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ON THE K-TEEORY AND HATTORI-STALLINGS
TRACES OF MINIMAL PRIMITIVE FACTORS

OF ENVELOPING ALGEBRAS OF SEMISIMPLE LIE ALGEBRAS
THE SINGULAR CASE

by Patrick POLO

Introduction.

Let G be a semisimple complex algebraic group, let g = Lie(G), and
let U = U(g) be the enveloping algebra of Q. Let X be the flag variety of G.
Let 1) be a Cartan subalgebra of^ and let W be the Weyl group. For ^ € I)*,
let Jp, be the corresponding minimal primitive ideal of U^ let U^ = U / J p , ,
and let Tu^ : -Ko(^) —» C be the Hattori-Stallings trace. One says that
a weight fi G b* ls regular if its Weyl group stabilizer IV^ is trivial, and
singular otherwise. For a regular weight /^, T.J. Hodges has shown [11] that
KQ^UP,) is isomorphic to KQ^X) and is therefore generated by the classes
corresponding to G-linearized line bundles on X.

Moreover, in [12], Hodges used the Hattori-Stallings trace to classify,
in the case where Q = 5^5 the C-algebras U^ up to Morita equivalence and
to obtain a short proof of Dixmier's earlier description of the isomorphism
classes. For an arbitrary semisimple Q and a regular weight /^, it was shown
in [13], in a special case, and then in [21], in general, that the value of
Tu^ on the generators corresponding to (^-linearized line bundles on X was
given by WeyPs dimension formula.

Key words : Hattori-Stallings trace — Enveloping algebras — Semisimple Lie algebras.
Math. classification : 16E20 - 16S30 - 14M15.
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In this paper, we obtain a similar description of the Hattori-Stallings
trace for singular weights. This is done in three steps. Let Go(U^) be the
Grothendieck group of the category of finitely generated left [/^-modules.
Firstly, we show that Go(U^) ^ Ko(X)/Es Im(l-s), where the sum runs
over a set of simple reflections generating W^. This fact, which results from
[3], Quillen's localization theorem, [19], and [II], was certainly known to
some specialists, but we are not aware if it was known more widely. One
deduces, in particular, that C?o(^) has rank |lV/l^|. Secondly, we prove
that the Cartan map KQ(U^,) —» G'o(L^) is an isomorphism up to torsion.
It follows that Ko(U^,)q is generated by the images of the G-linearized
line bundles on X. Finally, as in [21], we show, using the Bernstein trace,
that the value of 7^ on these generators is given by a certain polynomial
formula. It is hoped that this will bring some information about the
isomorphism and Morita equivalence classes of primitive factors.

Acknowledgements. I would like to thank Jens Carsten Jantzen, Mar-
tin Holland, Rudolf Rentschler and Wolfgang Soergel for useful discussions.
I would also like to thank the referee of the article [21], whose illuminating
comments greatly simplified my original proof of Proposition 3.1.

1. Preliminaries.

1.1. Throughout the paper, the base field k is algebraically closed
and of characteristic zero. Let Q be a semisimple Lie algebra over k and
let U = U(o) be its enveloping algebra. Let () C b be a Cartan subalgebra
inside a Borel subalgebra of 5, let W be the Weyl group of (fl, ()), let R^
be the set of roots of () in b, let A be the corresponding set of simple roots,
and let p be the half-sum of the elements of R^~. For a G ^+, let Ha e (} be
the corresponding coroot and let Sa be the corresponding reflection in W.

For a weight A G I)*, let M(A) := U(o) (g)^) k\-p be the Verma
module with highest weight A - p and let J\ = AnnM(A). Let Z denote
the centre of U. Via the Harish-Chandra isomorphism Z -^ 5'(())1^,
every A € ()* defines a central character \\. One has U(KeT-^\) = J\
and J\ = Jy if and only if A and A' are TV-conjugate. Further, J\ is a
minimal primitive ideal of U. For all this, see [9], §§7.4, 8.4. Finally, let
U\ = U / J \ and let U\-Modf denote the category of finitely generated left
L^-modules.
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Let p, G y. One says that p, is antidominant if fJi(H^) ^ N"1", for
a G R^. Let TT^ denote the stabilizer of ^ in W and let A^ = {a €
A | Saf^ = ^}- Recall that u. is said to be regular if W^ is trivial, and
singular otherwise. Moreover, we shall say that /j, is tamely singular if W^,
is generated by the simple reflections SQ, for a G A^. By [7], Chap. V,
n° 3.3, every weight p, € I)* is TV-conjugate to at least one tamely singular,
antidominant weight and hence, for the study of £/^, there is no loss of
generality in assuming that p, is antidominant and tamely singular.

