup A^ C Cn corresponding to the long roots has fixed points
by Proposition 4.3(2), since X^ = (J^)^!)" = (X^ is Z2-acyclic.
Take x € X^. Then of course N3; = Ad^o, G^ is semi-simple of rank n
and d(X) = dim Ad^ //G^ = ̂

CASE 2 : S'(X) = ̂ (Cn) C {£l, -£l, . . . , En, -En} OT E'(X) = ̂ (C,).

We use the inclusion of groups An-i C Cn '- By the construction in
Proposition 6.3, there is a maximal rank subgroup Gi C An-i with semi-
simple part of type A^-i x ... x A^_i, with ^ = 2s1 or 3 (if i = r). It is
easy to see that Gj together with the previously described A^ generates a
maximal rank subgroup G'j of type Cq^ x... x C^ in Cn. G\ has fixed points
by Lemma 7.1. Take an x <E X^. The classification in [BdS], p.219 shows
that G°^ is of type C^i x ... x C^ with ̂  ki = n, since every maximal rank

1=1
semisimple subgroup of Cn is of this form. Moreover, because Gi C G^,
we have that s ^ r < log2n. The slice representation NX\GO contains
^(CfcJ C ... C ̂ (CfcJ, and thus

s s

d(X) ̂  ^dim(^(C^)//CfcJ = ̂ (A, - l ) = n - 5 > n - log^n.
Z=l 1=1

(2) Note that W(Cn) has fixed points on XT for n = 3,4 by Petrie-
Randall. Hence if N1 ^ 3, then n\ = 2, n^ = 1, and ?^ = 0 for z ^ 3. In case
we had m\ = 0, we would get A^-fixed points, and with the weight I(E\-\-E^}
we also have the weight 2(^i + £2) - 2^2 = 2e:i in E'(X), a contradiction
to mi = 0. Therefore mi ^ 1, and d(X) ^ dimS'(X) - dimG ^ n(4n - 5).
If M ^ 4, then d(X) ^ 3n(2n - 3). D

Similarly to Proposition 6.4 one shows :

PROPOSITION 7.3. — Let G be a simple group of type €5, and X
a Z2- and Zs-acydic variety. If G acts on X without fixed points, then
d(X) ̂  65.
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8. Spinor and special orthogonal groups.

LEMMA 8.1. — Let X be a ̂ -acyclic G-variety.

(1) IfG is of type Bn, n^ = 713 and ni = 0 for i ̂  4, then X° is ̂ -acyclic.

(2) IfG is of type Dn, Mi ^ 3 and F = 0, then X° is ^-acyclic.

Proof. — (1) By Proposition 5.4(2), X° = (X^' = (JQ^, which
is Za-acyclic by Smith Theory.

(2) Since Mi ^ 3, E(X) is a-saturated for every a e R(Dn) by
Proposition 5.1. Since F = 0, this implies that mi = 0 for i > 1. Let
Tn-i C Bn-i and Tn C Dn be maximal tori such that Tn-i C Tn under
the inclusion Bn-i C Dn' We consider the action of Bn-i on X. It has the
weight system

S(X|B^)=S(X)|T,_,=mo0emi( ^ a) C 2mi (' ^ (3\
^aeRi(Bn-iY \eRs(Bn-iY

The proof of part (1) shows that X8—1 = (X^-1)2?"1. Since W(Bn-i)
embeds into W(Dn) canonically, Z^~1 acts on X^. The stabilizer Gx in
a fixed point x e (XTn)z? has maximal rank and contains a semi-simple
subgroup of type Byi-i. Using the classification of maximal rank subgroups
of Dn (see [BdS], p.219), we get that G°, ̂  Dn, i.e., X^n = (X7171)^"1.

D

PROPOSITION 8.2. — Let G be a simple group of type Bn or Dn, and
X a ̂ -acyclic G-variety.

(1) IfX0 is not Z2-acychc, then d{X) ̂  n.

(2) J f7 i=2,3 ,4 ,G '^ Bn and X° is not ^-acyclic, then d{X) ^ 2n - 1.

f3) IfG is of type D^ and X° is not empty, then d(X) ̂  44.

