
ANNALES DE L’INSTITUT FOURIER

KOHUR GOWRISANKARAN
Extreme harmonic functions and boundary
value problems
Annales de l’institut Fourier, tome 13, no 2 (1963), p. 307-356
<http://www.numdam.org/item?id=AIF_1963__13_2_307_0>

© Annales de l’institut Fourier, 1963, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1963__13_2_307_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
13, 2 (1963), 307-356.

EXTREME HARMONIC FUNCTIONS AND
BOUNDARY VALUE PROBLEMS

by Kohur GOWMSANKARAN (Bombay-Paris)

INTRODUCTION

The extreme elements of any base of the cone of positive
harmonic functions on any open domain of R/1 play an impor-
tant role in the theory of harmonic functions. R. S.
Martin [19], while generalising the Poisson-Stieltjes formula,
gives an integral representation for non-negative harmonic
functions with measures on the set of extreme elements of
a base of the set of non-negative harmonic functions. Martin
proves that all the extreme functions (and in fact some other
functions too) form boundary elements of D in a suitable
metric topology (which induces on D the topology of the
euclidean space); this boundary is known after Martin as the
Martin boundary (1) of D. M. Brelot [2, 3, 4, 5] continues
the study of the (Martin) boundary and further extends
the results to the case of Green spaces. He considers the
Dirichlet problem (the first boundary value problem) on any
Green space for the Martin boundary and moreover the relati-
vized problem with the limits at the boundary of quotients of
functions by a fixed positive harmonic function A. He demons-
trates that for continuous functions on the boundary the
solution by the Perron method exists, even in the case of
the latter problem and for every A.

(1) In fact Martin arrived at this boundary by considering the possible limits
of G(x, y)IG(x, yo) where G is the Green's function of the domain. He introduced
the extreme elements (not in the modern sense) but as minimal functions.

15.
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L. Nairn [21] introduces, with the help of the Green poten-
tials a new definition of thinness at elements of the Martin
boundary A of a Green space Q, and proves that the whole
space is not thin only at the extreme elements of A. Suppose
AI is the set of extreme elements in A. She gives a criterion
for the thinness of any set E in Q at an element h in Ai, viz.,
the reduced function of h on E (which is the infimum of all
non-negative superharmonic functions on Q majorising h on E)
is not identically equal to A. The sets E in Q such that
( E is thin at h form a filter S/i, called the fine filter corres-
ponding to h. With these filters she proves the existence
of a topology on QUA such that (i) 0 has for the induced
topology its fine topology and (ii) the trace on Q of the filter
of neighbourhoods of h in Ai is the fine filter £/i. The limits
at Ai of functions on Q in this topology, that is the limits
following the filters £/i are called the fine limits and they
play a fundamental role in the discussions. Another form
of Dirichlet problem with the aid of the fine limits is posed
which enables a further study of the problem. In the study
of all these questions Nairn makes heavy use of the symmetry
of Green's function as well as the existence of the Lebesgue
measure (at least locally).

In the consideration of Brownian motion on a Green space
J. L. Doob [11] studies, by probabilistic methods the behaviour
of positive superharmonic functions (and also the quotient
of such functions by a fixed harmonic function > 0) along
the Brownian paths, and proves the existence of limits along
« almost » all paths. Expressed differently, the result is that
any quotient of the form vfh as considered above has a fine
limit « almost everywhere » in a suitable sense at Ai. In [12]
he gives, by using heavily the results of Nairn, a non-probabi-
listic proofs of these results which are similar to the classical
theorems of Fatou type on the existence of angular limits
[14, IS1"8] and actually these have been recently proved to be a
real generalisation by M. Brelot and J. L. Doob [8].

Our interest is to consider the situation in the case of axio-
matic theories of harmonic functions on a locally compact
Hausdorff space (which include the study of solutions of certain
types of elliptic and parabolic equations). We shall extend the
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earlier results of the classical case to this set up ( lbis). Many
proofs carry over; but some of the fundamental points
need, entirely different approach.

Our starting point consists in taking for definition the cri-
terion of thinness (mentioned above) in terms of the reduced
functions. More generally we consider first (in Ch. I) on
any set X two families of non-negative valued functions P
and U (corresponding to potentials and non-negative harmo-
nic functions on a domain) satisfying a few conditions (abstrac-
ted from the properties of superharmonic functions ^ 0).
Then we define the thinness of a set E relative to any minimal
element A in U (2), by h not identically equal to the reduced
function of h on E (suitably defined as in the classical case).
The sets E contained in X such that the complement of E
is thin relative to h form a filter S/i on X and is called the
fine filter corresponding to h\ some simple limit theorems
extend without any difficulty. The limits following the
filters £/i are called the fine limits at the minimal elements.
By choosing suitably U and P we deduce the corresponding
results in the case of the axiomatic theories of Doob [13],
Brelot [6] and Bauer [1]. Moreover, in the last two cases,
where the harmonic functions .̂ 0 and the potentials play
the role of U and P respectively, we prove the existence of
a topology on XUAi (where Ai is the set of minimal functions
on any base of the cone of positive harmonic functions),
such that the induced topology on X is its fine topology and
the trace on X of the filter of neighbourhoods of h in Ai is
exactly S .̂

In order to study the question further, we have to suppose
more. We restrict our attention to the axiomatic theory
of Brelot with the important developments of Mrs R. M. Herve.
We shall suppose suitably strong conditions. The theory

(1 bis) The limits considered above along brownian paths are in fact particular cases
of a more general study of the Markov processes by Doob and Hunt. The relation
to these processes of the extensions of Fatou-Naim-Doob results that we shall
consider is becoming clearer thanks to a paper of Meyer in this volume : this
author succeds to include the axiomatic study of Brelot [6] in the general study
of Hunt.

(2) An element in U is minimal if it is proportional to every element of U which
it majorises. The minimal elements are exactly the elements which are not the
sum of two non-proportional elements in case U has the property that M, w
in U and u ̂  w implies w-u is in U.



310 KOHUR GOWRISANKARAN

starts with the assignment to every open set of a locally
compact, connected and locally connected Hausdorff space
Q with a countable base, of a real vector space of finite conti-
nuous functions, called harmonic functions, satisfying three
axioms. These are (1) the sheaf axiom for harmonic func-
tions; (2) the existence of a base for the open sets of Q
consisting of open sets for which the Dirichlet problem has
a unique (and increasing) solution; and (3) an axiom of
convergence (axiom 3') for harmonic functions. We shall
need (and we shall recall later) the integral representation
of the superharmonic functions .̂ 0 with measures on the
set of extreme elements of a base of the cone of these
functions provided with a suitable topology which has been
established without other restrictions by Mrs. Herve [17].
We suppose moreover a fourth axiom (axiom D) which ensures
a convergence theorem for the superharmonic functions which
we need in the sequel.

In Chapter n, after recalling certain results of the theory,
we extend to the axiomatic case a result of Naim and one of
Doob; these are quite important for our study. The theorem
of Nairn that the reduced function on E of a positive harmonic
function u is a potential if and only it E is thin « u-almost
everywhere » on Ai extends completely. The proof of Nairn
cannot be extended to our case. Our proof is based essen-
tially on some results of the balayage theory developed by
Mrs. Herve and this replaces the use of Lebesgue measure.
This is a key result for us to prove a minimum principle with
the fine filters which in turn enables us to study a relativized
first boundary value problem. The other result on the fine
cluster values is more general than the corresponding result of
Doob in [12] and this is useful to us at many places. We then
make a preliminary study of the Dirichlet problem. But
we do not know anything about the resolutivity of the conti-
nuous functions (in the topology of compact convergence on
Ai), which is necessary for the study of the problem.

In Chapter in we introduce a new axiom called the axiom
of resolutivity^ which requires that the class of resolutive func-
tions contains a certain family of continuous functions.
This enables us to give in a familiar form an integral represen-
tation for the solutions, connecting it with the integral repre-
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sentation of Mrs. Herve. Then by using the reasonings of
Nairn and Doob [12] we prove that the solution for any function
on the boundary has a fine limit « almost everywhere » on the
boundary and from that we get the generalisation of the Fatou-
Naim'Doob results. Finally we observe that certain equi-
valent forms of resolutivity given by BRELOT [5] carry over
to our case, but with modified proofs.

In chapter iv we are interested in showing that the axiom
of resolutivity is valid in a particular but important case.
It is the so called case of « unicite » (Mrs Herve) or proportiona-
lity in which it is supposed that for every point of Q the
non-zero potentials that are harmonic outside this point are
proportional. In this case Q can be identified with such
potentials belonging to a base (compact in the topology of
Mrs. Herve) of the cone of non-negative superharmonic
functions. Hence the boundary A of the set of these potentials
on the base can be considered as the boundary of Q (and
this is exactly the Martin boundary in the classical case).
This boundary and the corresponding limit conditions given
by the trace of filter of neighbourhoods of the elements in
the boundary allow a second Dirichlet problem. With the
techniques introduced by Brelot in [5] we prove that the
solution for this Dirichlet problem has an integral respresen-
tation (with Borel measures) on the boundary and that the
solution by the Perron method of the continuous functions exist.
It is true that the boundary of Q contains the set of minimal har-
monic functions of the base. Now we prove that the trace
of the neighbourhoods of every minimal element in A is less
fine than the fine filter we had earlier introduced. This
results in a relation between the upper solutions of the two
problems. We deduce finally the validity of the resolutivity
axiom and the equivalence of resolutivity for both the problems.

Most of the results contained here had been published in
two announcements in Comptes Rendus fl5, 16].

It is a great pleasure for me to record my indebtness to
Professor Brelot, who suggested to me the problem and who
offered me his valuable guidance prior to and during the prepa-
ration of this paper. I thank the Centre National de la
Recherche Scientifique (France) for offering me a grant
enabling me to complete my work in Paris.
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I thank Professor Chandrasekharan for his constant encou-
ragement and helpful advice.

I. — ABSTRACT THINNESS AND FINE LIMITS

1. Fundamental Classes of Functions.

Let Q be a non-void set and U and P two non-empty fami-
lies of real valued functions on Q. Let the elements of U
be finite valued (functions) ^> 0 on Q and such that with
every a ̂ . 0 and h in U, aA belongs to U. The functions in P
possibly taking the value + °° are assumed to be^O, and
further for every ai ;> 0, a^ ̂  0 and pi, pg i11 P ^t ^ipi + o(-2p2
belong to P (here, by definition O.oo will be 0). Further il
we call ^, the class of functions on Q which can be expressed
in the form u + p where u belongs to U and p to P then let
S satisfy (i) ^i, ^2 m ^ implies the function inf. (^i, ^) belongs
to ^ and (ii)

^ == ui + pi < ̂  == ^2 + p2

implies u^ <^ Mg. Therefore every function in S is written
in the form u + P in an unique way and further u in U and
u ̂  p in P gives that u is identically zero.