1.2. Let G be a semisimple, connected and simply-connected, algebraic
group over k such that Lie(G) = Q and let T C B be the connected
subgroups corresponding to () C b. Since G is simply-connected, the
character group of T identifies with the lattice of integral weights V :=
{y € ()* | ̂ (Hfs) G Z, V/3 € R~^}. For every rational ^-module V, let C(V)
denote the associated G-equivariant vector bundle on G / B . For v € P, the
line bundle associated with V = ky will be denoted simply by C{y).

Let ZP be the group algebra of P, with its natural basis e^ : ̂  € P.
By [20], §6, the map e^ ^ [^(^)] induces an isomorphism Z P / I ^—^
Ko(G/B), where I denotes the ideal generated by the TV-invariants in the
augmentation ideal of Z'P. Thus, via this isomorphism, the natural action
of W on ZP induces a TV-module structure on Ko(G/B).

1.3. For A € I)*, let V\ denote the sheaf of twisted differential
operators on G/B associated with X-^-p. By [3], one has r{G/B,V\) ̂  U\
(see also [19] 6.1-6.2). Let T>\-Coh denote the category of coherent left T>\-
modules and let T\ denote the restriction to V\-Coh of the global sections
functor r(G/5, —). Suppose that A is antidominant and regular. Then, by
[3], Y\ induces an equivalence of categories T>\-Coh -^ L^-Modf. By
a spectral sequence argument as in [6], VI. 1.10, this implies that U\ has
finite global dimension (see also [14] Theorem 3.9). Let us then recall the
following theorem.

THEOREM ([II], Theorem 2). — Let X be a regular antidominant
weight. Then the exact functor £ i—^ r(G/B, T>\ ̂ OG/B ^) J22c^ucels isomor-
phisms Kn(G/B) ^ Kn(U\), for n > 0. In particular, KQ(U\) is a free
Z-moduJe of rank \W\.

1.4. For ^/-modules M and TV, let L(M^N) denote the set of Q-
finite vectors in Hom^(M,7V); this is a ET-sub-bimodule of Hom^(M,A^),
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see [18], 1.2. By [17] Corollary 7.25, one has
(1.4.1) Ux ̂  L(M(A),M(A)), VA e ()*.
Further, one deduces from the proof of [23] Theorem 6, the following

PROPOSITION. — For A € y and v € P, there is an isomorphism of
U-bimodules r(G/B,Vx <S)OG/B /;(^/)) ^ ^(M(A-^),M(A)).

Thus, one obtains the

COROLLARY. — Let X be a regular antidominant weight. Then,
under the isomorphism Ko(G/B) ^ KQ(U\) of Theorem 1.3, the class of
C{y) corresponds to the class orL(M(A—^),M(A)), for v € P.

2. On Go(E^i) and Ko(U^,) for singular /A.

2.1. For the remainder of this paper, we fix a tamely singular,
antidominant weight /z. Let Go(P^) denote the Grothendieck group of the
category P^-Coh and let L^-Proj denote the category of finitely generated
projective left L^-modules. By [3], the functor F^ is exact and takes Vp,-
Coh to U^-ModL Thus, it induces a map 7^ : G^^) —^ Go(U^). Also,
let (f)p, : KQ(U^) —> Go(V^) be the map induced by the localization
functor <1>^ :== V^ ®u^ -' Clearly, F^ o <S>^,{U^) ^ U^, and hence, by
additivity, 1̂  o ^(P) ^ P, for every P e (7^-Proj. Thus, 7^ o 0^
equals the Cartan map c^ : -K'o(^) —^ G?o(t7^). By [11] Theorem 1, the
functor Z^ ^OG/B — induces an isomorphism ̂  : Ko(G/B) -^ G?o(^)•
Thus, in particular, Go(T^) is free and hence <^ factors through a map
^ : KQ(U^)/Ko(Up,)tor —>> Go(P^), where -ft"o(^)tor denotes the torsion
part of KQ(Up,). Note that, by Proposition 1.4,
(2.1.1) ^ o ̂  ([£(^]) == [L(M(^-^), M(/.))], Vz. € P.

