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LATTICES AND ASSOCIATION SCHEMES:
A UNIMODULAR EXAMPLE WITHOUT ROOTS

IN DIMENSION 28

by R. BACHER and B. VENKOV

0. Introduction.

In small dimensions, the number of integral unimodular lattices is
quite small. The list of such lattices which are indecomposable starts with
the trivial lattice Z, the lattice associated to the root system Es and a
lattice with root system D\^ in dimension 12. Unimodular lattices are
classified up to dimension 25, where there are 665 of them [Bo]. In [Ba], all
indecomposable lattices up to dimension 24 are explicitely constructed.

There are even less unimodular lattices without roots. Up to dimen-
sion 26, there are exactly four of them, respectively in dimension 23, 24
(Leech), 24 and 26 ([Bo] and [Bol]).

The main purpose of this paper is to construct a 28-dimensional
unimodular lattice without roots and automorphism group the group
Sp(6, F3)-2 of all symplectic similitudes of the symplectic space of dimension
6 over Fs. Its order is equal to 18 341 406 720. Pairs of vectors of norm 3
in this lattice are in bijection with the set of Lagrangians in FJ. By other
constructions, we know several other 28—dimensional unimodular lattices
without roots; indeed, we have a complete list of 38 non-isomorphic such
lattices, cf. [BV].

Key words : Lattice — Association scheme — Symplectic space — Spread.
Math. classification : 05E30 - 11H56.
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1. Basic definitions.

Let E71 denote a real euclidean n— dimensional vector space with scalar
product { , ) . An n—dimensional lattice is a discrete cocompact subgroup of
E72. Two lattices A, A' C E71 are isomorphic if there exists an isometry g of
W1 such that gA = A'. A lattice A C E71 is integral if all scalar products
between lattice elements are integral. The norm of a lattice element A e A
is (A, A) (and is hence the square of the euclidean norm of A). A lattice
element of an integral lattice is a root if its norm is 1 or 2. The dual lattice
A^ of A is the lattice

A^ ={zeEn \ (z,\) ez V A e A } .
For an integral lattice A we have A C A^ and the finite group A^/A is
the determinant group of A. Its order is the determinant of A. An integral
lattice is unimodular if A = A^. The automorphism group of A is the finite
group

Aut{A) = {g e O^MA) = A}

where ©(E71) denotes the group of linear isometries of E71. A lattice is
decomposable if it is the direct sum of two non-trivial sublattices in two
orthogonal subspaces ofE^. It is indecomposable otherwise.

Let S = ( ^ i , . . . , Sk) be a finite sequence of elements in E71. The Gram
matrix with respect to S is the k x A;-matrix G with entries

Gij = {s i .S j ) .

A Gram matrix of a lattice A is the Gram matrix with respect to a Z-basis
of A.

PROPOSITION 1.1. — Let A be a lattice ofE71. Consider a finite
sequence S whose elements generate A and the Gram matrix G with respect
t o S .

The matrix G is symmetric and of rank n. It has n strictly positive
eigenvalues and all the remaining eigenvalues are zero. The matrix G is
integral if and only if A is an integral lattice.

Conversely, let G be a real symmetric k x k—matrix with n strictly
positive eigenvalues and no strictly negative eigenvalues. Then there exists
a finite sequence S = (« i , . . . , sj,) ofE" such that G is the Gram matrix
with respect to S. Moreover, if G is integral, then the set S generates an
integral lattice A.
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The proof of these well-known facts is left to the reader.

Remark 1.2. — The converse statement of Proposition 1.1 is even
more striking in the case where the positive symmetric integral matrix G
is proportional to an idempotent, i.e. satisfies G2 = AG for some natural
integer A. Let Si be the %—th row-vector of the matrix —.=(5. We have then

vA

{si, Sj} = — y GikGjk = y ̂  GikGjcj = Gij
k k

and the finite set S is hence essentially the set of row-vectors of G.

Let X be a finite set. A symmetric association scheme on X with d
classes is a pair (X, 7?,) such that

(i) 7?- = {jRo? RI-> ' • • 5 Rd} is a partition of X x X\
(ii) RQ = {(x,x) \x^X}\

(iii) (.z-,2/) € ̂  ^==^ Q/,a;) € Ri (symmetry);

(iv) there are numbers ;A such that for any pair (x, y) € Rfc the number
of z e X with (a-, 2;) € ̂  and Q/, z) G -Rj equals jA (cf. page 43 in [BCN],
or page 52 in [BI]).

