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REPRESENTATION FORMULAS
AND WEIGHTED POINCARE INEQUALITIES

FOR HORMANDER VECTOR FIELDS

by B. FRANCHI, G. LU & R.L. WHEEDEN W

1. Introduction.

In this paper, we derive the Poincare inequality
(1.1)

( p \ •=.

(lii/B^-^y^ lii/jEi^v^))^ ^j
in Euclidean space R^ for 1 <, p < oo and certain values q > p, where
{Xj} is a collection of smooth vector fields which satisfy the Hormander
condition (see [H]). Here, B denotes any suitably restricted ball of radius
r relative to a metric p which is naturally associated with {Xj} as,
e.g., in [FP] (although similar results hold for more general regions),
fp = \B\~1 f^ f(x)dx, and c is a constant independent of / and B.

Inequality (1.1) was derived in [J] for q = p and 1 < p < oo, and this
result was improved in case p > 1 in [L2] by showing that the estimate
holds for 1 < p < Q and q = pQ/(Q - p), where Q (>: N) denotes
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GNAFA of CNR, Italy. The second and third authors were partially supported by NSF
Grants DMS93-15963 and 93-02991.
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the homogeneous dimension of R^ associated with {Xj} (see §2 for the
definition). We will show that this result also holds in case p = 1.

In fact, we will show that (1.1) holds for l<p<q<oo'ifp and q are
related by a natural balance condition which involves the local doubling
order of Lebesgue measure (for metric balls). This condition will allow
values of q which may be larger than those in [L2] and which may be
different for different balls. We will also derive weighted versions of (1.1)
for 1 < p < q < oo, and our estimates of this kind include those in [LI].
We note that it is shown in [BM1], [BM2] that, in very general settings,
Poincare's inequality with p = q = po? for a value po > 1, together with
the doubling property of the underlying measure implies some Sobolev-
Poincare results of a different type for q >_ p >_ po^ with q related to the
doubling order,. Some results in the same spirit were proved in [S-Cos]
for compactly supported functions. We also mention here that embedding
theorems for Hormander vector fields on Campanato-Morrey spaces, and
from Morrey spaces to BMO and non-isotropic Lipschitz spaces have been
obtained in [L3] and [L4], together with some applications to subelliptic
problems.

As a corollary of our results for p = 1, we will derive relative
isoperimetric inequalities for vector fields, including weighted versions. Such
inequalities are more local than standard isoperimetric estimates. They
remain valid for the classes of degenerate vector fields introduced in [FL]
(see also [FS], [F], [FGuW]), which are not smooth but satisfy appropriate
geometric conditions instead of the Hormander condition. For p = 1 and
vector fields of this second type, weighted Poincare estimates are proved
in [FGuW]. In this way, we obtain relative versions of the isoperimetric
estimates in [FGaWl], [FGaW2], which are derived by using Sobolev's
inequality (for p = 1), i.e., the inequality like (1.1) in which the constant
JB is omitted but / is assumed to be supported in B.

Our results of Poincare type are based on a new representation
formula for a function in terms of the vector fields {Xj}, and this formula
is one of our main results. One form of the representation states that if p
denotes the metric corresponding to {Xj}, then

(1.2) \f{x)-fB\<c( \Xf{y)\ . ^^ ̂  X € B ,
JcB \B(x,p(x,y))\

where B is any suitably small p-ball. Here, C and c are appropriate
constants, \Xf\2 == ̂  \(Xj, V/)[2, JB is the Lebesgue average \B\~1 fgfdy,

j
B(x^r) is the metric ball with center x and radius r, and cB denotes
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B{x^cr) if B = B(x^r). This estimate is more difficult to prove than the
corresponding formula (without the constant fp on the left) for functions
/ with compact support in -B. In fact, that formula follows easily from the
estimates in [NSW] and [SCal] for the fundamental solution of the operator
E .̂

