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MEAN PERIODIC FUNCTIONS ON PHASE SPACE
AND THE POMPEIU PROBLEM WITH A TWIST

by Sundaram THANGAVELU

1. Introduction.

A continuous function f on R™ is said to be mean periodic if the closed
subspace T'(f) generated by f and all its translates is proper in C(R™), the
space of continuous functions. The fundamental theorem of mean periodic
functions, due to L. Schwartz [7] says that if f is mean periodic on R then
T(f) contains an exponential e*** for some A € C. An exact analogue of
this result fails to be true in the case of R®,n > 2 (see [6]). Nevertheless,
a weaker version of Schwartz theorem is true in many situations including
R™.

In the case of R, it was proved by Brown et al in [4] that if V' C C(R")
is a closed subspace invariant under translations and rotations then V'
contains a function

ea(@) = (Nz|) = T3 _1(Mz])

for some A € C. Note that o) are the elementary spherical functions on
the Euclidean space. A similar result for non compact symmetric spaces
was established by Bagchi and Sitaram [2]. The case of the motion group
M (2) was considered by Weit [13]. In all these cases it was proved that
the appropriate subspace V' contains an elementary spherical function .

Key words : Mean periodic functions — Spherical functions — Representations — Paley-
Wiener theorem — Weyl transform — Pompeiu problem.
Math. classification : 43A70 — 42A75.
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For an excellent survey of these results with applications to the Pompeiu
problem we refer to Bagchi and Sitaram [3].

Our aim in this paper is to study mean periodic functions on the
Heisenberg group H". If f is a mean periodic function on H™ and if V(f)
is the closed subspace of C(H™) invariant under translations and rotations
then we can ask if V(f) contains an elementary spherical function. In the
case of H™ there are two types of spherical functions: one family

er(z,t) = e™p(2), AER,A#D

where ¢ are Laguerre functions comes from the infinite dimensional
Schrodinger representations m; the other family

iaz) = (AT T (M), AE€R,A20
comes from the one dimensional representations.

It was proved by Agronovsky et al in [1] that if f is a bounded mean
periodic function then V(f) contains an elementary spherical function. For
the reduced Heisenberg group we will prove that a similar result is true
for any mean periodic function of tempered growth. For the general case
we conjecture that the subspace V(f) contains either an e} or j\(z) with
recC. '

The study of mean periodic functions on H™ is closely related to the
study of twisted mean periodic functions on the phase space C". If f is
a continuous function on C™ and if V(f) is the closed subspace of C(C™)
invariant under twisted translations and rotations then we say that f is
twisted mean periodic whenever V(f) is proper. When f is a tempered
continuous function we will show that V(f) contains a ¢,. In the general
case we conjecture that V(f) contains a function of the form e*:¢<lgy(z).
An affirmative answer to this conjecture will solve our conjecture on H™.

The classical Paley-Wiener theorem for the Euclidean Fourier trans-
form is an indispensable tool in the study of mean periodic functions on
R™. In the same way to study twisted mean periodic functions we need a
Paley-Wiener theorem for the Fourier-Weyl transform, which we prove in
section 3. Relevant facts about Weyl transform and twisted convolution are
collected in section 3. In sections 4 and 5 we study twisted mean periodic
functions. In section 6 we apply these results to the case of the Heisenberg
group. Finally, in section 7 we make some remarks on the twisted version
of the Pompeiu problem.
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2. Weyl transform, twisted convolution
and special Hermite expansions.

In this section we collect some relevant facts about the Weyl trans-
from, twisted convolution and special Hermite functions. These are all
closely related to analysis on the Heisenberg group. This group denoted
by H™ is simply C™ x R with coordinates (z,t),z € C",t € R. The group
law is given by ‘

(2.1) (z,t)(w,s) = (z +w,t+ s+ %Im(‘z . E))

n B .
Here z - W = ) z;w;. Given two functions F and G on H" their
1

convolution is defined by

(22) FxG(z,t) = / F(z—-—w,t—s— %Im(z -w))G(w, s)dwds.

n

If we define f(z) = [ F(z,t)e"*dt and g(2) = [ G(z,t)e'dt then it follows
that

(2.3) /F*G(z,t)dt =/ f(z _w)g(w)eélm(zfu?)dw.

: o
The right hand side is called the twisted convolution of f and g denoted
by f x g(2).

In order to define the Weyl transform let us recall that all the
infinite dimensional irreducible unitary representations of H™ are given
by 7ma(z,t) = e*m(2) where A € R\{0} and 7y (z) acts on L#(R") as

(2.4) TA(2)p(€) = eNEH IV (¢ 1 y)

where = + iy = 2z,& € R™ Then 7n(z) = mi(2) defines a projective
representation of C". The Weyl transform W(f) of a function f, say in
L'(C") is defined to be the operator

(2.5) W(f) = /C fm(a)dz.

It can be shown that for f in L! N L?(C"),W(f) is a Hilbert-Schmidt
operator and one has the Plancherel formula

(2.6) 111 = @m) " W (s
For all these facts and more we refer to the monograph of Folland [5].

If we take ¢, in L2(R"™) it follows from (2.5) that
27) W(1od) = [ Hn(a)0 )
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From this it is clear that if we want to extend the definition of W (f) for
f a distribution then we need to study functions of the form (7 (2)¢y, )
which are the entry functions or matrix coefficients of the projective
representation m(z). The Fourier-Wigner transform of ¢, in L2(R™) is
defined by

(2.8) Vo (#,2) = (2m) "% ((2)p, 9).

Using the properties of the Euclidean Fourier transform it is not difficult
to prove the following proposition (see Folland [5] and Thangavelu [9]):

PROPOSITION 2.1. — Let ¢, € L?(R™) and let V() be their
Fourier-Wigner transform. Then V,(y) € L?(C™) for p > 2 and we have

IVe(®)llp < llell2ll¥ll2-
When p = 2 we actually have equality.

From this proposition and (2.7) it follows that when f € LP(C"),
1 <p <2 we have
(2.9) (W (e, )l < £ lIpllell2ll]l2-

Hence W(f) defines a bounded operator on L?(R™). From the equality
IVe(¥)llz = llell2ll¥ll2 we get by polarisation

(2.10) (Vo (), Vr (¥") = (0, ") (@', ).
If we take f = V,(¢) then from (2.10) we get the formula
(2.11) W()e' = (¢, ¢ 0.

Let us now take an orthonormal basis {¢; : j =0,1,2,---} of L*(R™) and
define functions ¥;x on C* by vjx(2) = Vy, (¥, 2). Then from (2.10) it
follows that {t;x} is an orthonormal system for L2(C"). From the formula
(2.7) we also infer that {4;x} is actually an orthonormal basis for L2(C™).

