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BRELOT’S AXIOMATIC THEORY OF THE DIRICHLET
PROBLEM AND HUNT’S THEORY

by Paul-André MEYER (%) (Strasbourg)

Since the axiomatic theory of the Dirichlet problem has
been developed, by Doob, Brelot, and Bauer, it has been a
very natural question to wonder whether it would come into
the general probabilistic theory of potentials of Hunt. We
show here that the answer is positive, under very mild assump-
tions. This paper, however, does not involve probabilistic
considerations, not even at some places where they might
simplify the proofs.

Our hypotheses are those of Brelot, as they appear for
instance in [3]. Namely, we assume Brelot’s axioms 1-2-3,
the existence of a countable base of open sets for the basic
space E, the existence of a positive potential, and the harmoni-
city of the constant functions. On the other hand, we obviously
are not using the full strength of Brelot’s axiomatics; our
reasoning would probably apply without essential modifica-
tions to the latest version of Bauer’s axiomatic approach
(see [2]).

While we shall use freely the results from Brelot’s papers,
which are sufficiently well known, we shall refrain from doing
the same thing with M™e Hervé’s thesis [5]. Indeed, we shall
give a complete proof of the construction of the kernel (%),

() Cet article a été rédigé pendant un séjour de I’auteur a 1I’Université de Washing-
ton, sous les auspices de la National Science Foundation, grant P-11 008; il a été
publié sous la forme d'un « technical report » en Juin 1963, en Anglais, et il n’a pas
semblé utile de le traduire en Frangais pour cette publication définitive (qui
comporte quelques améliorations de détail).

(2) Let &+ be the cone of all positive (possibly infinite) Borel measurable functions
on E. A kernel V on E is a function f —am— VI from B+ to B+ which is additive,

17
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in the most economical way possible; this paper thus will
almost be self contained.

In order to simplify things as much as possible, we shall
only consider finite superharmonic functions. This will not
hamper the generality, as almost all the superharmonic func-
tions we shall consider will in fact be bounded and continuous.

Notations. 9, 9+ are the cones of (finite) superharmonic
and positive superharmonic functions in E (})). The cones
$(W), 9+(W) are defined in the same way for any open set
WcE.

C, Cx, Cy, Cp respectively are the spaces of continuous func-
tions, continuous functions with compact support, continuous
functions tending to 0 at infinity, continuous bounded func-
tions in E. The last two spaces are Banach spaces for the
uniform norm. Similar notations C(A) ... are used for any
locally compact subspace A < E. If A is compact, all four spaces
are identical.

Let f be a function on E, and A be any subset of E. Then
fla is the restriction of f to A. The boundary of A in E will
be denoted by A*.

Let W be any regular open set, and f any (sufficiently regular)
function defined on E. We denote by Hwf (*) the function equal
to f on E\W, to the (generalized) Dirichlet solution associated
with fin W. If f i1s superharmonic, the same is true for Hwf{.
More generally, we recall that if W is an arbitrary open set,
if f is a superharmonic function in E, g a superharmonic
function in W such that:

lim inf g(y) > f(a)

y>x, yEW
for every z €« W*, then the function equal to f in E\W, to
min(f, g) in W, 1s superharmonic in E.

positively homogeneous, and such that V (lim f,) =lim Vf, for any increasing
n n

sequence (f,) of elements of $+. A kernel V is submarkovian (markovian) if V1
is smaller than (equal to) 1. The function Vi may be defined also when f is uni-
versally measurable and positive, or universally measurable and such that V|f| is
finite. A more detailed account may be found in the seminar volume (8).

(3) Mme Herve uses the notation J+ as we do (except for the restriction of
finiteness), but uses § for differences of superharmonic functions.

(4 The standard notation of Brelot and Mme Herve would be HY, ; ours emphasizes
the fact that Hy, is a kernel.
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The specific order for (finite) functions (<) is the order
defined by the cone J*+. The ordinary order for functions
(L) will be called the natural order in the sequel.