The elements of X are the "points" and the elements RQ , . . . , R^ in
7^ are the "relations" of the scheme X = (X, 7^). The numbers jA are its
intersection numbers. The number T^ = p^ is the valency of the relation
%.

The automorphism group of an association scheme X is the group

Aut(^) = {a € <?x|(^<n/) G ̂  for all (a^) G Rz
and for all z G { 0 , . . . , d}}

where Sx denotes the symmetric group of the set X.

The i—th adjacency matrix of X is the n x n matrix Ai defined by
_ n if(^)e^

^i)x,y - ̂  otherwise,

where the n points of X index the rows and columns of Ai. The adjacency
matrices span a (d+1) dimensional commutative subalgebra A consisting of
symmetric matrices in the algebra of complex nxn matrices. By definition
of the intersection numbers p^., the multiplication in the algebra A is given
by

A,A,=^p^Ak.
k
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The intersection matrices of X are the (d + 1) x (d + 1) matrices
Bo, . . . , Bd with entries

Wk^p^

LEMMA 1.3. — The linear application
A — Md+i(C)r A -^ Md+i(C:

^[E^Ai ^ Z^

is an isomorphism of the algebra A onto a (d + 1)- dimensional abelian
subalgebra of Md-\-i (C).

Proof. — See Theorem 2.3 chapter II at page 57 in [BI]. D

Remark 1.4. — The underlying vector space of A carries a second
algebra structure given by Hadamard multiplication. The vector space
underlying A equipped with both algebra structures is called the Bose-
Mesner algebra of the scheme X. We will not need this second algebra
structure.

Many symmetric association schemes are described by the following
proposition.

PROPOSITION 1.5. — Let G be a finite group which acts transitively
on a set X. Consider the action ofGx {±1} on X x X defined by

(g^l)(x^y)=(g(x)^(y))^

(g,-l)(x,y) =(g(y),g(x)).

Denote the orbits ofXxX under the action o fGx{±l} by RQ, 7?i , . . . , Rd
where RQ denotes the diagonal in X x X.

Then X = (X, {RQ, R^ , , . . . , R^}) is a symmetric association scheme
on X with d classes.

Proof. — See for instance example 2.1.(1) in [BI]. D

2. Lattices associated to rational idempotents.

Since the algebra A of a symmetric association scheme with d classes
is an abelian, semi-simple, (d + 1)—dimensional algebra, A contains d + 1
minimal idempotents. We denote them by £'o,£'i,... ,£'d where EQ is
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traditionnally the idempotent EQ = Ao + Ai + ... + Ad of rank 1. Let
/o = 1, fi,. • . , fd be the ranks of the idempotents EQ^ . . . , Ed. The numbers
f o ^ ' - ^ f d are the multiplicities of the association scheme (and can be
recovered from the intersection numbers). An element M = ^/^A^ of
A is rational if the coefficients /^o, . . . , /^ are rational numbers. If Er
is a rational minimal idempotent there exists a smallest positive integer
\r such that Er = — Y, 7r,iA, with 7r,o, • • • ,7r,d integral. The matrix

Ay.
Gr = Ay.£y. = ̂ jr,iAi is hence a symmetric integral matrix.

PROPOSITION 2.1. — LetGr = XrEr = Y,^r,iAi € A be an integral
matrix as above.

(i) The vector (7^0 5 • • • ? 7r,d) is a common eigenvector of Bo,..., Bd.

(ii) The matrix Gr is the Gram matrix with respect to n vectors in E^
which span an fr— dimensional integral lattice Ay..

(iii) If the rows of Gr are all distinct, then the automorphism group of
A injects into the automorphism group of Ay..

(iv) If a prime p divides the determinant of Ay., then p divides the integer
\r.

Proof. — (i) We have by definition A, (Ay.£'y) = Ai^^rjAj) €
CEr = C(^7rjA^). Using Lemma 1.3 this implies that C^^rjBj is an
ideal of the complex matrix algebra spanned by BQ, . . . , Bd.

(ii) Apply Proposition 1.1 to Gr.