Then, one has the

THEOREM. — There is a commuting diagram

Ko(U^)/Ko(U^ ——^ Go(^) -^ Go(^)

-| -|^1 -|
4, 4' '̂

^ ^r'/R^^ z , y ( r i m p . Kp{G/B)W/B) ——— K,(G/B} ——— ^ Ml-.,)5

^€A»
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where i and p are the natural injection and projection. Both KQ(U^) and
Go(£^) have rank \W/W^\ and the kernel and cokernel ofc^, are annihilated
byW.

Remark. — The theorem gives a partial solution to the conjecture
made in [11] that Ko(U^,) is a free Z-module of rank |TV/W^p).

2.2. We shall prove the theorem in several steps. First, by [3],
r^ is exact and induces an equivalence from the quotient category
P^-Coh/Kerr^ to L^-Modf and hence, by Quillen's localization theo-
rem [22] §5, Theorem 5, Go(^) is isomorphic to Go(P^)/Ker7,,. Thus,
the commutativity of the right-hand square follows from the

PROPOSITION. — One has -^(Ker^) = ;̂ Im(l-s^) and
"eA^

hence ̂ 1 induces an isomorphism Go(E^) ^ Ko(G/B)/ ^ Im(l-So;).
aeA^

Proof. — For a € A, let Pa D B be the corresponding parabolic
subgroup and let 71-0 denote the projection G/B —^ G/Pa. For a e A^, let
A^ be the sheaf of twisted differential operators on G/Pa associated with
IJL (see, for instance, [19] 4.9.2). If A/" is an A^-module then, by [19] 8.1.1,
TT^(^V') is a P^-p-module. Moreover, by [10] p. 328-329, there is an exact
sequence of left T^-p-modules

0 -^ V^, 0 £(-a) -^ V^, -^ 7r:(^) —. 0.

Tensoring this exact sequence by C(p) on the left, one obtains, using [10]
A.3.1, an exact sequence of left P^-modules

(2.2.1) 0 —— 2^ 0 C{p - a) —— V^ ̂  C(p) —— C(p) ® ̂ W —— 0.

In particular, C(p) (g) TT^(A^) is a coherent P^-module. One deduces that
the exact functor J\f i-> C{p) (g) TT^(A/') takes A^-Coh to P^-Coh and hence
induces a map fa : Go(A^) ̂  Go(^).

Now, it follows from [19] Theorem 8.3.1, that

(2.2.2) Ker7^= ^ Im/,.
Q€A^

For a G A^, let us denote by Ca(Y) the G-equivariant vector bundle
on G/PQ associated with a rational Pa-module V. Then, it follows from

^ The freeness of Ko(U^) has now been obtained in collaboration with M. Holland,
using different ideas and techniques [15].
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[11] Theorem 1, applied to G/Pa, together with [20] Proposition 6, that
Im/Q; is generated by the classes of the objects

-C(P) ̂  <(^ ̂  W)) ̂  £{?) ̂  7T;(^) 0 £(V),

for V an irreducible rational P^-module. But, tensoring (2.2.1) by C(V) on
the right, one obtains an exact sequence of left P^-modules
(2.2.3)
0—> V^C(k^^V) —> V^C(kp^V) —> C{p)^{A^C(y) -^ 0.

Let P^ = {v e P | v(H^) > 0} and, for v e 7^, let V^(v) denote
the irreducible rational Pa-module with highest weight v. Since the formal
character of Va{v) equals ^ + e^ + • • • + e5^, one deduces from (2.2.3)
that

[£(?) 0 7T;(^) 0 £(ya(^))] = [̂  0 £(fcp 0 V,(l.))]