1. Mme Hervé’s partition theorem.

- Let W be an open set in E, g belong to 9+, and f belong to
9(W) (more generally, we might take for f any finite function
defined on a subset of E which contains W) (°). We follow
Mme Hervé, and say that g 1s a W-majorant of fif the function
g — [ is superharmonic in W (not necessarily positive). The set
of all W-majorants of f is not affected if one adds to f any
function which is harmonic in W (and quite arbitrary out of
W).

Let g and A be two W-majorants of f; then min(g, &) still
W-majorizes f. Let then F be any set of functions, and let G
be the set of all functions ge ¥+ which are W-majorants of
every feF. If G is not empty, it contains a smallest element
g (for the natural order; g, is the lower semi-continuous
regularized function of in(f; g). Then we have the basic:

ge

Tueorem 1 (Mme Hervé) (°). — Every ge G majorizes g,
in the specific sense.

To prove this result, we must take a regular open set U
and check the relation (g— go) > Hu(g— g), or

(§ — Hug)lv > (g0 — Hugo)lv-

These functions obviously are (W n U)-majorants of the func-
tions f|y, fe F. So the theorem will be a consequence of the
following :

Lemma. — The function (go— Hugo)lu is (for the natural
order in U) the smallest (W n U)-majorant of the functions

flo, feF.

(5) A function f which possesses a W-majorant is equal, in W, to a difference of
superharmonic functions. We shall often use the fact that a finite function h,
which is equal in W to a difference of elements of $(W), is superharmonic in W if
and only if the inequality Hyh <A holds for any regular open set UcW. This
is applied below to the functions g,— f, and g— g,

() See [5], p. 456, theorem 12.1.
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Proof. — Let ke 9+(U) be a (W n U)-majorant of all func-
tion flu, feF. Let h be the function:

min (k + Hugo, &) in U
&o in E\U

h belongs to Y*, by the positivity of k and the inequality
lim inf Hyg, (y) = go(z) for z € U*. The lemma will be proved

y>»z, yeU

if we show that h 1s greater than g,, and this will follow if
we prove that h1s a W-majorant of every fe F. Now we have :

- __min(k + Hugo—Ff, go—f) mWnU
h=Dlw= ¢ in W\U

— f being superharmonic in W, k + Hyg, — f superhar-
monic in W n U and majorizing g,—f at the boundary of
WnU in W, this function is superharmonic in W and the
theorem 1s proved.

DeriniTion (M™me Hervé). — Let f be a finite potential, W be
any open set in E, and K any compact subset of E. We shall
denote by fw the smallest W-majorant of f, by fx the function
f— fous.

We shall follow M™me Hervé, and prove that the set function
K-—fx is induced by a kernel. The finite potential f will be
kept fixed in the sequel.

2. Properties of the set functions f and f.

1) f being a W-majorant of itself, the theorem implies
fw<3f- Both functions fw and fx thus are potentials.

2) fw being a W- ma]orant of f, and f a W-majorant of
fw, the function f— fw is harmonic in W; the function fx s
harmonic out of K.

3) fx is (specifically) the greatest specific minorant of f
which is harmonic out of K. Let indeed A be much a minorant;
f—h is a (EN\K)-majorant of f, thus f—hsf—fx and
h<fx.

4) The function fw is harmonic out of W ; the function f — fx
is harmonic in K° Let indeed U be a regular open set such
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that Un W = ¢; the set of W-majorants of f is closed under

the operation Hy; it is thus saturated in E\W, and its infimum
1s harmonic in that set.

5) W, c W = fw, S fw.; K « Ky = fx, 3 fx.;
WCK==>fw<fK; KCW=>fx’%fw.

The first two properties are obvious. The third one follows
from the harmonicity of f— fx in K° (4) which implies that
fx i1s a W-majorant of f. To prove the fourth property, we
remark that fw + fenx —f 1s superharmonic in W and EN\K,
and thus in E; on the other hand, it majorizes — f, and f
1s a potential : the minimum principle ([3], p. 93, proposition 9)
implies that this functionis positive. We thus have f< fw + fex,
or fx 3 fw.