3

Inequality (1.2) was shown to be true on graded nilpotent Lie groups
for the left invariant vector fields in [LI] (see Lemma (3.1) there). For
general Hormander vector fields, (1.2) improves an analogous fractional
integral estimate in [LI] (Lemma (3.2) there) in several ways. For example,
it only involves the original vector fields {Xj} and metric p rather than their
"lifted" versions {Xj} and p as defined in [RS] (see §2 below). Furthermore,
the representation in [LI] also involves the Hardy-Littlewood maximal
function of |X/|+|/[. Since the maximal function is not a bounded operator
on L1, its elimination is an important step in deriving Poincare estimates for
p = 1. Another important step involves eliminating the zero order term |/|.
We will do this and also derive a sharper local version of (1.2) by modifying
an argument in [SW] (see also [FGuW] and [FGaWl], [FGaW2]). The main
modification we need in order to eliminate the zero order term is to use
the known unweighted Poincare inequality from L1 to L1 (see for example
[J]). The precise argument is given in §2. The more local version of (1.2) is
stated in Proposition 2.12 and will be especially important for our Poincare
estimates in case p == 1.

In order to state our results more precisely, we now introduce some
additional notation (see §2 for more detail). Let ̂  be an open, connected set
in RN. Let Xi, . . . , Xm be real C°° vector fields which satisfy Hormander's
condition, i.e., the rank of the Lie algebra generated by Xi,. . . . Xm equals
N at each point of a neighborhood fl,o of f2. As is well-known, it is possible
to naturally associate with {Xj} a metric p(x, y) for x, y € f^. The geometry
of the metric space (^,p) is described in [NSW], [FP] and [S-Cal]. In
particular, the p-topology and the Euclidean topology are equivalent in
Q, each metric ball

B(x,r) = {y € ^ : p(x,y) < r}, x C ^, r > 0,
contains some Euclidean ball with center x, and if K is a compact subset
of ^, there are positive constants c and 7*0 such that
(1.3) \B(x,2r)\ <c\B(x,r)\, x e K, 0 < r < ro,
where |£'| denotes the Lebesgue measure of a measurable set E. This
doubling property of Lebesgue measure is crucial for our results. If B =
B(a;,r), we will use the notation r(B) for the radius r of B.
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By [NSW], given a ball B = B(x,r), x G K, r < ro, there exist
positive constants 7 and c, depending on J9, so that

<1-4' w^^Tw
for all balls J, J with I C J C B. We will call 7 the (local) doubling order
of Lebesgue measure for B. In fact, by [NSW], N^ lies somewhere in the
range N < N^ < Q, where Q is the homogeneous dimension. We can
always choose N^/ = Q, but smaller values may arise for particular vector
fields, and these values may vary with B(x^r). See §2 for some further
comments about (1.4).

Given any real-valued function / e Lip(Q), we denote

X, / (^)==<X,(^) ,V/(^)) , j=l , . . . ,m,

and
m

WMI^El^^)!2.
J=l

where V/ is the usual gradient of / and ( , ) is the usual inner product on
RN.

The Poincare estimate that we will prove in the unweighted case is
as follows.

THEOREM 1. — Let K be a compact subset offl,. There exists ro
depending on K, Q, and {Xj} such that if B = B(x, r) is a ball with x € K
and 0 < r < ro, and if 1 < p < N^ and 1/q = 1/p — 1/(N^), where 7 is
denned by (1.4) for B, then

(iij /,[fw -Mdz); £ cr (l5i /,[xfwdl)''
for any f € Lip(B). The constant c depends on K, 0, {Xj}, and the
constants c and 7 m (1.4). Also, fp niay be taken to be the Lebesgue
average off, fs = |B|-1 f^ f(x)dx.

As mentioned earlier, we may always choose N^y = Q, and then with
p > 1 we obtain the principal result of [L2]. The theorem also improves the
estimate in [J] for p = 1, where the L1 norm appears on the left side of the
conclusion.

After the preparation of this paper, a result similar to Theorem 1 was
proved in [MS-Cos] by using a different approach. In fact, in [MS-Cos], the
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authors do not derive a representation formula like (1.2), which is one of
the main results of the present paper. Moreover, formula (1.2) enables us
to prove two-weight Sobolev-Poincare inequalities (see Theorem 2 below),
and at present seems essential for deriving such inequalities. Some related
arguments have been given on graphs and manifolds in [Cou].

As the proof of Theorem 1 will show, if the conclusion is weakened
by replacing the integration over B on the right by integration over an
appropriate larger ball cB, then (1.4) may be replaced by the condition.î r.
for all balls I with center in cB and r(I) < r(B).

