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CONSTRUCTING GENERIC SMOOTH MAPS OF A
MANIFOLD INTO A SURFACE WITH PRESCRIBED

SINGULAR LOCI

by
Osamu SAEKI

1. Introduction.

Let / : M —>• N be a smooth map of an n-dimensional manifold
M (n >, 2) into a surface N. It has been known that if / is generic
enough, then / has only folds and cusps as its singularities and that the
singular set S(f) is a closed 1-dimensional submanifold of M (see [W],
[T], [L2], [L3]). It is a very important problem in the study of the global
topology of generic maps to study the position of their singular set (see [T],
Chap. IV and V, and [E2], §1). When M is closed, S(f) represents a
1-dimensional homology class in Zs-coefficients and this class has been
studied by Thorn [T], who described its Poincare dual in terms of the
Stiefel-Whitney classes of TM and f*TN. Furthermore, he showed that
the number of cusps has the same parity as the Euler characteristic of the
source manifold M when N is orientable. Eliasberg [El], [E2] studied the
problem of realizing a given submanifold as the singular set of a generic map
containing only fold singularities and obtained some realization theorems
assuming the existence of a certain map between the tangent spaces of M
and N.

Our purpose of this paper is to study the singular set S{f) of
a generic map / : M —> N as a submanifold of M and to give a
complete characterization of such submanifolds. In fact our main theorem
is that Thorn's hornological condition as above suffices to realize a given
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closed 1-dimensional submanifold as the singular set of a generic map (see
Theorem 2.2 in §2).

Given a generic map / : M —>• TV, every singular point has its own
absolute index defined via a certain bilinear form associated with the
singular point (see [L3]). Consequently, the singular set S(f) is stratified
into a finite number of strata on each of which the index is constant, where
the 0-dimensional strata correspond to the cusps and the 1-dimensional
ones to the folds. These strata naturally satisfy some adjacency conditions
with respect to the indices. Our second main theorem is that, given a closed
1-dimensional stratified submanifold satisfying the adjacency conditions
together with Thorn's hornological conditions, we can realize it as the
singular set of a generic map consistent with the indexed stratification as
long as all the indices appear (see Theorem 2.4 in § 2).

Our idea of the proof is to begin with an arbitrary generic map
g : M —> N and to modify it homotopically so that the singular set is
isotopic to a given submanifold. For this purpose we study the change of
the isotopy class of the singular set in the course of a generic homotopy of
smooth maps. We also use the techniques developed in [L3] for eliminating
cusps. Note that similar results have been obtained by Eliasberg [El], [E2]
in some cases for smooth maps f : M —> V of n-dimensional manifolds
into R^ (n > p) with only fold singular points and that our technique
is totally different from his. Furthermore, our result gives a complete
characterization of submanifolds arising as the singular set of a generic
map, although the target manifolds are restricted to those of dimension 2.

The paper is organized as follows. In § 2, we prepare some known
results and notations and state our main theorems precisely. In § 3, we
prove some fundamental lemmas for the proof of our main theorems. These
results may have already been known for some specialists; however, we
included detailed proofs, since there have been no rigorous proofs in the
literature. We prove our main theorems in §§ 4 and 5. In § 6, we give some
consequences of our results. In particular, we give a complete answer to the
problem, posed in [S2], of characterizing 1-dimensional submanifolds of a
3-manifold arising as the singular set of a generic map into the plane. One
of the consequences of our results is the remarkable fact that every knot or
link in S'3 (or more generally in any homology 3-sphere) is realized as the
singular set of a stable map into the plane.

The author would like to express his thanks to ICMSC, University of
Sao Paulo, where this paper has been prepared. He also would like to thank
the referee for nice comments and suggestions.
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2. Preliminaries and statement of main theorems.

Let / : M —> N be a smooth map of a connected closed n-dimensional
manifold M (where n > 2) into a connected surface N. We denote by S(f)
the singular set of /, i.e., the set of the points in M where the rank of df
is less than 2. Furthermore, we denote by J^(f) the induced map of M into
J^M,^), where J^(M,N) is the bundle of z-jets of maps of M into N.
Then / : M —>• N is said to be generic if the following conditions are
satisfied (see [L3]) :

(1) J^/) is transversal to 5i(M, N) and Sz{M, N), and

(2) J^/) is transversal to S?(M, N).

(For notations, see [LI], [L2].) This is equivalent to the following
normal form interpretation : / is generic if and only if, for each point
p € S(f), one of the following two holds :

(3) We can choose coordinates (it, z i , . . . , Zn-i) centered at p and (£7, Y)
centered at f(p) so that, in a neighborhood ofp, / has one of the forms :

n-l

U=u, Y=Y^±z^
i=l

(4) We can choose coordinates (u,a;,zi, - • • ,^-2) centered at p and
(U^Y) centered at f{p) so that, in a neighborhood ofp, / has one of the
forms :

n-2

U = u, Y = ̂  ±z^ 4- xu + x3.
i=l

If p € <S'(/) satisfies the condition (3), we call p a fold point, and
if it satisfies (4), a cusp. It is easy to observe that if / is generic, then
the singular set *S'(/) is a closed 1-dimensional submanifold of M. Note
that the set of generic maps is open and dense in the space of all smooth
maps C°°{M,N) topologized with the C^-topology.

The following theorem has been proved by Thorn [T].

THEOREM 2.1 (Thorn [T]). — Let f : M -^ N be a generic map of
a closed n-dimensional manifold M into a surface N. Then the Poincare
dual of the ^-homology class represented by S(f) coincides with the
degree (n - l)-part of w(M) U (f*w(N))~1, where w denotes the total
Stiefel-Whitney class.
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In particular, if two generic maps /, g : M —> N are homotopic, then
their singular sets S(f) and S(g) are Za-homologous (see also [T], Thm. 7).
Our first main theorem of this paper is, in a sense, a converse of this
observation.

THEOREM 2.2. — Let f '. M —> N be a generic map of a closed
n-dimensional manifold (n > 3) into a surface N. Suppose that L is a
nonempty closed 1-dimensional submanifold ofM which is ^-homologous
to S(f). Then there exists a generic map f : M —>• N homotopic to f such
that S(f) = L.