(iii) By Remark 1.2 the lattice Ay. is the lattice —^=^Z^ where
vA

si , . . . , Sn are the row-vectors of Gr. The automorphism group of A per-
mutes « i , . . . , 5n and this action extends to a linear isometry of E^ =
Ay. (g)z R. Since the vectors s i , . . . , Sn are all distinct, this defines an injec-
tive homomorphism from A\it{A) into Aut(Ay.) C O(E^).

(iv) If p divides det(Gy) the p-rank of Gr is strictly smaller than fr.
Since the characteristic polynomial of the integral matrix Gr is {x -
Ay.)^^71"^, the prime p divides \r. D

Remark 2.2. — The lattice Ay. tells something about the position of
the r-th subspace Vr of A in ——S^. Two natural questions are: What is

v A
the finite index of the pair of lattices

(_j^^y\ cAy.=—V"Zs,?
V VA 7 v\
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Is the lattice v^Z" included in Ar = -7= ]C zt^ ?

vA
The following proposition gives a partial answer about the set of

lattices constructed by using Proposition 2.1.

PROPOSITION 2.3. — Let A be an integral lattice with automor-
phism group G. Suppose that there exists \ C A such that the orbit G.X
generates A. Then there exists an association scheme A with automorphism
group G such that the Gram matrix F with respect to G.X is an element
of A. Moreover, if the representation ofG on A0QR is irreducible over the
reals, then the matrix F is proportional to a minimal rational idempotent
of A.

Proof. — Construct A by applying Proposition 1.5 to the permu-
tation representation of G on the set S = G.X. The matrix F defined by
F^^y = (a*, y ) for x, y € S belongs then obviously to A. Since the representa-
tion of G on A<8)QR is irreducible over the reals and since the eigenspaces of
F are preserved under this action, the matrix F can have only one non-zero
G—invariant eigenspace. It is hence proportional to a minimal idempotent
of A D

3. A unimodular lattice in dimension 28.

In this section we construct our basic example: a unimodular lattice
in dimension 28.

We consider the finite field ¥3 with 3 elements. Let V = F| be
the vector space of dimension 6 over Fa and let uj denote the standard
symplectic form over V, i.e.

UJ ((;Z:i, ̂ 2,^3, X^ ^5, XQ), (2/1,2/2,2/3, 2/4, 2/5, 2/c))

= ^12/4 + ^22/5 + XsVQ - (a:42/l + ^52/2 + ^62/3).

A Lagrangian of V is a 3-dimensional isotropic subspace (with respect to
a;). There are

(36-l)(35-3)(34-32)_ ,
(33_i) (33_3)(33_32)- 2 •5.7-1120

Lagrangians (the numerator counts the number of vectors (^1,^2,^3) which
generate a Lagrangian subspace, the denominator counts the number of
bases of a given Lagrangian). We consider them oriented, i.e. equipped
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with an equivalence class of basis. Two bases (h^hih) and (l^l^l^) of a
given Lagrangian are equivalent, i.e. define the same orientation, if there
exists g in SL(3,F3) (and not just in GL(3,Fs)) such that g(lk) = l'^ for
I = 1,2,3. Since every Lagrangian has two possible orientations there are
2240 oriented Lagrangians. The symplectic group of V is by definition the
group

Sp(6,F3) = [g € GL(6,F3) | uj(gv,gw) =u(v,w) for all v,w € V}.

This group admits an outer automorphism given by g i—> rgr where
r G GL(6,F3) is defined by

T(a*i, x-2, X3, x^ X^.XQ) = (a-i, x^x^, -x^, -Xr,, -x^].

In particular, r satisfies u}(rx^ry) = —uj[x^y). We denote by Sp(6,F3) • 2
the group generated by Sp(6,F3) and by T. We have a split exact sequence

1 —— Sp(6,F3) —— Sp(6,F3) • 2 —— {±1} —— 1

and the group Sp(6,F3) - 2 is the group of all symplectic similitudes. Since
the group Sp(6,F3) • 2 acts transitively on the set of oriented Lagrangians
we can apply Proposition 1.5 and we get a symmetric association scheme
on five classes defined as (/^ and M. denote oriented Lagrangians)