Minimal functions.
A function A in U is minimal if u in U and u ̂  h gives

u = ah where 0 ̂  a <; 1.
If moreover we assume the property « A » that for every

u, w in U and u ̂  w implies that w — u also belongs to U,
then A in U is minimal if and only if h cannot be expressed
as the sum of two non-proportional elements in U.

Reduced function.
If f is a real valued function on E c Q, /*:>() and majorised

by some element in H, then the corresponding reduced function
is defined as,

Rf = inf. v
ueS

v > f on E.
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THEOREM I.I. — Let h =1=. 0 be a minimal element of U and
E c Q. Then either R^ is identically h or R^ does not majorise
any element of U other than 0.

Proof. — In view of the property (i) of S, the function
R^ is also equal to the inf. v for v ̂  h on Q (^ e H and v^h
on E). Now if P belongs to ^ and minorises A, supposing
y == u + P (where u e U and p e P), we have u <; h and
since A is a minimal element u equals y.h where 0 ̂  a ̂  1.
Hence any v in H minorising A is of the form p + aA where p
is in P and 0 ̂  a ̂  1. Now assume that Rj^ is not identically
A, in which case there is at least one v in ^ with v ̂  h, and
^ ;> A on E and p different from A. Obviously this v equals
p + yh where p is in P and a =7^= 1. Hence p .̂ (1 — a)A
on E and this gives R^ ̂  [1/(1- — a)]p• Now the assertion
of the theorem follows since any U-minorant of R^ minorises
also [1/(1— a)]p which is an element of P, and is hence zero
identically.

DEFINITION I.I. — E contained in Q is thin relative to h,
a minimal element (not identically zero) of U, if there exists
an element v in H such that v ̂  h on E but not on the whole
space, or equivalently if R^ ̂  h.

Criterion of thinness. — E is thin relative to h (not identi-
cally zero) if and only if there exists an element p in P such
that p ;> h on E.

During the course of the proof of the Theorem I.I we
showed that if R^ =^= A, then there is a p in P such that p ̂  h
on E, and the converse is obvious.

Remark. — The points where h (^ 0) a minimal function
of U equals zero form a set thin relative to h.

THEOREM 1.2. — Let h =1=. 0 be a minimal function of U.
Then the union of two sets thin relative to h is again thin relative
to h\ i.e., the family S^ of the sets E contained in Q such that
( E is thin relative to h is a filter on Q.

Proof. — Let E and F be two sets thin relative to h. Then
there are two elements p and q in P (none of them identically
zero) such that p maj crises h on E and q maj crises h on F.
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Hence p -+- q majorises h on EUF and the thinness of EUF
relative to h is a consequence. Now £/» is a non void collection
of non empty subsets of Q. The above property shows that
it is a filter.

DEFINITION 1.2. — We call the sets of £/i the fine approach
neighbourhoods of h and any limit (lim. sup. or inf.) following
£^, a fine limit (fine lim. sup. or inf.).

THEOREM 1.3. — Let h {=/= 0) be a minimal element of U and
^e ̂ . Then on the set A where vjh has a sense (everywhere for
instance if h > 0), v\h tends to a limit following £/i and this
limit equals infimum of \v{x)jh[x)\ for x in A. This limit is
zero for v e P.

Proof. — The set ( A is contained in the set of zeros of h
and hence | A is thin relative to h. Now if, a == inf. v{x)fh(x)^

u a;GA
then on A lim.inf. vjh ̂  a. Suppose now a to be finite and

^
for e > 0, let

Eg== ^eA: [^)/A^)]<a+£|.
This set is non-void and ^/(a + £) ^- h on A — Eg; but

^/(a + £) does not majorise h on the whole space. Hence
A — Eg is thin relative to A; the same is true of

(A-Eg)U([A).
It follows Eg e 3 .̂ This gives on A lim.sup. v\h ̂  a. This
completes the proof. %h

COROLLARY 1. — If h and h1 (none of them identically zero)
are two non-proportional minimal elements of U then on the
set where h'fh has sense lim. A7/A = 0.

^ .
This is true since the assumption that the limit is different

from zero will lead to the contradictory result that h and h'
are proportional.

COROLLARY 2. — Let h and h' be as in the corollary 1. Then
there are sets in £^ and S/»' which do not intersect each other.
Hence there is no filter on Q finer than both S/i and S/i'.

It suffices to take the sets \hjh1 < 1, A, h' ^=0 j and
{hf|h<i, h^^Oi.
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2. Application to the Discrete Potential Theory (J.L. Doob).

First we recall briefly an axiomatic study of Doob [13].
We shall then see that the results of the previous article
hold good in this axiomatic set up.

Let Q be a measurable space, i.e., a set with a Borel field
% of subsets. Let p be a stochastic transition function with
state space Q; that is p is a real valued function on 0 X S>
such that (i) p(., A) is a measurable function for every A and
(ii) p(x,.) is a substochastic measure (measure with p(x, Q) ̂  1)
on %.

Define p"^, A) recursively by

p°(^, A) = 1 if x is in A
== 0 if x is not in A

p^x, A) == f p^y, A) p{x, dy} for n > 1.

jo" are all substochastic transition functions.
A measurable function u on Q is called superregular if (i)

— oo <; u ̂  oo and (ii) for every integer n > 0, j u(y) pn(x, dy)
is finite and u(x) ̂  fU{y) p{x, dy).

A function is called regular if both u and — u are superre-
gular.

Suppose P is a non-negative superregular function on Q
then / v(y) p"^, dy) decreases with n and tends to a regular
function when n tends to infinity. This limit p(00)^ is the
greatest regular minorant of ^. Further v — p(°°)^ is the
potential of a non-negative measurable function; the potential
of a non-negative measurable function f is defined to be
ff(y) g{^ dy) where

g{x, A) == § p^x, A).
n==o

Further, the potential w of a non-negative measurable func-
tion is a superregular function with the waiving that

fp^x, dy) w{y)

could be infinite for some n's (called loosely superregular);
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and has zero for the greatest regular minorant. Finally the
decomposition of v into the sum of a regular function and a
potential is unique.

Now let us take for U the non-negative regular functions
and for P the potentials of non-negative measurable functions.
Then ^ is precisely the set of non-negative loosely superre-
gular functions. And from what we have recalled it is clear
that all the hypothesis regarding U and P (I.I) are satisfied.
We note moreover that U satisfies the property « A ».

3. Application to the axiomatic harmonic functions of M. Brelot.

We first recall the axioms and some of the developments
briefly. The details are to be found in [6].

Let Q be a locally compact Hausdorff space connected
and locally connected. To each open set (o of Q is assigned a
vector space of finite valued continuous functions called
harmonic functions on Q satisfying the following axioms.

Axiom 1. — A function harmonic in (D is also harmonic
in every open subset of co. A finite valued function defined
and continuous on (D and harmonic in an open neighbourhood
of each point of co is itself harmonic on co.

DEFINITION 1.2. — Any relatively compact open set co with
the property that for every finite continuous function f on <)co
(the boundary of co in Q, which is necessarily non-empty) there
exists a unique harmonic function}^ on co such that HJ° continued
by f on G3 is continuous and Hy° ^> 0 iff ̂  0, is called a regular
open set.

For any regular open set (o, /'-> H)°(.r), for any fixed x in
<o defines a positive Radon measure which we denote by
p^. Note that the connected components of a regular open
set co are also regular and conversely.

Axiom 2. — Q has a base for open sets formed by regular
open sets (and hence connected regular open sets).

Axiom 3. — On every domain (o c Q, the limit of any
increasing directed family of harmonic functions is + oo
identically or harmonic on co.
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Consequences.
A real valued function v on an open set co is called hyperhar-

monic if (i) v > — oo, and lower semi-continuous and (ii)
for every regular open set S c § c co, ^{x)^ f ^ ( y ) dp^{y).

In a domain co, a hyperharmonic function v is either + °o
identically or finite on an everywhere dense subset; if p;> 0
then v > 0 everywhere or v '=. 0 on co.

A hyperharmonic function on an open set co is called super-
harmonic if it is not identically + oo on any connected compo-
nent of (o.

If a superharmonic function has a harmonic minorant it
has a greatest harmonic minorant. A potential is a super-
harmonic function p ̂  0 for which the greatest harmonic
minorant is 0.

If there exists no potential > 0 on Q then all the super-
harmonic functions ̂  0 on Q are harmonic and proportional.

Let w ̂  0 be a superharmonic function on Q. If we
denote by w also the restriction to E c Q of w on Q, we have,
R^ (the lower semi-continuous regularisation at each point
of Q of R^) is a superharmonic function and satisfies

0 < R^ < w.

There exists a topology on Q called the « fine topology »
which is the coarsest among the topologies finer than the
initial topology of 0 such that all the superharmonic functions
are continuous.

Let us now assume that the harmonic functions satisfy
the axioms 1, 2, 3 and that there exists a potential >0 on (j.

Take for U and P (in I.I) the set H4^ of non-negative har-
monic functions and the set of potentials on Q respectively.
^ is nothing but the set of all non-negative superharmonic
functions on (}. It is clear that all the hypotheses of I.I
are satisfied. Hence we have the filters £^ for every h, a
positive (> 0) minimal harmonic function on Q. Moreover
in this case we shall define a topology on QUY, where Y
is the following set of classes of positive minimal functions.
The relation h ̂  h' if and only if h == aA' with a a > 0,
is an equivalence relation in the set of all positive minimal
harmonic functions. We denote by h the equivalence class
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containing the function A. Let Y be the set of the equiva-
lence classes. The filter S/i is the same for all the functions
in the same class and can be unambiguously denoted by S^
whatever be the particular member chosen from the class A,
and depends only on the class.

We note first that for every h e Y, the filter S/i on Q has
a base formed by fine open sets in Q. For if E is in 2^, then
R^ =/= h and for F the fine closure of [ E in Q, R^" ̂  h, now
the fine open set [ F belongs to S^ and | F is contained in E.

Now using the definition and study of boundaries by
Myskis [20] (3) we can define a topology on QU(£/i)/»eY or
equivalently QUY, since Y can be identified with (S/i^gy
More precisely:

THEOREM 1.4. — On QUY there are topologies such that the
induced topology on Q is the fine topology and the trace on Q of
the filter of neigbrahoods of any point h in Y is £/i. There is a
coarsest one, this is a Hausdorff topology for which a fundamental
system of neigbourhoods of h e Y is formed by sets of the form
EUE' where E e £/» and E' depending on E is defined by

E'= |A 'eY: there is F e ̂ , with F c E j (3 bis).

(3) Theorem (Myskis). Let X be a Hausdorff space. Let M be a class of families
of open sets forming bases of filters, that is any element ^ of M is a non-void collec-
tion of non-void open sets of X, such that the intersection of any finite number
of elements of ^ contains an element of /^. Then a necessary and sufficient condition
that X U M is a Hausdorff space such that the induced topology on X is the original
topology and a base of neighbourhoods of ^ in M consists of the sets of the form
F U Np where F is in ^ and Np == \ (&) e M : there is a G e @ with G c F j is the simul-
taneous fulfillment of the following two conditions.

