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MEAN PERIODIC FUNCTIONS ON PHASE SPACE
AND THE POMPEIU PROBLEM WITH A TWIST

by Sundaram THANGAVELU

1. Introduction.

A continuous function / on W1' is said to be mean periodic if the closed
subspace T(f) generated by / and all its translates is proper in C^R71), the
space of continuous functions. The fundamental theorem of mean periodic
functions, due to L. Schwartz [7] says that if / is mean periodic on R then
T(/) contains an exponential e1^ for some A e C. An exact analogue of
this result fails to be true in the case of R^n > 2 (see [6]). Nevertheless,
a weaker version of Schwartz theorem is true in many situations including
ST.

In the case ofR71, it was proved by Brown et al in [4] that i fVc C(Rn)
is a closed subspace invariant under translations and rotations then V
contains a function

^{x) = (AI^D^-^^AM)

for some A € C. Note that ^p\ are the elementary spherical functions on
the Euclidean space. A similar result for non compact symmetric spaces
was established by Bagchi and Sitaram [2]. The case of the motion group
M(2) was considered by Weit [13]. In all these cases it was proved that
the appropriate subspace V contains an elementary spherical function (p\.

Key words : Mean periodic functions - Spherical functions - Representations - Paley-
Wiener theorem - Weyl transform - Pompeiu problem.
Math. classification : 43A70 - 42A75.
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For an excellent survey of these results with applications to the Pompeiu
problem we refer to Bagchi and Sitaram [3].

Our aim in this paper is to study mean periodic functions on the
Heisenberg group H71. If / is a mean periodic function on Hn and if V{f)
is the closed subspace of C^H71) invariant under translations and rotations
then we can ask if V(f) contains an elementary spherical function. In the
case of ̂  there are two types of spherical functions: one family

e^t)^^^^ A . e R . A ^ O

where (pk ^G Laguerre functions comes from the infinite dimensional
Schrodinger representations TI-A; the other family

j^(z) = W^Jn-iW), A C R,A > 0

comes from the one dimensional representations.

It was proved by Agronovsky et al in [1] that if / is a bounded mean
periodic function then V(f) contains an elementary spherical function. For
the reduced Heisenberg group we will prove that a similar result is true
for any mean periodic function of tempered growth. For the general case
we conjecture that the subspace V{f) contains either an e^ or j\{z) with
A e C . '

The study of mean periodic functions on H71 is closely related to the
study of twisted mean periodic functions on the phase space C71. If / is
a continuous function on C71 and if V{f) is the closed subspace of C^C71)
invariant under twisted translations and rotations then we say that / is
twisted mean periodic whenever V{f) is proper. When / is a tempered
continuous function we will show that V(f) contains a <^. In the general
case we conjecture that V{f) contains a function of the form e^'^^).
An affirmative answer to this conjecture will solve our conjecture on H71.

The classical Paley-Wiener theorem for the Euclidean Fourier trans-
form is an indispensable tool in the study of mean periodic functions on
W1. In the same way to study twisted mean periodic functions we need a
Paley-Wiener theorem for the Fourier-Weyl transform, which we prove in
section 3. Relevant facts about Weyl transform and twisted convolution are
collected in section 3. In sections 4 and 5 we study twisted mean periodic
functions. In section 6 we apply these results to the case of the Heisenberg
group. Finally, in section 7 we make some remarks on the twisted version
of the Pompeiu problem.
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2. Weyl transform, twisted convolution
and special Hermite expansions.

In this section we collect some relevant facts about the Weyl trans-
from, twisted convolution and special Hermite functions. These are all
closely related to analysis on the Heisenberg group. This group denoted
by H71 is simply C71 x R with coordinates {z,t),z € C71^ C M. The group
law is given by

(2.1) (z, t)(w, s) = ( z + w,t + s + _ Im(> • w)}.

n
Here z - w = ̂ ZjWj. Given two functions F and G on ^"n their

i
convolution is defined by

(2.2) F * G(z, t) = F(z - w, t - s - ̂  lm(z • w))G(w, s)dwds.
Jan 2

If we define f(z) = f F(z,t)e^tdt and g(z) == f G^z^e^dt then it follows
that

(2.3) {F^G{z,t)dt= { f{z-w)g(w)e^m{z•'w^dw.
J Jc71

The right hand side is called the twisted convolution of / and g denoted
by / x g(z).