(0) CRoM <^ C = M,

(1) CR^M ̂ =^C= (h,h, h) and M = (-^i, -h, -h),

(2) CR'zM. ^==^ £ and M intersect in a subspace of dimension 2,

(3) CRsM ^==^ C H M = ¥sv for some v € V \ {0}, C =
(^2^3); M. = {v.m^m^} and the determinant of the matrix

'CJ(^^2) ^(^2,^-3)

,Ci;(Z3, m2) Ct;(/3, 777,3)

is 1 in F3,

(4) CR^M ^=> C D M == F3V for some v C V \ {0}, C
(^2^3)5 A4 = (v^ 7722,7723) and the determinant of the matrix

^(h.rn'z) ^(h,rn3)\
Vcc;(Z3,m2) ^3,^3)7

is -1 in F3,

(5) CR^M. ^===^ C and M. intersect in a subspace of dimension 0.
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The intersection matrix B^ of this symmetric asso-

/O
0
0
1
0

\0

0
0
0
0
1
0

0
0

36
8
8
13

351
0
36
6

120
52

0
351
36
120
6
52

0 \
0

243
216
216
234 /

Proof. — Let us check for instance the entries of the row (Bs). .
indexed by 4 of B^ (rows and columns of the matrices B, are indexed by
{0,. . . ,5}).

Let M and At be the oriented Lagrangians generated by the rows of
the matrices

^1 0 0 0 0 0\ /I 0 0 0 0 0'
0 1 0 0 0 0 and ( o O O O O l

<0 0 1 0 0 O/ \0 0 0 0 1 0,

It is easy to check that MR^Af. By definition of the intersection numbers,
the number p^ (which is the entry (4, i) of B^) is the number of oriented
Lagrangians C such that CR^M and CRiAf.

Let C be an oriented Lagrangian such that CR^M. We have either
CnM=MnAf or CUM ̂ MnAT.

In the first case we can assume that C is generated by the rows of the
matrix

^1 0 0 0 0 0 '
0 a b O 1 0

<0 b c 0 0 1,

I f a = 5 = c = 0 w e have CR^AT and this occurs one time.

If the rank of the matrix ( a \ is one we have CR^N and this
occurs 8 times.

If the determinant of the matrix ( a } is 1 we have jCR^Af and this
occurs 12 times.

If the determinant of the matrix ( a } is -1 we have CR^Af and
this occurs 6 times.
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We have now to deal with the case where C D M. ̂  M. Fl ./V. There
are 12 possibilities for the line C D M.. Using a symplectic base change we
can assume that C H M. = Fs(0,1,0,0,0,0) (but we have to keep the factor
12 in the subsequent countings).

We can hence assume that the basis of C is given by the rows of

(0 1 0 0 0 0\
a 0 b 0 0 1 | .
c 0 a I O O/

If b = O we have CR^AT and this occurs 12 • 9 times.

If b 7^ 0 we have CR^ and this occurs 12-18 times.

Putting together, we get

J?i + 8J?2 + (12 + 12 • 9)J?s + 6^4 + 12 • 18J?5

(with a hopefully obvious abuse of notation) and this corresponds to the
entries of the row of JE?s indexed by 4. D

The matrices As and B^ have the same eigenvalues (Lemma 1.3)
which are given below together with their multiplicities for the matrix As
(which is of order 2240).

The eigenvalues, multiplicities (for As) and coordinates

-r-(7r,(h • • • ?7r,5) for the rational idempotents — ^7r,zA^ are given in theAy. ' ' Ay
following table:

eigenvalue
351
39
15
-9
3

-117

j1 • 1 1 j* 1 • •-L" C J-1 -!• - - J- • A - -J • 1

multiplicity
1

105
195
819
1092
28

idempotent
2^0 ( 1> 1> 1' 1> 1> 1)
5^ ( 27, 27, -9, 3, 3, -1)
^2 ( 351, 351, 99, 15, 15, -13)
28^o (1053, 1053, -27, -27, -27, 13)
^o ( 117, -117, 0. 1, -1, 0)

23) ( 3 -3' °' -1' 1' °)

(the eigenvalues, multiplicities for the adjacency matrix As and idempo-
tents can be computed with a symbolic computer algebra system using the
matrix £?s). We have

THEOREM 3.2. — The matrix G = 3Ao - 3Ai - As + A^ is the Gram
matrix with respect to the set of all vectors of norm 3 of a 28—dimensional
unimodular integral lattice A. The lattice A is indecomposable and has
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no roots. Its automorphism group is the group Sp(6,F3) • 2 of order
18 341 406 720 of the symplectic space F|.