1. Let ^, ^/ belong to M and ^ ^= g' then there are sets F in g and F' in ?' with
FnF' == 0.

2. For any ^ in M and a; in X there are sets, a neighbourhood V of x in X and
an element F in ^ such that F n V is void.

According to M. Brelot, this topology ou X U M, even without the two conditions and
for any topological space X, is the coarsest topology such that.

(i) the induced topology on X is the original one.
(ii) the neigbourhoods of a point ^ e M intersect X to form a filter which is generated

by ^.
(3 b s) M. BRELOT indicates that in the classical case of Green space, this coarsest

topology on Q U A^ is exactly the fine topology of Nairn [2l] defined on the Martin
space with the help of ©-functions.
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Proof. — The proof is an immediate application of the
considerations of Myskis and Brelot Since the first condition
has already been proved (cor. 2, Theorem 1.3) the verification
of the second condition completes the proof. For that we
note that for any point x in Q if V is a relatively compact
neighbourhood of x in Q, then | V is in £/i for every h > 0
and minimal.

4. Application to other axiomatic theories of H. Bauer and Doob.

The results of I.I hold good in the case of the latest axio-
matic theory of Bauer [I], which includes the study of the
solutions of certain elliptic as well as parabolic equations.
The theory is built up on four axioms. Q is a locally compact
Hausdorff space. To each open set of Q is assigned a real
vector space of finite valued continuous functions.

Axiom 1. — Exactly the same as the Axiom 1 in 1.3.
An open set is called regular if it has a non-void boundary

and it is regular according to the definition in 1.3.
Axiom 2. — There is a base for open sets of Q consisting of

regular open sets.
Axiom 3. — If the limit of an increasing directed family

of harmonic functions is finite on an everywhere dense set
of (o, then the limit is a harmonic function on co. (Doob's
axiom for sequences).

Axiom T. — There is a harmonic function h > 0 on Q
and the hyper-A-harmonic functions separate the points of Q.
(The definition of hyper-A-harmonic functions is similar to
the definition of the hyperharmonic functions but starting
with the functions which are quotients by h of the harmonic
functions on each open set).

With this set of axioms Bauer has proved [1] important
results, for instance that for every superharmonic function
(i.e., hyperharmonic function finite on a dense set) with a
harmonic minorant there is a greatest harmonic minorant;
hence the definition of potential follows. Now, if we take
for U the set of non-negative harmonic functions on Q and forP
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the potentials then we note that the hypotheses of I.I are
satisfied.

We observe that in this case also the property « A » is satis-
fied. Moreover we have a topology as defined in theorem 1.4.

We also remark that the same application hold good for
a similar axiomatic which was given by Doob (3ter) before
the previous ones [same axioms 1, 2, 3; moreover metrisable
space and constants harmonic and instead of T a more compli-
cated condition],

We note that this axiomatixon of Bauer contains the previous
one (1.3) as particular case when in the latter one there is a
positive harmonic function on Q. But in order to go further
we need the restrictions of the theory of Brelot and in fact
even some more assumptions.

II. — DIRICHLET PROBLEM WITH THE FINE FILTERS

In what follows we shall be concerned only with the axio-
matic set up of M. Brelot. Let Q be a locally compact, locally
connected and connected Hausdorff space provided with
the system of harmonic functions on each of its open sets.
We shall indicate at suitable places the axioms required.

1. Some Known results of the axiomatic theory of M. Brelot.

We recall here certain basic notions, results and two supple-
mentary axioms that are required in the sequel.

a) The generalised Dirichlet Problem [6]
axioms 1, 2 et 3;
existence of a potential > 0 on Q.

A class S of hyperharmonic functions is said to be saturated
if (i) the infimum of any two elements of H belongs to S (ii)
for any v in S and a regular domain S (contained with its
closure in co the domain of definition of the functions) the
function v ' defined by v ' = v on OD—S, and v ' == j v dp^ in S
belongs to £. Further S is said to be completely saturated

(3 ter) J. L. Doob, Proc. third Berkeley Symposium on Prob. and Statistics, 2,1954-55,
49-80.
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if, moreover, any linear combination with positive coefficients
of the elements of S and every hyperharmonic majorant of
an element of S belong to S.

Let ^ be a class of filters on Q none of them having any
adherence in Q. Let E be a saturated class of superharmonic
functions on Q. Then ^ and 1 are said to be associated to
each other if for any v in ^, lim.inf. v ̂  0 for every £ in 1
implies v ̂  0. x

Then corresponding to any real valued function f (possibly
taking the values infinity) on ^f, if we define l{f) the lower
envelope of v in S such that lim. inf. v ̂  /*(£) for every £

- %

in $; then ^(f) is + °° or — °° identically or else harmonic
in Q. A similar result is true for the function ^(/>) defined
^y ^ (/*) == — ^(— /*)• ^ moreover we assume that H is
completely saturated then ~£(f) > ^(/>) on Q.

DEFINITIONS. — ^(f) and ^(/*) are called the upper and
lower solutions (respectively) for the problem corresponding to
any function f on ^. A function is said to be ^-resolutive if
^(f) = ̂ (/l) and finite on Q.

Let us now assume that every d-resolutive function is « absolu-
tely resolutive » that is to say is the difference of two non-negative
'£-resolutive functions. Then the functional f-> ^(/*) (a:), that
is the value of the envelope at the point x in Q, for fixed point x
in Q, on the set of all ^-resolutive functions on ^ which is a
vector space, defines a Daniell measure ^ and this is such
that the ^-resolutivity and ^-summability are equivalent.
Further the ^-summability of a function for some x in Q
already ensures the ^-^ummability for every y in Q.

b) The axiom 3' and the integral representation.
For most of our considerations we shall need a stronger

axiom in the place of the axiom 3. This new one implies
the axiom 3 when we suppose the axioms 1 and 2.

Axiom 3'. — On every domain S, any harmonic function
u ̂  0 is either identically 0 or everywhere > 0; moreover
the set of positive harmonic functions on S taking the value 1
at any fixed point of S is equicontinuous at that point.
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Notations.
H4' the set of non-negative harmonic functions on Q.
P the set of potentials on Q.
and
S"1" the set of non-negative superharmonic functions on Q.
Let us now suppose that the harmonic functions on Q

satisfy the axioms 1,2,3' and further that there is a potential
> 0 on Q. Moreover let there be a countable base for the
open sets of Q. Under these conditions R.M. Herve [17]
gives an integral representation for the elements of S"*", with
measures on the set of extreme elements of a compact base
of S^: the generalised Riesz-Martin representation (4). The
method consists in applying the results of G. Choquet [9]
on the existence and uniqueness of measures on extreme
elements, to the vector space of differences of functions in S^.
The essential point in setting the ground to appeal to Choquet's
theorem consists in providing this vector space with a proper
order and a suitable topology.

Now, in S4" X S4" define an equivalence relation

(^, v') ~ (w, w'}

by setting v 4- w' = v ' + w. The set S of the quotient classes
is a vector space and contains S4" with the identification
^-^(^,0). The order ((Specific Order)) in S that

(^, ^') > (w, w ' } if (?, ^') equals (w, w ' ) -{-u

where u is in S4', makes S a Riesz space (that is the order is
consistent with the vector space structure and further it is a
lattice for this order) and the positive cone for this order is
exactly S4'.

To meet the other requirements, a topology (( T-topology » (5)

(4) A much simpler proof of the integral representation but with an additional
assumption, that there is a base for the open sets consisting of « completely deter-
minating » domains, was first given by Brelot [7]. Mrs Herve also givesa simpler
proof in the particular case of « uniqueness ».

(5) T-topology on S. — For any open set (JD c Q, Mrs. Herve decomposes any
function V in S'1' into the sum of two functions V^ and V^ in S4', where V^ is har-
monic in co and the greatest one satisfying these conditions. Note that in the
classical case Vw is the Greenian potential of the restriction to (D of the Riesz measure
associated to V. In the general case, let us take the Alexandroff compactification
Q of jQ; let Jfc be the point at infinity. Now corresponding to any open set (o,
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is defined on S which makes S a locally convex and Hausdorff
topological vector space. Further it is proved that the set S
is metrisable for this topology and that it has a compact
base. Hence by the Theorem of Choquet every element in S4'
is the centre of gravity of a uniquely determined measure
on the compact base and this measure charges only the set
of the extreme elements of the base.

An extreme superharmonic function of any base of S4' is
either an extreme harmonic function (equivalently a minimal
one) or one of the potentials whose support (6) is a point.

Moreover in the integral representation for any element
in P (respectively in H"^) the corresponding measure charges
only the set of extreme potentials (resp. the minimal harmonic
functions).

Notations. — We suppose that A is a compact base of S"1".
Let AI be the set of minimal harmonic functions on this base.
For any element u in H4" and u > 0 we shall denote the
measure on A corresponding to u by pin. pig charges only
the set AI and further u = h d^(h).

c) The axiom of domination and swept out measure,

DEFINITION. — A set E in Q is a polar set if it is contained
in the set of points where a function v in 54" takes the value + oo.

Axiom D. — If v is in S"̂  and p a locally bounded potential
on Q then p ̂ . p on the support Sp of p implies that v majorises
p everywhere on Q; or equivalently if R^p == p.

JkeojcQ we define V»u as equal to the sum of the greatest harmonic minorant of
V and V.2n«,. V^(x) for fixed n? in Q is a function of cocQ — j x \ ; and this may be
continued as a measure (JL^ on Q — } X j , and is such that for any element (?, v'}
in S, {JL^ — jj-y^ is the same for all the elements in the same equivalent class. On
the space S the T-topology is defined to be the coarsest topology for which the map-
pings (P, v ' } ->" (JL^— pLv^ of S into the space of measures on Q — j X j are continuous
when the latter is provided with vague topology; and for all X in Q.

On H (the subspace of difference of functions in H+) this topology induces the
one of local uniform convergence.

On the subset E"1' of all the potentials with point supports in 0 and of all the har-
monic functions ^> 0, considered with the support Jo, T is the least fine topology
such that the support <p(p) of p is continuous and p(x) is continuous in p when
<p(p) ̂  x.

(6) The support of a potential is by definition the smallest closed set in the comple-
ment of which it is harmonic.
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Note that if the axiom D is true for Q then the axiom E)
is true for every domain contained in 0.

If we suppose that Q has a countable base for its open sets
then the axiom D gives a convergence theorem tor super-
harmonic functions. This convergence theorem in particular
provides^ for any set E and v c S4', R^ == R^ except on a polaf
set. [6].

Let us assume in addition that axiom 3' is satisfied. We
recall the following result (Theorem 10.1, [17]).