The relation between the Weyl transform and the twisted convolution
is given by

(2.12) W(f xg) =W(f)W(9g).

Using this relation and (2.10) we can easily prove the following useful
formula.

PROPOSITION 2.2. — For f in L2(C™)

Fx ik(z) = @m)™ D (f, ¥i)su(2)-

=0
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Proof. — Since {4} is an orthonormal basis we can expand f in
terms of 1y, :
(2.13) F=Y3 (fei)vi
§=01=0
From (2.10) and (2.12) we have the formula
(2.14) Yjt X Y = Ok (27) " Pjk.

If we use this in (2.13) we immediately get the proposition.

We can specialise the above discussion to the Hermite basis of L2(R")
to get special Hermite expansions. Let {®, : o € N"} be the set of
all normalised Hermite functions on R™ which are eigenfunctions of the
Hermite operator (—A + |z[?). If we take ¢ = ®, and ¢ = @4 then
Vo () = ®qp are called the special Hermite functions. Thus

215)  Bople) = (2m)F [ 0 (64 5u) s (6 - gu) e

The system {®,4} forms an orthonormal basis for L2(C™). The functions
®,3 can be expressed in terms of Laguerre functions. In particular when
n = 1 we have the following formulas. Let LE(t) be the k** Laguerre
polynomial of type a > —1. Then

(2.16) @, 4m(2) = (2m)" 4 ((_JTJ'W) ! (%)m L (%lzlz)e—%lzlz,

1
. . _ -3 J' 2 v m—m m 1 2\ _—1lz%
(2.17) ®jipmj(2) = (2m)~3 ((j+m)!) (ﬁ> 2L (2|z| )e dal”,
For the orthonormal basis of special Hermite functions Proposition 4.2
reads

(2.18) fxee(z)=@m" D2 D (f Pap) Pas.
|Bl=k <

Consequently, the special Hermite expansion of a function f can be put in
the compact form

oo

(2.19) F=@m)™Y X

k=0
In these formulas ¢ stand for the Laguerre function

(2.20) or(z) = L! (%W) e~ il2l°,
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For a variety of results concerning special Hermite series we refer to the
monograph Thangavelu [9].

When f is in L2(C™) the series (2.18) converges in the L? norm. We
can also prove much stronger convergence properties of the series when f
is in the Schwartz class. Indeed, the functions ¢y are eigen functions of the
elliptic operator

(2.21) L=-A+ llzlz—ii (.'J:Ji —yji>

4 = Byj 62‘_7'
with eigenvalue (2k + n); that is Loy = (2k + n)px. We also have
L(f x pr) = (2k +n) f X k. If we use this property then it is not difficult
to show that (2.19) converges to f uniformly when f is in the Schwartz
class. For applications we need to know when the series will converge in
the topology of the Schwartz space S(C").

We say that a function g defined on C™ is homogeneous of degree

m = (my, ma,- -+, my,) where m; are integers if
(2.22) g(e?2) = e™Y(2).
Here 0 = (61,---,0,),6%z = (e¥121,--,€%%2,) and m -0 = my6; +--- +

mn0,. When g is homogeneous of some degree m then it can be shown that
g X @i reduces to a finite sum. We have the following proposition which
will be used in the next section.

PROPOSITION 2.3. — Let g be a Schwartz class function. Then the
following are true:

(i) Finite linear combinations of homogeneous Schwartz class func-
tions are dense in S(C™).

(ii) If g is homogeneous then it can be approximated by finite linear
combinations of ®,p in the topology of S(C™).
For a proof of this proposition we refer to Thangavelu [12].

We conclude this section by collecting some facts about a class of
Sobolev spaces defined using the Hermite operator H = (—A+|z|?). Recall
that the Hermite functions {®, : @ € N*} form an orthonormal basis for
L?(R™). These are eigenfunctions of the Hermite operator, namely
(2.23) H®, = (2|a|+n)®qy, |o|j=a1+ -+ an.

On the Schwartz space S(R™) introduce the norms

(2.24) 118y = D (2lal +n)*|(f, 2a) .
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Let W§;(R™), called the Hermite Sobolev space, be the completion of S(R™)
with respect to the above norm. Then W (R™) becomes a Hilbert space
whose dual can be identified with W *(R™). When s = m is a nonnegative
integer it can be shown that f € W(R™) if and only if

(2.25) 0P f € L*(R™), |a| + |B] < 2m.

For all these and more properties of W3 (R™) we refer to Thangavelu [10].

3. Weyl transform of distributions
and a Paley-Wiener theorem.

In this section we define Weyl transform of distributions and prove a
Paley-Wiener theorem for compactly supported L? functions. We propose
to use the relation (W(f)p,v¥) = (2m)%(f,V,(¢)) in defining the Weyl
transform of a distribution. As we have already seen this relation in
conjunction with Proposition 2.1 allows us to define the Weyl transform
of LP functions as long as 1 < p < 2. But if f is only a distribution then
(f,V,(¥)) need not make sense. In what follows we will show that when
¢ and 9 are in S(R™) then V() and its derivatives can be estimated in
terms of the W}, norms of ¢ and 1. Using this we will extend W(f) as a
bounded operator between W§, and W§; for suitable s and s'.

We prove the following extension of Proposition 2.1.

PROPOSITION 3.1. — Let ¢ and i be Schwartz class functions on
R™.

@) X =Y Vel < ClielmI¥llom)-

la|+]B8|<2m

i X 10205 Ve(®)lloo < Cllpllmy 19l (my-
jal+iBI<2m

Proof. — The proof is easy. We only prove (ii), leaving the proof of
(i) to the reader. Writing out the definition

B Vew2)=(@nE [eo(er gu)a(e - gu)de

and differentiating we get

6D - Velw2) = (0 [ e ig(e+ 2u)(e - Ju)de

6.’L‘j
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9
Oy;

= (27r)’%/6“‘5 {%w(é 4 %y)i(ﬁ - %y) - <p(€ + %y)aﬂ(é - %y)} dg.

" 1 1 1
Writing §; = E(Ej + Vi +& — 5y1> we have

(3.3) Vo (¥, 2)

P ) .
(3.4) 52, Vo) = =5 Vauso (¥) + 3V (M59)
where M;p(§) = &;p(€). We also have

0
(3.5) 3—%_%(1/)) = Va;o(¥) + Vo (8;9).

Iteration shows that 3‘;65 Vo (¥) is a finite linear combination of terms of
the form

) ' 1 — 1
o) [ D) (e+ 3u) (oD% (e~ pu) de
with obvious notations. By Cauchy-Schwarz we get
(37 18205 Veplloo < [IM* D' pl|2| M® D]l
Since |o/| + 8| < |a| + |8, |7 + |6] < || + |B| we get the proposition.