In the proof of Theorem 3.2 we will use the following definition. Let
V be a symplectic space of dimension 2n over a finite field Fg. A symplectic
spread of V is a set S of Lagrangians in V such that every element of V\ {0}
is contained in a unique Lagrangian of S. The following construction yields
a symplectic spread.

Let K be the extension of degre n of the field Fg. We consider a
symplectic form uj' : K2 —> K and the trace form tr : K —> Fg.
Considering K as an n—dimensional vector space over ¥q provides us with
a symplectic form uj of F271 by setting uj = tr o u j ' . The lines (over K) of K2

can be considered as Lagrangians of F271 and define a spread.

Proof of Theorem 3.2. — Proposition 2.1 shows that A is an integral
28—dimensional lattice.

We have to show the unimodularity of A. A symplectic spread of F|
provides us with 28 mutually orthogonal vectors of norm 3 in A (transverse
pairs of oriented Lagrangians are in relation R^ and represent hence
orthogonal vectors of norm 3 in A). This shows that A contains a sublattice
of rank 28 and determinant 328.

Let us now consider the set of Lagrangians which are preserved by the
application r defined by r(x^^x'2^x^^x^x^,XQ}={x\^x^^x^,—x^—x^,—Xo).
Such a Lagrangian admits a basis all whose elements are eigenvectors for
r. There are 28 such Lagrangians which we are going to describe. The
application r preserves the orientation of 14 of them and reverses the
orientation of the others. The list of the 14 oriented Lagrangians preserved
by T is given by

£o=F3(l ,0,0,0,0,0)+F3(0,l ,0,0,0,0)+F3(0,0,1,0,0,0)

(this is the unique Lagrangian on which r acts as the identity) and

^ = F3(^, 0) + F3(0, Wi) + F3(0, W2)

with v € Fj \ {0} representing a point of P2F3. (The space spanned
by Wi,W2 6 Fj is uniquely determined by the requirement that Cy is a
Lagrangian, i.e.

^((^, 0), (0, wi)) = o;((^ 0), (0, W2)) = 0

and wi, W2 linearly independent.) We can moreover always assume that Cy
is in relation R^ with LQ.
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Let y? be the symplectic application denned by (^(e^) = 61+3,
^(e,+3) = -e, for % = 1,2,3. Set £o = ^(A)) and ^ = ^{Cy). The
oriented Lagrangians £o^^ are ^ne Lagrangians on which r reverses the
orientation.

We identify now oriented Lagrangians with the corresponding vectors
of norm 3 in A. Since the isometry of A induced by r fixes the vectors
Ca and reverses the vectors C^ (for a € {0} U P^s), they must be
orthogonal. A short computation shows that the scalar product of Ca
with Cb [respectively of C'^ with /^] is equal to 3 if a = b and equal to
1 otherwise (a, b G {0} U P^s). The lattice generated by the set of vectors
{^a^a}ae{o}uM3 ls hence isomorphic to the the orthogonal sum of 2
isomorphic lattices M. The lattice M is generated by 14 vectors of norm
3 with scalar product equal to 1 between distinct generators. This lattice
has rank 14 and determinant 217. Since the lattice A contains sublattices
of finite indices and relatively prime determinants it must be unimodular.

Proposition 2.1 (iii) shows that Sp(6,F3) • 2 is contained in the
automorphism group of A. One checks by computer that the orders Aut(A)
and of Sp(6,F3) • 2 are equal, namely

(36 - 1)(35 - 3)(34 - 32)33+2+12 = 211 • 39 • 5 • 7 • 13 = 18 341 406 720
(where (36—l)(35—3)(34—32) is the number of linearly independent vectors
(h^h^h) spanning a Lagrangian and where 33+2+1 is the number of dual
bases spanning a Lagrangian transverse to a given fixed Lagrangian, see
also pages 110-113 in [Atlas]).