Suppose that pi is a positive (> 0) Radon measure on Q
supported by a compact subset of Q and let E be any subset
of U. Then there exists a Radon measure ^ and only one
called the swept out measure corresponding to E and pi
(« mesure balayee du pi ») such that for every function v e S4",

f^d^=f^d^.

2. Some new Properties of the reduced function of an element in H"1".

Axioms 1, 2, 3' and D.
Existence of a potential > 0.
Countable base for open sets of Q.

LEMMA 11.1. — ft^(^) for any fixed x in Q and any set
E c Q is a lower semi-continuous function of h e H'1" provided
with the topology of uniform convergence on compact subsets
of il (which is also the topology induced on H^ by the T-topology
on S-^.

Proof. — Let h^ e H4- and h^ tend to h in H+. Let ̂  == ft^.
Let ^==lim.inf . ^ (pointwise). Then by the convergence

71

theorem [6] we have v == v quasi everywhere (i.e., except
on a polar set) on Q, (where v is the lower semi-continuous
regularisation of ^). But because of axiom D, ^ == h^ quasi
everywhere on E and hence v = h quasi everywhere on E $
and this in turn implies that v ̂  A^. Hence we have,
lim. inf. ft^(^) == v{x) ^> v[x) ̂  I^(^)- This clearly gives the
required lower semi-continuity since 1H.+ being metrisable it
is sufficient to consider the convergence of sequences.
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THEOREM 11.1. — The set of all points SE of^ where E( c Q)
is thin is the intersection with Ai of a Kg set in H^.

Proof. — Suppose § is a regular domain of Q. It h is
in H4' (since /R^(y) dp^{y) ̂  h{x) for every x in §),

/^)-/R^pi

is a non-negative harmonic function in S and is hence zero
identically or never zero in S. Hence if we pose,

Fg == j u e H+ n A : /R^(y) d^{y} < u(x);

then F§ is well defined (and is independent of the reference
point x in S).

Let now §1,..., S n ? - ' - be a sequence of regular domains
00

in Q forming a covering of 0. We assert that M F§^ == 8jR,
where F^ == Ai n F^. "^

For, if h is in SE? then R^ ̂  A, and hence there is at least
one x in Q and that is XQ in S^ (say) such that ft^(^o) <^ ^(^o)-
Hence, /ft^y) rfp^(t/) < ft^o) < A(^o). Hence @E c |j F^.

n
On the other hand if h is not in Sg (but A in Ai) then by the
definition of thinness h ̂  R^. It follows that

h{x) = /R^y) rfpHy)

for all *r in §„ and the same is true for all n. This implies
that^isnot in Fg for any yi, i.e., A « M Fg and that establishes

^=U1^
n

The function o p : H4" -> R defined by o(u) equal to

ff^{y) d^{y) - u(x)

is a lower semi-continuous function for fixed x, and where S
is a regular domain in Q. It is enough to see that

u^ft^{y)d^y)

16
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is lower semi-continuous. To verify the same let u^, converge
(in the compact convergence topology of H4") to an element u
in H+. Then,

lim.inf./R^y) d^(y} > /lim.inf. R^(y) rfpj(y)
(Fatou's Lemma)

> f^(y) d^{y) (Lemma 11.1).

This clearly establishes the lower semi-continuity of <p and
hence we have that F§ is the countable union of closed sets
of H"^ n A. Since H+ n A is compact it follows that F§ is a
K(y set and this is true for all regular domains of S. Now the
proof is easily completed.

THEOREM 11.2. — Let u be a positive harmonic function
(u > 0). Let E c Q and @E the set of points of Ai where E is
thin. Then the necessary and sufficient condition that R^ == u
is that p.u(@E) is zero (where [jiy is the measure on Ai correspon-
ding to u).

Proof. — First assume that ^(S^) = 0. Then for every h
in Ai except for a set of p^ measure zero, R^ == A. Then the
equation

ft^) = /^) d^{h) (Th. 22.3, [17])

gives that ft^(^) = J h ( x ) d^{h) = u(.r); and this is true for
all the elements re in Q.

Conversely, let us suppose that R^ == u and we shall prove
that the [Xy measure of @E is zero.

Let §1, . . ., §„, .. . be a covering of Q by regular domains.
Consider the sets F^ = j h e Ai : f 1^(y) d!p|(y) < h{x) j as
defined in Theorem 11.1.

Now, let us take a fixed point x in S^. Let v be the swept
out measure corresponding to E and the measure p|̂  which
is on the compact set ̂  in Q. The measure ^ is such that for
every p in S^

f^{y)d^=f^y)d^yY
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Then we have,

ff^(y)d^{y)==fu{y)d^y)

=fd^(y)fh(y)d^(h)

=fd^(h)fh(y)d^(y)
(Lebesgue-Fubini Theorem)

=fd^(h)fRE,{y)d^(y).
Now,

J h(x) d^(h) == u{x)

== t{^(x) (hypothesis)
==fR^y)d^(y)

= f d^{h) f R^(y) d^(y) (from above)
i.e.,

f[h(x) -f^{y) d^(y)]d^{h) = 0.

The integrand in the last equation is always >. 0 and hence it
follows that

h{x) = j ft^y) rfpj^(y) ^-almost everywhere on Ar

But then the set of h on Ai for which h(x) = ft^dp^ is
exactly (Ai — F^). Hence we have, ^(Fgj = 0, and the
same property is surely true for the countable union, viz.,
^u((jF^= 0. But we have proved in Theorem 11.1 that this

\ k I
countable union is precisely 8^ the set of points of Ai where
the set E is thin. Hence ^(^a) == 0 completing the proof
of the theorem.

COROLLARY. — If u is in H-*-, then the greatest harmonic
minorant of R^ is fh(y) d^{h) where ^ is the restriction of
^ to the set of points where E is not thin {that is Ai — SE).
Hence {{^ is a potential if and only if pt.u(Ai — Sa) = 0.

Proof. — We have always RS{x) = fR^x) d^{h).
(Th. 28.2 [17]). Hence,

R^ft^ d^(h) = fhd^(h).
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On the other hand, if u' is the greatest harmonic minorant
of ft^ we have u' == R^, and hence by the above theorem
0^(6^) == 0. But u' <; u and hence ^. ̂  ̂  and in turn
^n, = ̂  <; ̂  and now the opposite inequality follows
completing the proof of the first part of the corollary- R^
is a potential if and only if (Jiy (Ai — @p) == 0 follows im-
mediately from the first part.

CONSEQUENCE : Behaviour of a u-potential at Ai.

THEOREM 11.3. — Let v be a potential and u in H4' {u > 0)
then vfu tends to zero following the fine filters except for a set
on AI of [Xn measure zero (that is vfu has a fine limit zero at Ai
ply almost everywhere).

Proof. — Consider the set Eg === {{vfu) > e\ for s > 0.
We have immediately ft^ ̂  ^/£ and hence it is a potential.
By the corollary to Theorem 11.2 it follows that

^u(Ai — SE,) == 0,

in other words Eg is thin pin almost everywhere on Ai. Now
the proof is completed by considering for £ a sequence of ratio-
nal numbers (positive) and tending to zero.

3. A Minimum Principle with the fine filters.

The following theorem concerning the fine adherent values
of a function is a slightly stronger version of an analogous
result of J. L. Doob [12] in the case of the Green space; the
method adopted here is essentially the same.

THEOREM 11.4. — Let E c Q he not thin at h in Ar Let f
he a real valued function (possibly taking the values infinity)
on -E. Let a == fine lim.sup./* )̂ Then there is a set F contained

a;€E, x->h
in E and not thin at h such that a == fine limit f(x) .a is also

a-gF, x->h
equal to the limit of f{x), x following the base of the filter formed
by F n | K for all compact sets K c Q.
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Proof. — Let K^ be an increasing sequence of compact
sets of Q with the union of K^ ==== Q. Let w, n and p be positive
integers. Define,

M,,,, == ^e E : \f{x) -a\< (1/m) and x^ K, n [ K^.

The sets M^ „ p form a sequence increasing with p and
their union (with m and n fixed) for p running through the
set of positive integers is not thin at A. (This is true because a
is the fine Hm. sup. of f(x) when x tends to h following the

U^.n.P
trace of the fine filter S/i on E). Hence R ^ = h. Since
the axiom D is satisfied, R^"'? increases to h (for every m
and 71).

Let a^o be a fixed point of Q. Let pi == 1 and pa he a posi-
tive integer such that ft^^ > /i(a^)/3. Having chosen
Pi? • • • ? jPn successively, let 7̂ 4.1 be a positive integer
^ max. (7i, ?„) such that ft^'pn.pn+i (^) > h (a?o)/3- Let

00

F=MM^p^p^. We assert that F (obviously contained
n==l

in E) satisfies the required conditions.
Firstly suppose F is thin at h. Then since ft^ is different

from zero (by the choice of the set F, ft^(rpo) > ^(^o)/3),
ft^ is a potential. Moreover since

Fn[K^M,^

we have R^^n^o) > ^(*^o)/3 hy the choice of the latter
set. But R^t^n is a decreasing sequence of potentials
and tends to zero (the limit being a harmonic minorant of
any one of the potentials) when n tends to infinity. This
is clearly a contradiction and hence the assumption that F
is thin at h is impossible. It is clear from the nature of defi-
nition of the set F that f(x) tends to the limit a following the
trace of the filter £/i on F.

THEOREM 11.5. (Minimum Principle). — Let u > 0 be a
harmonic function on Q. Let ^ be a lower bounded super-u-har-
monic function on Q such that for every h in Ai — B (B c Ai),
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there is a set E^ c Q not thin at h with fine lim.sup^(x) ̂  0;
wAere the set B is of inner ^ measure zero. Then v is ̂  0.

Proof. — We may assume (as an immediate application of
Theorem 11.4) that the function v has actually a fine limit .̂ 0
at h following the trace of S/i on the set E/,; and this being
true for all h in Ai — B. Now, for a £ > 0 let,

Xg == [ x e Q : v[x) > — £ { .

Then Xg is a non-empty set and further it is not thin at any
point of Ai — B. Hence the set 8g of points where Xg is
thin is contained in B and has hence inner ply measure zero.
But the set of points on Ai where Xg is thin being measurable,
the p-u measure of the set 8g is zero.

Let v ' = inf. (^, 0). Since v is lower bounded on Q (say
v ;> — a where a ;> 0), v ' ̂  — a and hence v ' has the greatest
u-harmonic minorant — Ui (where Ui .̂ 0 and u-harmonic
on Q). Moreover u^ <; a and so the canonical measure
[XQ' of the harmonic function u.Ui is ^ [Jiy. Consequently
(^s) = 0.

Now on Xg, v(x) ̂  — £ and hence ^(x) ̂  — £. This
implies that £u > RJF2 on Q where /*=u. (—^'). Again
if V == ^ + Ui, then V > 0 and further

£U > R^_y^ > R^ —— R^v.