-[P^0/:(^-^0^(^))]

= [̂  ̂  £(P + V)\ - [D^ 0 £(5,^ + 5^)].

It follows that '0^1(Ker7^) is the Z-submodule of Ko(G/B) spanned by
[C(y + p)} - [C{s^(v + ^o))] : a C A^, i/ e 7^. But, by [20] Proposition 4,
this submodule is exactly ^ (1 - S^KQ^G/B). This completes the proof

»eA^
of the proposition.

2.3. Let us briefly recall the definition of the translation functors
(see [16], [5]). Let C be the category of finitely generated left [/-modules
which are locally Z-finite. For M C C and rj e I)*, let TT^ M = [x €
M | (Ker^)71^ = 0, for n > 0}. Let rj, ^ e ()* such that ^-77 e P
and let £' denote the finite dimensional irreducible left [/-module whose
highest weight is TV-conjugate to $-77. Then, the functor T^ is defined by
T^ M = 7r^(E 0 TT^M), for M e C. By [5] Corollary 2.6, T^ M belongs to
C and it follows from the definition that T^ and T^ are both left and right
adjoint.

We shall also need the analogous functors for right modules. Let C'
be the category of finitely generated, locally Z-finite, right [/-modules. For
M' e C' and T] € ()*, M\TT is defined in the obvious way. If 77, $ and E are
as above then £'* is in a natural way a right [/-module and, for M' € C',
we set M' ^T == (M' ̂  0^*) ^TT. Then, for M,N eC, it is easily seen that
L(M, TV), regarded as a left resp. right [/-module, belongs to C resp. C' and
that there are bimodule isomorphisms

(2.3.1) T^L(M,AO^L(M,T^AO and L(M,N) ^T ^ L(T^M,TV).
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Recall also the definition of the category 0, see, for instance, [17]
Chap. 4. Let P^ = [v € P \ i^(H^ > 0, V/? € J?+}. Then, one has the

LEMMA.

(a) Let N C M be objects in 0 such that M/N ^ M($), for
some $ € ( ) * , and let K be an antidominant weight. Then the sequence
0 -^ I/(M($), M(K)) -^ L(M, M(^)) -^ L( ,̂ M(^)) -^ 0 is exact.

(b) Let K, ^ be antidominant weights and let v € T^. Then
L ^ T ^ ^ M(^),M(/c)) has a bimodule composition series with factors
exactly the L(M(0,M(/<)), for ^ € ^(C-^). Moreover, jTTV^ C W^ then
these composition factors are all isomorphic to L(M(^—^), M(<^)).

Proof. — Let ^ denote the duality functor in 0. For an antidominant
weight K, M{^) is simple (see [9] 7.6.24) and hence M(/t) ^ 6M{^). Thus,
assertion (a) follows from the proof of 6.9. (9) and Lemmas 4.7, 4.11 in [17].
Moreover, by [16] 2.9.c), 2.17, T$~^M(^) has a composition series with
factors exactly the M^w^—z^)), for w € W^ and hence the first part of
assertion (b) follows from assertion (a). Finally, the last part follows from
[17] Cor. 7.24 (see also the proof of [18] Prop. 4.19).

2.4. Let A = fi — p. Note that A is antidominant and regular. Let U\-
Proj denote the category of finitely generated projective left ^-modules.
Let L = Ux ̂  T. By the definition of ^ T, L belongs to UX-PTO]. By (1.4.1),
(2.3.1), and [16], 2.10.a), one has L ^ L(M(/^),M(A)) and hence L is a
right E/^-module. Thus, the functor L (g)^ — takes [7^-Proj to U\-PTO] and
hence induces a map 6°^ : KQ(U^) —> Ko(U\).

Recall that the functor

^ : M ̂  C{p) ^Oa/B ̂

induces an equivalence from V\-Coh to P^-Coh, with inverse

C- :AT^C(-p)^o^B^^
see, for example, [10] A.3.1. Then one has the

LEMMA. — One has a commuting diagram

W^) -^ Go(P^)

^ ^C+o^

Wx) ^^ Go(Ux).
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Proof. — Since A is antidominant and regular then, by [3], the
functors T\ and ^>\ are mutually inverse. Thus, it suffices to show that
the functor F := F\ o C~ o $^ is isomorphic to L (g)^ —. But F is exact
and commutes with direct limits (since this is true for each of <I>^, C~ and
I\) and hence it is isomorphic to the functor F(U^} (g)^ -, by [5], Prop.
1.3. Further, C- o ̂ (£^) ^ ̂  0<^/B A-?) and hence F((7^) ^ L, by
Proposition 1.4. This proves the lemma.