Recall that every singular point p of a generic map / has its own
absolute index r(p) (see [L3], p. 273). Note that, if p is a fold point, then

n — 1 > r(p) >, n — 1 — m,
and that if p is a cusp, then

n - 2 ̂  r(p) > n - 2 - fc,

where m is the greatest integer not exceeding ^ (n — 1) and k is the greatest
integer not exceeding ^ (n — 2). Note that k = m — 1 when n is odd and
that k = m when n is even. Define Fi(f) to be the set of the fold points of
absolute index i and Cj(f) to be the set of the cusps of absolute index j.
In [L3], it is shown that Fi(f) is a finite disjoint union of open arcs and
circles and that Cj(f) consists of a finite number of points. Furthermore,
we have the following adjacency conditions:

(F,(/) n F,+i (/) = d(f) (i = n - 2, • . • , n - 1 - m),

(2.3) lnt{Fn-i-m(f)) - ̂ n-i-m(/) = Cn-2-k(f) (when n is even),

WHF,(f)=9 (when|z-j[>2),
where the overline and Int denote the closure and the interior points in S(f)
respectively. Recall that, when n is even and N is orientable, the Euler
characteristic of M has the same parity as ^Cn-2-k(f), where (( denotes
the cardinality (see [L3], p. 285).

Our second main theorem is stated as follows.

THEOREM 2.4. — Let f : M —> N be a generic map of a closed
orientable n-dimensional manifold (n > 3) into an orientable surface.
Suppose that

^=( u^H u2^)
z=n—l—'m j==n—2—k
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is a nonempty closed 1-dimensional stratified submanifold of M satisfying
the adjacency conditions similar to (2.3). When n is even, we also assume
that the Euler characteristic ofM has the same parity as ^Cn-2-k' IfL
is ^-homologous to S{f) and Fi -^ 0 for all i, then there exists a generic
map^f : M —> N homotopic to f such that S(f) = L, F,(/) = F, and
Cj{f) = Cj for all i and j.

Note that a similar result for n = 2 has been obtained by Eliasberg
(see [El], §4).

Remark 2.5. — In Theorem 2.4, the condition Fi ̂  0 for all i is neces-
sary in general. For example, if Fn-i ^ 0 and Fn-2 = • • • = Fn-i-m = 0,
then f must be a special generic map. Note that those manifolds which ad-
mit special generic maps into orientable surfaces have been characterized in
[Sl] and that not every manifold admits such a map (see also [BdR], [PF]).

Remark 2.6. — When the target manifold is of dimension 1, say R, a
theorem like Theorem 2.4 does not hold, because of the Morse inequality.
In other words, Theorem 2.4 shows that we do not have a theorem which
corresponds exactly to the classical Morse inequality, for generic maps into
surfaces. Compare this with [MPS], § 3. See also [E2], § 1. We note, however,
that we have probably a Morse type inequality for generic maps into surfaces.
For example, when the target manifold is the plane R2, the composition
TT o / of a generic map / : M -» R2 with a generic projection TT : R2 —> R is
a Morse function and its critical points and their indices are closely related
to the singular points of / and their absolute indices respectively.

3. Basic lemmas.

In the following, we assume that / : M —)• N is a smooth generic map
of a closed n-dimensional manifold M (where n > 2) into a surface N.

LEMMA 3.1. — Let p € M be a regular point of f and U an open
neighborhood ofp in M with U H S(f) = 0. Then there exists a smooth
homotopy ft : M —> N (with t € [0,1 + £:]) for some positive real number e
such that /o = /? that ft=f outside of (7, that ft is generic for allt ^ 1,
and that U H ^(/i+g.) is an unknotted circle in U.

Here, an embedded circle in a manifold is unknotted if it bounds an
embedded 2-disk.
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Proof of Lemma 3.1. — Since p is a regular point, there exist local
coordinates (n,a;,^i, • - • ,2^-2) centered at p and (X,V) centered at f(p)
such that / has the form

X=u, Y=x.

Since the two maps

(tz, x, z^, • • • , ̂ -2) i—> (u, x) and
n-2

(n, rc, ̂ i, • • • , ̂ n-2) i—> [u, (u2 + l)x 4- | a;3 + ̂  â ,2^
2=1

(oi = =bl) are locally right equivalent, we may assume that / has the form

n-2
X = u, Y = (u2 + l)x+ ^x3 + ̂ aiZ^

i==l

by changing the local coordinates if necessary. There exists a positive real
number 6 such that

n-2

B = {\u\,\x\,\z\ <6} CU, where \z\ = (^^2)
1/2

^ •
1=1

Take arbitrary real numbers mi and mo such that 0 < m\ < mo < 6. Then
there exists a nonnegative C00 function 0 : R —> R with 9 ' ( t ) < 0 such that

0{t) - j» •
ll i

0 if t > m§,
if t <: m[.

Set -K' = max^^)! (K < oo) and take real numbers fco and k\ such
ifciit

that 0 < fei < fco < min{<5,1/(2JC)}. Furthermore, take real numbers ro
and r\ such that 0 < ro < r\ < 6. There exist nonnegative C00 functions
</?, -0 : R —> R with ( p ' ( t ) ^ ' ( t ) < 0 such that

ro i f t> fc§ ,
^'{i i f ^ < f c ?

and
f O if t^rg,

^tl if t^r?.
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Furthermore, take e with 0 < e < min{l,A^,r^}. Then for t € [0,1 -+- e\,
define ft: M —> N by

n-2

X = n, V = (u2 + l)x + j^3 + ̂ a,̂ 2 - tx^x^^u^e^2)
i=l

on B and by ft = f on M — B7, where

B/ == {|rc| < fco, |̂ | < ro, H < mo}.

It is easy to check that ft is a well-defined smooth homotopy of maps,
/o = /, and that ft==f outside of U. In the following, we shall study the
behavior oi ft\B''

(a) When \z\ > mi, we see that

V,, =2zi(ai-tx^x2)^/;(u2)0f{\z\2)) ^0,

since ^(a:2)^2)^^!2)! < 2A;o^ < 1. Hence we have that Y^ ^ 0 for
some i and that ft is nonsingular in this region.