But now since (^(@e) == 0, it follows from Theorem 11.2
that R^u = u.Ui and hence £U ̂ . u.^i — R^v Again

-^-R^vX^-s).
1 1 A

Now V is a u-potential and — ft^y ^ V and hence — ft^y

is itself a u-potential. Now the last inequality gives that
(i^i — £) minorises a u-potential and being a u-harmonic
function it satisfies Ui — £ ̂  0, i.e., u^ ̂  £.

Evidently the same argument holds whatever be £ > 0
and hence it follows that u^ = 0 and in turn ^ = 0. In
other words v is ̂ . 0, which is the required result.
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CONSEQUENCE:

THEOREM 11.6. — Let u and u' belong to H4' and u' > 0.
Then the following three statements are equivalent.

(i) ufu' tends to zero (JL^ almost everywhere following the
fine filters,

(ii) u majorises no harmonic function u" > 0 with u" ju'
bounded.

(iii) The inf. (u, u'} is a potential.

Proof. — We shall show in order that (i) => (ii) ===»» (iii) ===>• (i)
which will establish the equivalence.

If u" is a positive harmonic function such that u" ̂  u
and u" ^ ku', then (u" fu'} ̂  { u / u ' ) and hence u"fu' tends to
zero ^, almost everywhere. Hence from the minimum
principle (note that u" ju' ^ k) it follows that u" ̂  0, i.e.,
u" == 0.

Assume (ii) to be valid. Let V be the greatest harmonic
minorant of inf (u, u'). Then V <^ u and (V/u') -^ 1 and
hence V == 0. i.e., (ii) implies (iii).

Now let us assume that inf. (u, u') is a potential. For a

£ > 0 let Eg be the set of x in Q where ——-~ ̂  £? then R^1 <' eu
^) ,

on Q. Assuming that £ ̂  1, we have that R^ -^ inf. (u, u ' )
and hence ft^6 is a potential. It follows from Cor.
Theorem 11.2 that Eg is thin ^. almost everywhere on Ai.
Now by considering e == 1/n and the union of the corresponding
exceptional sets (where Eg is not thin) of (JL^ measure zero,
we have, outside a set of ply, measure zero at every h on Ai, uju'
has a fine limit zero. This completely establishes the equi-
valence.

4. The Dirichlet Problem with the fine filters.

Axioms 1, 2, 37 and D
Existence of a potential > 0 on Q.
Countable base for the open sets of Q.



332 KOHUR GOWRISANKARAN

Let u > 0 be a harmonic function on Q. Consider the
following family of functions on Q.

t v is hyper-u-harmonic function on Q. j
^ == ^ : : ^ is lower bounded on Q; that is P ^> ay where >

( <Xy is a real number depending on p. )

Let ^ be the family of the filters (S^)/ieA<- Then the mini-
mum principle (Theorem 11.5) states that the family of
filters ^ is associated to the set So of hyper-u-harmonic func-
tions; and Su is completely saturated. Corresponding to
any extended real valued function f on Ai (the set ^ of fibres
being identified with Ai) we denote respectively by Mj-^
and Woj^ the upper and lower solutions in this Dirichlet pro-
blem (7). Any of these functions, in case finite, is a u-harmo-
nic function. If a function is resolutive in this problem then
we say that f is u-resolutive and we denote the solution, which
we call the u-solution, by 3i6/,u.

In view of the fact that each element in £„ is lower bounded
on Q, we have that any function which is u-resolutive is also
absolutely u-resolutive. (See [6] p. 107). Hence the functional
f—>96f^{x) for any x in Q on the class of the u-resolutive
functions on Ai is a Daniell measure I^n in such a way that
the u-resolutive functions are exactly the I^n summable
functions on Ai and further this I^n summability is
independent of the reference to a particular point x of Q.

THEOREM 11.7.—Let A be contained in Ai, and y^ the
characteristic function of A. in Ai. Suppose |E^6i is the family
of all sets E, c Q such that E; belongs to ^ for every h in A
(that is, Ei contains a set of ̂  for every h in A) this for every i
in J. Then,

u^ » = inf. ft^.
161

Proof. — Consider the super-u-harmonic function (l/u)R^«.
Since ft^* === R^» quasi-everywhere (consequence of axiom D),
there is a polar set F, outside which ft^f == R^. [ F, is in 3^

(7) Our notation here is different from the one used in the classical case. In
the corresponding problem in the classical case 5^,u denoted our solution multiplied
by u, in which case it is a harmonic function.
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for every h in Ai; hence E, n [ F, is in £^ for all h in A and on
that set (l/u)ft^ equals 1. Hence fine lim.inf.(l/u)R^:{x) > 1

x-^h
for every A in A. Moreover f t^>0; it follows that
(1/u) f t^^^y^y. This is true for every i in I and hence
inf. ft^>u^^.

On the other hand if v is such that ^ <= Sy and fine
lim.inf. ^ ;> 9A(A) fov every h in Ai then for a given £ > 0
and for each A in A there is a set E^ in ̂  such that v{x) ̂  (1 — e)
for all x in E^. (Note that any such v is necessarily non-
negative). Let E == (J E^. Then E is an element of the

/»6A
family |E^.ei. Also v{x) > ( 1 — e ) on E and so

.1(1 - £) > (l/^

everywhere on 0. Hence ^/(l — e) ^> inf. (l/u)ft^. This is
i€I

true for all such p and then for all £ > 0, hence it follows
that u^^^^inf.ft^. The proof is complete.

i€I

COROLLARY. — Any set A c Ai for which %<p ,n == 0 has its
outer ^-measure zero.

We have, from the Corollary to Theorem 11.2, that the
greatest harmonic minorant of ft^. is precisely /. _g h{x) d^(h)
where ̂  is the set on Ai where E, is thin. Now, for each E^
obviously Ai — SE^ contains A and hence,

R^) > f^^ W) > f~^{h)h(x) d^(h)

which again gives,

0 = u{x)3S^{x) = inf. t^'(x) > f<fA(h)h(x) d^h) > 0.
i€l

From this, one deduces the assertion of the corollary using
the fact that for a given x in Q h{x) ̂  a > 0 for all h in Ai.

LEMMA 11.2. — Iffis any non-negative u-resolutwe function
on Ai then the canonical measure of the harmonic function
u.S^y-y is absolutely continuous with respect to u.y.
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Proof. — It is noted first that the constants are u-resolutive.
Let fn = inf. (/*, n) where n is any positive integer. Then f^
is u-resolutive and since uWo^^^n.u (n being the u-solution
of the constant n), the canonical measure v^ of the harmonic
function u.S^u satisfies the inequality Vn^^ .p -u . Hence
any Borel set with pLy measure zero has also v^ measure zero
for every n. The measures v^ are increasing and it can be
be easily proved (using the inequality <%^ u ;> Wo^ u) that
their total measures are uniformly bounded. Hence v^ is
vaguely convergent to a measure v. Once again it is easily
*seen that v is the canonical measure of u.^u since ^/^n
increases to ^u. Now it follows that every Borel set of p^
measure zero has also v measure zero, completing the proof.

ffl. — AXIOM OF RESOLUTIVITY AND CONSEQUENCES

We suppose throughout in this chapter,

axioms 1, 2, 3' and D
existence of a potential > 0
countable base for open sets of Q.
and the axiom to be introduced below.

Axiom 3ln. — Every finite valued function uniformly conti-
nuous on AI {that is the restriction to Ai of a finite continuous
function on Ai c A, A being the base of S^ already introduced)
is u-resolutive.

In what follows we shall assume that the axiom 9{^ is satis-
fied for the harmonic function u > 0, chosen once for all
for the considerations below.

1. The u-harmonic measures and .̂

The inclusion of the specified class of continuous functions
in the class of all u-resolutive functions enables us to charac-
terise the possible u-solutions. In fact we shall see that all
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the possible u-solutions are exactly the integrals for the
measure p.n of the summable functions and conversely.

Definition of the measure Xa.,a.
Let us define the following family of Radon measures on Ai.

For every x in Q, \^u is the linear functional on the class of
finite continuous functions on Ai, which assigns to fthe value
96f,n(x) where f is the restriction to Ai of /*, f is by assumption
u-resolutive. It is obvious that )^ „ are positive Radon
measures.

Some Properties of the measures X^u.
By the definition it is obvious that for any fixed function f

finite and continuous on Ai, ffd^^ is a u-harmonic function

on Q; hence it follows that for any function <p on Ai, / y r f X ^ n
is + °o or — oo identically or a u-harmonic function on Q.
A similar conclusion is true for f y rfX^u. Now consider a
X^u-summable function y, for some x in Q, that is the upper
and the lower X^u integrals of (jp are finite and equal. Then
the / <p cTXy^ and j (p d\y^ define two u-harmonic functions for

y in Q. But f 9 d\y^ ̂  /? ^y,u ^d the equality holds at
one point re in Q hence these two functions are equal at all
the points of Q. In other words the X^n-summability of a?ny
function on Ai is independent of x in Q, and moreover the
^n-integral defines in the case of a summable function a
u-harmonic function on Q. In particular sets of outer
X^u-measure zero on Ai are independent of x in Q.

LEMMA III.l. — Let ^i and ̂  be two lower semi-continuous
functions ^> — oo on Ai such that their restrictions to Ai are
equal. Then, j ^ d\^^ = ^^ d^^ for all x in Q.

Proof. — Let ^ be the restriction of ^ and ^2 to Ai.
^i is the limit of an increasing sequence 6,1 of continuous
functions on Ai and

f^i Ar.a = lim.y^ d\^.'^x,u — mxi. j v^ ^i\ac,n'
n-> oo
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But JOn^X^=<%el.a(^)? ^n being the restriction to Ai of
0^ and hence,

f^i A.,u - lim.^e.u(^) == % )̂,17 n-> oo

and similarly for ^2- Hence,

J^l A., u == ̂ .u(̂ ) == J^2 ̂ . a-

LEMMA III.2. — The set Ai — Ai has A^y measure zero
(for all x in Q).

Since Ai is a measurable set it is enough to prove that the
exterior \c,u measure of Ai is the measure of the whole space
which is 1. Let ^ ̂  0 be any lower semi-continuous function
^ ^> 1 on Ai (that is ^ ̂  the characteristic function of Ai).
By the previous lemma we have

f^ d^n > /I d\^ = M^(x) == 1.

This is true for any such ^ and hence the exterior A^y measure
of Ai is ^> 1. But it is obviously <; 1, since the measure of
the whole space is 1. The required result follows.

In other words none of the measures X^ n charges Ai — Ai
and hence it is enough for the purposes of Xa; y integrals to
consider the values of any function on Ai.

THEOREM III.l. — Let f be any extended real valued function
on Ai. Then for every x in Q.

U^)<J?^u.

Proof. — Let ^ ^> f be a lower bounded and lower semi-
continuous function on Ai. By Lemma III.l,

3^ ^(x) = f^ d\^ „. Since ^ > />, 3^ a > %/. a;

and hence for every such ^?