Some weighted versions of Poincare's inequality for Hormander vector
fields are proved in [LI] when p > 1, and our methods allow us to improve
these and also extend them to p = 1. A weight function w{x) on Q,
is a nonnegative function on Q, which is locally integrable with respect
to Lebesgue measure. We say that a weight w € Ap(= Ap(^,p,cte)),
1 < p < oo, if

{w\fBW^){w\!BW~l/(p~l)dx)p l^0 wheIll<P<oo

7—7 / w dx < C ess inf w when p = 1
\B\JB ~ B

for all metric balls B C ^. The fact that Lebesgue measure satisfies the
doubling condition (1.3) allows us to develop the usual theory of such weight
classes as in [Ca], at least for balls B = B{x,r) with 0 < r < ro and x
belonging to a compact subset of Q,. It follows easily from the definition
and (1.3) that if w e Ap then

w(B(x,2r))<Cw{B{x,r))
if 0 < r < ro and x € K C ^, K compact, with C = C(ro, K), where we
use the standard notation w(E) = f^ wdx. We say that any such weight is
doubling. All the weights we shall consider will be doubling weights.

Given two weight functions wi, W2 on Q and l < p < g < o o , w e will
assume that the following local balance condition holds for wi, w^ and a
ball B with center in K and r(B) < ro :

(15) r^f^V <c(W^Il}lp
' ) r{J){w,(J)) -^w^J))
for all metric balls I , J with I C J C B. Note that in the case of Lebesgue
measure (wi = wa = 1), (1.5) reduces to (1.4) when 1/q = 1/p - 1/(N^).
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Our main result of Poincare type for p < q is then as follows.

THEOREM 2. — Let K be a compact subset of St.. Then there exists
ro depending on K, Q, and {Xj} such that if B = B(x,r) is a ball with
x G K and 0 < r < ro, and if 1 < p < q < oo and Wi, w^ are weights
satisfying the balance condition (1.5) for B, with wi G Ap(^, p, dx) and w^
doubling, then

(-——— I W-fB^w^dxV <cr(——— { \Xf(x)\^x)dxY
\W2(B) JB ) \Wi(B) JQ )

for any f € Lip(B), with fa = w^B)'1 f^ f(x)w^(x)dx. The constant c
depends only on K, fl,, { X j } and the constants in the conditions imposed
on Wi and wa.

This result includes Theorem 1 and the weighted results in [LI].

We note here that the proof of Theorem 2 will show that if we replace
the integration over B on the right side of the conclusion by integration
over a suitably enlarged ball cB, then we may also choose fa to be
\B\~1 Jo f{x}dx. Moreover, the inequality with the enlarged ball cB on
the right also holds by assuming a slightly different balance condition :
see (3.1). We also remark here that in the usual Poincare inequality for
Hormander vector fields, one can replace the average fs by f(xo) for any
fixed distinguished interior point XQ of B if / is a solution of a certain type
of degenerate subelliptic differential equation (see [L5]).

Remark 1.6. — Theorem 2 has an analogue in case q = p and
1 < p < oo. In fact, the theorem remains true as stated if 1 < p < oo and
q = p provided wi C Ap and there exists s > 1 such that w| is a doubling
weight and the balance condition (1.5) is replaced by the condition

(17) (rWVA^w^
(L7) \^J)) ^(7)-^

r(J)VA(^W2) Wi(J)
r (J ) ) W2(J) -°wi(J)

for all balls J, J with I C J C B, where

As(I^)=\I\(— [w^dxV .
\\1\JI )

Note that w^I) < As(I,w^) for s > 1 by Holder's inequality, and, as is
well known, w'z(I) and As(I^w^) are equivalent if w^ belongs to some App
class and s is sufficiently close to 1. For some discussion concerning this
remark, and for a result in case p = q = 1, see the end of §3.
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We mention in passing that it is possible to use the Poincare estimates
above to derive analogous estimates for domains other than balls. In
particular, this can be done for domains which satisfy the Boman chain
condition; see the end of the proof of Theorem 2 in §3 for a result of this
type. In fact, the technique used for Boman domains is also needed in order
to prove Theorem 2. John metric domains (see [BKL]) and bounded (e, oo)
metric domains (see [LW]) have been shown to be Boman chain domains,
and thus Poincare inequalities hold on such domains by the argument
in this paper (see also [FGuW]). For the problem of extending Poincare
inequalities to other domains than balls, see also [CDG].