(b) When |a;| > k\ and \z\ < m\^ we see that

y^ = n2 + 1 + x2 -1 y(x2) ̂ (u2) - 2tx2(p/(x2) ̂ (u2)
> 1 + x2 - (1 4- e) > kl - e > 0

and hence that ft is nonsingular also in this region.

(c) When \x\ < fei, \u\ > r\ and \z\ < mi, we see that

y^ = u2 + 1 + a?2 - ̂ (u2) > n2 + 1 - (1 4- e) ̂  r\ - e > 0

and hence that ft is nonsingular also in this region.

(d) When \x\ <, fci, \u\ <: r-i and \z\ < mi, we see that ft is of the form

n-2

X = u, Y = (u2 + l)x + ̂ 3 + ̂  a^? - ̂
i=i

and that
y^ = -a2 + 1 + x2 -1, Y^ = 2aiZi,

Y — 9y V — 9?/-•xx — A***/, -A a;ii — A.»U|.
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Thus we see that ^(/t) is always transversal to S^{M, N) and that ^(ft)
is not transversal to 5'i (M, TV) at (it, ;r, ̂ ) if and only if x = u •= z\ = • • • =
^_2 = 0 and t = 1 (see the condition (a") of [L3], § 3).

Furthermore, we see that, for 0 < t < 1, ft is nonsingular in this
region and, for 1 < t < 1 -h £, we have

5i(/,) H B' = [z = 0, x2 + n2 = t - 1},

which is an unknotted circle in B' C £/, and

^(/,) H Bf = {rankf^ y- ) < n - l} H (S,(fi) H B')
v v ^zx ^zz / ^

= [x = 2;i =. ' . .= ^_2 = 0, ZA2 = t - 1},

which consists of two points. (For the image of 5i(/t) C\B1 by /t, see Fig. 1.)

Figure 1.

Furthermore, in the latter case, at the two points, we have Y^xx 7^ 0-
Hence ^(ft) is transversal to 5^(M, N) (see the condition (b") of [L3], § 3).
Thus ft is generic for all t ̂  1. This completes the proof of Lemma 3.1. D

Remark 3.2. — Note that (5i(/t) - S?(/t)) H B' consists of two
components for t > 1. Choosing di = ±1 appropriately, we can arrange
the absolute indices of the two cusps S^(ft) and the two fold curves as we
desire, as long as they satisfy the adjacency conditions as in (2.3). We also
note that the homotopy ft \ B ' constructed above corresponds to the « Lip »
of [C] and that ./tK.Si^-.s^/t^nB'ls an embedding for t > 1.

We define the vector bundles L and G over S\ (/) by the exactness of

0 -^ L —. TM^f) ̂  rTN\s,w ̂  G -. 0.

For a point p e *S'i(/), we denote the corresponding fibers over p by Lp
and Gp. Note that dimLp = n — 1 and dimGp =1.
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LEMMA 3.3. — Let p be a point in Sz(f) - S^(f) and g(p) e Gp a
Gxed orientation. We denote by i(p) the index ofp with respect to the
orientation g(p). We assume that i(p) -^ n - 1. Let U be a small open
neighborhood ofp in M such that (£7, E/H (5i(/) - 5?(/))) is diffeomorphic
to (R^ re i-axis). Then there exists a smooth homotopy ft : M -4 N
(t G [0,1 + e]) for some e > 0 with the following properties:

(1) /o = /;
(2) ft = f outside of U;

(3) ft is generic for allt -^ 1;

(4) (U, U n 5i(/i+e)) is diffeomorphic to (R71, a;i-axis);

(5) U r\ Sf (/i+e) consists of two points p\ and p^

(6) let the three components of?7n(S'i(/i+g.) — ̂ (/i+g)) be denoted by
Ai, A2 and As, where Ai n Aa = pi and A^ H As = ps. Then G?|^7n5l(/l+e)
has a natural orientation g ' induced by g(p) and with respect to this
orientation </, the indices of the fold curves Ai,Aa and As are equal to
i{p)ii(p) + 1 and i(p) respectively and the indices of the cusps pi and p2
are both equaJ to i{p) (see Fig. 2).

/(5i(/)-5?(/))

^n5'i(/i+e)

(5l (/!+.))

Figure 2.

Proof. — Since p € 5'i(/) — 5^(/), there exist local coordinates
(n, a;, zi, • • • , Zn-2) centered at p and (X, V) centered at /(p) such that /
has the form

X=u, Y=Q(z)-^x2

and that 7r(9/9Yp) = ^(p), where Q(z) is a nonsingular quadratic form of
index i(p) (i.e., Q(z) = -z^ - ' ' • - ̂  + z^^ + • • • + ̂ _2). This is true,
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since i(jp) ̂  n — 1. Since this map is locally right-left equivalent to

{u,x,z^-',Zn-2) '—^ (^Q^+^+nrc+a;2),

we may assume that / is of the form

X == u, Y = Q(z) + x4 + ux + x2

and Tv(9/9Yp) = g(p), changing the local coordinates if necessary. There
exists a small positive real number 6 > 0 such that

B={|a;|,H,H <6} CU.

Take arbitrary real numbers m\ and mo with 0 < m\ < mo < 6 and
a smooth nonnegative C°° function 6 : R —> R with O'(t) < 0 as in the
proof of Lemma 3.1. Set K = max ̂ '(t)! and take positive real numbers ko

tfcJK.

and fci with 0 < fci < ko < min{^, ̂ /1/(2K) }. Furthermore, take positive
real numbers 7-0, r\ and e such that

0 < e < min{2fc2, 1}, 0 < ri < ro < 6,

J£(2^ + I)2 < r{ < rl < 4^(2^ - e)2

and 64( ^ e)3 < r\, and take smooth nonnegative C00 functions </?, ̂  : R —> R
with y/(^), ̂ '(t) < 0 as in the proof of Lemma 3.1. Then, for t € [0,1 + e},
define ft : M —^ N by

X = u, Y= Q{z) + a;4 + ux + a;2 - tx2^2) ̂ (u2) 0{\z\2)

on -B and by /i = / on M — B', where B' is as in the proof of Lemma 3.1.
We see easily that ft is a well-defined smooth map, /o = / and that ft = /
outside of ?7.