In order to define the Weyl transform let us recall that all the
infinite dimensional irreducible unitary representations of H71 are given
by 7Tx(z,t) = C^TI-A^) where A € K\{0} and n^z) acts on L2^) as

(2.4) ^MO = e^+^-^ + y)

where x + iy = z,^ € M71. Then 7r(z) = 71-1 (z) defines a projective
representation of C71. The Weyl transform W{f) of a function /, say in
Z^C71) is defined to be the operator

(2.5) W{f) = ( f{z)7r(z)dz.
Jc71

It can be shown that for / in L1 H ^(C71),^/) is a Hilbert-Schmidt
operator and one has the Plancherel formula

(2.6) 11/IIJ =(27r)-"||lV(/)||^.
For all these facts and more we refer to the monograph of Folland [5].

If we take ^, -^ in L2^) it follows from (2.5) that

(2.7) (TV(/)(^)= ( f(z)(7r{z)^^)dz.
7c71
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Prom this it is clear that if we want to extend the definition of W(f) for
/ a distribution then we need to study functions of the form (7r(z)(/?,^)
which are the entry functions or matrix coefficients of the projective
representation 7r(z). The Fourier-Wigner transform of (^,-0 in L2^) is
defined by

(2.8) W^)=(27r)-f(7r(^,^).

Using the properties of the Euclidean Fourier transform it is not difficult
to prove the following proposition (see Folland [5] and Thangavelu [9]):

PROPOSITION 2.1. — Let </?,-0 e L^R71) and let VyW be their
Fourier-Wigner transform. Then VyW e Z^C") for p ^ 2 and we have

IIW)llp ̂  IMHHb.
When p = 2 we actually have equality.

From this proposition and (2.7) it follows that when / € ^(C"),
1 < P < 2 we have

(2.9) IW/)^^)l<ll/||plM|2||^||2.

Hence W(f) defines a bounded operator on L2^). From the equality
II^WIb = Mb IHb we get by polarisation

(2.10) (W),VW)) == ̂ 'W^Y
If we take / = V^) then from (2.10) we get the formula

(2.11) W(f)^=(^^.

Let us now take an orthonormal basis {ipj : j = 0,1,2, • • •} of I2^71) and
define functions -0^ on C71 by ^(z) = V^.(^,^). Then from (2.10) it
follows that {^jk} is an orthonormal system for L^C"). From the formula
(2.7) we also infer that {^} is actually an orthonormal basis for L^C71).

The relation between the Weyl transform and the twisted convolution
is given by

(2.12) W(f x g ) = W(f)W(g).

Using this relation and (2.10) we can easily prove the following useful
formula.

PROPOSITION 2.2. — For / in L2^)

f x ^kk(z) = (27^)nf^(/,^)^,,(^).
3=0
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Proof. — Since {^jk} is an orthonormal basis we can expand / in
terms of ^jk :

(2.13) /-EE^W^
j=o 1=0

From (2.10) and (2.12) we have the formula

(2.14) ^X^fc=^(27r)7^.

If we use this in (2.13) we immediately get the proposition.

We can specialise the above discussion to the Hermite basis of L^M71)
to get special Hermite expansions. Let {^>a : a 6 N71} be the set of
all normalised Hermite functions on W1 which are eigenfunctions of the
Hermite operator (—A + \x\2). If we take (p = ^>a and ^ = ^ then
y^(^) = <^^ are called the special Hermite functions. Thus

(2.15) ^o(z) = (27r)-t / e^(^ + |2/)^($ - ji/)^.

The system {^aft} forms an orthonormal basis for L^C71). The functions
^a(3 can be expressed in terms of Laguerre functions. In particular when
n = 1 we have the following formulas. Let L^(t) be the k^ Laguerre
polynomial of type a > —1. Then

/ 'i \ ^ / * \ ^n' 1(2.i6) »„,„(,)» (2,r» (^,) (^) ,"̂ i0.-w,

(2.17) *„„,(,) » (2,)-» (̂ ;)4 (^"^(il̂ -iK

For the orthonormal basis of special Hermite functions Proposition 4.2
reads

(2.18) / x ̂ (z) = (27^ ̂  ^(/, ̂ )^.
|^|=fc a

Consequently, the special Hermite expansion of a function / can be put in
the compact form

(2.19) f=(27^)-nf^fxvk.
k=0

In these formulas <pk stand for the Laguerre function

(2.20) ^(z^Lr'QM^e-^'2.
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For a variety of results concerning special Hermite series we refer to the
monograph Thangavelu [9].