6) Kc W= fx = (fw)k-

Because fx 3 fw (5), thus (fx)x 3 (fw)x 3 fx, and (fx)x = fx (3).

7) Let W be the union of an increasing sequence of open
sets W, ; then fw = Max fw, Let K be the intersection of a

decreasing sequence of compact sets K,; then fx = Min [
n

The second sentence obviously follows from the first one,
which we prove now. Let g be Max fw,; we only have to show

that g<fw, or that gis a W-majorant of f, or that f— g is
harmonic in W. Let U be an open set with a compact closure
U < W; it follows from 6 that f5 = gg. Now f — fg and g — gg
are harmomc in U (4), so f——g 1s harmonic in U. This open
set being arbitrary, f— g 1s harmonic in W.

8) fw = Max [x; fx = Min fw.
Kcw WDK
Easy corollary of 5, and 7.
(fK) fxan:’ (fW)W, fW nw,e

The first relation 1s obvious from (3). The second one follows
by taking an increasing sequence of compact sets K, (neN)
such that W, =UK?,, (t =1,2) and passing to the limit
using 5,7. n

10) fwuw, + fwiow,= fw, +Ffw;  frux, + frox,=fs, + fs.

We need only prove the first equality, as the second one is
an obvious consequence and it and the relation fx + fenx =1
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Let h be the function fw,uw, + fw,anw, — fw,— fw, From
9, we get the equality fW‘UW,—"fW, = fW,UW,_(fW,UW,)W,; the
first member is thus harmonic in W,. In the same way

fw,— fw.nw, = fw,— (fw,)w,

1s harmonic in W;; k itself is thus harmonic in W,, and sym-
metrically in 'W;.

fw,uw, + fw,aw,— fw, is a Wy-majorant of fw,, and thus a
specific majorant of fw,. So we have:

fw,uw, + fw.aw, & fw, + fw,

To prove that we have equality, we remark that, h being
harmonic in W, u W,, fw, 4+ fw,— fw,aw, 1s a (W; u W;)-majo-
rant (and thus a specific majorant) of fw,uw, and we get the
reversed inequality. We are now able to prove the following :

Taeorem 2 (Mme Hervé) (7). Let f be a finite potential. There
is one and only one positive kernel V which possesses the follo-
wing properties:

a) for every positive bounded Borel measurable function g,
the function Vg is superharmonic, positive, harmonic in the
complement of the closed support of g.

hvi=f o

If the function f is continuous, and the function g is Borel
measurable and bounded, then Vg is continuous.

Proof. — We shall first establish the existence part. Let z be
any element of E; it follows from properties 5,8,10 that the
set function K-ww- fx(z) is increasing, right continuous and
additive. It may thus be extended to all subsets of E as a
capacity (%), and the additivity implies that the restriction of
this capacity to the Borel sets is a measure V,. Define, for
any positive Borel function f:

Vf(@) = [of(y) dV.(y)

() See [5], pp. 490-493, and specially theorem 20.2.

() Mme Hervé ([5], p. 464) constructs her kernels with the help of a theorem
from Bourbaki’s Integration (chapter 1v, § 4, n°® 10). The general capacitability
theorem of Choquet (see for instance part II of [3]) leads to the same result, and
it has the advantage of being much better known than Bourbaki’s theorem (and
of having independent interest).
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The function Vf is Borel measurable when f is the indicator
of a compact set K, and thus also for any Borel function f.
This implies that the mapping f—w— Vf is a kernel. Let A be
any Borel set; the equality V(ya) = lzlgii V(yx) = %ﬂf fx

shows that the function V(y,) is superharmonic, positive,
and a specific minorant of f. Let g be measurable, positive,
bounded by 1; then g is the limit of an increasing sequence
of finite linear combinations of characteristic functions of
sets; Vg thus is positive, superharmonic, and a specific mino-
rant of f. So Vg is continuous if f is continuous.