We now study the behavior of ft\B'-

(a) When \z\ >_ mi, we see that

y,, = 2z, (±1 - tx\{x2) ̂ (u2) e\\z\2)} + o,
since |to2y?(a;2)'0(^A2)^/(|z|2)| < 2k^K < 1. Hence ft is nonsingular in this
region.

(b) When \x\ > k\ and \z\ ̂  mi, we see that

V^ = n + 2a:(2^2 + 1 -1 y{x2) ̂ {u2) - tx2^^2) ̂ (u2)) ̂  0,
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since

\2x{2x2 + 1 - ty(x2) ̂ (u2) - teV(;r2) V'("2))!
> 2ki (2fc2 + 1 - (1 + e)) = 2A;i(2fc2 - e)

and |u| < 7-0 < 2A;i(2fc2 - £•). Hence ft is nonsingular also in this region.

(c) When |a;[ ^ fci, |u| ^ r\ and |z| < mi, we see that

Y^ = u + 2x(2x2 + 1 - tip(u2))

and hence that

Si(ft) n B' = {y, = y,, =... = y^_, = 0}
= {u = -2a;(2a;2 + 1 - ̂ (n2)), zi = • • • = ̂ .2 = 0}.

Note that Yx < 0 for a; = -fci and Ya; > 0 for x = ki. Suppose that Yx = 0
at a point. Then we have

u=-2x(2x2+l-t1p(u2)),

0< [2a;2+l-t^(u2)| ^2A;2+1, H ^ n

and hence

bl> rl
m - 2(2fc2 + 1)

Then we have
0..2

Y^ = 12x2 + 2 - 2^(u2) > (——L^ - 2e > 0.

Hence, for each hyperplane {u = constant}, there exists a unique point
in 5i(/t) and J^/t) is transversal to 5i(M,7V) at the point. Furthermore,
cusp points of ft do not exist in this region. Note that the original orientation
g(p) induces a natural orientation of G for ft and that, with respect to this
orientation, the index of each point in 5'i(/i) in this region is equal to z(p).

(d) When \x\ < A;i, \u\ < 7*1 and \z\ < mi; in this region ft has the form

X = u, Y = Q(z) + x4 + ux + x2 - tx2.

Hence we have

^ = 4rr3 + u + 2(1 - t)x, Y^ = ±2^,

Y^ = 12a;2 + 2(1 -1), Y^ = 1 ̂  0,

^ttt == ^2:13; == ^'
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Thus, in this region, ^(ft) is transversal to 5'i(M,7V). Furthermore we
have

S^(ft) HB' = {rankf^ y-) < n- l} U (^i(/t) HB')
^ \ YZX izz / }

={y.=^==^=o}nB'I - X — ±Z

=^i== { ^ = 0 , u=8x\ x^= ^(t-l)}^.
Thus,

• for 0 < t < 1, we have S^(ft) H B' = 0;

• for t = 1, S^(ft) H B' consists of one point (x, u, z) = (0,0,0);

• for 1 < t < 1 + £, we have \x\ = ^t(t-l) < |̂̂  < A;i,
|zt| = [Src3! < 7*1 and hence

S^(ft) n 5' = [z, = 0, a; = ±^/|(t-l), ^ = 8^3},

which consists of two points.
At these points, we have Y^ = 24:x ^ 0. Hence J^/i) is transversal

to 5^(M, N) for t > 1 and we conclude that /^ is generic for t -^ 1. Note
that /i is not generic.(For the set 5i(/i) H B', see Fig. 3.)

Furthermore, we have

Si(ft) n B' = {z, = 0, H = -2x(2x2 + (1 - ̂ ))} n B ' ,

which implies the required property (4) of the lemma. Moreover, for
1 < t < 1 -h e and a point in (61 (/i) - S^(ft)) H B', we have

> 0 if |a:| > ^(t - 1)/6,
Y..

I < 0 if \x\ < ̂ (t - 1)/6.
This verifies the required property (6) of the lemma. This completes the
proof. D
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Remark 3.4. — We note that the homotopy ft\B' constructed above
corresponds to the « Swallow-tail» of [C]. Furthermore, we note that
ft\s^f^B' is an embedding for 0 < t < 1, while ft^s^-s^ft^nE' is
an immersion with normal crossings for t > 1.

Let p and p ' be distinct cusps of a generic map / : M —> N. In [L3],
the case where N is orientable has been considered and a definition of a
matching pair (p,p') has been given. Here we give a definition of a matching
pair which works also in the nonorientable case. Let A : [0,1] —^ M be a
joining curve in the sense of [L3], (4.4). Then (/oA)*T7V is a 2-plane bundle
over [0,1] and we fix its orientation. Take v € TpM which points downward
(see [L3], (4.2)), and take p, e Tf^N such that f^(y) A u, is consistent with
the fixed orientation of

(/oA)*(r^)^)=((/oA)*r7v),.

Set 7 == Tr(^), where TT : f*TN\s^ —^ G is the natural projection and
we regard u C (/*7W)p. Note that 7 gives an orientation of Gp. We
define I{p) to be the index ^ of p with respect to the orientation 7
(see [L3], p. 273). Similarly, we define !{?') using the fixed orientation of
(/oA)*(r^)7V)=((/oA)*T7V)i.

DEFINITION 3.5. — A pair of cusps (p,j/) (p ̂  p ' ) is called a matching
pair with respect to a joining curve A if I ( p ) + I(pf) = n — 2.

Note that the above definition does not depend on the choice of the
fixed orientation of (/ o A)*T7v. Note also that, when N is orientable, this
definition does not depend on the choice of the joining curve A and it
coincides with the definition given in [L3].

DEFINITION 3.6. — Let M be an n-dimensional manifold and L a
compact 1-dimensional submanifold of M. Furthermore, let b : J x J —> M
{J == [-1,1]) be an embedding such that b(J x J ) n L = b(9J x J ) . Such
an embedding is called a band. Define L' to be the compact 1-dimensional
submanifold ofM obtained from (L - b(9J x J)) U b(J x 9J) by smoothing
the corners (see Fig. 4). Then we say that L' is obtained from L by a
band operation along the arc b ( J x {0}) (or along the band b). We also
call the arc b(J x {0}) the core of the band b. Note that this operation
is invertible'^ i.e., if L' is obtained from L by a band operation as above,
then L is obtained from L' by a band operation along the band bop, where
p ' . J x J — ^ J x J i s defined by p(s,t) = (t,s). Note also that the band
operation is well-defined up to isotopy.