When / is in L^C71) the series (2.18) converges in the L2 norm. We
can also prove much stronger convergence properties of the series when /
is in the Schwartz class. Indeed, the functions (^ are eigen functions of the
elliptic operator

(2.21) L=-^^-ip^-y^)

with eigenvalue (2k + n); that is L^pk = (2A; + n)(pk- We also have
L(f x ^pk) = (2k + n)f x ^pk. If we use this property then it is not difficult
to show that (2.19) converges to / uniformly when / is in the Schwartz
class. For applications we need to know when the series will converge in
the topology of the Schwartz space ^(C71).

We say that a function g defined on C71 is homogeneous of degree
777, == (mi, m2, • • • , m^) where mj are integers if
(2.22) g{e^ez) = eiTn•eg(z).

Here 6 = (<9i, • • • , 6n), e^z = (e^i, • • • , e^Zn) and m • 6 = m^ + • - • +
m^On. When g is homogeneous of some degree m then it can be shown that
g x (pk reduces to a finite sum. We have the following proposition which
will be used in the next section.

PROPOSITION 2.3. — Let g be a Schwartz class function. Then the
following are true:

(i) Finite linear combinations of homogeneous Schwartz class func-
tions are dense in 5(0"').

(ii) If g is homogeneous then it can be approximated by finite linear
combinations of^a/3 m the topology of^C71).

For a proof of this proposition we refer to Thangavelu [12].

We conclude this section by collecting some facts about a class of
Sobolev spaces defined using the Hermite operator AT=(—A+|a ' | 2 ) . Recall
that the Hermite functions {^>a : a € N71} form an orthonormal basis for
L^IR71). These are eigenfunctions of the Hermite operator, namely

(2.23) H^>a = (2|a| + n)$a, H == ai + • • • + a^.
On the Schwartz space ^(R71) introduce the norms

(2.24) ||/||̂ ) =^(2|a|+r^)2s|(/,<M2•
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Let Wfj^), called the Hermite Sobolev space, be the completion of^R71)
with respect to the above norm. Then Wff{W1) becomes a Hilbert space
whose dual can be identified with W^^W1). When s = m is a nonnegative
integer it can be shown that / G W]^(W1) if and only if

(2.25) x^Q^f € ^(IT), |a| + \f3\ < 2m.

For all these and more properties of Wff^W) we refer to Thangavelu [10].

3. Weyl transform of distributions
and a Paley-Wiener theorem.

In this section we define Weyl transform of distributions and prove a
Paley-Wiener theorem for compactly supported L2 functions. We propose
to use the relation (W(f)^p^) = (27r)5(/,y^)) in defining the Weyl
transform of a distribution. As we have already seen this relation in
conjunction with Proposition 2.1 allows us to define the Weyl transform
of L9 functions as long as 1 < p <, 2. But if / is only a distribution then
(/?^('0)) ^eed not make sense. In what follows we will show that when
(p and ^ are in ^(M71) then Vy?('0) and its derivatives can be estimated in
terms of the Wfj norms of (p and '0. Using this we will extend W(f) as a
bounded operator between Wfj and Wfj for suitable s and 5'.

We prove the following extension of Proposition 2.1.

PROPOSITION 3.1. — Let (p and ^ be Schwartz class functions on
M n.

(i) E ^y^w\\^<CMw\^krnv
|a|+|/3|<2m

(ii) E IÎ W)lloc < CMw\W\(m^
|a|+|/3|<2m

Proof. — The proof is easy. We only prove (ii), leaving the proof of
(i) to the reader. Writing out the definition

(3.1) V^z) = (27r)-t y>^($ + J^/)^ - J^

and differentiating we get

(3.2) -^-W. ̂  = (2^ fe^ i^ + \v)^ - \v)d^
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(3.3) ——V^,z)

= (27r)-t/'et^ (9^ + |y)^ - \v) + V^ + |y)c^ - ̂ v)\ d^.

Writing ̂  = ^ (^ + ^% + ̂  - ̂ ) we have

(3.4) ^^ = -I^-^W + ̂ (M^)

where Mjtp(^) = ̂ •y(0. We also have

(3.5) -^-W) = ̂ ^W + W^).
0'%

Iteration shows that Q^Q^Vy^) is a finite linear combination of terms of
the form

(3.6) f e^^D^y) (d + 1^ (M-D )̂ ̂  - ̂ y\ ̂

with obvious notations. By Cauchy-Schwarz we get

(3.7) ll^^lloo < {{M^D^MM^D6^.