3^ ,{x) < 3^ ̂ {x) === f^ d\^ „
and hence

5 ,̂ ̂  < Inf. ft d\, „ - ff d^,.

Obviously all this is valid whatever be the point x (in Q).
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COROLLARY. —Any \^^-summable function f on Ai is also
u-resolutive.

From the theorem we deduce the inequality,

ff Ac. o > 3^ nW > ̂  nW >/ fd^ ,

and the assertion of the corollary follows immediately.

LEMMA III.3. — Let A c Ai and <pA be its characteristic func-
tion. Then <3@^,u == 0 if the inner [jiy measure of A is zero,

Proof. — Since 9A > 0 it is enough to show that 3^^n < 0.
Let w be any upper bounded hypo-i^-harmonic function on Q
and such that fine lim.sup. w{x) <; fA.{h) for every h in Ai.

x->h
The inner ̂  measure of A is zero and hence by an appeal
to the minimum principle (Theorem 11.5) we deduce that
w ̂  0. Hence <%<p^u which is the supremum of all such w
is itself ^ 0.

Remark. — The Lemma III.3 is valid whether or not ^n
is true for u.

LEMMA III.4. — The measures X^n are absolutely continuous
with respect to ply on the cr-algebra of Borel subsets of Ai.

Proof. -— Let A be a Borel set of Ai with ̂  measure zero.
The characteristic function of A is u-resolutive (Cor. to Theo-
rem IIL1.) and further ̂  rfX,^ = 3^ (x). But by the
above lemma <%^.u==0. Hence f?A^^=0, establishing
the lemma.

THEOREM III.2. — The measures X^u are precisely
[h{x)lu{x)]^{h).

That is, for any X^u—summable function /*, f{h)h{x) is pLg
summable and further

/fd ̂ c == u^) ffW^ ^"W-

Proof. — The measure X^u is absolutely continuous with
respect to ̂ . By Radon-Nikodym Theorem [18, p. 41] there
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exists a pin summable function ^x{h) (naturally depending
on x) on Ai such that for every X^u-summable function f
on AI, f{h)^f^{h) is ply summable and further

ffd\^=ff(h)Wd^{h).

And moreover any function which is equal to 4^W f^u sdhnost
everywhere also satisfies the same conditions. Now we
shall prove that for every x in Q, h[x)ju[x) is a version of
^(A), in equivalent terms [h{x)fu(x)] = ̂ (A) [^u almost
everywhere on Ai.

Let A be a Borel set of Ai with p.u(A) > 0. Define

UA = f^hd^W'

UA is the harmonic function on Q with the canonical measure
the restriction of p^ to A. Consider the UA Dirichlet problem.

Let v be a super-u-harmonic function ^ 0 and satisfying
fine lim.inf.^(a;) .̂ ̂ ^h), (f^ being the characteristic function

x->h
of A in Ai. Hence U.^/UA which is a super- ̂ A-harmonic func-
tion satisfies

fine.lim.inf. [^(x)u(x)]lu^(x) ̂  fine Iim.inf.^(.r) .̂ yA(^)
h->x

for every h in Ai. Hence,

^) M(:r) ̂  % (^
-UA(^>^UAW•

The same property is true for all such p. Hence, in the
above inequality v can be replaced by the infimum of such
v ' s that is,

IP "̂  ^ ^A. ~R7! { \,
^u = ̂ ,a > —— ^.a^W.

UL

But the canonical measure of UA has zero for measure
of the set ( A and hence by Lemma III.3 it follows thatu ^ ^ ~ ^
<%^n y is zero which in turn gives l^^^,^- Hence we
have,

^,u>[^N (1)
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Moreover from the corollary to Theorem III.l, we have,

.̂ ̂ ) = /?A A. u = /?A(A) ^(A) d^(A) (2)

Now, the inquality (1) and the equation (2) together give

f^(h)^{h) d^(h) >UM= J^(h)[h(x)lu{x)] d^(h)

that is for every Borel set A of Ai,

f[^W-Wlu{x)^d^{h)^0.

This results in the inequality

^(A) ̂  [h(x)fu(x)] piu-almost everywhere on Ai. (3)

But then for the function 1 (the constant function) on Ai

f[h{x)lu{x)] d^{h) = 1 = ̂ .» = fd\^ = f^{h) d^{h).

Hence,
f{W-[h{x)lu{x)]} d^{h)=0. (4)

Now from (3) and (4) one deduces that
^(A) = [h(x)lu{x)] ply-almost everywhere on Ai.

Now the proof is completed easily.
Note that the X^u summability and the ^ summability are

equivalent for any function on Ai. This is true because, for
any fixed x in Q there are constants a and p such that

P > h(x) > a > 0

for all h in Ai (and in fact on A n H"1" in view of the compactness
of the base A and the continuity of h{x) for fixed x).

The following theorem proves the converse of theorem III.l
viz., it establishes the equivalence between the i^-resolutivity
and the piu-summability for functions on Ai.

THEOREM III.3. — Any function f on Ai is u-resolutwe if
and only if it is ply — summable and moreover

v01'u{x) = u )̂ f^^ d^h)•
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Proof. — The (Xu summability of a function implies the
Xa. n summability which in turn asserts that f is u-resolutive
(Cor. to Theorem 11 I.I) and for such functions the u-solution

J h(x}equals the integral -—\fW d^aW. It remains to prove
the converse. u v /

Suppose now that f is a u-resolutive function. Further
let us suppose first that f is non-negative. Let Vy be the
canonical measure (on Ai) in the integral representation of
u.36ru. Since ^ is absolutely continuous with respect to p.»
(Lemma 11.2), there is a p^ summable function f unique up to
u^ measure zero such that Vy == f^y. That is for every Vy
summable function g, gf is ^ summable and

fgfd^n=fgd^

For the function f (which is u-resolutive since it is ^-sum-
mable),

x>ux) =^x)fh{x) w d^(h)'
Also

u(x)X>f^{x) == (h{x) d^(K) (canonical rep.)

= fh{x) f(h) d^{h)

by the defining property of f.
Hence,

38/.U == 3^7,u-

Suppose it is true that 9&g^ = 0 for a u-resolutive function g
on Ai implies g = 0 except on a set A which is u-negligible
(that is %p^ ==0).

Then we get that f = f except on a set A c Ai such that
%y „ == 0. But by the corollary to Theorem 11.7 we have

C(f^(h)h d^(h} = 0. Hence it follows that f equals f pin-almost
everywhere, and

^{x)=——ff{K)h(x)d^{h}.

The same property is true for any u-resolutive function on Ai
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since such a function is the difference of two non-negative
u-resolutive functions.

It remains to verify that Wog^ = 0 for a u-resolutive function
g on Ai implies that g = 0 except on a u-negligible set.

The function g4" [== sup. (g, 0)] is also u-resolutive and
^+,0 ^- 0- But then if v is in Sn ^d fine lim. inf. ^(x) ̂  g{h)

x->h
for every h in Ai, we have v ̂  ̂ g,u == 0'? consequently fine
lim. inf. v(x) ̂  g^^)- This is true for any such p and hence

x->h
0 = Wog ̂  ̂  ^^.a? ]Le-? ^^u === 0, and this clearly gives
the required result.

2. The extension of Fatou-Naim-Doob theorems.

We suppose

axioms 1,2,3' and D
existence of a potential > 0 on Q
countable base for the open sets
u > 0 is a harmonic function for which 3lg is valid.

Under the above assumptions we shall prove that any
non-negative super-u-harmonic function on Q has a finite
limit following the fine filters at every point of Ai except
for a set of ply measure zero. The method of proofs of the
corresponding results in the classical cases [21, 12] go through
in our case as well with little change.

Define for any extended real valued function f on Ai the
set

v is hyper-u-harmonic on Q.
v is lower bounded on Q, that is p ̂  ay for some

>/,B === ) v\ ay a real number depending on p.A
for every h in Ai, there exists a set Ej; not thin

at h with fine lim.sup. ̂ (rc) ̂  f{h).
x^^x-^h

THEOREM III.4. — Corresponding to any extended real valued
function f on Ai the upper u-solution satisfies,

^/.u — inf. v.
U6A/."
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Proof. — We have evidently

^/.a .̂ inf. ^.
/̂.u

Hence there is nothing to prove if ^ y is = — oo. Let
us assume for the moment that ^u is finite and it is u-har-
monic. Then there is a sequence y^ of u-resolutive functions
on AI such that (i)9n ̂  f and (ii) for each n a positive integer
and a fixed x e Q,

^u(^) < ̂ n{x) < %,̂ ) + 1/n.

This is possible since 36y „ is the upper integral of the func-
tion f for the Daniell measure (defined for a fixed re in Q on
the class of all u-resolutive functions by assigning the value
of the u-solution at the point x}. Moreover we may assume
that <pn form a decreasing sequence. Then <p == limit <p^ is
u-resolutive and satisfies 36^^{x) == JS^^x). But since

^?. u ̂  (w/, u

the equality at x implies <%ya == 3@^u.
Let £ > 0. The set of points A c Ai where y ;>/*+£ is

such that 36^u == 0. (This is easy to see since 36y--/,u == 0
and y^/*). Hence the inner ply-measure of A is also zero
(Theorem III.l, Corollary).

Let now 9 belong to A^n and w be any upper bounded
sub-^-harmonic function such that for every h e Ai, fine
lim.sup.w(a;) is less than or equal to <f{h) — e. Consider

x->h
v — w which is a lower bounded super-u-harmonic function.
Let A e A r By the definition of A^n we have a set E/^ not
thin at h such that fine lim.sup.^(*r) .̂ f(h}. From Theorem

•c€E^,a?->/i

11.4, we can choose a subset E^ of E/», not thin at h such that

fine lim. v(x) == fine lim.sup. v{x) ^./*(A).
a?€E^,a?>/i xGE^,x->h

Now choose a subset E^ of E^, not thin at h, and for which

fine lim. w(x) = fine lim.sup.w(^).
xGE'^x^h x^^x->h
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Obviously fine lim. v{x) exists and is ̂  f(h). Hence,
a?eE^, x->h

fine lim. \v(x) — w{x)\ = fine lim. v{x) — fine lim. w[x}
x € E{p x -> h x g E^, x •> h x^V,"^x->h

^ f{h) — fine lim. sup. w[x)
x 6 E^, a; •> h

^ /W — fine ^lm- sup• ^G^)-
a;e a. -c-> h

Hence,

fine lim. [p(a;) — w{x)} > ^A) — ^(/i) + £ > 0, if h e Ai — A.
x € E ,̂ a; •> h

Since the set A has inner ply measure zero we have by
Theorem 11.5, that w ̂  P. This inequality is valid for all
^ e A ^ u and all such w. Hence we have,

Inf. V ̂  ̂ y-g^u == S^u —— £ = %/,n —— £-

•^/.a

The inequality is valid for all £ > 0, and this proves our
assertion in the case when <N^u is finite.