If A is a Borel set, V(y4) is harmonic in the complement
of A. The above approximation procedure shows that Vg is
harmonic in the complement of the support of g.

Let V' be another kernel with the same properties — more
precisely, we shall only assume that property a) holds when g
belongs to Cj. This first implies, by an increasing passage to
the limit, that V'g is superharmonic whenever g is positive
and lower semicontinuous. Let K be a compact set, (K,) be
a decreasing sequence of compact neighbourhoods of K such

thatm K, = K, and let W be the complement of K. Let (f,)

be a decreasing sequence of positive continuous functions,
such that f, = 1 on K, f, = 0 out of K,; finally, set fx = V'(yx).
This function is harmonic out of K, and possesses the pro-
perty that Hyfx < fx for any regular open set U, because
of the relation fx =inf V’f,. On the other hand,

fx =f— V(w)

1s a difference of superharmonic functions, and thus is super-
harmonic. The relation fx<f then implies fx<{fx (property
3), or V'(yx)3fx. This being true for compact sets is true
for open sets too (property 8). The inequalities

Vi) 3fx,  V(xw) 3fw

cannot be strict, as one gets an equality by adding them.
So we have V'(yx) = fx for any compact K, and the kernels
V and V' are identical.
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3. Construction of the resolvent.

We suppose now that the potential fis bounded and conti-
nuous. The kernel V associated with f defines a bounded
positive operator in the Banach space C,. We shall use Hunt’s
method (or rather the modification of it Lion gave in [7])
to get a submarkovian resolvent (°) (V*);,, such that Vo = V.
We only sketch the proofs.

Let us remark first that V satisfies the weak principle
of the positive maximum. Namely, if g is any function in C,,
and S is the closed set {z: g(z) > 0}, we have:

Max Vg(z) = Max Vg(z)
z€E z€s
provided the first member is positive.

In order to prove it, let us call m the second member, and
assume that m is > 0. The function Vg* being harmonic
in E\S, the function m— Vg is superharmonic in E\S. The
function V|g| is a potential, and we have m — Vg > — V]|g|.
Now m— Vg is positive at every boundary point of E\S.
The result then follows from the minimum principle (Brelot
[3] p. 93).

Let us assume now that A is a strictly positive number,
and that we have been able to find an operator V* in C, such

that : )
V— Vi = AVV* = AVIV

we may check the following points :

a) V* is a posttive operator.

Let us show indeed that g <CO0 implies Vg << 0. If this
were not true, Vrg = V(g— AV*g) would have a strictly
positive maximum, and thus take a strictly positive value
on the set §g— AV*g> 0}, which is impossible, g being
negative.

b) V* is a kernel (it is majorized by V, which is a kernel).

c) ||AVX] is smaller than 1.

It is sufficient to check the inequality AVM < 1. Remark
that 1 majorizes AVM on the set {1 —2AVM >0}; now

() We also refer the reader to [7] for the definition of a resolvent, and a statement
of the Hille-Yosida theorem.



BRELOT'S AXIOMATIC THEORY OF THE DIRICHLET PROBLEM 365

AVM = V[A(1 — AVM)]; so the positive maximum principle
implies that 1 majorizes AVM everywhere.

To conclude the proof of the existence of a resolvent, we
make a few easy remarks. First, V* = V(I 4+ AV)~! exists
for small 2; the set of all A > 0 such that V* exists is open
(as the complement of the spectrum of — V). Whenever the
operators V» and V¥ exist, they satisfy the resolvent equation
VA — V¢ = — (A — ) VAV, A simple Cauchy sequence argu-
ment then shows that the set of all A > 0 such that V* exists
is also closed in Ry\{0}. So V* exists for all A > 0.

Our aim in this paper is the construction of the semi-group
(P,) which admits (V) as its resolvent. Unfortunately, the
denseness conditions of the Hille-Yosida theorem are not
satisfied here, and we shall need more complicated conside-
rations.