Since [a'1 + \i3'\ ̂  |a| + |/?|, |7| + |^| < |a| + \(3\ we get the proposition.

Using the proposition we can now define W(f) when / is a tempered
distribution.

THEOREM 3.1. — Let f be a tempered distribution. Then W(f) is
a bounded operator from W^^W) into W^^) for some m.

Proof. — Let g be in ^(C'1). Then for some m

(3.8) \(f.9)\<C ^ ^ II^V^^Iloo
H+|/3|<mH+H<m

as / is a tempered distribution. If y?, ̂  € ^(R71) then it follows from the
proposition and the above observation that

(3.9) |W)^)| = |(/,W))1 < ̂ MMHI(rn).

This shows that W(/)^ € IV^R71) and also

(3.10) • \\W(fM^< CM^

in view of the duality between Wff and W^. Hence W(f) can be extended
as a bounded operator mapping WJf' into W^.
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Thus we are able to define Weyl transform of tempered distributions
as bounded operators between certain Sobolev spaces. We next investigate
whether the Weyl transform is injective on the space of tempered distribu-
tions. An affirmative answer is given in the next theorem.

THEOREM 3.2. — The Weyl transform is injective on <S'( C71). That
is W(f) = 0 implies / == 0 for f in <S'( C1).

Proof.— Observe that {f^a^p) = (27r)t(W(/)^a,^) = 0 if
W(f) = 0 for all a and (3. In view of (ii) of Proposition 2.3 this means
that (f^g) = 0 whenever g € S^C71) is homogeneous. Again by (i) of the
same proposition we get (/, g) = 0 for any Schwartz class function. Hence
/=0.

In the case of compactly supported distributions we can prove the
following improvement of Theorem 3.2

THEOREM 3.3. — Let f be a compactly supported distribution.
Then for some m, W(f) maps W^^W) continuously into L^R71).

Proof. — Let K be the support of /. Then for some 772 we have

(3.11) |(/,ff)| <Csup ^ \9^g\.
K (a|+|/3|^2m

Let us estimate Q^Q^Vy^) on K. Write

(3.12) VyW = (27r)-t / e^+^)y,(^ + y)^)^.

This gives

(3.13) -^V^,z) = iVM,v^,z) - ̂ yjVy^,z),

-̂ -l̂ , z) = Va,^, z) + -x,V^, z).
oyj L

Iteration shows that Q^Q!3^) is a linear combination of terms of the
form

(3.14) P^y) = { e^'^-y^M^D^^^y^W

which gives the estimate

(3.15) sup ^ |̂ W)| < C7(^)[|^||^)||^||2.
K H+|/3|<2m



1016 SUNDARAM THANGAVELU

From this we get the estimate

(3.16) |(W(/)^)1 = 1(/,W))1 < C(K)M^M,

which shows that W{f)(p € L^IT) and ||TV(/)^|| ^ C1M|(m). Hence the
theorem.

We now turn our attention towards proving a Paley Wiener theorem
for the Weyl transform. The study of mean periodic functions on R71

depends heavily on Paley-Wiener theorems for the Euclidean Fourier
transform. In the same way we need an analogous theorem for the Weyl
transform for the study of mean periodic functions on phase space. We now
define the Fourier-Weyl transform and prove a Paley-Wiener theorem for
compactly supported L2 functions.

Let K stand for the space of all Hilbert-Schmidt operators on Z/2^71).
This is a Hilbert space with the inner product (T, S) = tr(r«S'*) and norm
||r||̂  = tr(rr*). If / € L^C71) we know that W(f) € K. We now embed
W(f) in a family of Hilbert-Schmidt operators in the following way. For
^ C M271 let us write U(^) = 7r(^ + ̂ //), ̂  = (^/, $") and TT is the projective
representation of C71 used to define W(f). To each / in ^(C71) we now
define the Fourier-Weyl transform by

(3.17) /(O = U^)W{f)U(-^

As U(^) is unitary, /(Q € K for each ^ G M271.

The image of Z/^C71) under the Fourier-Weyl transform thus consists
of functions F{^) taking values in K which verify the relation

(3.18) F(0) = U(-a)F^)U^).