Proof. — (1) It is enough to show that dimS'(X) — dimG ^ n.
Assume to the contrary that dim S'(X) —dim G < n. In particular, we have
that Mi ^ 3. By Proposition 5.1, the weight system S(X) is a-saturated
for every long root a.

Assume that G c^. Bn' By Corollary 5.3(2), n\ ^ 1, and by
Lemma 8.1(1), HI ^ 1 for some i ̂  2. Take such an i ̂  2 with ie\ G S'(X).
Thus also %&i - (£1 - 62) = (i - l)^i + ^2 € S(X). The length of the orbit
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W(Bn)[(z-l)£i+£2] is ^ 2n(n-l), anddimS'(X) ^ TVi •2n+2n(n-l)
dim Bn + n, a contradiction.

^

Now consider a group G of type Dn. If Mi ^ 2, then we had that
dimS'(X) - dimDyi ^ n. Hence m\ = Mi = 1, and by Lemma 8.1(2),
r is not empty. Since the smallest W(Dn)-orbits have cardinality ^ 2n,
we get that dimS'(X) ^ dimR(Dn) + 2n = dimD^ + n, which is again a
contradiction.

(2) The proof of (1) shows that the smallest possible cardinality for
S/(X) is realized by the weight system

(8.1) E'(X) = {±^1, . . . , ±en} C {±2^i , . . . , ±2^} C ̂ (B,).

The Dn-action on X induced by Dn ̂  Bn (the identification of R(Dn)
with Ri(Bn)) has fixed points by Proposition 5.4(1) and Petrie-Randall,
and in a point x € X^, either G°, ^ Bn or G°, ^ Dn by [BdS], p.219.
In both cases, N^ ^ V^, hence dimN^//G°, ^ 2n - 1. If S'(X) is of a
different form, then it is very easy to see that dimS'(X) ^ dimByi + 2n.

(3) Because TV(D4) has fixed points on X71, we get that Mi ^ 3 by
Propositions 5.1, 5.4(1) and Lemma 5.5(1), so dimS'(X) — dimD4 ^ 44.

D

We have proved that d(X) ^ 4 for fixed point free actions of a simple
group G of type Bn and Dyi, unless G ̂  Ba. In the latter case, we will need
a fixed point lemma. Consider the group SOs. It contains maximal 2-tori
of rank 4, i.e., a subgroup Q ^ Z^ which is not contained in any subgroup
Q/ C S05 with Q' ^ Z^, n ̂  5. VN(Q) = Norsos^), then N(Q)/Q ^ S^.
Choose a representative t^ € SOs for a Coxeter element in N{Q)/Q. Then
^5 is a regular element, i.e., contained in a unique maximal torus T. Choose
an element t^ of order 5 and a maximal torus T" in Sping which map to t^
respectively T under the canonical covering homomorphism Sping —>• SO^.
In the following lemma, take the weight system S(X) with respect to T ' .

LEMMA 8.3. — Let X be a Za- and ^-acyclic Sping- variety. If
/^s) ̂  1 for every ^ € S'(X), then ̂ {X8^) = 1.

Proof. — Since ̂ 5) ^ 1 for every [L e S'(X), it follows that X^ =
X^ : Both sets are Zs-acyclic, have the same dimension and X^ C X^.
Denote G the center of Sping, so G ^ Z2. Then Y := X° is a Za-acyclic
Sping/G ̂  SOs-variety. We already showed that YT = X^ = V*5. Choose
y e (YQ)t5. Then Gy C SO^ contains the maximal torus T as well as Q.
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In particular, the orbit Gy C Y is closed and the group Gy is reductive.
It follows show that Gy = S05. Hence X8^ = Vs05 = (V^)*5, and
^((yQ)t5) = i by Petrie-Randall. D

PROPOSITION 8.4. — Let G be a simple group of type 83, and X a
Z2- and ^-acyclic G-variety. If X° = 0, then d(X) ̂  15.

Proof. — We may assume that G ^ Sphig, since this is the simply
connected group of type Ba. The point is that the weight system in (8.1)
satisfies the hypothesis of Lemma 8.3 : The element t^ is regular, therefore
if ioi(t'^) = 1 for some i € Z, a € ^(82), then 5 divides i. Hence the action
has fixed points.