We will use the Poincare estimates for p = 1 to derive analogues
of the relative isoperimetric inequality. The classical relative isoperimetric
inequality for a bounded open set E C R^ with sufficiently regular
boundary QE and a Euclidean ball B is

min{|J3n |̂, \B\E\}1-* < c^-i(Bn^),

where ^f^v-i denotes {N — 1)-dimensional Hausdorff measure. This esti-
mate is more local than the standard isoperimetric inequality IJ^I1"'^' <
cHN-^(9E). Some analogues of the standard estimate which are related to
either Hormander vector fields or vector fields of the type [FL], including
weighted versions, are derived in [FGaWl], [FGaW2]. By adapting the ar-
guments there, we will prove the following corresponding result of relative
type in §4.

THEOREM 3. — Let {Xj} be vector fields of Hormander type on
fl.o D 0, and let K be a compact subset offl,. Let wi, ws be weights with
wi continuous and in Ai(Q,/9,cte), and w^ doubling. Suppose also that
(1.5) holds for p = 1 and some q > 1 uniformly in B = B(x, r) with x G K
and 0 < r < r-o. Let E be an open, bounded, connected subset of^l whose
boundary QE is an oriented C1 manifold such that E lies locally on one
side of9E. Ifr-o is sufficiently small and B = B(x, r) is any ball with x G K
and 0 < r < ro, then

mm{w^BnE),w^B\E)}1^ < c f (^(X^^Y^w.dH^
J a E n B ^ J /

where v is the unit outer normal to 9E, and the constants c, TQ are
independent ofE and B.

In particular, in the case ofLebesgue measure, i.e., in case wi = W2 =
1, the conclusion holds with q = Q/(Q - 1). In any case, the assumption
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that (1.5) holds uniformly in B may be deleted by allowing the constant c
in the conclusion to depend on the constant in (1.5).

The analogous isoperimetric result in [FGaWl], [FGaW2] amounts to
the special case when E lies in the middle half of B. Theorem 3 has an
analogue for the degenerate vector fields of type [FL] : see the remarks at
the end of §4.

Some of the results of the present paper were announced in [FLW],
where applications to Harnack's inequality for degenerate elliptic equations
are given.

2. Proof of the representation formula.

We begin by briefly recalling some definitions and facts about
Hormander vector fields. For details, we refer to [NSW], [FP], [S-Cal],
[RS] and [J]. Following [FP], we say that an absolutely continuous curve
7 : [0, T] —»• Q, is a sub-unit curve if

1(Y(<)^)12 ^El<^(^))'^12

j

for all $ € M^ and a.e. t € [0,T]. The metric p(x,y) mentioned in the
introduction is then defined for a*, y € f2 by

p(x,y) = inf{T : 3 a sub-unit curve 7 : [0,T] -^ ^ with 7(0) = x^(T)=y}.

By [NSW], Lebesgue measure satisfies the doubling condition (1.3)
for ^9-balls. In fact, by the results of [NSW], we have

(") <r-<^<r
for x € K and 0 < s < r < 7*0 for suitable a = a(x) and {3 = /3(aQ,
with N < a < f3. To prove (2.1), first remember that, by the Hormander
condition, there exists a positive integer M such that, among Xi, . . . , Xm
and their commutators of degree (length) less than or equal to M, we can
find at least one TV-tuple of vector fields which are linearly independent at
x. Now define

a = a(x} = min{deg Yi + ... + deg Y^}
(3 = (3(x) = max{deg Vi + ... + deg Vjv},

where degYi is the formal degree of Yi (a fixed integer > 1) and
{yi, . . . ,y^v} ranges over all collections of N vectors chosen from {Xj}
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and its commutators up to degree M such that Yi , . . . , YN are linearly in-
dependent at x. Clearly, a > N and f3 < MN. Actually, /3 < Q, where Q
is the homogeneous dimension defined below.

By the results of [NSW], p. 110, if x G K and 0 < r < 7-0, then

\B^r)\^A^r)=^\\i(x)\r^\
i

with constants of equivalence depending on K and 7*0, where the sum is over
all TV-tuples I = (i i , . . . , Z N ) of integers such that Y^,..., Y^ is a collection
of N vectors chosen from {Xj} and its commutators up to degree M,

Aj(a;)=det(y^,...,y^)(rc),

and
d(J)=degy^+.. .+degy^.