We recall () that a positive measurable function w is said
to be supermedian with respect to the resolvent (V*) if it
satisfies the inequality AV*u < u for every A > 0. We have
the following result, which will be improved later on:

Lemma. — Every positive superharmonic function u is
supermedian with respect to the resolvent (V*).

Proof. — Tt is sufficient to check the inequality AV*u < u
in the case of a bounded positive superharmonic function w.
The function V*u = V[u—2AV*u] may be written as
a. V(v — w), where a is a constant, and the functions ¢ and w
take their values in [0,1]. The functions Vg, Vw are specific
minorants of f, and therefore continuous. The function AV*u
thus i1s continuous, and its absolute value is majorized by a
potential; it is subharmonic in the open set {u—AV*u<<0{=W,
and majorized on ENW by the superharmonic function u.
The minimum principle then implies that it is majorized by
u on E.

4. Construction of new kernels.

Let W be a regular open set. We define a new kernel:
Twg = Vg— HwVg (g measurable and bounded).

(*®) See the seminar volume [8].
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If g is positive and bounded, Vg is superharmonie, continuous
and bounded, so Twg is positive, continuous, bounded, equal
to 0 on EN\W. If we identify the space Co(W) to the set of
all continuous functions on E which vanish on E\W, we may
consider the operator Tw as an operator on Cy(W), and thus
as a kernel on W. We shall be rather sloppy in distinguishing
these two interpretations of Tw.

The operator Tw satisfies the weak principle of the positive
maximum on Cy(W); one may therefore find a submarkovian
resolvent (Td)yso on Co(W), such that T = Tw. The mea-
sures T¥(z, dy) will equivalently be considered as measures on
W, or as measures on E concentrated on W (with T (z, dy) =0
for z «e E\W). The positive superharmonic functions in W
are supermedian functions with respect to the resolvent (T%).

We now define a new resolvent by setting :

Skhg = —i— Hwg + Th(g — Hwg) (g Borel measurable and
bounded, A > 0). We get this time a markovian resolvent on
E; the measures AS¥(x, dy) are concentrated on W for ze W,
and are unit masses at z for z € ENW. If g is harmonic, we
have )\S)wg = g. The positive superharmonic functions on E
are supermedian with respect to this resolvent, which carries
Co(E) into Co(E), We shall show that, if f has been properly
chosen, one may apply the Hille-Yosida theorem to (S¥%) on
Co(E).

Any probabilist will recognize in (Td) the resolvent of
a process killed at the complement of W, and in (S¥) the
resolvent of a process stopped at the complement of W.

5. Choice of f'; construction of the local semi-groups.

Let (p,) be a sequence of bounded and continuous poten-
tials, which separates the points of E (). For each n, let a, be
a constant such that a,— p, i1s subharmonic and positive,
and let ¢, be the positive subharmonic function:

9n = (an - pn) + (an - pn)z'
(1) See [3] p. 97, or [5] p. 438.
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We choose now a sequence of positive constants b, such that
the series Xb,q, converges to a (continuous and) bounded
function ¢. Let ¢ be a constant such that ¢ — ¢ is positive.
We take for f the potential part of the positive superharmonic
function ¢ — q. We begin the construction of the semi-groups
with the following lemma :

Lemma. — The weak limit of the measures ASk(z, dy) is
g, for every x e E, as A tends to + 0.

Proof. — There is no problem at all for z € ENW, because
the measure AS¥(z, dy) remains equal to ¢,. For ze W, let u
be any weak limit point of the measures ASl(z, dy) as A — .
The lemma will be proved if we show that g =¢,. The pas-
sages to the limit below are justified because the measures

involved are concentrated on the compact set W.

a) We have w(h) < h(z) for any continuous function h,
which is supermedian with respect to (Sk). As a particular
case, we have w(h) << h(z) for any superbarmonic positive
continuous function A.

b) w(h) = h(z) for any harmonic function A.