Consider finally the case when (%^n=4- °o- We shall
show that each v in Ay^u is identically + oo. Let peA^n.
By definition v ̂  k for some real number A*. Let

fk = sup. (/; /c).

Then ;%^==+oo. Now if {ff,)n = inf. (/t^, n) then clearly
(A)n t A an(^ a^so ^(A)." ls ̂ mte 8Ln^ increases to + °o when n
tends to infinity. From the validity of the theorem for
each (/\)^ we have

^(A) u = I11^- w*
weA?n.u

Clearly v is in A(^) ^ for each n and hence ^^-^(/j0,u
and in turn p ̂  + °° • This completes the proof.

THEOREM III.5. — Let f be a u-resolutive function on Ai.
Then 96f,n has the fine limit f at ̂  almost every point of Ai.

Proof. — Define the function 9 on Ai by

^h) == fine lim.sup. 96j-,u(a?).
x->h
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Let 9 == sup. (y, /"). Then if v is a super u-harmonic func-
tion (lower bounded on Q) and with fine lim.inf. ^{x) ̂  f(h)
for every h in Ai, then P>(%^ and so we have fine
lim.sup. v{x) > y(^). Hence by Theorem III.4 we have,

x-^h

v ̂  3^<D „. This is true for all such v and it follows that
^.u<^u. Now,

^?, n ̂  ̂ /, a == 3@/,u ̂  ̂ ?, a-

This implies that 9 is u-resolutive and further <%y-y, u = 0,
and hence y === f ̂  almost everywhere. That is,

fine lim.sup. 96f^{x) < f(K) uiy almost everywhere.

By considering — f which is u-resolutive we have,

fine lim.inf. 96f^(x) ̂  f(K) pin almost everywhere.

This clearly proves the assertion of the theorem.

THEOREM III.6. — Let v ̂  0 be a super'u-harmonic func-
tion on Q. Then v has a finite fine limit m^ almost everywhere
on AI.

Proof. — Suppose v ̂  0 is a u-potential then (Theorem 11.3)
^ tends to zero ^ almost everywhere on Ai following the fine
filters. Since any super-u-harmonic function is the sum of
a u-potential and a u-harmonic function, it suffices to prove
that for any u-harmonic function (non-negative) the limit
exists pig almost everywhere.

Let w > 0 be a u-harmonic function. If v is the canonical
measure on Ai of the harmonic function uw, then consider
Radon-Nikodym decomposition of the measure v into the
sum of two measures Vi and Vg where Vi is absolutely continuous
with respect to ^ and Vg singular with respect to ^. Let
Wi==(ilu)fhd^{h) and ^2 = (l/u)f/i d^(h). But

d^h) = fW d^{h)
for some function /*; hence w^ is the u-solution of /*. Further
Wi tends to f [Xn-almost everywhere (Theorem 111.5). Now,
if u' is an element in H+ such that u' <; u and also u' ̂  uwg
then its canonical measure on Ai is identically zero because uin
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and Vg are singular to each other. That is, u' ̂  0. Hence
inf. (u, uwg) is a potential. Then the Theorem 11.6 asserts
that Wg tends to zero piu-almost everywhere on Ai. The
assertion of the theorem follows.

3. Variation of u and conditions equivalent to ^u.

LEMMA III.5. — Let 0 << u' ̂  u be two harmonic functions
on Q. If f^O on Ai, then

u^>u'9^; and u^>u'<%^.

Proof, — The first inequality has been established for
particular functions, viz. the characteristic functions of mea-
surable sets of Ai in the course of the proof of Theorem III.2.
The proof for any f ̂  0 is exactly similar and we omit it.

To prove the second inequality, suppose that w is a sub-
u' -harmonic function upper bounded on Q and such that
fine lim.sup. w(x) ̂  f(h) for every h in Ai. ^/.a' == sup. w

x->h
for all such w and it is easy to see that Wo^' also equals sup. w^
for all such w. Further w4" is upper bounded too. Hence
(w^u'^ju is an upper bounded sub-u-harmonic function and
satisfies fine lim.sup. (w^u^^/u^) ̂ f(h) for every h in Ai.

x->h
It follows that (w+u /)/u< <%^.

This is true for all such w and hence u'W) y ^ ̂  u96f,g.
Let us denote by K the intersection with Ai of a compact

set of A n H4" (A being the already chosen compact base of S4")
and UK the harmonic function u 96^ ^.

Consider the following three properties.
a) The characteristic function of any such K is u-resolutive.
b) For any two such disjoint sets Ki and Kg, u^ + UK,

equals U^UK,-
c) For any two such disjoint sets K^ and Kg (i^K, === 0.

Then we have.

THEOREM III.7. — The properties a), b) and c) are true in
case we suppose the axiom 3{^. Conversely, the axiom 3{^ is
valid in case any one of the properties a), b) or c) is satisfied.
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Proof. — Let us suppose first that 3{y is valid. Then
evidently a) is true. Moreover UK == F h d^(h) and hence b)
results. To prove c) note that (UK,)^ ̂  both UK, and u^.
The canonical measure v of this function is hence majorised
by those of u^ and u^ which are the restrictions of ply to K.i
and Kg. Therefore v == 0 and hence (u^K, == 0.

Conversely we shall show that each of b) and c) implies a)
which in turn gives the validity of ^.

We assume that b) is true and prove a). Let us start
with a K of the above type. Then Ai — K is the union or
the increasing limit of a sequence of sets C^ which are of the
same type as K. Since for each n, K n C^ is void we have,
UK + u<^ equls UKUC,,- Since u^/u^^_^ and

UJLUC,,/^ ^9^.u = U,
we have,

^K." + ̂ ^-K.u — ^y^.u — 1-
But always,

This is clearly the u-resolutivity of y^. That is b) implies a).
Now we assume that the condition c) is true for u and prove

a). Let K and C^ be sets in Ai as defined in the previous
paragraph. Then we have, (u^)c^ = 0 for every n. That
is, 36^ ^^ is zero. Hence limit of 3^^ u^ == 0. But (pc^
increases to <pAi-K and that leads to Xy ^."K^O. Once
again since ^^."ic ̂  ^ — ^? ~K,W we have ^^.UK = ^-
Hence 9^ is UR-resolutive and further 9&^u^= 1. But the
Lemma III.5 asserts that

and so

Hence

^K.U>^A^K

UK. == Us^y^, u^ -̂  ^^^K, a*

^ -̂ ^ UR __ -y.-jj

^?K." ^"^7~- ^K,"-

In other words the function <pK is u-resolutive and c) gives a).
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Now we go to prove the last part of the theorem. Let us
assume that a) is satisfied and we shall prove the validity of
the axiom of resolutivity.

Consider (for fixed x in Q) the Daniell integral I^a on
the class °0 of all u-resolutive functions defined by starting
from the functional f -> ̂  u(^) on the class 81 of bounded
and absolutely resolutive functions on Ai. We note that the
1̂  a-summable functions are exactly the absolutely u-resolutive
functions. The condition a) states that 81 contains the charac-
teristic functions in Ai of sets K such that K is the intersection
with Ai of a compact set in A n H4'. This implies that °0
contains the characteristic functions of all Borel measurable
sets in Ai. Hence every bounded Borel measurable function
on Ai is u-resolutive. In particular the bounded uniformly
continuous functions on Ai are u-resolutive. That is the
axiom 3ly is verified and this completes the proof.

COROLLARY. — If axiom ̂  is valid for u>0, then ̂
is true for every harmonic function satisfying 0 <; w ̂  mu
for some real number m.

Firstly we note that Si^ is true. Now the corollary fol-
lows by an immediate application of the condition c).

IV. — THE CASE OF « PROPORTIONALITY »

We shall suppose that the harmonic functions satisfy:

Axioms 1,2,3' and D
Existence of a potential > 0 on Q.
Countable base for the open sets of Q.
Hypothesis of proportionality (which we recall below).

Consider the potentials of a base of S4", such potentials have
point supports if they are extreme elements of the base.
The converse of this question has not yet been decided, viz.,
(in an equivalent form) whether for every point of Q the poten-
tials > 0 on Q with that point as support are proportional,
i.e., equal up to a factor. In all the known examples this is
satisfied. The assumption of this property is the proportiona-
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lity hypothesis^ more precisely for every point y of Q all the
potentials > 0 on Q wi^A support at y are proportional.
R. M. Herve calls the same the case of uniqueness [17].

Our main interest now is in showing the validity of the
axiom ̂  for all the harmonic functions u > 0 on Q under
the assumptions mentioned above. In this case we identify
Q homeomorphically with the subset of extreme potentials
on A and the boundary A of Q contains Ar This allows
us to develope a second Dirichlet problem with the trace
2)?/i on Q of neighbourhoods of the elements h in A, and the
lower bounded hyper-u-harmonic functions on Q. With the
help of the techniques of [5] and [19] we prove that if 2)<p^o
is the upper solution (8) in this Dirichlet problem corresponding
to the characteristic function of a compact set K c A then
uS^ u is represented by an integral with a Radon measure on K.
This is the key for us to establish that £/» is finer than 30^
for all the elements h in Ai c A. Then we show that the
continuous functions on A are resolutive for the new Dirichlet
problem, which in turn gives that 9{y is valid.

1. A second Dirichlet problem.

THEOREM IV.1. —Q, is homeomorphic to the subset ofK consis-
ting of the extreme potentials (provided with the T-topology) (8 his).

Proof. — Let JL^ be the set of all extreme potentials and
positive harmonic functions. We observe that according to
a theorem of R. M. Herve (prop. 22.1, [17]), the mapping
y —> py is a continuous function of Q -> E4' n A, where py
is the potential on Q with support at y and with T-topology
on the set E4' n A. Moreover this mapping is one-one and
onto the set of extreme potentials in E4" n A. This enables
us to identify Q with this set of extreme potentials in A,
set theoretically. The continuity of the mapping y -> py
shows that the induced topology on Q (of the T-topology

(8) As in 11.4 even here our notation is different from that one of the classical
case. Any of the solutions, if finite, are u-harmonic functions; that is, there is a
difference of factor u.

(8 b19) This result and the proof do not suppose axiom D.
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on E4" n A) is less fine than the topology of (2. (More clearly
Vn-^y implies that py^ ̂  py, i.e., y^ -^ y with the identifica-
tion.) But (according to the Scolie 22.1, [17]), the T-conver-
gence of a sequence of potentials py^ in E4" with support at
y^ to the potential py e E4" with the support at y already
implies y^ -S- y. Since both the topologies in question have
countable bases, the required homeomorphism is establis-
hed.

Let A be the boundary of il in A. Since JL^ n A is compact
(Corollary to Prop. 21.3 [17]) E+ n A is a closed subset of A
and further it contains Q, hence the boundary A of Q contains
only harmonic functions of A. Moreover it is known [7]
that the closure of the extreme potentials contains all the
extreme harmonic functions of the base A, in other words A
contains Ai.