We now let EQ stand for the subspace of this image whose elements are
restrictions to M271 of entire functions of exponential type taking values in
K. In other words, F € EQ if and only if

(i) F((^) is an entire function of (^ in C271 taking values in K and
satisfies ||F(C)||^ < C'e5!1111^ for some constant B > 0.

(ii) FW^-OTWO^eR271.
The space £'0 can be equipped with a topology as follows. Let

^'(R271,^) stand for the space of compactly supported distributions in
M271 taking values in the Hilbert space K. That is any T in E^R^.K)
is a continuous linear operator from (^(M271) into K where C^R271) is
equipped with the topology of uniform convergence of all derivatives on
compacta. To each T in ^"(M271,^) we can define its Fourier transform
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T(^) = (T, e^) where e^x) = exp(za^), x € R271 is the exponential function.
The classical Paley-Wiener theorem for compactly supported Hilbert space
valued distributions says that T € F'QR271, K) if and only if T(^) extends
to an entire function of exponential type satisfying

(3.19) moii^^co+ici)^5'1"1^
for some constants N and B. Let E stand for the image of E^R^.K)
under the Fourier transform.

The space E is equipped with the strong topology which makes the
Fourier transform a topological isomorphism between E^R^.K) and E.
In this topology a sequence Fj converges to F iff the following two things
happen:

(i) -Fj(C) —> F(C) uniformly on compact sets

(ii) Fj and F verify (3.19) with constants N and B independent ofj .

The space EQ inherits a topology from E . We claim that EQ is a
closed subspace of E.

PROPOSITION 3.2. — EQ is a closed subspace ofE.

Proof. — Suppose Fj e £'0 and Fj converges to F in E. From
the definition it is clear that F,(0) converges to F(0) in K and hence
F(0) = W(f) for some / in L2^). We need to show that F($) =
U(^)W{f)U(-^). To see that this is true we observe that

(3.20) U(-^Fj^)U^) - F(0) = £/(-0 (F,(0 - [/(^)F(0)£/(-0) U^).

This means that as Fj e EQ

(3.21) F,(Q - ̂ )F(0)£7(-0 = £7(0 (F,(0) - F(0)) U(-^

and consequently Fj{^) - (7(^)F(0)£/(-$) converges to zero in K. But then
we should have F(^) = (7($)F(0)?7(-$) which proves our claim.

We now state a Paley-Wiener theorem for the Fourier-Weyl transform.
Let L^C77') stand for the subspace of L^C71) consisting of compactly
supported functions.

THEOREM 3.4. — The Fourier- Weyl transform sets up a topological
isomorphism between L^(C71) and EQ.

The proof of one implication is easy. In fact, one easily verifies that

(3.22) u^)7r{z)U{-^) = e-^n^z)
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where [z^] = x • ̂ // — y ' ^ is the symplectic form on R2". This means that

(3.23) /(O = { e-i^f-y•^f(z)7^(z)dxdy.
JR2n

If now / is supported in \z\ < B then /(^) can be extended as an entire
function of C, in C271 and we also have

(3.24) VmHS^Ce^^.

The proof of the converse is a bit involved. We refer to the papers [8] and
[11] from where a proof can be read out.

We conclude this section with the following remark. In view of (3.23)
one has

(3.25) (/(0^^)=(27r)?(/,y^(^))

where V^(^5 z) = ^"^'^V/l^, z). The equation (3.25) can be used to define
n(^) when u is a distribution of compact support. It is not difficult to show
that u{^) extends to an entire function of C taking values in the space of
bounded operators from ^(R71) into L2(Rn).

4. Mean periodic functions of tempered growth.

In this section we consider mean periodic functions on the phase space
R271 which we identify with C71. If z = x-\-iy and w = u-\-iv are in C71 then

(4.1) lm(z • w) = u • y — v • x

is the symplectic form on R271. We denote this by [z^w]. Let Sp(n) stand
for the group of 2n x 2n matrices that preserve the above symplectic
form. It has been proved in Folland [5] that Sp(n)n)0(2n) = U(n\ the
group of unitary matrices acting on C71. Therefore, if a € U(n) then
[crz^aw] = [z^w}. For a G U(n} we define the operator R^ acting on
functions on C" by

(4.2) R^f(z) = f(az).

For each w G C77' we also define the twisted translation operators r(w) by

(4.3) r(w)f(z) = f(z + w)e^l.