2.5. Let L^ denote the (L^,l7)-bimodule ^^T. By the definition
of ^ T, 1^ is a finitely generated projective left [/^-module and its right
annihilator contains a power J^ of J\, for some n > 0. Therefore, the
functor L^ ®(u/jy - induces a map 6^ : KQ(U/J^) -^ Ko(U^). Note also
that I> ̂  L(T^M(/^),M(^)), by (1.4.1) and (2.3.1).

Consider now the (£//J^,£/)-bimodule L := ( U / J ^ ) ^T. By the
definition of ^ T, again, L is a finitely generated projective left (U/J^)-
module and its right annihilator contains some power J^ of J^. Therefore
the functor L ®(u/j^ - induces a map 0^ : Ko(U/JJ,) -^ Ko(U/J^).
Moreover, by [1] IX.1.3, the natural maps / : Ko(U/J^) -^ Ko(U\) and
g : KQ{U/J^) —> KQ(U^) are isomorphisms. Then, one has the

PROPOSITION. — There is a commuting diagram

W^) ^- W/JJ,) ^ K^U^)

0°^! ^rt| 11^1 id

W^) ^ W/J^) -e^ K,(U^.
Thus, ̂  o /-i o 0°^ = |̂ | id^(^).

Proof. — By [5] 1.3, one has U\<S>u/j^ L ̂  L and hence the left-hand
square commutes. Further, by [5] 1.3, again, and (1.4.1), (2.3.1), one has

J} ̂ u/j^ L ̂  L^ T ̂  L(T^ T^ M(^), M(/.)).

Moreover, by [17] 4.7, 4.13(2), T^ T^ M(p) is isomorphic to a direct sum of
|H^| copies of M(p) and hence, by (1.4.1), again, L^ ̂ u/j^ L is isomorphic
to a direct sum of \W^\ copies of U^,. This proves the commutativity of the
right-hand square and the proposition follows.

2.6. For a subset J of A, let Wj denote the subgroup of W generated
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by Sa : a e J and let PJ- = [y e V \ v(Hft) > 0, V/3 G J}. For i/ e 7^,
denote by <j(z/) the element ^ e^ of Z'P. We shall need the following

^Wjv

LEMMA. — KQ{G/B)WJ is generated by the image ofCj(^) : v C
P+.

Proof. — By [20] Prop. 6(a), it suffices to prove that (fLV)WJ is
generated over (ZP)W by <j(i/) : v e P^. Clearly, O(^) : ^ C P"j is a Z-
basis of (XP)WJ and hence, being finitely generated over (ZP)^, (ZP)^
is generated over (Z'P)1^ by a finite subset C,j{y\}i.. ">C,j(yr}' Then one
may pick v e P~^~ so that ^(^Ta) == 0, for a € J, and ^ + ̂  C ^+, for
i = l,. . . ,r. Then one has 0(^+^) = ^^(^i), for i = l , . . . ,r , and
these form another system of generators, since ev is an invertible element
of (ZP)^. This proves the lemma.

Then, one has the

PROPOSITION. — One has Im(-0^1 o <^) = ̂ (G/B)^.

Proof. — For v e V^, let Qy = L(T^ M(p.), M(^)). By (1.4.1)
and (2.3.1), Qy is isomorphic to U^ ^~^T and belongs therefore to
L^-Proj. By Lemma 2.4, one has

^(O^/^o^L^O,).

Since L ̂  L(M(/i), M(A)) and Q^ ̂  U^ ̂ T then, by [5] 1.3 and (2.3.1),

(2.6.1) L 0^ Q, ^ L^-^ M(/.), M(A)).