¢) We have f= V1, and therefore Twl = f— Hwf. The
resolvent equation implies that lim AT¥%(f — Hwf) = f— Hwf,

»o
and thus also limAS¥(f — Hwf) = f— Hwf. We thus have
l—)w
w(f — Hwf) = f(z) — Hwf(2), and finally u(f) = f(z).

Let us use now the definition of f: (¢) and the relation
(1) = 1 imply p(q) = ¢(=); using (a), we find that ©(g,) = ¢.(z)
for every n, and thus:

(@ — Pa) = @0 — Pu(®);  R[(@n — Paf’] = (@ — pa(2))?
and: [Pl = p(p) — pi(a)
It then follows from Schwarz’ inequality that @ i1s concen-
trated on the set {y: p,(y) = p,(x)}{; the sequence (p,) sepa-

rating points, we must have g =¢,.
This result would allow us to construct the stopped semi-

group and processes on W. We shall not try to do it here,
however, and rather concentrate our interest on the resolvent

(T¥)-
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Let us consider the operators (T¥) as operators on Cy(W),
and remark that the lemma and the explicit relation between
the measures AS¥(z, dy) and T¥ imply (using the relation
Hwg = 0 for geCy(W)):

lim AT%g = g in the weak topology of Co(W) (2) for g & Co(W).

A> oo
The image of the resolvent Ti is thus (weakly) dense in Cy(W).
We may now apply the theorem of Hille-Yosida and get a
submarkovian semi- group (PY), strongly continuous on Co(W),
which admits (Tw) for its resolvent. As above, we shall consider
the kernels P¥(z, dy) as kernels on W, or as kernels on E
such that PY¥(z, dy) = 0 for z € E\W.

6. The definitive semi-group.

The following property is obvious from a stochastic point
of view.

__ Lemma. — Let W and W' be two regular open sets such that
WcW'. Then we have P¥g < P¥'g for every positive Borel
function g.

Proof. — It is sufficient (as we have P*g = P¥(g.yw)) to
check this inequality when g is positive, continuous, with
compact support in W. The functions t ~sw— P g, t ~vnsP¥'g
being continuous, it is sufficient to verify that the function:

X~ [7eMPNg — Pg) dit = Thwg — Thvg

1s completely monotone. Using the formula:

Ll

d\"
which follows from the resolvent equation, we find that we
must only check the inequality :

wg < Twg (g Ci(W))
The resolvent equation implies the identity :
W — Tw = (I — AT%")(Tw — Tw)(I — AT%)

(12) We recall that the conjugate space of Co(W) is the space of all bounded Radon
measures on W.

vg = nl(—1)"[Ty]*'g (U = Wor W)
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Itis thus enough toshow that the function (Tw—Tw)(I—2ATw)g
1s supermedian with respect to (Tw), oris superharmonic and
positive in W’. Let us set:

k= (1—2Tk)g; K =k+¢c (¢>0).

We want to whow that (Tw' — Tw)k 1s positive and super-
harmonic in W’'. Now we have:

Twk in W\W
(TW' —_ Tw)k - Twllf -_— [Twrk - HwTwlk] =

HwTW'k il’l W’.
Let s be this function, and let s’ be the function obtained
by replacing & by k' in its definition. The function k being
equal to 0 in W'\\W, the function Twk’ is superharmonic
in a neighborhood of W*, while the second function HwTwk’
1s harmonic inside W, and has the same boundary value at
W* as Twk’. To prove the superharmonicity of s’, it is thus
sufficient to establish the inequality :

TW'k’ > HwTW'k’ in W
Now the function Twk' — HwTwk' 1s equal to

The function s’ 1s thus superharmonic. As it vanishes at the
"boundary of W', it 1s positive in W', and letting ¢ — 0 one
gets the same result for s.

We are now ready to prove our main result, which implies
that we are in the general set-up of Hunt’s theory of poten-
tials :

Taeorem 3. — There exists a submarkovian semi-group
of kernels, (P,), on the space E, which possesses the following
properties :

a) Its potential kernel is equal to V.

b) The function P,g is continuous for every ge Cy(E).

c) thr:l P,g = g uniformly on compact sets for every g e Cy(E).

d) The positive superharmonic functions on E are ezxactly
the excessive functions (**) with respect to (P,).