The proof is now completely analogous to the proof of Proposition 6.4.
The bound comes from the weight system

S'(X) = S'̂ J © { I (±35i ±e^ | (±^i ±352), | (±5i ±e^)\,

where dimNx//G°^ = 15 in a fixed point of A^. D

9. The exceptional groups.

PROPOSITION 9.1. — Let G be a simple group of type En, and X a
Za-acycJic G-variety. Assume that X° is not Zs-acydic. IfG^ EG, then
d(X) ̂  5. IfG c± En, n = 7 or 8, then d(X) ̂  n.

Proof. — There are no non-trivial TV(En)-orbits in X(T) of cardinal-
ity ^ 2n . Hence the conditions R(En) C S'(X) and din^S^X) -R(En)) ^
2n imply that S'(X) = R{En). Thus for any x € XT, it follows that
Nx = Ad^o, so d(X) ^ dimAdG'oy/G^, which equals the semi simple rank
of G°^. Let G' denote the following maximal rank subgroups : D5 x C* C Eg,
Ai x De C Ey or Dg C Eg, cf. [BdS], p.219. By Proposition 4.3 and
Lemma 8.1(2), X° is Zs-acyclic. Evaluating the semi-simple rank of G°^
for x € X01 yields the claim. D

Part (1) of the following Lemma will be used in §10.

LEMMA 9.2. — Let X be a Z^-acylic G-variety.

(1) If G = F4, Mi = 0, rii = 0 for i ^ 2 and F = 0, and X is also
Zs-acydic, then X^ = (X^3 is Zs-acydic, where 03 e <?3 C IV(F4)
is an element of order 3.
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(2) J f G = G 2 and n, = 0 for i ̂  2, then X02 is ^-acyclic.

Proof. — In both cases, X° is not empty by Proposition 5.4(2) and
Petrie-Randall.

(1) In a point x C X^4, the tangential representation is u\V^^ (B (mo —
2n\)6. The fixed points satisfy V^4 = (V^)03, ^3 G <?3 any element of order
3 (cf. [Vi], p.492, No. 22). Since (X^03 is Zs-acyclic, hence irreducible,
and (X^3 3 ̂ F4 with both sets of the same dimension, it follows that
they coincide.

(2) E(X) is the weight system of a Gs-module, so mi = 0 for i ^ 2
and r = 0 follow from saturatedness. For any x C X02 we have a Ga-
isomorphism T^X ^ {n\ — m\)V^ © miV^ © (mo — mi — ni)0. V^ is
a one-dimensional, non-trivial TV(G2)-module, where W(G'z) acts through
its abelianization W ^ Z>2? and consequently V^2 = (V^)^2. Analogously,
V^ ^ Ado2, and V^2 = (V^0, where wo E V^ is the longest element
in the Weyl group. Since (X7')^2 is Za-acyclic, thus irreducible, and
X02 C (X71)7^2, we have that X02 = (JQ^2, because both sets have
the same dimension. D

PROPOSITION 9.3. — Let X be a ̂ -acyclic G-variety.

(1) Assume that G = ¥4. If X° = 0, then d{X) ^ 44. If X° is not
Z2-acydic, then d(X) ̂  2, and d(X) = 2 ^ S(X) = E(KJ.

(2) J fG= G2, and X0 is not ^-acyclic, then d(X) ̂  12.

Proof. — (1) If X° = 0, then M ^ 3 by Propositions 5.1, 5.4(2),
Lemma 5.5(2) and Petrie-Randall. The only possibility for TVi = 3 is n\ = 2,
yi2 = 1-111 this case, we get that mi ^ 1 since S(X) is a-saturated for every
a C ^s(F4). It follows that d(X) ̂  M|^(F4)|+Mi|^(F4)|-dimF4 ^ 44.
Assume that d(X) ^ 2 and that X° is not Z2-acyclic. Then the action
is non-trivial, and it has fixed points. The Slice Theorem implies that
T^X ̂  V^ for x € X1'4, and (1) follows.