Before taking up the study of mean periodic functions we consider sub-
spaces of L^C71) that are invariant under the action of R(^ and r(w).
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For / € L^C71), 1 < p < oo we let Tp{f) stand for the smallest closed
subspace of L^C^) which contains r(w)f for all w € C97'. Likewise, we
let ^p(/) stand for the smallest closed subspace of L^C71) which contains
r(w)f for all w e C71 and J^/ for all a € ^(n). Note that rp(/) is invariant
under the action of r(w) and Vp(f) under the actions of r(w) and Ra. An
application of Hahn-Banach theorem shows that Tp(f) is a proper subspace
of 27 (C^ if and only if there is a g in Z/(C^) such that / x g = 0. In the
case of Vp(f) we can take g to be radial. To see this, note that / x g = 0
means

(4.4) Jh(z)g{-z)dz=0

for all h € Vp(f). Since Rah € Vp(/) whenever ^ C Vp(/) the above shows
that

(4.5) ( h(z)Rag(z)dz = 0

for all fa € V(/), a € £/(n). If we let

(4.6) Rg(z) = ( Rag(z)da
J\J{n)

stand for the radialisation of g then (4.5) says that Rg is orthogonal to all
h € Vp(f) and consequently / x Rg = 0.

Of course, we need to be assured that for some g with / x g = 0 the
radialisation Rg is nontrivial. If this were not true then for any g satisfying
f x g = 0 one would have Rg = 0. We claim this means all radial h belongs
to Vp(/). To see this if some radial ho were outside Vp(f) then there will
exist g with

(4.7) (h(z)g(z)dz=0 for all h <E Vp{f)

but with

(4.8) [ h o ( z ) g ( z ) d z ^ 0 .

But then as ho is radial (4.58) implies

(4.9) [ho(z)Rg(z)dz^O

which in turn implies that Rg is nontrivial, a contradiction. Thus Rg = 0
for all g with / x g = 0 implies Vp{f) contains all radial functions. But
this is possible only if Vp(f) = L^C"^ because y?fc ^ ^p(/) f01" au k implies
(R^ x g = 0 for all A; whenever / x g = 0 and hence ^ = 0 . Thus in the case
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of Vp(f) we are assured that there is a nontrivial radial g in L^'(C") such
that / x g = 0. We now prove the following results concerning Tp(f) and
W).

THEOREM 4.1. — (i) Let / € L^C"), 1 ^ p < oo be radial. Then
Tp(f) is proper if and only iff x y?^ = 0 for some k.

(ii) Let f C L^C'1), 1 < p < oo. Then Vp(/) is proper if and only if
f x (pk = 0 for some k.

(iii) Let / C L^C71). Then T2(/) is proper if and only iff x V^) = 0
for some ^ C L2^).

Proof. — In proving (i) and (ii) we need the following fact about the
special Hermite expansion of a radial function. Namely, if / is radial then
f X ( p k = Rk(f)^k where

(4.10) Rk(f)=Cn^"^' I f{z^k{z)dz^
\K -T I i — 1 ) ' . J^n

for some constant Cn- For a proof see [12].

If Tp{f) is proper then 3 g ^ 0 in LP'^C") such that / x g = 0.
Since g is tempered there is a A; for which ~g x (pk 7^ 0 which also means
^k x ^ 7^ 0. But then f x g =0 gives 0 = ( ^ x / x ^ = Rk{f)^k x ^ which
implies Rk{f) = 0- This proves that f x (pk = 0. The converse is trivial.
This proves (i). The proof of (ii) is similar to that of (i). So, we leave the
details. In order to prove (iii) we make use of Proposition 2.2.

If T2(/) is proper then 3 g in L2^) with / x g = 0. If we let
f^^z) = f{—z) and ^(^) = g{—z) then we also have f v x g v = 0. Since
W^) ^ 0 there is a ^ € L^M") such that ^ == W^)^) ^ 0 and
^(/^ = 0. Let {^-} be an orthonormal basis for L^M") with if^o = ip
and define ^-A; = V^y{^k) be their Fourier-Wigner transforms. Then one
has (^^(V^)^? '0)j) = 0 to1' an J which means

(4.11) / r^^z)^ ̂ )dz = J f(z)(^ 7r(z)^)dz

=(27r)t ( f(z)^(z)dz=0.

In view of Proposition 2.2 this means / x ^oo = 0. This proves (iii).

We now consider the space (^(C71) of continuous functions on C71

equipped with the topology of uniform convergence on compact sets. Given
a nontrivial continuous function / we let T(/) (respectively V(f)) stand