(13) Let f be a positive, universally measurable function on E; f is excessive if
the inequality P,f <{ f holds for every ¢, and lim P,f is equal to f. The main results
t>0

>
concerning these functions may be found in [6] and in the seminar volume [8].
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We do not state in fact the most important feature of
(P,) : the possibility of constructing good Markov processes
with continuous sample functions. This would rather be
attained by a stochastic constructions starting with the cons-
truction of stopped and killed processes, than using the hypo-
theses of theorem 3, but we do not want to go into probabi-
listic considerations.

Proof of theorem 3.
Let (W,) be a sequence of regular open sets such that
_—W_,,cW,,_,_l,UW,,=E—such a sequence exists, according

to a theorem of Mme Hervé (). We define, for every Borel
measurable positive function g:

Pig=lim Plsg

Leg (gx) be a sequence of positive measurable functions which
increases to a function g; the convergence in the preceding
formula being monotone, we have:

Pig = sup P™g=sup sup P{"-g,=sup sup Pg,=sup Pyg,
n n k n k

P, therefore is a kernel.
It is easily checked that:

PsPl = P.H-b Po =1
[T e¥Pdt = VAL >0)

Let g be a positive continuous function: the functions P}ng
are continuous, so P,g is lower semi-continuous. In the same
way, the functions ¢ -~ P¥ng are continuous, so the function
t—~w— Pg(z) 1s lower semi-continuous for every zeE.

Let H be the image of the resolvent (V*) operating on C,.
The closure of H is a Banach subspace of C,, and the theorem
of Hille-Yosida implies that a strongly continuous semi-

group Q, may be found on H, such that
VM = f “eMQhdt (heH).
The function f= V1 belongs to H; the functions Q,f are

() See [5], p. 441, proposition 7.1.
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thus continuous on E, and the function t - Q,fw, 1s conti-
nuous in ¢.

On the other hand the functions ¢ -~ P,f are continuous
and decreasing (f being excessive with respect to the semi-
group (P/)). So the function ¢—w—sPf is lower semiconti-
nuous and decreasing, i.e. right continuous. The functions
t~wn— Qf, t ~»n— P,f have the same Laplace transform, and
are right continuous: they are identical. The functions Pf
are therefore continuous on E, and converge uniformly to f
as t tends to 0.

Let g be any continuous function such that 0 < g <f; the
functions P.g, P,(f— g) are lower semi-continuous, and their
sum 1is continuous, they are therefore continuous. In the
same way, the function ¢ —~— P,g is continuous. This applies
to any continuous function g with compact support (Agh
and Ag~ being majorized by f for A small enough).

Let g be a continuous function with compact support such
that 0 < g <f; according to a result of Mme Hervé ('), one
may find two continuous potentials p, and p, such that
p1 — p. 1s arbitrarily close to g in the uniform norm. Repla-
cing p; by min(p,, f) ( = 1, 2) if necessary, we may assume that
these potentials are majorized by f. The functions P,p, are
therefore continuous, and increase to p; as t— 0. Using
Dint’s lemma, we find that P,p; converges to p; uniformly
on compact sets. The same 1s thus true for P,g and g.

Let s be any superharmonic and positive function. We
have seen that s is supermedian with respect to every semi-
group (P»); this implies that s is supermedian with respect
to (P,). On the other hand, the measures Pz, dy) converge
weakly to ¢, as ¢ tends to 0. The function s being lower semi-
continuous, we have:

s(z) < hm inf Ps(z).
t>0
The reversed inequality being true, s is excessive with respect
to (P,). The converse follows from the fact that every exces-
sive function is the limit of an increasing sequence of poten-
tials Vg, (g, > 0), and these potentials are superharmonic
functions.

(5) See [3] p. 97, or [5] p. 439.
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