Using the proposition we can now define W(f) when f is a tempered
distribution.

THEOREM 3.1. — Let f be a tempered distribution. Then W(f) is
a bounded operator from W (R") into Wg;™(R™) for some m.

Proof. — Let g be in S(C™). Then for some m
(3.8) Ifgl<C Y le*y®838)gll0
lee|+|BI<m |v|+[6|<m

as f is a tempered distribution. If ¢,1 € S(R™) then it follows from the
proposition and the above observation that

(3.9) (W (e, ¥l = I(f, Vo ()] < Cliel m) 19l (m)-
This shows that W(f)¢ € W;™(R™) and also
3.10) - W (£)ell=m) < Clliellmy,

in view of the duality between Wi} and W;™. Hence W (f) can be extended
as a bounded operator mapping W} into W;™.
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Thus we are able to define Weyl transform of tempered distributions
as bounded operators between certain Sobolev spaces. We next investigate
whether the Weyl transform is injective on the space of tempered distribu-
tions. An affirmative answer is given in the next theorem.

THEOREM 3.2. — The Weyl transform is injective on 8’'( C™). That
is W(f) = 0 implies f =0 for f in §'( C™).

Proof. — Observe that (f,®np) = (2m)% (W (f)®a,®5) = 0 if
W(f) = 0 for all @ and 8. In view of (ii) of Proposition 2.3 this means
that (f,g9) = 0 whenever g € S(C™") is homogeneous. Again by (i) of the
same proposition we get (f,g) = 0 for any Schwartz class function. Hence
f=0.

In the case of compactly supported distributions we can prove the

following improvement of Theorem 3.2

THEOREM 3.3. — Let f be a compactly supported distribution.
Then for some m, W (f) maps Wi} (R") continuously into L?(R™).

Proof. — Let K be the support of f. Then for some m we have

(3.11) I(f,9)l <Csup Y [8280g].
lal+181<2m

Let us estimate 285V, (1)) on K. Write

(3.12) V() = (2m)"2 / AR (¢ 4 y)(E)de.

This gives

0

(3.13) 5x—jV<p(¢,z) = iVM,«p(‘ﬂa z) — %ijv(wa z),

. .
gy Vo) = Vol 2) + 523V, (0, 2).

Iteration shows that 6;’85(1/)) is a linear combination of terms of the
form

(314)  Puley) = / =820 (M7 DPp) (€ + y)i(€)de
which gives the estimate

(3.15) sup Y |0285V(¥)] < CE) |l gy I¥ll2-

la|+]8]<2m
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From this we get the estimate

(3.16) (W (e, D) = I(f, Ve ()] < CIE) Il (my 0 ll2

which shows that W (f)e € L?(R™) and [|[W(f)¢|l < C|l¢l/(m). Hence the
theorem.

We now turn our attention towards proving a Paley Wiener theorem
for the Weyl transform. The study of mean periodic functions on R™
depends heavily on Paley-Wiener theorems for the Euclidean Fourier
transform. In the same way we need an analogous theorem for the Weyl
transform for the study of mean periodic functions on phase space. We now
define the Fourier-Weyl transform and prove a Paley-Wiener theorem for
compactly supported L? functions.

Let K stand for the space of all Hilbert-Schmidt operators on L2(R™).
This is a Hilbert space with the inner product (T, S) = tr(T'S*) and norm
IT\%g = tx(TT*). If f € L*(C™) we know that W(f) € K. We now embed
W(f) in a family of Hilbert-Schmidt operators in the following way. For
£ € R?" let us write U(€) = m(€' +1i€”),& = (¢/,€") and 7 is the projective
representation of C" used to define W(f). To each f in L?(C") we now
define the Fourier-Weyl transform by

(3.17) F&) =U@©W(HU(=9).
As U(£) is unitary, f(€) € K for each ¢ € R?™,

The image of L?(C™) under the Fourier-Weyl! transform thus consists
of functions F(§) taking values in K which verify the relation

(3.18) F(0) =U(=£F(@U(&)-

We now let Ej stand for the subspace of this image whose elements are
restrictions to R2" of entire functions of exponential type taking values in
K. In other words, F' € Ej if and only if

(i) F(¢) is an entire function of ¢ in C2" taking values in K and
satisfies | F(¢)||gs < CeB!™¢<! for some constant B > 0.

(i) F(0) =U(=§F()U(§),€ € R*".

The space Ey can be equipped with a topology as follows. Let
E'(R?",K) stand for the space of compactly supported distributions in
R?" taking values in the Hilbert space K. That is any T in E'(R?", K)
is a continuous linear operator from C*®(R?*") into K where C®°(R?") is
equipped with the topology of uniform convergence of all derivatives on
compacta. To each T in E'(R?",K) we can define its Fourier transform
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T(€) = (T, e¢) where e¢(z) = exp(iz€), z € R?" is the exponential function.
The classical Paley-Wiener theorem for compactly supported Hilbert space
valued distributions says that T' € E'(R?", K) if and only if 7'(¢) extends
to an entire function of exponential type satisfying

(3.19) IT()llas < CA+ [¢)NeBlme!

for some constants N and B. Let E stand for the image of E'(R?", K)
under the Fourier transform.

The space E is equipped with the strong topology which makes the
Fourier transform a topological isomorphism between E’(R?", K) and E.
In this topology a sequence F); converges to F' iff the following two things
happen:

(i) F;(¢) — F(¢) uniformly on compact sets
(ii) F; and F verify (3.19) with constants N and B independent of j.
The space Ey inherits a topology from E . We claim that Ej is a

closed subspace of F.

PROPOSITION 3.2. — Ej is a closed subspace of E.

Proof. — Suppose F; € Ep and F; converges to F' in E. From
the definition it is clear that F;(0) converges to F'(0) in K and hence
F(0) = W(f) for some f in L?(C"). We need to show that F(§) =
U)W (f)U(—€). To see that this is true we observe that
(3:20) U(=4)F;(§)U(§) — F(0) = U(=¢) (F;(§) —U)F(0)U (=€) U(¢).
This means that as F; € Ey
(3.21) F;(§) —U(F(0)U(=€) = U(&) (F;(0) — F(0)) U(-¢)
and consequently F;(£) —U(§)F(0)U(—£) converges to zero in K. But then
we should have F(§) = U(§)F(0)U(—€) which proves our claim.

We now state a Paley-Wiener theorem for the Fourier-Weyl transform.
Let L3(C") stand for the subspace of L2(C") consisting of compactly
supported functions.