1148 OSAMU SAEKI

b(J X J )

b(9J X J ) b(J x {0})

Figure 4.

When L is oriented and the band b is consistent with the orientation
(i.e., b(9(J x J)) is oriented and the inclusion b(9J x J ) c L is orientation
reversing), we call the above operation an oriented band operation.

LEMMA 3.7. — Let (p,p7) be a matching pair of cusps with respect
to a joining curve X and U an open neighborhood ofA([0,1]) in M. Then
there exists a smooth homotopy fi: M —>• N (t € [0,1]) with the following
properties:

(1) /o = /;
(2) /( = f outside ofU',

(3) there exists a-to € [0,1] such that ft is generic for all t ̂  to;

(4) tt5?(/t) = t(S?(/) for all t with 0 < t < to, where jj denotes the
cardinality;

(5) tt S^(ft) = |t S^{f) - 2 for all t with to < t < 1;

(6) 5i(/i) is obtained from 5i(/) by a band operation along A([0,1]).

Proof. — The proof is almost given in [L3], (4.6)-(4.9). The only
condition we have to check is our condition (6). Note that, in [L3], Levine
constructs the required homotopy in two steps. In his first step (see [L3],
Prop. 1, p. 292), the singular set of ft coincides exactly with that of / (see
the equation for 'Si(/t) for this step [L3], p. 291, which does not depend
on t). In the following, we will study the change of S^(fi) in the course of
Levine's second step (see [L3], Lemma, p. 293), using the same notations
as Levine's.

First note that, for \x\ > ko, \u\ > 7*0 or \z\ > mo, we have ft=f and
that for |a:| > fci, or \x\ < k\ and \z\ > mi, we have S\(ft) = 0.
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(a) When \x\ < fci, r-i < \u\ < ro and \z\ < m\ (%.e., in the region C). In
this region, Si(/t) = {^i = O? Va; =0}. Furthermore, we see that

r. > 0 if x = 0,
. < 0 if x = ±fci

and y^a; = -2x. Hence we see that, for each u, there exist exactly two
points of Si(/t) in this region.

(b) When \x\ < k^, \u\ < ri and \z\ < mi (i.e., in the region Bi). First
we consider t > to = (S2/^2 + £2). In this case, we have

^ r > 0 if x == 0,
x \ < 0 if x = ±fci

and Yea; = —2rc. Hence, for each u, there exist exactly two points of 5i(/t)
in this region. When t < to? we set

Ut =
^-fQ^+g2)

1-at

For |zt| > Ht? we have

> 0 if x = 0,y. < 0 if x == ±ki
and Ya;a; = -2x. Hence, for each u with \u\ > Ut, there exist exactly two
points of Si(ft) in this region. For \u\ < i^, we have Yx < 0 for x = 0
and Yea; = -2x, and hence there exists no x with Yc = 0 in this region.
For u = ±Ht, we have exactly one point of 5i(/t), which correspond to the
cusps in jE?i. Hence the set Si(/t) H (£?i U C) is as illustrated in Fig. 5 and it
is now clear that Si(/i) is obtained from 5i(/) by a band operation along
A([0,1]). This completes the proof. D

ki

Figure 5.

-1-^
t>to
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Remark 3.8. — We note that the homotopy ft\p constructed in [L3],
(4.6)-(4.9) corresponds to the «Beak to Beak» of [C].

LEMMA 3.9. — Let M be a closed n-dimensional manifold (n > 3)
and let L and L' be (nonempty) closed 1-dimensional submanifolds of M.
Then L and L' are ^-homologous in M if and only if L' is isotopic to a
1-dimensional submanifold obtained from L by a finite iteration of band
operations.

Proof. — The necessity is clear, since a band operation does not
change the Za-homology class represented by the submanifolds.

Now suppose that L and L' are Za-homologous in M. We orient L
and L' arbitrarily. Since H^M'.Z^) ^ I:fi(M;Z)/2.Hi(M;Z), we see
that [L] - [L'] = 27 for some homology class 7 e .Hi(M;Z), where [L]
and [I/] are the homology classes in ffi(M;Z) represented by the oriented
submanifolds L and L' respectively. Then there exists an oriented simple
closed curve A\ in M representing 7. We may assume that Ai H L = 0,
since n > 3. Then there exists an oriented band b\ : J x J —> M consistent
with the orientations of L and Ai such that &i (J x J ) n (Ai UL) == &i (9J x J),
&i({-l} x J) C L, and &i({l} x J) c Ai. Let A^ be an embedded arc in M
which is obtained from (Ai - &i({l} x J)) U &i(J x 9J) by smoothing the
corners (see Fig. 6). Note that QA^ C L. Then there exists an oriented band

Figure 6.

b 2 : J x J - > M such that b^J x J ) n L = b^OJ x J), b^J x {0}) = A^
&2({-1} x J ) c L and b^({l} x J ) c L, where the last two inclusions are
orientation reversing and preserving respectively (see Fig. 7). Let Li be the
1-dimensional submanifold of M obtained from L by the band operation
along &2. For a suitable orientation given to L\, we have that [Li] = [L] + 27
in ^i(M; Z). Hence we may assume that [L] = [L'] in Ifi(M; Z).

By suitable oriented band operations, we may assume that L and
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b^JxJ)

Figure 7.

L' are connected. Take a point x € L and an arc a in M connecting x
and L' so that we can regard [L] and [I/] as elements of 71-1 (M, a;) = G.
Recall that [L] = [L'] in iJi(M;Z) = G/[G,G]. Take arbitrary elements
a, /? € Ti-i (M, a;). Then there exists oriented simple closed curves As and A^
in M such that As H A4 = A^ n L = L D As = {a:}, and [As] = a and
[A4] = (3 in Ti-i (M, a;). Using As and A4 we can construct two oriented
bands &3,&4 : J x J —> M such that L H bs(J x J ) = bs(9J x J ) ^ x,
L n &4(J x J) = &4(9J x J ) ^ x , bs(J x J) n &4(^ x ^) = 0, and that the
1-dimensional oriented submanifold L^ obtained from L by the oriented
band operations along ^3 and 64 satisfies [La] = [Lja^a"1/?"1 in 71-1 (M, a;)
(see Fig. 8).