Since AM = ̂  \w\r^ = ̂  iwi^7) n ,
j J

and since for s < r and \i{x) ̂  0 we have

cr^r^)'.
it follows that

(^ACr,^ < A(;K,r) < (^^A^.^), 0 < s < r,

which proves (2.1).
The second inequality on (2.1) leads easily to a natural choice for the

local doubling order 7 defined in (1.4). In fact, let x C K and r < ro, and
let I and J be balls satisfying I C J C B(x, r). Then, assuming as we may
by doubling that I and J are concentric, we have by (2.1) that

'̂ (^
where 7 is chosen so that N^/ = max{/3(?/) : y € B{x, r)}.

We may adjoin new variables (^ i , . . . , td) = t € R^ to (a;i , . . . , rr^v) as
in [RS] and form new C°° vector fields {Xj} mfix R^,

d Q
(X,,V^t) = <Xj,Va;)+y^a^(.r,t)c—, j=l,...,m,

1=1 OLl

so that the new vector fields {^}^i together with their commutators
{Xa}\a\<M of length at most M span the tangent space in R^"^ at each
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point of Q,o x R^, and are also free of order M, i.e., the commutators of
length at most M satisfy no linear relationships other than antisymmetry
and the Jacobi identity. The collection {Xj}^^ is referred to as the lifted
or free vector fields. If mi denotes the number of linearly independent
commutators of length i (the length of each Xj itself being 1), then the
number

M

y^irrii
%==i

Q=E1

is called the homogeneous dimension of R^ with respect to {Xj}. In what
follows, we set f2 = fl, x UQ where UQ is the unit ball in R^, and we
denote by p the metric on f2 x f2 associated with the lifted vector fields
Xi,. . . ̂ Xm- The corresponding metric balls will be denoted B = B(^r).
Given a compact set K C Cl and 7*0 > 0, we have

(2.2) |B($,r)|^

with constants of equivalence independent of $ ^ K x UQ and 0 < r < 7*0.

We will also use the following basic facts :

(2.3) p ( ( x , s ) , ( y , t ) ) ^ p ( x , y )

and

P.4) f^^^c'S^

provided x € K and 0 < r < ro; see Lemmas 3.1 and 3.2 of [NSW] (see
also Lemma 4.4 of [J] for a result about the inequality opposite to (2.4)).

As a first step in deriving the representation formula, we now prove
the following pointwise estimate for the lifted vector fields {Xj}.

LEMMA 2.5. — Let K be a, compact subset off2 and B = B{^Q,r)
with ^o €. K, 0 < r <VQ. Then there are constants c, CQ such that

'/<«;— L )̂̂  ̂
for any / € Lip(cB), where c is independent of f and B, and \Xf\2 =
E(^v/)2.
j

This lemma improves Lemma 3.2 in [LI] by replacing the term
M[(\Xf\ + 1/DXca] in the fractional integral there by \Xf\ 4- |/|, where
M is the Hardy-Littlewood maximal operator. The proof of Lemma 2.5
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will be a modification of the one in [LI], and due to the complexity of
notation, we will only point out the changes that are needed in the proof
there.

Proof of Lemma 2.5. — For simplicity, we will delete the tildas from
the notations Xj, p, B. It is shown in [LI], p. 384-388, that

(2.6) \M^)-m^c[ ^^dr,
JcB P \^^ ' l ) '

for all ^ € B = B(^o,r). We need to show that for some constant CB,
|Mi/^(^) — CB\ is also bounded by the quantity on the right of (2.6).

We also have

\XiM,h{rf)\ < Cr-Q ( (\X,h\ + \h\)W
Jp(C,77)<cr

and
^h^^Cr-Q ( |fa(C)|dC

Jp(C,r7)<cr

by pp. 387 and 388, respectively, of [LI]. Now, unlike what is done in [LI],
we keep the two expressions on the right above rather than bounding them
by maximal functions. As in [LI], we then obtain for $ 6 J3,

|Mi^(0-Ci|

< . [ ^^^(^^(l^l+I^Dffl^.Q,
^ l^<cr r-0^,^-1 dr]

< c I r ~ Q ( [ ^^-i) (1^1 + l^l)(C)riC.
^o,C)<cr \Jp^o^crP^^r )

A simple computation based on (2.2) gives

I dr1 ^Cr
^(So^^crP^^)*3"1

uniformly for ^ 6 B. Thus,

|Mi/i(0 - C'i| < Cr1-^ [ (\Xh\ + |/i|)dC

/• (IX^I+HXC)..
^L p(^-1 dc

since /?($,€) < cr. Therefore, since \Xh\ <, C{\Xf\ + \f\) and \h\ <: C\f\,
and by (2.6),

,,̂  ^ , ^ ^ /• WI+I/D^L ^oi^-^i^L p($,^-1 ^^JB'
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which proves the lemma.