THEOREM 3.4. — The Fourier-Weyl transform sets up a topological
isomorphism between LZ(C™) and E.

The proof of one implication is easy. In fact, one easily verifies that
(3:22) U(€)m(2)U (=€) = e"8ln(2)
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where [2,£] = z-£" —y- £ is the symplectic form on R?". This means that
(3.23) for = [ e v an(a)daay.
]R2n

If now f is supported in |z| < B then f(£) can be extended as an entire
function of ¢ in C?" and we also have

(3.24) 1F(Q)llms < CePlImel,

The proof of the converse is a bit involved. We refer to the papers [8] and
[11] from where a proof can be read out.

We conclude this section with the following remark. In view of (3.23)
one has

(3.25) (&), v) = @M 2 (£, Vi (¥))

where V§(¢, z) = e71#€1V4(¢), ). The equation (3.25) can be used to define
4(€) when u is a distribution of compact support. It is not difficult to show
that #(£) extends to an entire function of ¢ taking values in the space of
bounded operators from W7 (R™) into L2(R™).

4. Mean periodic functions of tempered growth.

In this section we consider mean periodic functions on the phase space
R2™ which we identify with C*. If 2 =  +4y and w = u+iv are in C" then
(4.1) Im(z-W)=u-y—v- -z

is the symplectic form on R?". We denote this by [z,w]. Let Sp(n) stand
for the group of 2n x 2n matrices that preserve the above symplectic
form. It has been proved in Folland [5] that Sp(n)N)O(2n) = U(n), the
group of unitary matrices acting on C™. Therefore, if o € U(n) then
[oz,0w] = [z,w]. For ¢ € U(n) we define the operator R, acting on
functions on C™ by

(42) Ry f(2) = f(oz).
For each w € C™ we also define the twisted translation operators 7(w) by
(43) T(w)f(2) = f(z + w)edll.

Before taking up the study of mean periodic functions we consider sub-
spaces of LP(C™) that are invariant under the action of R, and 7(w).
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For f € LP(C™),1 < p < oo we let Tp(f) stand for the smallest closed
subspace of LP(C™) which contains 7(w)f for all w € C". Likewise, we
let V,,(f) stand for the smallest closed subspace of LP(C™) which contains
T(w)f for allw € C™ and R, f for all ¢ € U(n). Note that T,,(f) is invariant
under the action of 7(w) and V,(f) under the actions of 7(w) and R,. An
application of Hahn-Banach theorem shows that T),(f) is a proper subspace
of LP(C™) if and only if there is a g in )id (C™) such that f x g = 0. In the
case of V,(f) we can take g to be radial. To see this, note that f x g =0
means

(4.4) /h(z)g(—z)dz =0

for all h € V,(f). Since Ryh € V,(f) whenever h € V,(f) the above shows
that

(4.5) / h(z)Rog(2)dz = 0

for all h € V(f),0 € U(n). If we let

(46) Ro(2)= [ Reg(a)do
U(n)

stand for the radialisation of g then (4.5) says that Rg is orthogonal to all
h € Vp(f) and consequently f x Rg = 0.

Of course, we need to be assured that for some g with f x g = 0 the
radialisation Rg is nontrivial. If this were not true then for any g satisfying
f x g =0 one would have Rg = 0. We claim this means all radial A belongs
to Vp(f). To see this if some radial ho were outside V,(f) then there will
exist g with

(4.7) / h(z)g(z)dz=0 forall h e Vy(f)
but with

(4.8) / ho(2)g(2)dz £ 0.

But then as hg is radial (4.58) implies

(4.9) / ho(2)Rg(2)dz # 0

which in turn implies that Rg is nontrivial, a contradiction. Thus Rg = 0
for all g with f x g = 0 implies V,(f) contains all radial functions. But
this is possible only if V,,(f) = LP(C™) because pi € V,(f) for all k£ implies
@k X g =0 for all kK whenever f x g =0 and hence g =0 . Thus in the case
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of V,(f) we are assured that there is a nontrivial radial g in L? (C*) such
that f x g = 0. We now prove the following results concerning T,(f) and

Va(£)-

THEOREM 4.1. — (i) Let f € LP(C"),1 < p < oo be radial. Then
To(f) is proper if and only if f x ¢y = 0 for some k.

(it) Let f € LP(C™),1 < p < oo. Then V,(f) is proper if and only if
f X or =0 for some k.

(iii) Let f € L?(C™). Then Ty(f) is proper if and only if f x V,,(¢) = 0
for some ¢ € L?(R™).

Proof. — In proving (i) and (ii) we need the following fact about the
special Hermite expansion of a radial function. Namely, if f is radial then
f X ok = Ri(f)pr where

(4.10) Ri(f) = (,’jff—” / F(2)en(2)dz,

for some constant C,,. For a proof see [12].

If T,,(f) is proper then 3 g # 0 in LP' (C") such that f x g = 0.
Since g is tempered there is a k for which § x ¢x # 0 which also means
@k X g # 0. But then f x g =0 gives 0 = pr X f X g = Ri(f)px % g which
implies Ri(f) = 0. This proves that f x ¢, = 0. The converse is trivial.
This proves (i). The proof of (ii) is similar to that of (i). So, we leave the
details. In order to prove (iil) we make use of Proposition 2.2.

If T»(f) is proper then 3 g in L2(C") with f x g = 0. If we let
f%(z) = f(—2) and g*(2) = g(—=2) then we also have f¥ x g” = 0. Since
W(g®) # 0 there is a ¢ € L%R"™) such that ¥ = W(g¥)¢ # 0 and
W(f?)¢ = 0. Let {¢;} be an orthonormal basis for L?(R™) with ¢g = 9
and define ¥, = Vi, (x) be their Fourier-Wigner transforms. Then one

as (W(f")vo,%);) = 0 for all j which means

(4.11) / fo(2)(m(2)0, ¥;)dz = / f(2) (o, m(2)9;)d2
—en)? [ £z =0

In view of Proposition 2.2 this means f X ¥,, = 0. This proves (iii).

We now consider the space C(C") of continuous functions on C™
equipped with the topology of uniform convergence on compact sets. Given
a nontrivial continuous function f we let T(f) (respectively V(f)) stand



MEAN PERIODIC FUNCTIONS ON PHASE SPACE 1021

for the smallest closed subspace of C(C™) containing f which is invariant
under all 7(w) (resp. 7(w) and R,). We say that f is mean periodic if T'(f)
is a proper subspace of C(C"™). When V(f) is proper we call f spherically
mean periodic. Equivalently, by Hahn-Banach, f is mean periodic if and
only if there exists a compactly supported Radon measure p such that
f x = 0. Replacing p by p x g with g € L2 we see that f is mean periodic
if and only if f x g = 0 for some g € L2. In the case of spherically mean
periodic function we can choose p and g to be radial.