Since the commutator subgroup [G, G] is generated by the elements of
the form a/^o;"1/?"1 (a, /3 C G), we may assume that [L] = [L'] in 7i-i(M, a;),
iterating the above operation finitely many times. In particular, L and L'
are freely homotopic. Then by a standard general position argument, we see
that L and L' are isotopic for n >_ 4. When n = 3, taking the free homotopy
between L and L' generically, we see that L' is isotopic to a 1-dimensional
submanifold of M obtained from L by a finite iteration of crossing changes.
Here, a crossing change is a local operation performed on a 1-dimensional
submanifold as illustrated in Fig. 9. It is easy to see that a crossing change
is realized by two band operations, as is shown in Fig. 10. This completes
the proof. D

Remark 3.10. — Alternatively, we could prove Lemma 3.9, using a
properly embedded surface F in M x [0,1] such that 9F = L x {0}Ul/ x {1}
and that p\p : F —^ [0,1] is a Morse function, where p : M x [0,1] —f [0,1]
is the projection to the second factor.

Remark 3.11. — Let L be a closed 1-dimensional submanifold of M
and 6 : J x J —^ M a band such that b(J x J ) D L = b(9J x J ) . Then
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Figure 9.

isotopic

isotopic

Figure 10.

the isotopy class of the 1-dimensional submanifold obtained by the band
operation along b is determined by the following three data.

(1) The isotopy class of the core b(J x {0}) in M with the end points
contained in L and 6(Int J x {0}) contained in M — L.
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(2) With a fixed orientation given to L, whether b is an oriented band
or not (there are two possibilities).

(3) The homotopy class of the section of the normal bundle of the core
b(J x {0}) in M which is canonically determined by the band b, where the
section on the boundary 9b(J x {0}) is fixed according to (2). Note that
this corresponds exactly to

^(SO^-l))^
1^2

if n = 3,
if n > 4.

4. Proof of Theorem 2.2.

Proof of Theorem 2.2. — Let / : M —> N be a generic map of a closed
n-dimensional manifold (n > 3) into a surface and L a closed nonempty
1-dimensional submanifold of M which is Zs-homologous to the singular set
S(f) of / in M. We will show that there exists a generic map f : M —> N
homotopic to / whose singular set coincides with L.

By Lemma 3.1, we may assume that S(f) ̂  0. Hence by Lemma 3.9,
L is isotopic to a 1-dimensional submanifold of M obtained from S{f)
by a finite iteration of band operations. By Lemma 3.3, without changing
the isotopy type of 5(/), we may assume that every component of S(f)
contains fold points and cusp points of all absolute indices.

First suppose that n is odd. Let A be a component of S(f) and p a
fold point in A of absolute index j (n - 1). We fix an orientation g of G in a
neighborhood ofp in A. Furthermore, take a point p ' in A sufficiently close
to p. Then the index i(p) ofp with respect to the orientation g(p) and the
absolute index i ' ( p ' ) with respect to — g ( p ' ) are both equal to j (n — 1). We
apply Lemma 3.3 successively to p and p ' with respect to the orientations
g ( p ) and —g{p') respectively, and we denote the new cusps corresponding
to p by pi and p^ and those corresponding to p ' by p[ and p^. We continue
to use the same notation /,A and g for the new generic map, the new
component and the new orientation corresponding to the original /, A and
g respectively. Note that the indices ofpz and p[ with respect to g are equal
to ]- (n — 1) and | (n — 3) respectively and that those with respect to —g
are equal to j(n - 3) and j(n - 1) respectively. As to the image /(A),
see Fig. 11.



/(p'i) fW

Figure 11.

When n is even, take a point p in A of absolute index ^ n. There exists
an orientation g for G near p such that the index ofp with respect to g(p)
is equal to ^ (n — 2). We apply Lemma 3.3 to p with the orientation g(p)^
and we denote the new cusps by p\ and p^. We continue to use the same
notation /, A and g as in the previous paragraph. Note that the index of pi
with respect to ±^ is equal to ^ (n — 2). As to the image /(A), see Fig. 12.

/(Pi) f(P2)

Figure 12.

Now we consider a band operation performed on S(f) along a band
b : J x J —> M. We perform the operation described as above near each of
the two end points of A = b(J x {0}). Changing b by an isotopy, we may
assume that each point of 9b(J x {0}) coincides with one of the cusps p%, p\
constructed as above. At one of the end points of A, replacing pi by ps-i
(or p\ by p3_J, and changing A by an isotopy if necessary, we may assume
that A is a joining curve and that the two cusps 9\ are matching with respect
to A. This follows from the fact that the pairs of cusps (pi,p2) and (p[,p^)
are matching with respect to local joining curves. Then we apply Lemma 3.9
to / and A to obtain a generic map /i : M •—>• N homotopic to / such that
5'(/i) is obtained from S{f) by a band operation along a band V whose
core coincides with A. Note that the difference between the band operations
along b and b' lies in the data (2) and (3) of Remark 3.11. As to (2), consider
the following change of A. For n odd, at one of the end points of A, we
replace pi by p^_i (or p[ by ps-i). For n even, we replace pi by ps-i. Then
the end points of A are still a matching pair of cusps with respect to A and
the orientation consistency of the band with respect to a fixed orientation
of L changes at the end point. Hence, we may assume that b and bf are
the same with respect to the data (2) of Remark 3.11. As to (3), consider
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the following change of A. There exists a coordinate neighborhood U of a
point in Int A in M such that U D S(f) = 0, ?7 H <9A = 0, that there exists
a diffeomorphism ^:U -^W1 with -0(E/ n A([0,1])) = a;i-axis, that f(U) is
an open set of N and that (f\u) o ̂ -1 : R71 -^ /(E^) is left equivalent to the
natural projection pr : W1 —> R2 denned by pr(a;i, • • • ,Xn) = (^1,^2)- We
identify U with R71 by the diffeomorphism V?. Then we replace U H A([0,1])
by the curve as illustrated in Fig. 13 in R3 = {(rci, x^ xs, 0, • • • , 0)} C R71.
Note that the new curve A' is isotopic to the original A with the end points
fixed, that A' is still a joining curve and that the end points are a matching
pair with respect to A'. Furthermore, when we apply Lemma 3.9 to A', the
orientation consistency of the band (see (2) of Remark 3.11) involving the
band operation of Lemma 3.9 is the same as the original band V. As to the
data (3) of Remark 3.11, it changes by a generator of7Ti(SO(n-l)). Hence,
by performing the change as above finitely many times, we may assume
that the band operations along b and V produce isotopic 1-dimensional
submanifolds. Thus, we have shown that every band operation performed
on S{f) is realized by a homotopy of / (up to isotopy).

or

^nA'([o,i])
Figure 13.