(2) If N-i ^ 2, then n\ = 77,2 = 1 by Lemma 9.2(2). Such an action
has fixed points, and choosing x e X°\ it follows that dimTVa; ^ 27, since
2o;i C S(7Va;). If TVi = 3, then either X° is Z2-acyclic, or HI = 2, ri2 = 1
and mi ^ 1. If now M\ = mi = 1 and F = 0, then the subgroup of the
long roots, which is of type A2, has fixed points, and dimNx//G°^ ^ 12 in
a point x eX^. D
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10. Splitting subgroups and splitting weight systems.

In this chapter, we let Gi (i = 1,..., s) be connected reductive groups,
and we put G := G\ x ... x Gg.

DEFINITION 10.1. — A closed subgroup H C G is said to be splitting
(with respect to the given decomposition), if H = (f fnGi)x .. .x(Hr\Gs)
(cf. [HS86], p.5).

Remark 10.2. — Let H be a reductive subgroup of G. If H has
a maximal torus which is splitting with respect to the decomposition
G = Gi x ... x Gs, then by conjugacy of maximal tori in H, every maximal
torus in H is splitting. If moreover H is connected, then the union of all H-
conjugates of a maximal torus is dense in H. This implies that a reductive
connected subgroup is splitting if and only if it has a maximal torus which
is splitting.

In particular, the identity component of a maximal rank reductive
subgroup is always splitting, since every maximal torus in G is splitting.
This implies that for x € X71 the identity component G°, of the stabilizer
is splitting.

Let X be a Zs-acyclic G-variety.

DEFINITION 10.3. — Let Ti cGi be a maximal torus, i = 1,..., s.

(1) A weight JLA € S(X) is called a mixed weight, if there are two distinct
i and k such that /^|^ and p\T^ are both non-trivial.

(2) The weight system S(X) is called splitting (with respect to the given
decomposition) if there are no mixed weights.

(3) Consider non-trivial decompositions {! , . . . , s} = ADJ^ ajid put
Hj := Xi^d, j = 1,2. We call the weight system S(X) totally
non-splitting, ifS(X) contains mixed weights with respect to every
such decomposition G = H\ x H^.

Remark 10.4. — If V is a G-module, then S(V) is splitting with
respect to a decomposition G = Gi x ... x Gg if and only if the G-module
V is a direct sum of G^-modules.

The goal of this chapter is to prove Theorem C under the additional
hypothesis that the weight system is splitting with respect to a direct
product decomposition G = Gi x ... x Gg, with each Gi simple.
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LEMMA 10.5. — Let G be a simple group. Suppose that X° is not
^2 -acyclic and d(X) ^ 3. Then we have one of the following cases :

(1) d(X) = 2, and G c± Ai, A2, €3 orF4. Furthermore X° ^ 0, and there
is a 2-group W^ C W(G) such that dimNyf/G^y ^ 1 for y e (JQ^2.
The weight system has the following form :

(a)G^A,:^(X)=^\V^)^
(b) G c± As : E'(X) = J?(A2),
(c) G ̂  Cs : S'(X) = ̂ (€3) or S'(X) = ^(€3) C S'(KJ,
(d)G^F4:S ' (X)=^(F4) .

(2) d(X) = 3, and there is a 2-group H^ C W(G) such that dim Nyl/G°y ̂
2 for y e {X^.

Proof. — We already showed that G ^ An (1 ^ n ^ 4), Bs, Cn
(3 ^ n ^ 5) or F4. Moreover, it was shown that actions with d{X) ^ 2 have
fixed points, and the list in (1) is exhaustive. We only have to determine
the respective W^ C W(G).

G ̂  Ai : Put W2 := {e}.

G ^ A2 : Pick any a e R{A^) and put W^ := TVc, C W{A^).

G c^ An, n = 3,4 : The proof of Proposition 6.3 shows that dim Ny//G° ^ 3
for y e (X71)^, where 04 is a Coxeter element in W(Hi) ̂  <?4 C IV(G).

G ^ 82 : Put TV2 := W(Ai) x W(Ai) = W{D^) C ^(83).

G 2=: C3 : G contains a subgroup of type C^ x C*, whose fixed point set is
just ((X^y2)02 by Lemma 7.1. Put W^ := (02) x ^2.