The simplest example of a mean periodic function on C™ is given by
the Laguerre function ¢g. Let u, stand for the normalised surface measure
on the sphere {z € C" : |2| = r}. Then it has been proved in [12] that

I(n —1)!
(412) on X p(2) = G on(r) k(2
where pg(r) = LZ'I(%rz)e‘%’z. If r > 0 is a zero of @(t) then it is clear
that ¢ X - = 0 and hence gy is spherically mean periodic. Note that ¢y is
a Schwartz class function. This is in sharp contrast with the case of ordinary
mean periodic functions on R™. As is well known no mean periodic function
on R™ can be integrable. Thus though integrable mean periodic functions
on R™ doesn’t make sense we can study such mean periodic functions on
the phase space R2™. Our first goal is to prove the following result which
can be thought of as the analogue of Schwartz theorem for integrable mean
periodic functions on C™.

THEOREM 4.2. — Let f € LP(C"),1 < p < 2 be mean periodic.
Then there exists ¢ in L?(R™) such that V() € T(f).

Proof. — As f is mean periodic there is a nontrivial g in L3(C")
such that f x g = 0. We let
(4.13) T(f)" ={g€ L§(C"): f x g =0}.

Defining f*(z2) = f(—z2) we easily verify that W(f*) = W(f)*, the adjoint
of W(f). Therefore, if g € T(f)* one has W(g)*W(f)* = 0. Since
W(f*) : L3(R®) — L2?(R") is a nontrivial bounded operator there is a
1 in L?(R™) such that ¢ = W(f)*y # 0.

We will show that V,(p) € T(f). To see this we first observe that
(4.14) W(g*)p=0 forall geT(f)*.

Proceeding as in the proof of Theorem 4.1 we get § x V,,(¢) = 0 for all
g € T(f)*. This proves V() € T(f).
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For the above proof the fact that W(f) is bounded on L?(R") is
crucial. When f is only a tempered distribution with no integrability
assumption W ( f) need not be a bounded operator. In the case of spherically
mean periodic functions we can prove the following result for any function
of tempered growth.

THEOREM 4.3. — Let f be a continuous function of tempered
growth. If f is spherically mean periodic then ¢y € V(f) for some k.
Consequently ®,p € V(f) for all o« € N* and |3| = k.

Proof. — We first claim that there exists a k such that Rg(g) = 0
for all radial g in V(f)*. If the claim is not true then for each k we can
find a radial g € V(f)* such that g x x # 0. But then f x g = 0 gives
f X pr =0 as Ri(g) # 0 which will force f to be zero. Hence the claim is
true.

Now let ¢ is such that Rx(g) = 0 for all g radial in V(f)+. We
need to show that ¢ € V(f). First observe that if y is a radial measure
such that f x u = 0 then for any radial approximate identity g, we have
U X gn converging to u weakly. As pr X u x g, = 0 for all n we also have
J erdp = 0. If i is not in V(f) then we can find a compactly supported
Radon measure u such that

(4.15) /(pk(z)d,u(z) # 0, /h(z)d,u(z) =0 for all heV(f).
But then the radial measure v = Ry satisfies
(4.16) /<pk(z)d1/ #0, fxv=0
which is a contradiction. Hence @i € V(f).

Finally, ¢y € V(f) implies ¢ xg = 0 for all g € V(f)*. Consequently,
g X ¢ = 0 or taking the Weyl transform W (g)Px = 0 where Py is the
orthogonal projection of LZ(R™) onto the kth eigen space of the Hermite
operator H = (—A + |z|?) spanned by ®g,|3| = k (see for example [9)).

Therefore, for any 3 with |8| = k and o € N™ one has (W(g9)®3,®,) =0
which is the same as

(4.17) /ﬁ(z)q)ﬁa(z)dz =0.
Since @gq(—2) = Pap(z) the above gives
(4.18) /@aﬁ(z)g”(z)dz =0

for all g € V(f)* which shows that ®,5 € V().
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5. Mean periodic functions of arbitrary growth.

In the case of mean periodic functions on the real line the celebrated
theorem of Schwartz says that any translation invariant closed subspace
of C(R) contains an exponential e** with A\ € C. This follows from
the following fundamental theorem of closed ideals in the space of entire
functions of exponential type. Let E(R) stand for the space of entire
functions of exponential type of one complex variable which is the same
as the image under Fourier transform of the set of all compactly supported
distributions. Then the fundamental theorem of Schwartz says that if I is
a proper closed ideal in E(R) then I has a common zero. That is there is
¢ € C such that F({) =0for all F € 1.

Given a mean periodic function f on R one can consider all compactly
supported Radon measures y verifying f * 4 = 0 and form the ideal
(5.1) I={i(¢): f =0}
As f # 0, I is a proper closed ideal in E(R). Hence there exists ¢ € C
such that 4(¢) = 0 for all u satisfying f * 4 = 0 and this precisely means
that e®*¢ belongs to the translation invariant subspace spanned by f. The
exact analogue of the above result turned out to be false in the case of
R™,n > 2. It was shown in [6] that there exists six distributions p; with
compact support such that the ideal generated by fi;,7 = 1,2,---6 does
not have a common zero. On the other hand positive results are known in
the case of ideals that are invariant under rotations. It was proved in [4]
that any such proper ideal of E(R?) contains an exponential e*(#¢1+¥¢2) for
some ({1,(2) € C2.

We would like to formulate analogous results for the case of mean
periodic functions on C™. To this end we make use of the Paley-Wiener
theorem for the Fourier-Weyl transform formulated in section 3. Let f be
a mean periodic function and T'(f) be as in the previous section. Define
T(f)* = {g € L : f x g = 0}. To each mean periodic function f we
associate

I(f)={3:¢g" € T(/)*}.
Regarding I(f) we have the following result.

PROPOSITION 5.1. — Let f be mean periodic. Then I(f) is a closed
proper left ideal of Ey.

Proof. — To show that I(f) is an ideal, let § € I(f) and h € Ep.
Then h(¢)g({) = (h x g)~(¢) which follows from the definition and
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(h x g)* = g* x h* shows that g* x h* € T(f)*. Hence hj € I(f). To
show tht I(f) is closed is Ey assume that g, € I(f) converges to § in Ep.
We need to show that g € T'(f)*.