Then, using Lemma 2.3, Proposition 1.4 and the fact that £"1" o <I>^
and T\ o C~ are mutually inverse, one deduces that

^([QA)= E P^^/B^OL
^w^

Let J = A^. Then, one has

(2.6.2) ^71 o ̂  ([0.]) = OM, Vz. C P+.

By the previous lemma, this implies that

(2.6.3) ^ o ̂  (Ko(U^)) D K^G/B)^.

Further, for v € P+ let P^ = ( U / J ^ ) ^T. Note that A - v is
antidominant and regular. By the definition of ^'^T, Py is a finitely
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generated projective left (£7/J^)-module and, using [5] 1.3, (1.4.1), (2.3.1),
and [16] 2.10a), one obtains

(2.6.4) Ux ̂ u/j^ P. ̂  L{M{\-v\ M(\))

(2.6.5) ^ ̂ u/j^ P. ̂  L{T^ T^ M(^), M(A)).

Then, one deduces from (2.6.4), combined with [1] IX. 1.3, Cor. 1.4,
and the previous lemma, that KQ(U/J^) is generated by [Py} : v € P"1".
Further, by [5] 3.5, coupled with [17] 2.10.c), the functors T^T^ and
T^_^ are isomorphic and hence so are their adjoints T^T^ and T^~^.
Coupled with (2.6.5), this gives

(2.6.6) L^ ^u/J! P. ^ L(T^M(/^),M(A)) ^ Q^p.

Combining the previous paragraph with (2.6.2), one obtains Im('0^1 o
(^ o 0^) C KQ{G/B)W^ and hence, by Proposition 2.5, it follows that

(2.6.7) |̂ | Im(^1 o^) C K^G/B)^.

Finally, by [20] Prop. 6, Ko^G/B)^ is a direct summand ofKo(G/B)
and hence (2.6.3) and (2.6.7) together imply that Im(^1 o <^) =
KQ (G/B)^. This completes the proof of the proposition.

2.7. Now, to complete the proof of Theorem 2.1 it suffices, by virtue
of Lemma 2.4 and Propositions 2.5, 2.6, to prove the following easy lemma.

LEMMA.

(a) The map p o i is injective and its cokernel is annihilated by \W^,\.

(b) Both KQ^G/B)^ and Ko{G/B)/ ^ Im(l-Sa) have rank
aeA^

\WW.

Proof. — It is well-known that Ko^G/B)^ has rank |W/W^|, see,
for example, [20] Prop. 6b). Thus, the second assertion follows from the first,
which we now prove. Let cr^ denote the operator ^ w. For x € Ko(G/B),

w€W^
one has p(x) = p{sax), for a € A^, and hence p(x) = p(wx), for w € W^.
Thus, |H^|p(a-) =p(o'p,(x)). This shows that Coker(poz) is annihilated by
1^1.

Next, let x € Ko^G/B)^ Fl E Im(l-5a). Then, on the one hand,
Q€A^

(T^(x) = [W^|a; and, on the other hand, o-^{x) = 0, since o^ o (1—Sa) = 0
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for a € A^. This yields a; = 0, since Ko(G/B) is torsion free. Thus, the
lemma is proved and the proof of Theorem 2.1 is complete.

2.8. Let us then derive the following corollary.

COROLLARY. — Ko(U^)/Ko(U^r is generated by the classes
[L(T^MW^MW)]:^eP^.

Proof.— Let Q^ = L(T^M(^),M (/,)), for v e T^. We saw
in the proof of Proposition 2.6 that Qy belongs to U^-PTO] and that
^1 ° ̂ ([Q^D = OM, where J = A^. But, by Theorem 2.1, ̂ 1 o <^
induces an isomorphism from Ko(U^/Ko(U^r to KQ^G/B)^ and, by
Lemma 2.6, the latter is generated by the image of C,j(v) : v e P^. The
lemma follows.