G ^ Cn, n = 4,5 : Put Wa := (04), where 04 is a Coxeter element in
W{A^) c W(Cn).

G ^ F4 : If d(X) ^ 3, then S'(X) = J?s(F4). In this ca^e, the subgroup
84 C F4 has fixed points X^ = (X^, and dimNy//G°y ^ 1 for y € X134.
Putting 1̂ 2 := Z<2 C W(B^) C W(¥^) yields the claim. D

Recall that a G-variety X is called fix-pointed^ if every closed G-orbit
in X is a fixed point.

LEMMA 10.6. — Let G be a reductive group and V a G-module such
that S(V) n jR(G) ̂  0. Then V is not fix-pointed.
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Proof. — Assume that V° = {0}, and choose a € ^(V)nR(G). Since
S(V) is a-saturated for every a € -R(G), we get that a — a = 0 e S(V), so
VT -^ {0}. Since the G-orbit through any v 6 VT is closed, we have closed
orbits 7^ {0}. D

The proof of the next proposition needs Lemmata 10.5 and 10.6,
together with the following remarks : Let X be a smooth affine variety
with Euler characteristic x(^0 = I? e ' S ' ^ ls ^2- or Zs-acyclic. Of course,
if dim X = 0, then X is a point, and it is well-known that if dim X = 1, then
X ̂  A, the complex line. In particular, these varieties are automatically
Z- and Zp-acyclic, for any prime p. If dimX0 = dimX^G, then the
action is fix-pointed. Consequently X° == X71, so X6' inherits the acyclicity
properties of X.

PROPOSITION 10.7. — Let Gi be a simple group (i = l , . . . , s^ ) ,
and G = Gi x ... x Gs. Let X be a ^-acyclic G-variety. Assume that
the weight system S(X) is splitting with respect to the decomposition
G = G i x ... xGs.

(1) IfdimX//G ^ 1, then X° is ^-acyclic, hence either a point or A.

ft) IfdimX//G ^ 2, then X0 ^ 0.

(3) IfX is also Zs-acyclic and dimX//G ^ 2, then X0 is ^-acyclic.
Hence either X ° is a point, X ° ^ A or the action is fix-pointed with
X ° = XT.

(4) IfX is moreover Z^- and Zs -acyclic and dim X//G = 3, then X° ^ 0.

Proof. — By induction on s.

s = 1 : If dimX//G ^ 1, then X° is Z2-acyclic by Lemma 10.5. If
dimXy/G = 2 and X° is not Zs-acyclic, then we are in one of the
cases of Lemma 10.5(1). If moreover X is Zs-acyclic, then \{X°) = 1
by Proposition 4.3(4), Lemmata 6.2, 7.1 and 9.2(1). Since dimX^ = 0 in
all these cases, X° is a point. In case (4) eventually, X° ^ 0, because
Z5-acyclicity enables us to use Propositions 6.4, 7.3 and 8.4.

s > 1 : For x € X7', write Hi := d D G^, and let Nx,i be the largest
Jf^-submodule of Nx without fixed lines. Since S(X) is splitting, we have
that A^=A^i©. . . eA^.

First assume that there is some i € {! , . . . , s} such that XGi

is Za-acyclic. Then we use the induction hypothesis for the action of
Gi x ... x Gi x ... x Gs on X01. This is possible for the following reason :
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If XGi = X^, then XGi satisfies the same acyclicity assumptions as X,
and induction applies. If X01 ^ X^, then choose x e x^-^^-^.
Because S(X) is splitting, we have that N3; = TV^QTV^. Since N^ C Nx
is the slice representation for the action of G\ x ... x d x ... x Gg on XG^,
we get that

dimX//G = dimN^//G^ == dlmN^i//Gi+dlm(XGi//G^x.. .x^x.. .xGs).

By Theorem 2.2, E'(X) as well as S'(A^) contain roots of G^, so
dimN^^//Gi > 0 by Lemma 10.6. Therefore din^X6'1//6'! x . . . x G, x
... x Gg) < dimX/^G. If we started in case (4), we are now in case (1) or
(2), and if we started in case (2) or (3), we are in case (1), and the induction
hypothesis applies.