As §p, converges to § in Ey we get §,(0) converges to §(0) in K. This
means ||g, — gll2 — 0. Moreover, all g, and g are supported in a fixed
compact set, say |z| < B. Thus we have
(5.2)
fxg(z) =fx(g"—gn)(2) = /l <5 fz = w)(g*(w) — g5 (w))er ™ *Pdw
and an application of Cauchy-Schwarz gives

If xg* () < llg* - 92”%/' <n |f(z — w)|*dw

which goes to zero as n — oo. This means f x g* = 0 and hence g* € T(f)*.

Thus we have proved that I(f) is a closed ideal in Ey. This cannot
be the whole of Ep; for otherwise f x g = 0 for all g € LZ which will then
force f =0 by an approximate identity argument.

Our next proposition shows that the ideal associated to a spherically
mean periodic function has a nice invariance property. To state this we need
to recall the definition of the metaplectic representation. For o € U(n) =
Sp(n) N O(2n) we know that it preserves the symplectic form on C™ and
hence (z,t) — (o0z,t) defines an automorphism of the Heisenberg group
H™. Tt m1(2,t) is the representation of H,, corresponding to the parameter
X = 1 then (2,t) — m(oz,t) is also a representation agreeing with m; on
the centre of the group. By a well known theorem of Stone-von Neumann
it follows that m (02, t) is unitarily equivalent to 71 (z,t). Thus there exists
a unitary operator m(o) such that

(5.3) 7(02) = m(o)m(z)m(o) "
The structure of the group Sp(n) allows us to compute m(c) up to a

constant multiple. A further analysis allows us to choose the constants
in such a way that

(5.4) m(o)m(c’) = +m(o0’).

This permits us to lift o — m(c) into a single valued representation of the
double cover of Sp(n) giving the metaplectic representation.

Now let f be spherically mean periodic and let V(f) be defined as
earlier. Define

(5-5) J(f)={3:9" € V()"}
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be the associated left ideal. For each o € U(n) define the operator T, by
(5.6) T,3(¢) = m(0)~*§(o¢)m().
A word of caution about our notation. When o = a + ib is a unitary

- .
b a ) is in Sp(n) and for

¢ € R?", o¢ will stand for (ab _ab)§ . With this identification o preserves

a
matrix with a and b real matrices the matrix (

the symplectic form: [2,w] = [02z,0w] for z,w € C". If { € C?" then
o¢ will stand for the element of C2" obtained by applying the 2n x 2n

matrlx
b a

proposition is an immediate consequence of the definition of g.

-b
) to the 2n-vector (. With the above notations the following

PROPOSITION 5.2. — The ideal J(f) is invariant under the acticn
of T,,0 € U(n).

Proof. — The invariance of V'(f) under the action of U (n) shows that
do € V(f)* whenever g € V(f)! where g,(z) = g(0z). The proposition
will follow once we establish

(5.7) T,5(C) = G0(0)-
To see this consider the Fourier-Weyl transform
(58) 30¢) = [ & gyn(a)dz.

By our previous remarks it follows that [z, (] = [02,0(] even for { € C?".
Therefore, (5.8) gives

(5.9) g(o¢) = /e‘i["’(]g(oz)w(oz)dz.
From the definition of the metaplectic representation it follows that

(5.10) 9(0¢) = m(0)go()m(o) ™"

which proves (5.7). Hence the proposition.

Having associated a closed left ideal with each spherically mean
periodic function we may now ask whether the ideal has a common
zero. The following proposition answers this question in the negative. The
example in the proposition actually shows a much stronger result.
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PROPOSITION 5.3. — There is a spherically mean periodic function
f and a compactly supported Radon measure y such that f x u = 0 but
i(¢) does not vanish for any (.

Proof. — We prove the proposition by exhibiting a counter example.
Recall that by a proper choice of 7 we can have i x u, = 0. We claim
fir(¢) # 0 for any ¢ € C?". To prove this claim we assume n = 1 (just for
the sake of simplicity of notations) and suppose i (¢) = 0 for some ¢ € C2.
Then if h; are the normalised Hermite functions on R then we have

(5.11) (Br(Q)hj hi) =0 for any j,k.

This means that

(5.12) /I | e" 1B, (2)dp, = 0
z|=r

where ®;;, are the special Hermite functions.

Using the explicit formulas for ®;x(re?®) we see that (5.12) becomes
(in view of (2.16) and (2.17))

27 e .
(5.13) / e~ilre" Ceimgy — o
0

for all m = 0,%1,+2,---. But this is not possible as the function 8§ —
: 0
e~ilre™ ¢l is nontrivial. This contradiction proves the claim.

The above example shows that it is not reasonable to expect a
common zero for J(f). On the other hand we have proved (in Theorem
4.3) that if f is tempered and spherically mean periodic then g in V(f).
This means that ¢y x g* = 0 if g* € V(f)* and consequently g x ¢y = 0.
This shows that W(g)®, = 0 for all |a|] = k and g* € V(f)*. Since
W (g) = §(0) we can state Theorem 4.3 as follows: if f is spherically mean
periodic and is of tempered growth then

(5.14) ({Kerg(0) : g* € V(f)*}
is non empty. Therefore, it is reasonable to ask the following question even
in the general case: Does there exist a ¢ € C2" such that

(5.15) (V{Kerg(¢) : g* € V()*}

is non empty? By considering the Hermite basis we rephrase the above
question as follows. Let

(5.16) Jo(f) ={9()®a : § € J()}-

"We are interested in knowing if J,(f) has a common zero for some a.
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THEOREM 5.1. — Let f be a spherically mean periodic function on
C™. Then the following conditions are equivalent:

(i) ¢ is a common zero of J(f)

(ii) el=UBua(2) € V().

Proof. — That (i) implies (ii) is clear since
(517) [ (@9l = (302, 2a) =0
for all g* € V(f)+. This means that
(5.18) / =08, (2)5(2)dz = 0

and consequently ei[z’a@aa(z) belongs to V(f). Conversely, suppose we are
given (ii) which means

(5.19) / el (2 — w)ed ETg* ()dw = 0
for all g* € V(f)*. Recalling the definition of g* the above means
/e‘i[w’qq’aa(z +w)er ™ #Pg(y)dw =0

for all g* € V(f)*.

Now we can expand @44 (2 + w)e% Im2.% in terms of the orthonormal
system {®g,(2)}. Since

(5.20) /@m (z+ w)es ™ WPg. (2)dz

= /@aa(w — 2)et mwzg 5(2)dz
=®, 4 X <I>7g(w)
(5.21) = 80y (2) % B (w),

in view of orthogonality properties of ®3, we obtain

(5.22) Boalz +w)ed ™57 = (21)2 D Bop(w)@pa(2)-
B

Using (5.22) in (5.20) we get

(5.23)

. Ba(e) [ 0805w)gw)dw = 3 030(2)(3(()2aBs) = .
B8 B8
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As {®g3,} is orthonormal the above is possible only if
(5.24) (9(Q)®4,P3) =0 forall g

which means §({)®, = 0. Since this is true for all g* € V(f)* this proves
that (ii) implies (i).