Since L is obtained from S{f) by a finite number of band operations,
we see that there exists a generic map f^:M—>N homotopic to / such that
S'(/2) is isotopic to L. Let ht : M —> M (t € [0,1]) be an ambient isotopy
such that ho = id and ^i(L) = S{f^. Then the map f = hoh^'.M ̂  N
is the desired generic map. This completes the proof of Theorem 2.2. D
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Remark 4.1. — By the above proof, there exists a smooth homotopy
ft : M —> N such that /o = fi fi = 7? and that ft is generic except for
a finite number of t. For those t for which ft is not generic, one of «Lip»,
«Beak to Beak» or « Swallow-tail» occurs (see [C]).

Remark 4.2. — When the original generic map / : M —^ N is stable,
we can find a stable map as /. For this, when we apply Lemma 3.1,
we choose the point p and the open set U so that f(p) ^ f(S(f)) and
U C ./'-l(^r - f{S(f))). Furthermore, we apply Lemma 3.3 for p with /(p)
not being a double point of /|(5i(/)-5?(/)) o^d we o-Pply Lemma 3.7 for
A with / o A and /|(5i(/)uA([o,i])-5?(/)) immersions with normal crossings.
In this case, as in the previous remark, we have a smooth homotopy
ft : M —> N such that /o == /, 7i = /, and that ft is stable except for
a finite number of t. For those t for which ft is not stable, one of «Lip»,
«Beak to Beak », «Swallow-tail» or the intersection of a cusp and a fold
curve occurs (see [C]).

Remark 4.3. — The techniques which appeared in our Lemmas 3.3
and 3.7 are not new ones (see [Bi], [Po]). For example, Porto [Po],
Teorema 4.2.8 shows that every closed orientable 3-manifold admits a
stable map into R2 with connected singular set, using a lemma similar to
our Lemma 3.3 and the cancellation technique due to Levine [L3].

5. Proof of Theorem 2.4.

Let

^=( u^H u2^)
i=n—l—m j=n—2—k

be a nonempty closed 1-dimensional stratified submanifold of M satisfying
the adjacency conditions similar to (2.3). Let & : J x J — > M b e a band
such that b{J x J ) n L = b(9J x J).

DEFINITION 5.1. — We say that the band b is compatible with the
stratified 1-dimensional submanifold L if one of the following four is satisfied
(see Fig. 14):

(1) &({-!} x J ) C Fi and 6({1} x J ) C Fz+i for some z, or

(2) n is even and b(QJ x J ) C F^/^ or
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(3) b(9J x J) c Fz+i U F, U Q for some z, 6({e} x J) D Q =
b({e} x Int J) H Cz consists of one point for e = ±1, and b(-l, -1) e Fi if
and only if 6(1, -1) e Fz, or

(4) n is even, b(9 J x J) c F^ U C^_2)/2, and 6({e} x J ) H C^-2)/2 =
b({e} x Int J) H C^_2)/2 consists of one point for e = d=l.

^ Fi F, F,i4-l n/2 n/2 n/2 n/2 ^^ Fi ^

b

(1) (2) (3) (4)
Figure 14.

b Ci<

F

( b (

li+l ^i

•Q C'(n-2)/21

+1 ^

1 & '

/2 ^

When the band b is compatible with the stratified 1-dimensional
submanifold L, the 1-dimensional submanifold L' obtained from L by
a band operation along b inherits a stratification which satisfies the
adjacency conditions similar to (2.3) as illustrated in Fig. 15. Note that the
band operations corresponding to bands as in (1) and (2) are the reverse
operations of (3) and (4) respectively. Hence, if L' is obtained from L by
band operations along compatible bands, then L is also so obtained from L7.

C[n--2)/2

FI | FW Fn/2 |
v ^ y ^ v

i+1 "n/2 "n/2̂  FI Fn/2

^ -\ r ^ ^ r
\ ^ ^2 I ^n/2 F[

C'(n-2)/2r^i^i

F'n/2

(1) (2) (3)

Figure 15.

(4)

Proof of Theorem 2.4. — Orient L arbitrarily. Then it is easy to see
that, performing oriented band operations to L along compatible bands, we
obtain a stratified (oriented) 1-dimensional submanifold

n-l n-2L'=( u^M u^)
i=n—l—m j=n-2-k
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such that L' is connected. We can construct such L' using only compatible
(and oriented) bands of type (1) in Definition 5.1; in other words, we do not
need bands of types (2)-(4). Note that L' satisfies the same hypotheses as L
stated in Theorem 2.4. Then, by Theorem 2.2, there exists a generic map
/i : M —> N homotopic to / such that S^/i) = V ' . Since N is orientable,
the line bundle G over S'(/i) is trivial when n is odd. Hence, when n is odd,
applying Lemma 3.3, we may assume that S{f\) contains fold points of all
indices with respect to a fixed orientation g of G. When n is even, we may
assume that every absolute index appears.