Second, if no X01 is Z2-acyclic, we get a contradiction. For x C X71,
r ^

we have that dimXy/G ^ ^ d\m(Nx,i//Hi). In particular, considering
i=l

X as a Gt-variety, we see that (G^S^X^,)) satisfies the hypothesis of
Lemma 10.5. Let W^ C W(Gi) be the 2-subgroup of Lemma 10.5. In
case (2), the G2-action on (x^^^'"^)^ has a fixed point x, and
dimNx//G°, ^ dim N ^ ^ / / H i + dimA^//^ ^ 1 + 2, a contradiction.

In case (4), the same argument reduces the problem to the case where
5 = 2 , and the pairs (Gi, S'(X|Gi)) and {G^ ̂ (XlcJ) occur in the list of
Lemma 10.5(1). If then x C X01^2, we get that dim7v^//Gi x G^ == 4.
Hence to get a contradiction, it is enough to prove that Gi x Ga has fixed
points. But this is a consequence of Zs-acyclicity.

E.g. Gi = G2 c± Ai and S'(X) = ^(V^i) OV^w) : The center acts
trivially, hence G\ x G^ = SOs x SOs. Let 7^ C G^ be tetrahedral groups. By
Proposition 4.3(4), X803^03 = X71"72. Since we have the decomposition
series Ti x 7s > ̂ 1) x ̂ 2) > V^ x V^ meeting the conditions of Petrie-
Randall, Xrlxr2 ^ 0. For the other types of groups, we use Lemmata 6.2,
7.1 and 9.2(1) :IfG^ A2 or ?4, there is a 03 € W{Gi) of order 3, such that
X^ = (X^)03; if d ^ €3, there is a subgroup W, ^ Zs ix Z| C W(Gi)
such that X01 = (X^)^1. Using Petrie-Randall, this finally implies the
claim. D

11. Fixed points for connected reductive groups.

We first consider some totally non-splitting weight systems, starting
with an example.
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Example 11.1. — Let G c± ¥4 x Ai, and X a Za-acyclic (7-variety.
Fix maximal tori T^ C F4 and 7i C Ai. Assume that neither X^4 nor X^
is Za-acyclic, and that S(X) is totally non-splitting. We are going to show
that dimA^//G^ ^ 5 for any a; C X74^1.

First of all, we may assume that dimS^X) < dimG + 5 = 60. For
uj G X(T^) - {0}, the cardinality of the W(F4)-orbit through uj in X{T^)
is either |W(F4)o;| = 24 or IH^)^ ^ 48. For a; € ^(7i) - {0} we
have always |lV(Ai)o;| = 2. Since ^(^4) C S^Xlp ) by Theorem 2.2, the
presence of a mixed weight implies that

S'(X) = RsCF^) 0 (^i(Ai) C -zo;i(Ai)) C some more weights of Ai.

Choose x € X74^1 generic. Since .R(F4) D E'(X) = 0, we have that
F4 C G0,. On the other hand, Ai (f. G°, : If Ai C G°^ then it follows
that R(A-i) H S'(X) = 0, and because ^(Ai) C S'(X|^ ), we had i = 2,
which is absurd. Hence G°^ ^ F^ x T\. Since the generic F4-orbit in
2VL/4 has codimension 6 (see e.g. [El], p.51), Theorem A implies that
dimNx//G°^ ^ 5. As an easy application of the Slice Theorem one shows
that d[mNy//G^ > dimNx//G°, for any y G X^^, proving the claim.

LEMMA 11.2. — Let Gi (i = 1 . . . , s, s > 1) be simple groups, and
G = G\ x... x GS' Let X be a ̂ -acyclic G-variety. Assume that the weight
system S(X) is totally non-splitting, and that no XGi is ^-acyclic. Then
dimN^f/G0, ̂  4 for every x G XT'.