In the above proof we haven’t used the invariance of V(f) under the
action of U(n) and as such the theorem remains true in the case of mean
periodic functions also. In the case of spherically mean periodic function
we have the following strengthening of the theorem. Let Ji(f) be the span

of { Ja(f) : | a|=k}.

COROLLARY 5.1. — Let f be a spherically mean periodic function.
If ¢ is a common zero of Ji(f) and (3 + (2 + -+ (2, = a®,a € C then any
w € C?" with w? + -+ + w2, = a? is also a common zero of Ji(f).

Proof. — The proof depends on yet another property of the meta-
plectic representation m(o). For each ¢ € U(n) = Sp(n) N O(2n), m(o)
leaves invariant the eigen space spanned by { ®, : | a |= k}. For a proof
of this see Folland [5].

If ¢ and w are as in the hypothesis then w = o for some o € U(n).
Now

(5.25) 3(0¢) = m(0)ds(¢)m(o) ™"

shows that

(5.26) (3(00) 20, @p) = (§o(O)m(0) ' @a,m(0) ™' @p)

and consequently

(5.27) (3(00) e, @) = Y Car(§o(()@,m(0)* ).
lv|=k

If ¢ is a common zero of Ji(f) the right hand side is zero and hence
§(0¢)®, = 0 for all g* € V(f)*. This proves the corollary.

The above theorem strongly suggests that functions of the form
el#<1®,,, or more generally ei[”C]V¢(<p) are the natural counterparts of
the exponentials €*®¢. The analogue of the Schwartz theorem will be the
following :

If f is a spherically mean periodic function on C™ then for some
¢ € C?" and some ¢ € L2(R") the function €:l*<1V,,(¢) belongs to V(f).

We are unable to prove this conjecture except in the case of tempered
mean periodic functions. General results concerning proper ideals in the
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space of entire functions of exponential type don’t apply here as J,(f) is
not an ideal. Nevertheless, from J,(f) we can form an ideal to which we
can apply known results. But then the problem becomes that of checking
whether the associated ideal is proper or not.

Let E(R2") stand for the space of entire functions of ( € C2" of
exponential type. To Jx(f) we associate an ideal It(f) C E(R?") as follows.
I(f) is the closed ideal generated by

(5.28) {(F(C),®8) : F(¢) € Jk(f), BEN"}.
In other words Ix(f) is the closed ideal generated by

{(3(0)®a,®p) : | a|=k,BEN"g* € V(f)*'}.

We have the following result:

THEOREM 5.2. — Let f be a spherically mean periodic function.
Then V(f) contains an exponential €'*<1®,4(z), | @ |= k if and only if
Ix(f) is a proper ideal in E(R?").

Proof. — It is clear from the definition that V(f) contains the
exponential e!*<1®,,, | a |= k if and only if ¢ is a common zero of Ix(f).
So, it is enough to show that when Ix(f) is proper then it has a common
zero. To prove this we will apply the therorem of Brown et al which says
that any proper closed ideal in E(Rzn) which is invariant under rotations
contains a common zero.

Thus it is enough to verify that I(f) is rotation invariant. But this
is again a consequence of the invariance of Ji(f) under the action of the
metaplectic representation. If F' € I(f) is of the form

F(Q) =) Gi(O(F;(¢), ®p)

then
F(0¢) =Y Gj(0)(F;(0¢)®a, Bp).
j=1

As in the proof of corollary we can show that (F;(o(), ®) is again a linear
combination of (H;((),®,) with H;(¢) € Jkx(f) and hence F(o() € Ii(f)
as well.

Thus an affirmative answer to our conjecture on mean periodic
functions rests on a positive answer to the following question: if f is
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spherically mean periodic then is it true that for some & the ideal Ix(f) is
proper? As Ii(f) is the ideal generated by Ji(f) we are unable to come up
with an answer to the above question. In future, we may have better luck.

6. Mean periodic functions
on the reduced Heisenberg group.

In this section we study mean periodic functions on the reduced
Heisenberg group G. Let H™ be the Heisenberg group defined in section
2 and let ' be the subgroup {(0,k);k € Z}. Then the group G = H"/T
is called the reduced Heisenberg group or Heisenberg group with compact
centre. Elements of G are still denoted by (z,t) with the understanding
that 0 < ¢ < 2m. The relevant representations of G are 7;(z,t) where j is
a nonzero integer. For more about this group we refer to Folland [5]. We

apply the results of the previous section to study mean periodic functions
on G.

A continuous function f defined on G is said to be mean periodic if the
closed subspace generated by f and all its translates is a proper subspace of
C(G) the space of continuous functions on G. Here the translation means
the Heisenberg translation:

(6.1) T(w,8)f(2,t) = f((z t)(w,5)7")
=f(z—w,t—s— %Im(z.w)).

Equivalently, f is mean periodic if and only if there exists a compactly
supported Radon measure u such that f*u = 0. Again f * u stands for the
convolution of f and x on the group G. In a similar fashion we say that f
is spherically mean periodic on G if the smallest closed subspace of C(G)
generated by f((z,t)(w,s)), (w,s) € G and f((oz,t)),0 € U(n) is proper.
As before we denote the subspaces by T'(f) and V(f).

From the results of the previous two sections we can deduce the follow-
ing results concerning mean periodic functions on the reduced Heisenberg

group.

THEOREM 6.1. — Let f be an integrable mean periodic function
on G. Then T(f) contains either a function of the form e*** (¢, 1 (2)p) for
some k € Z \ {0} and ¢ € L?(R") or a function g(z) independent of t.
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Proof. — Since f is nontrivial, for some integer k the function
27

(6.2) fu(z) = f(z,t)e” " dt
0

is a nontrivial function on C". Let 74(w) be the k-twisted translations on
C™ defined by

(6.3) Te(w)g(2) = gz + w)eid =T,

Then whatever we have proved in the case of twisted mean periodic
functions remains true in the case of the (obviously defined) k-twisted
mean periodic functions. In particular, Theorem 4.2 has an analogue for
such functions. Our strategy is to apply Theorem 4.2 to fx. From equation
(6.2) it follows that

27
(6.4) eilcsfk(z + w)ei§ Imzw __ F((2,t)(w, s))e—itkdt
0

which shows that functions of the form
(6.5) ekt fi (2 + w)eig Im 2@
belong to T(f). First assume that k # 0.