The representation of Sp(6, Fs) • 2 on A (g)z Q is absolutely irreducible
(See Section 4 below). Hence A is indecomposable. Let us now suppose
that A contains a non-empty root system R. The irreducibility of the
representation ofAut(A) implies that R is of rank 28 and that all irreducible
components of R are isomorphic to some irreducible root system R\. The
group Sp(6,F3) injects hence into Aut(J?) = Si ix Aut(I?i) where I is
the number of irreducible components of R. Since Sp(6,F3)/{±l} has no
proper subgroup of index less than 364 (see [Atlas], page 113), Sp(6,F3)
leaves all components of R invariant. Since the restriction of Aut(A) to
Sp(6,F3) remains irreducible over Q, the root system R is itself irreducible
and is hence of the form A^s^B^s or D^s' We have hence an injective
homomorphism of Sp(6,F3) into Aut(I?). This implies the existence of
a proper subgroup of index at most 29 in Sp(6,F3)/{d=l} and this is a
contradiction. D

Remarks. — (i) Theorem 3.2 can also be proven by computer. Such
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a proof is not very enlightening but claims such as the unimodularity of A
or the fact that A has no roots can easily be checked on a Gram matrix.
The determination of the automorphism group is more painfull. One can
do this by computing the isotropy of some sublattices in A and putting the
results together.

(ii) The lattice A of Theorem 3.2 can be shown to be isomorphic to the
lattice

{^€Z 2 8 | {z,v) €Z}+Z^

where v €. Q28 is the vector

v = -^ (1,2,4,7,8,9, -102,13,14,15,16,18,22,25,

26,28,30,31,32,36,41,44,49,50,51,52,53,56).

Moreover the lattice A can also be constructed starting from a selfdual
code in Fj8. This follows from the fact that A contains 28 pairs of vectors
of norm 3 which are mutually orthogonal. In fact, it can be shown that
every set of 28 such vectors comes from a spread in FJ.

(iii) The lattice A cannot be endowed with a hermitian structure over the
Eisenstein integers. Indeed, A would then admit an automorphism of order
3 without non-zero fixed point. The Atlas shows that such an automorphism
does not exist.

4. The lattice A and the Weil representation of Sp(6,F3) • 2.

The group Aut(A) = Sp(6,F3) • 2 operates linearly on Q28 = A (g)z
Q. This representation is closely related to the Weil representations of
Sp(6,F3).

In this section, p is a prime with p = 3 (mod 4) and n ^ 1
(mod 2). Let A be a non-degenerate symplectic space of dimension 2n

over the finite field Fp and let G == Sp(A) = Sp(2n, Fp) be the symplectic
group of A. The group G • 2, obtained by extending G with the outer
automorphism (of order 2) defined by r can be identified with the subgroup
of the symplectic similitudes CSp(A) satisfying uj(au,(rv) = ±oj(u,v). Fix
a splitting A = B (B B1 with B and B' two Lagrangians of A. For each
non-trivial character ^ : F^ —> C* there exists a representation W^ (the
Weil representation) of dimension p71 in which G operates on all functions
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B —> C. This representation W^ is the direct sum of two irreducible
representations

w^=w^w^
y/1 -j- 1 7/1 — 1

with dimensions dim(W^) = ——— and dim(W.) = -———. The
representations W^ are defined over ^(^/^p) (see [Gr], [Ge], [Wa]). A
symplectic similitude T, such that uj{ru^rv) = —uj{u,v) permutes the
representations W^ with W^ (where ^ denotes the complex conjugate
to -0) and we get two rational, absolutely irreducible representations
x± = w^ + W-^ of Sp(A) • 2 of degrees pn ±\. Gross ha« proved in
[Gr] that the representation W~ of Sp(A) is globally absolutely irreducible
(remains irreducible (mod q) for all prime ideals q in Q^^/11?)) and has
developped a theory of lattices in such spaces.

Our lattice A lives in X^ (for n = 3,p = 3). Unfortunately, the
representations W^ and X^ are not globally absolutely irreducible (at the
prime 2 we have W^ = 1 + W~ (mod 2)), so that we cannot apply the
general theory of Gross.

Still it seems that the lattice A is the beginning of the series of
interesting lattices on X^p. We hope to return to these lattices latter. Some
of these lattices have recently been studied by R. Scharlau and P.H. Tiep,
see [ST].
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