Proof. — Example 11.1 shows how to treat actions where a simple
factor Gi ^ F4 has mixed weights only with a simple factor Gj ^ Ai. A
similar argument as in Example 11.1 also settles the cases G ̂  A^ (n < 4),
Ai x Aa, A^ x Cs (n ^ 2) and Ai x €4. In all the other cases, use the data
in the table on page 1277 :

In the column "TV-orbits" we list the least cardinalities for different
TV-orbits which have to occur in S^Xic^)- Essentially, this uses Corol-
lary 5.3, but also Proposition 4.3 and the proofs of Proposition 8.2(1)
and 9.3(2). We denote m := min {|iy(G'z)a;|}, the least cardinality

cj6<V(T.i)—{0}
of a non-trivial W(Gi)-orbit in X(Ti). An elementary computation gives
dim S'(X) ^ dim G + 4. D

We need another lemma before we can prove Theorem C.
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type of Gi
Ai

An, n > 1
B»

Cn

Dn

Ee
ET
Es
F4

G2

dimGi
3

n2 -}-2n
2n2 +n
2n2+n

2n2 - +n
78
133
248
52
14

TV-orbits
2,2

n2 +n
2(n2-n),2n,2n

2(n2 - n)
2(n2 - n)

72
126
240
24

6,6,6

m
2

H+ 1

2n
2n
2n
26
56

240
24
6

LEMMA 11.3. — For i = 1,... ,s, let Gi be a simple group with
maximal torus Ti. Let s > r ^ 1, and put K := Gi x ... x Gr,
L := GY+I x ... x Gg. Let X be a ̂ -acyclic K x L-variety.

Assume that Y = X1^ is Zs-acyciic, and that S(V), the weight
system of the induced action of L on Y, is splitting. If XGi ^ X^ for
every i = 1,..., r, and Y0^ ^ Y^ for every j = r 4- 1,..., s, then
dim(X//K x L ) > dim(Y//L).

Proof. — Look at the -L-action on Y and choose y € YT'r+lx"•XTS

generic. By Theorem 2.2 and splitness of S(V), it follows from Y0^ ^ Y^
that S(V) n R(Gj) ^ 0 for every j = r + 1,..., s. By Proposition 3.1(2)
this implies that Hj := Gj D L° ^ Gj, and in particular, there is no factor
of type An with n > 2 in Hr-^-i x ... x Hg. Renumbering, we may assume
that there is a t with r + 1 ̂  t ^ s such that Hj is semisimple if j ^ t, and
Hj=Tj ifj>t.

Now look at y as a point on the K x L-variety X. The slice Ny
decomposes as

N y = N ^ e . . . @ N i @ N y ,

where Ny := Ny^ is the slice in y for the L-action on Y and each Ni is an
irreducible K x Nor^(L^)-module (by §3).

Without restriction we may assume that rankGi ^ rankGj for
2 ^ j ^ r, and that S(7vi) H .R(Gi) ^ 0 (since X6'1 ^ X^ by hypothesis).
Then

A^i ^ Yi (g) . . . (g) y^ (g) K+i (g ) . . . (g) ̂  (g) y^+i .0^,
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where for 1 ^ i ^ r, Vi is an irreducible G^-module, for r < z ^ t,
Vi is an irreducible Nor^ 7^)-module, and for t < i ^ 5, Vi is an
irreducible NorG,(r^)-module. For r < i ^ t let V{ C l^ be an irreducible
^-submodule. There is no representation equivalent to (C^SLyyi) with
m > dimYi in the list (Vj,Gj) (1 ^ j ^ r), (Vj,Hj) (r < j ^ t). This
implies that Vi (g) ... (g) Vr (g) V^_i 0 ... (g) l̂ ' is not a prehomogeneous
K x ffy+i x . . . x f/^-vector space, using the classification in [SK], pp. 143/44.
Hence dim(Vi 0 . . . (g) ̂ y/^ x -^r+i x • • • x Ht) ̂  1.

It follows from the next lemma that dim(N-t//K x Lfy) > 0, implying
that

dim{X//KxL) ̂  dim(^Vi// KxLoy)^dlmNy//Loy > dimNy//L°y = dimY//L,

which was the claim. D

LEMMA 11.4. — Let G, N be reductive groups. Let T C N be a
normal torus such that T = N° and ^(T)1^ = {0}. Given a G-module
YI with dimViy/G ^ 1 and an N-module V^ -^ {0}, it follows that
dim(Yi (g) V2//G x T) ^ 1.