Let Tk (fx) stand for the smallest closed subspace of C(C™) generated
by 7x(w) fx. Then by the remarks we made regarding Theorem 4.2 we can
conclude that for some ¢ € L%(R™) the function (p,m(2)¢) belongs to
Tr(f)- In view of (6.5) it is now immediate that e***(¢, ¢ (¢)) € T(f).

Now if k = 0 then (6.5) shows that T'(f) contains g(z) whenever g
belongs to the ordinary translation invariant subspace generated by fy. But
as fo is integrable and nontrivial this space is the whole of C(C™). This
completes the proof of the Theorem.

In a similar way we can prove the following analogue of Theorem 4.3
for spherically mean periodic functions of tempered growth on G.

THEOREM 6.2. — Let f be a spherically mean periodic function of
tempered growth. Then V(f) contains either an exponential exp(i(z - (' +
y - ¢")) with (¢',¢") = ¢ € C*™ or a function of the form e~*tp] (z) where
@l(2) = px(|4]2) for some j € Z \ {0} and a nonnegative integer k.

Proof. — The proof is similar to that of the previous theorem. If for
some j # 0 the function
2

fitz)= [ f(zt)edt

0
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is non trivial then we can appeal to an analogue of Theorem 4.3 for the
subspace V;(f;) to conclude that V(f) contains e~¥%p) (z). If j = 0 then
the ordinary translation and rotation invariant subspace of C™ generated by
fo will contain and exponential by the theorem of Brown et al [4]. The same

exponential will then belong to V(f). The details are left to the reader.

We conclude this section by stating the following conjecture: if f is a
spherically mean periodic function (of arbitrary growth) then V(f) contains
either an exponential or a function of the form e*¢le=ty! () for some
¢ € C?",j € Z\ {0} and k a nonnegative integer. An affirmative answer to
this conjecture depends on an answer to the corresponding conjecture on
C™ for twisted mean periodic functions.

7. The Pompeiu problem with a twist.

The Pompeiu problem extensively studied by several authors is very
closely related to the theory of mean periodic functions. Before introducing
the twisted version of the Pompeiu problem let us recall the formulation
of the problem on R™. A compactly supported Radon measure y is said to
have the Pompeiu property if there is no nontrivial continuous function f
satisfying

(7.1) foxu=0, forall o€ SO(n).

A bounded measurable subset D C R™ is said to have Pompeiu property if
the characteristic function xp has the same, i.e.,

(7.2) foxxp=0 forall o€ SO(n).

It is known (and not difficult to prove) that no ball B, (z¢) of radius r > 0
in R™ has the Pompeiu property. An open problem that goes under the
name of Pompeiu problem is to show that any simply connected bounded
set D with real analytic boundary without the Pompeiu property is a ball.
For an excellent survey of the Pompeiu problem see Bagchi-Sitaram [3] and
for an extensive bibliography we refer to [14].

Motivated by the equation (7.1) we make the following definition. We
say that a compactly supported Radon measure y on C™ has the twisted
Pompeiu properly if there is no nontrivial continuous function f satisfying

(7.3) foxu=0 foral o€U(n).

Similar definition holds for bounded measurable sets. We also say that u
has the weak twisted Pompeiu property if there is no nontrivial continuous
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function f of tempered growth satisfying (7.3). From the results of sections
4 and 5 we will deduce some results concerning the twisted Pompeiu
property.

In the case of R™ it is well known that balls and spheres fail to have the
Pompeiu property. But it is not true in the case of weak twisted Pompeiu
property.

THEOREM 7.1. — The measure u, has the weak twisted Pompeiu
property if and only if r is not a zero of the function k(t) for any k.

Proof. — 1If r is a zero of ¢y then it follows from (4.12) that
@k X pr = 0 and hence p, fails to have the weak twisted Pompeiu property.
Conversely suppose u, has the weak twisted Pompeiu property and let f
be such that (7.3) is true. Then f is a spherically mean periodic function
of tempered growth and hence by Theorem 4.3 ¢ x p, = 0 for some k.
But this means ¢ (r) = 0.

Likewise in the case of balls also the weak twisted Pompeiu property
depends on the radius.

THEOREM 7.2. — Let B, be the ball |z| < r in C™. Then there is a
countable set ) such that for any r ¢ Q) the ball B, has the weak twisted
Pompeiu property and for r € Q, B, fails to have the property.

Proof. — 1If B, fails to have the weak twisted Pompeiu property then
as before for some k£ we should have @i x xp, = 0 which means

(7.4) / rcpk(t)tzn“ldt =0.
0

The above function can be explictly calculated to be
T 2
(7.5) Qr(r) = / ok ()t dt = ¢ 4+ €77 Py(r)
0

where Cy is a constant and Py a polynomial of degree (k +n — 1) and it
has been shown in [1] that Qk(r) has zeros on (0, 00). If we let @ stand for
the set of all zeros of Qf for all k = 0,1,2,--- then it is clear that B,(0)
fails to have the weak twisted Pompeiu property iff r € Q.

Another example of a set with the weak twisted Pompeiu property is
given by the sector

(7.6) Sap(r) ={z=pe’ :0<p<r,a<f<p}
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in C. We have:

THEOREM 7.3. — S,p(r) has the weak twisted Pompeiu property
if (B — ) is not a rational multiple of 2.

Proof. — Again the proof uses Theorem 4.3. If S,g(r) fails to have
the Pompeiu property then for some k and all j = 0,1,2,--- we should
have

(77) / ij(—z)dz =0
Saﬁ(")
which means
T B )
(7.8) / / ®;x(—pe®)pddp = 0.
0 a

Using the explicit formulas (2.16) and (2.17) we see that the inner integral

B8
(7.9) | @-peio £ 0

as (8—«) is not a rational multiple of 27r. But then (7.8) cannot hold for all
j as (7.9) involves various Laguerre functions. Hence S,3(r) has the weak
twisted Pompeiu property.

From Theorem 4.3 we know that D C C" fails to have the weak
twisted Pompeiu property iff ¢, X xp = 0 for some k. This is the analogue
of the condition X¥p(¢) = 0 for all (% + ¢(Z = a? for some a € C in the case
of the Pompeiu problem on R2. Since calculating the Weyl transform of
xp is more difficult than calculating the Fourier transform deciding when
wr X Xp = 0 for some k seems to be very difficult unless D has some
symmetry properties. As in the case of the Pompeiu problem we can now
ask the following questions: if D a bounded simply connected set in C™
with smooth boundary fails to have the weak twisted Pompeiu property,
then is it true that D = B,(2¢) for some r > 0 and 29 € C"?
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