Notations. — Let us call by 3)?/i for each h e A the trace on 0
of the filter of all neighbourhoods of h in Q. Let Sn be the
set of all hyper-u-harmonic functions, each lower bounded
on Q, as in the previous chapter.

For any v in Sn, the condition that lim.inf. v ^>0 for all h
SDlh

in A implies that v ,> 0. To prove this, suppose on the
contrary inf.^(^) == — k with k > 0. The function ^ equal
to v on Q and 0 on A is lower semi-continuous on the compact
space 0. Hence ~v attains its infimum on Q which is obviously
— k and which is attained at some point of Q. Then v + k
is ^ 0 and a hyper-u-harmonic function on Q and equals
zero at some point of Q; that implies v '= — /c. This is clearly
impossible since we have started with the condition that
lim.inf. ^ ̂  0. Hence P is non-negative.

mh

In other words Sy and (33?/i)/i6A (which can be identified
with A for considering the functions on this set) are associated
to each other [6]. Let us denote by SD^n (respectively 3)/,a)
the upper solution (resp. the lower solution) corresponding
to any extended real valued function f on A. ®^u is + oo
or — oo identically or a u-harmonic function on Q. In case f
is resolutive for this problem we denote the solution which
is a u-harmonic function by 3)/,u-
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2. The integral representation of 3)y , u.

DEFINITION. — Let A be a set contained in A. Let |(i) îei
be the family of all open sets in il containing A. Then define

UA=mf.R^n^.
i€i

LEMMA I V.I. — Let (RA be the characteristic function of
A c A. Then u^= u 3)» „.

• A *

Proof. — Each (l/u)!^1"0 is a super- u-harmonic function
^ 0 and equal to 1 on co^ c Q, and hence lim.inf^l/i^R;^0^.!

_ ^h
for every A in A. It follows that ^ „< (l/M)R^n^. This
is true for every i in I and hence u3)y ^ u <; UA. Let £>0
and v in Sn such that the lim.inf. v ̂  9A(^) ior every h in A.

SDlh

Note that such a v is necessarily non-negative. There is a
set (o, of the family where P ̂  (1 — s) and hence on Q,
[u^/(l—e)] ̂  R^^ ̂  UA. Now by varying v and e > 0
we get the inequality in the reverse direction which establishes
the required result.

COROLLARY. — If A ^ c A for every n (any positive integer)
and A^ increases to A (the union of AJ then UA == lim. u^'

LEMMA IV.2. — Let K c A be a compact set. Let (co^) be
a decreasing sequence of open sets in Q such that

^n ̂  ^n+1 D ^n+1 D K

for each n and further such that Q (D/, = K; such a choice is
possible. Then UK = lim.R^n^. "

n-> oo

Proof. — Evidently R^"00 decreases with increasing n and
lim.R^"^ ̂  UK. Now suppose co is any open set in LS contai-
ning K, then OD contains also co^ ^or some n. (If not, each co^
intersects ( co (which is compact), hence the same is true of ©„
too. Hence | co n c^ =7^ ^ as G3^ are decreasing. But K == n ©„
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and K n ^(0=^, and this is impossible). This implies that
R^nQ ̂  Um. RRn^. In other words, UK == lim. R^n^.

THEOREM IV.2. — Let h be a minimal harmonic function
in A, that is h in Ai. Then for any A c A, AA is either 0 or h
identically.

Proof. — We know that R^0 is h identically or a potential
on Q. In case R0"^ is identically h for every a); (open neigh-
bourhoods of A in 0) then h^ = A. On the other hand if
there is some (D 3 A for which R^0 is a potential then h^(^ 0)
is zero since it is harmonic and minorises a potential.

THEOREM IV.3. — Let K be a compact set in A. Then u^
is represented by an integral j h{x) d\(h) == u^{x) with a Radon
measure X on A supported by K.

Proof. — We shall take a decreasing sequence of open sets
o)^ in I! such that (i) n co^ = K and (ii) o^ => c^+i for every n.
Let XQ be a fixed point of Q and S a fixed regular neighbourhood
of XQ. We may assume without loss of generality that

S n GJi == ^.

Define the function ^ on ©i by setting,

^(y) = PyW for t/ e ©i n Q
^(h) = h{x) for h e A n ©i;

where p^ is the potential on A with support at y (for all.r <= Q).
Then ^ is a continuous function and > 0. Hence there
are two numbers a and [3 such that 0 <; a <; ̂  <^ P, on us^.

Consider now R0^" for any (D^. Since o^ n Q is the limit of
an increasing sequence of compact sets K^p, we have that
RQn^" equals the limit of the increasing sequence of potentials
ft^.p (as p tends to infinity), quasi-everywhere on Q.

Suppose v^p is the measure on the set of extreme potentials
in A (or equivalently a measure on Q) in the integral repre-
sentation of R^. Then (Lemma 22.1, [17]) the measure v^p
does not charge Q-K^p and further

f py(x) rfVn.p(y) = R?"'^) tor every x e Q.
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Now since K^pcco^

fpy^o) d^p(y) ̂  aj^^y).
Hence,

a/rfVn.p </Py(^o) ^n.p(!/) == ^M^o) < M^o).

This means that the measures v^p for different p (whose
supports are all contained in G?^ c ©i) have their total measures
bounded. Hence we may choose a subsequence which is
vaguely convergent to a measure \ and the measure \ has
support contained in CD^. The measure also satisfies,

ajrf^< u[xo).

The functions f^ ar^ continuous on GD^ for all ^ e Q n f GJ,,.
It follows that for x in Q n [ ©„ quasi-everywhere

Rpn-n^) =. J;^^(^) ^(^). (or samej^p ̂ (p))

[Actually it can be proved without much difficulty that

RQn^^)==J^^(p)^(^)

quasi-everywhere on Q.]
Now the measures X^ (with support contained in GJi) have

uniformly bounded total measures and hence we can choose
a subsequence X^ which is convergent vaguely to a measure \;
and the support of \ is K. Again it is easily seen that

UK == lim. R^n^ = Urn. R^nQ
== l im•J^^^n^)
=f^d\(h) = ̂ hd\(h).

This completes the proof.

3. The comparison of filters.

THEOREM IV.4. — Let h be in Ar Then £/, is finer than 30 .̂
Proof. — Let co' be any open neighbourhood in Q of h.

Let ( o = Q n c ) D / . Then CD belongs to 33̂  and such CD form
a base for 3% .̂ We want to show that Q — CD is thin at h
which allows to conclude that £^ is finer than 5)?/,.
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Let K c | co7 n A. Then K is compact. Suppose h^ == 0-
Then there is an open set S7 c Q and containing K and such
that RJ; (where S == S' n Q) is a potential. Now S7 u a/ is
open in [] and contains A, hence B == [ (S7 u a/) is contained
in Q and is compact. Hence ft^ is a potential. Now,

fte-" < ft? + R5.
as B u S D Q — (o. Hence ft0^ is itself a potential and
this implies that Q — co is thin at A, which is exactly the
required result.

Hence it suffices to prove that h^ = 0. Assume on the
contrary that this is not true. Then/i^ == h by Theorem IV.2.

Supose now for every point P e K, A^ == 0. Then there
is an open neighbourhood Np of P in Q such that Np = Q n Np
satisfies R^p is a potential. We may choose a finite number

m

of points Pi, Pg, . . . Pm in K such that H Np^ contains K.
i==l m

Hence it follows that R^n0 is a potential where U == (J N^.
1=1

U is an open set in Q containing K and that R^ is a potential
is impossible since R^0 >. h^ = h (by our assumption). Hence
there is at least one point h' in K such that h^'\ ~=f^ 0 and so
h^\ = A.

But by Theorem IV.2, h^'^ is an integral with a Radon
measure supported by h1\ In other words h = a h' where a
is some (non-zero) positive real number. But this is impos-
sible since h and h' belong to the same base and they cannot
be proportional.

We have finally proved that hj, == 0 and this completes
the proof of the theorem.

COROLLARY 1. — For any extended real valued function f
on A, if3^f,n and 96j-^ are the upper and lower u-solutions corres-
ponding to the restriction of f to Ai, then

^a>%/.n>^/.a>®/,u.

This follows because any v in ̂  which satisfies

lim.inf.^ > f(h)
a^
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at every h in A also satisfies fine lim.inf. ^;>/*(A), for all
A e A r

COROLLARY 2. — For any compact set K in A,

^^HK^W-

We have already remarked that u^ = lim.R^n^ where (j^
are decreasing open sets in Q with (i) co^ 3 ©^i and (ii) K == Q (D^.

71

Now it is obvious that u^ is also the decreasing limit of u^
u^ being the greatest harmonic minorant of R^nQ. But by
Theorem 11.2, Cor., we have,

^^L^^w
where §„ is the set on Ai where Q n co^ is thin. It is obvi3us
that Ai — §„ contains K n Ai; and in fact

KnA,=n(Ai-gj.j^
Hence

lim. u^ = lim.f(f^_^(h)hd^(h) = f f^^(h)h d^(h)

where 9A<-g^ 8Ln^ y A < n K are respectively the characteristic
functions of Ai — 8^ and K n Ai, as 9A,-gn decreases and
tends to <pA«ni- when n tends to infinity. That is we have,

^^LHK^W-

4. The resolutivity of continuous functions on A.

THEOREM IV.5. — The axiom 3lg is valid for all harmonic
functions u > 0 on Q.

Proof. — We shall prove the theorem in an equivalent form,
viz., the property a) of the Theorem III.7 is satisfied.

Let K be a compact set contained in A. Let K^ be an
increasing sequence of compact sets in A such that their
union is A — u. We have (Corollary to Theorem IV.4),

u.3)y^ = UK, = f^^h d^(h).
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Hence with the Lemma I V.I and its corollary we deduce,

M®^_ == UA-K = lim. MK, == J^^h d^(h).

That is for every compact set K c A,

^u+^-K..=l-

From this we deduce that

®yK.u > ®^a since ®?K.u > 1 — ®^_K.»-

That is (RK is resolutive for the second Dirichlet problem.
But now from the corollary 1 to Theorem IV.4 it follows that

^Kn^° == ^K.0 ̂  ̂ Kn^"-

This is clearly the u-resolutivity of 9^ OK an(^ ^is completes
the proof of the theorem.

COROLLARY. — For any f on A

^W-——ffWh(x)d^(h).

The u-resolutivity of any f on A ^afo'rf is simultaneously for
both the problems and the solutions 3)̂ n and <%^u are equal.

The u-resolutivity for the second Dirichlet-problem of the
functions 9 of yp-type and the equality

1 C
®.a=^<p.u==— ( fhd^(h)

u J®?.u=^u

for such functions imply the same for finite continuous func-
tions. The integral representation of 3)/,u ls deduced now by the
standard method of considering first lower bounded and l.s.c.
f on A etc.

Tata Institute of Fundamental Research (Bombay)
and Centre National de la Recherche Scientiflque (Paris).
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