Proof. — Choose p e ^[V^}0 homogeneous of positive degree. Let
(ei , . . . , em) be a T-eigenbasis of V^. Define pi C C[Vi (g) Vz}0 by pi(^ Vj 0
ej) := p(z^), z = 1,.. . , m. Then pi is a T-eigenfunction to some character
^, and ̂  := pi. . .pyn is a T-eigenfunction to the character X = S Xr Since
Va is an N- module, \ is TV-invariant, hence \ = 0 by hypothesis. It follows
that p € C[Yi (g) V2]Gf><T, and this proves Lemmata 11.3 and 11.4. D

The following is a stronger version of Theorem C.

THEOREM 11.5. — Let G be a connected reductive group, and X a
^-acyclic G-variety.

(1) JfdimX/^G ^ 2, then the action has fixed points.

(2) IfX is also Zs-acydic and dimX//G ^ 2, then X° either is a point,
X° ^ A or the action is fix-pointed with X° = ̂ T (hence Zs- and
^3-acyclic).

(3) IfX is also Zs- and ^-acyclic, and dimX//G = 3, then the action
has fixed points.

Proof. — First some easy reductions : Let G be the identity compo-
nent of the center of G. Since G is a torus, X° satisfies the same acyclicity
assumptions as X, and the semi-simple group G/G acts on X°. Since
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dim(XC7/G/G) ^ dimX//G and (X^)^ = X^, without loss of gener-
ality we may assume that G is semi-simple. In this case, we take a finite
homomorphism G = Gi x... x Gs —> G , where the Gi are simple groups.
Of course we can look at the induced action of G on X instead of the action
of G. If Ti C Gi are maximal tori, and for some i it holds that X01 = X^,
then we can as well look at the action of G\ x ... x Gi x ... x Gs on X01.
To summarize, we assume without loss of generality that G = G\ x . . . x Gs
with Gi simple, and X^ -^ X01 for i = 1,..., s.

Now choose r ^ 0 maximal such that there are distinct z i , . . . , ir with
a Za-acyclic fixed point set xGilx•••XGir'. Renumbering, we can assume that
ij = j for j = 1,..., r. Denote K = Gi x . . . x Gy-, L = Gy+i x ... x Gs and
Y =XK. Then V is a Z2-acyclic L-variety, and dimV//L ^ dimX//G.

CASE 1 : Assume that S(V) contains mixed weights. Then there exists a
t > 1 and { z i , . . . , it} C {r+1,.. . , s} such that, putting H = G^ x... xG^ :
(a) The weight system S(V|^) is totally non-splitting, (b) for any j €
{r + 1,..., s} — { z i , . . . , if}, there is no mixed weight of H x Gj in S(V).
Choose y € y^+ix-xTs There is a direct sum decomposition into L°-

Hr\L°modules Ny = Vi C V^ where V^ = Ny y and Vi is a trivial Gj H L^
module for j G {r 4- 1,..., s} — { ^ i , . . . , if}. Because no YGi is Zs-acyclic
(r + 1 ̂  i ^ s), Lemma 11.2 applied to the action of H on Y yields that
dim^i ̂ ff H L^) ^ 4. This implies that dimNy//Ly ^ 4, a contradiction.
Therefore this case cannot occur.

CASE 2 : S(V) is splitting with respect to the decomposition L = Gr+i x
... x Gs. If r = 0, Proposition 10.7 yields the properties of Y1^ = X° we
claimed. I f r ^ l , then dimY//L < dimX//G by Lemma 11.3, and applying
Proposition 10.7(1) and (2) proves the theorem. D

COROLLARY (Theorem C). — Let G be a connected reductive group,
and X a Z-acyclic G-variety.

(1) If dimX//G ^ 2, then X° is Z-acyclic.

(2) If dimX//G = 3, then X° is not empty.

Proof. — If X is Z-acyclic, it is Zp-acyclic for every prime p, so the
hypothesis (2) respectively (3) is satisfied. Since X'11 is Z-acyclic by Smith
Theory, we are done. D
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