Now we want to change /i homotopically so that the stratification
of 5'(/i) coincides with that of V'. Take a point p C 5'(/i) which is a fold
point of absolute index r 7^ n — 1. Starting from p, we go along <S'(/i)
in a fixed direction and we apply Lemma 3.3 successively to obtain the
same stratification as L' — {q} for some q € F!^ on an open arc a in «?(/i).
Furthermore, apply Lemma 3.3 twice at 9a and let the new born cusps
be denoted by pi and p\ (i =1,2), where we have p2,Pi^^P^P2 m ^nls

order when we go along <S'(/i) in the fixed direction. Here, when n is odd,
we apply Lemma 3.3 with respect to the orientation g. Then we see that
the pair (pi\p[) is matching by [L3], (4.3) Lemma (b). (Recall that the
manifolds M and N are orientable by our hypothesis and that the results
of [L3] can be directly applied.) Choosing a joining curve A for pi and p[
appropriately which is sufficiently close to 5Vi) - a, we apply Lemma 3.7
to obtain a generic map f ^ : M — > N homotopic to /i such that S(f'2)
consists of two components 5o and 5i, that SQ is isotopic to L', that
So(C S(f^)) has the same stratification as L', and that there exists an
embedded 2-disk D in M with QD = 5i and D D So = 0. In other words,
5i is an unknotted circle and is unlinked with SQ. Note that Si contains
an even number of cusps of /2? since the number of cusps of /s has the
same parity as the Euler characteristic of M, which has the same parity
as the number of cusps on So by our assumption. Applying Lemma 3.7
several times to the cusps on Si using joining curves close to Si, we obtain
a generic map /a : M —> N homotopic to /2 such that S(f^) consists of
several components S^ S [ , . . . , S^ that 5'o coincides with So together with
the stratification, that 5^ (i > 1) does not contain any cusps, and that
S[ U • • - U S^. is an unlinked union of unknotted circles unlinked with 5'o.
Then we apply Lemma 3.3 so that 5^ (% > 1) contains exactly two cusps,
which are matching. Here, when n is even, we do this so that a cusp of
absolute index j (n — 2) is not created. Since SQ contains fold points of all
absolute indices by our hypothesis, one of the cusps on each component S^
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(z > 1) has a cusp on SQ such that they are matching. Then we apply
Lemma 3.7 to this matching pair for each S^ choosing an appropriate
joining curve. Then the resulting generic map /4 : M —> N is homotopic to
/3 and has connected singular set S(f^) which coincides with L' together
with the stratification.

Finally, we consider the (oriented) band operations along compatible
bands which are the reverse operations of those used for converting L to L';
in particular, they are bands of type (3) of Definition 5.1. Note that every
pair of cusps of S(f^) corresponding to the two 0-dimensional strata created
when converting L to L' is a matching pair by [L3], (4.3) Lemma (b), and
the orientation consistency of the bands. (Note that S(f^) is connected.)
Hence, applying Lemma 3.7 to these matching pairs for appropriate joining
curves, we obtain a desired generic map / : M —> N. This completes the
proof of Theorem 2.4. D

We note that the same remarks as in the previous section are valid
also for Theorem 2.4.

Remark 5.2. — When the source manifold M is of dimension 2, a
result similar to Theorem 2.4 has been obtained by Eliasberg [El], Thm. 4.8
and 4.9. Note that, in this case, we have a further necessary condition for a
stratified 1-dimensional submanifold to be realized as the singular set of a
generic map (see [El], note p. 1131).

Remark 5.3. — In certain special cases, Theorem 2.4 has been ob-
tained by Eliasberg [E2], Cor. 5.7.

6. Consequences.

COROLLARY 6.1. — Let f : M —> N be a continuous map of a
closed n-dimensional manifold (n > 3) into a surface and let L be a
nonempty closed 1-dimensional submanifold of M. Then there exists a
generic map f : M —> N homotopic to f with S(f) = L if and only if the
Poincare dual of the Za-AomoJogy class [L\^ represented by L is equal to
Wn-l(M) + W,-2(M) U /*Wi(7V) C ̂ -^M; Zs).

Proof. — It is known that there exists a generic map /i : M —> N
homotopic to /. Then by [T], we see that the Poincare dual of [SVi)]2 is
equal to the degree (n — l)-part of w(M) U (f*w(N))~1. Then the corollary
is a consequence of an easy calculation and Theorem 2.2. D
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COROLLARY 6.2. — Let M be a closed n-dimensional manifold {n > 2)
and N an orientable surface. Furthermore^ let L be a nonempty closed 1-
dimensional submanifold ofM. Then there exists a generic map f : M —>- N
with S(f) = L if and only if the Poincare dual of the Z'z-homology class
[L]2 represented by L is equal to Wn-i(M) e JI^^M; Za).

Proof. — For n > 3, this follows from Corollary 6.1. For n = 2, this
follows from [El]. D

Now we consider the 3-dimensional case. The following two corollaries
are the complete answers to [S2], Problem 4.12 (1) and (2).

COROLLARY 6.3. — Let M be a closed orientable 3-dimensional
manifold and L a nonempty closed 1-dimensional submanifold of M. Then
there exists a generic map f : M —^ M2 with S{f) = L if and only if[L]^ = 0
inH^M',^).

The above result is a direct corollary of Corollary 6.2.

COROLLARY 6.4. — Let M be a closed orientable 3-dimensional
manifold and L a nonempty closed 1-dimensional submanifold of M. Then
there exists a generic map f : M —^ R2 with S(f) == L which contains
no cusps if and only if [L}^ = 0 in H^(M',Z^) and one of the following
conditions are satisfied:

(1) L is disconnected^ or

(2) L is connected and (M, L) is diffeomorphic to 9{F x D2, F x {0}) for
some compact orientable surface F with nonempty connected boundary.

Proof. — First suppose that there exists a generic map / : M —>• R2

as above. When S{f) is connected, S(f) consists of fold points of absolute
index 2, since R2 is an open manifold. In other words, / has only definite
fold points and is a special generic map ([BdR], [PF], [Sl]). Then by [BdR],
[Sl], we see that (M,5(/)) is diffeomorphic to 9(F x D^.F x {0}) for
some F. Conversely, suppose that L satisfies the above conditions. If L
is disconnected, we can stratify L so that it has no 0-dimensional strata
and that it satisfies the conditions in Theorem 2.4. Then the existence of
a generic map / follows from Theorem 2.4. When L is connected, we can
construct a special generic map / : M —> R2 with the desired property.
This completes the proof. D



CONSTRUCTING GENERIC SMOOTH MAPS 1161

Remark 6.5. — Note that a similar result has been obtained by
Eliasberg [E2], Cor. 5.7 when ^i(M; Z) = 0.

Corollary 6.3 shows, for example, that every nonempty knot or link
in S3 is realized as the singular set of a generic map of S3 into the plane.
In [Bi], one can find some explicit examples of generic maps of S3 into the
plane with knotted singular set.
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