3. Hattori-Stallings traces.

3.1. Let p. be as in 2.1 and let T^ : Ko(U^ -^ U^/[U^U^ denote
the Hattori-Stallings trace, see, for example, [2] §2. It is well-known that
U^/[U^U^\ = fc, for K e ̂  (see, for example, [9] 7.8.4) and hence Tu
takes values in k. Note also that 7^ factors through Ko(U'^) /'Ko(U '^)tor^

For $ € ( ) * , let r^ denote the translation operator on S(^)) defined by
r^F(rj) = F(77+0, for F e 5(1)), 77 e ()*• Let R-^ = {a e R^ \ ^(H^) = 0}.
Let P = P^+ denote the element ]~[ ^ of S^) and let Pp+ and Pp+\ „+

aefi+ /A x tl

be defined in the obvious way.

By Corollary 2.8, the classes of the projective modules I^T^ M(/^),
M(p)) : v e V^ generate ^o(^)/^o(^)tor and, similarly to [21] §2, one
deduces from Bernstein's trace formula [4] §2 that the value of Tu on these
generators is given by the following proposition.

PROPOSITION. — For v e P^ one has Tu L(T^ M(/z),M(^)) =

(z(w^tp)M.

Let us evaluate the right-hand side. Let a^ denote the operator
^ e(w)w and let w^ be the unique element of W^ such that w«(A«) =

weH^
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—A^. For w G IV, let Dw denote the corresponding Demazure operator on
5(b), see [8] §4.

Let v e P~^. Since the stabilizer of v in W^ equals W^-v and since
wP = £(w)P, for w € TV, one has

(3.1.1) \W^\ ^ T-^P= ^ T_^P=^T-,P.
^€H^ w€H^

By [8] Prop. 3(b), one has D^(F) = a^(F)/P^, for F e SW.
Thus, combining (3.1.1) with the previous proposition^ and noting that
P^+^+(/^) 7^ 0, one obtains

(3.1.2) T^L(T^M^MW) = \W^\-1 (DW^-l/p)(^).
JrR+\<(^)

Then, for 77 6 f)*, let 9^ denote the corresponding derivation of 5'(1)). For
F e 5(t)), a € A and 77 e y such that Ty(^) = 0, it is easily seen that
(D^F)(rj) = (9aF)(rf). Thus, denoting by 9^+ the differential operator

]~[ 9a^ one deduces that
aeR^

(3.1.3) (D^r-,P)(/,) = (C^T-,P)(^) = (9^P)^-^).

Moreover, since P^+ vanishes with multiplicity IJ?,^! at [i and since
(^<P^)(AA) e(luals (D^P<)(^) = 1^1. then one has (9^P)(^) =
|H^| PR+\R+W' Combined with (3.1.2) and (3.1.3), this gives the? following

COROLLARY. — For v e P^ one has T^L(T^~^M(p),M{p)) =
W (^P)Q^)
l^-.l (9^P)W '

3.2. Since the cokernel of the Cartan map Ko(U^,) —> Go{U^) is
torsion, by Theorem 2.1, we can extend 7^ to a map T{j : Go{U^) —^ k.
Let v e P^. By the last assertion of Lemma 2.3(b), one has in Go(U^) the
equality

(3.2.1) [L(T{T' M^\ M^))} = \W^/W^\ [L(M(^-^), M(^))].

Combined with Corollary 3.1, this yields
((9p+P)(/^-z/)

(3.2.2) T^L(M(/^),M(/.))] = ^p^ . \ V^ G P+.
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Let F^ denote the polynomial 9^+r^P. Note that F^ is H^-invariant.
Moreover, it is well-known that P satisfies the difference equation

^ P(/,+^=|H^|P(^ V^€()*,
r)ew^

and therefore so does F^. Combining these facts, one obtains that the map
ZP -^ fc, e^ ^ F^{-y) factors through Ko(G/B)/ ^ Im(l-5c,) and

QGA^

hence, by Proposition 2.2, induces a Z-linear map y?^ : Go(Up,) —> k. Moreo-
ver, by Lemma 2.6, coupled with (2.1.1), the classes [L(M(/^-z/),M(/z))] :
v € P4' generate Go(U^,) and hence (3.2.2) shows that 7^ and
(^i/((<9^+P)(^)) coincide on a generating set of Go(U^,). Therefore we ob-
tain the following result, which generalizes [21] Th. 3.

THEOREM. — For every v e V, one has T{j [L(M(/H-i/),M(/x))] =
(^P)(/^)

(9ptP)W '
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