The next lemma concerns the original vector fields.

LEMMA 2.7. — Let K be a compact subset offl, and B = B(xo,r)
be a p-ball with XQ C K and 0 < r < 7*0. Then

\f(x) - fB\ < c [ (\Xf\ + |/|)(^)__^__^ ̂  B,
_ JcB \B{x,p{x,y))\

for any f e Lip(cB), where c is independent of f and B, and fa =
^f^Wy.

Proof. — We first show that the conclusion holds with fa replaced
by some constant CB. We will deduce this from Lemma 2.5 by using the
same sort of argument as in [RS] and [NSW] (see, in particular, Theorem 5
of [NSW]).

^ Let B = B(xo,r) and B = B($o,r) where ^o = (^o,0). Note that
B c B x R^ by (2.3). Extend / to the closure of cB by making it constant
in t, i.e., if $ = (x,t) then /(Q = f(x). Then by Lemma 2.5, since
Xf(rj)=Xf(y)[frj=^t),

^--^L^^^^
-/.,(W|+|/|)(.){̂ (̂,,,̂ ^ }̂̂

^^^ML^O)!^-.}^-
Momentarily fix y and let p = p(x,y). Since p((x,0), (y,t)) > p(x,y)

by (2.3), we have the following estimate for the inner integral :
/• dt ^ ̂ __ /

J^P((^Uy,t))Q-^ - ̂  (2^)<3-l J^^y,^^

°° 1 f
^ 2-/ (2fcp)0-l 7^ ^B((a:>0),2«'+ip)(y> ̂ ^

. ^ 1 (2fc+lp)(^
^cg(2^)Q-l|B^2^p)| by (2.4) and (2.2)

00 ^o 00& °5 w^yii 'S21""""^by t2-11 w l th"= w-
p

= c———— since N > 1.\B(x,p)\
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Hence with CB = c^,, we have

(2.8) |/(.) - c.| ̂  cf^W + |/|)(,) ̂ ^dy, . C B.

It remains to show that CB can be taken to be /B = |JE?|~1 fg f(z)dz.
In fact,

|/B-CB|<— [ \f(z)-CB\dz
W JB

< T^i / {c / ̂ l+ I^D^ior^^^i^} ̂  by (2>8)
1^1 JB I JcB \B(z,p{z,y))\ J

< G / (|X/| + 1/DQ/) {— / ——^——dJ d2/
JcB [W JB \B{y,p{z,y))\ }

since \B(y,p{z^y)\ and |B(^,p(^,^/)| are equivalent by doubling. Hence, it
is enough to show the following condition of Ai-type :

(2-9) m I ̂ f ^dz < c^¥-^^x^6 CB-\B\JB \B(y,p{z,y))\ \B{y,p{x,y))\
To prove (2.9), fix y € cB. Since p(z,y) < cr(B) for z € B, the expression
on the left in (2.9) is at most

J_^/ / - ^\ c21-kr(B)
I5! S \Jc2-"r(B)<p(z,y)<c2^r(B) ) \B(y,c2-kr{B))\

_1_ ̂  \B(y,c2^r(B))\ ,_, _ r(5)
^IBl^Jfi^-M^r '^-'IBI

by doubling. However, if x G c5 (and y € c-B) then p(a;, y) is at most cr(jB),
and by (2.1) with a= N ,

\B(x,p(x,y))\ (p^y)^-1 \B(x,r{B))\
p(x,y) - {r(B) ) r(B)

(2.10) ^cl^^l since AT >1

I ^?1
< c-1-̂  by doubling.r(B)

We obtain (2.9) by combining estimates, and the proof of Lemma 2.7
is complete. D

In the following result, we use Lemma 2.7 to obtain the basic estimate
(1.2) as well as a more local estimate. A similar argument given in [SW]
(see also [FGuW]) needs modification due to the presence of the zero order
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term |/| in the integral in the conclusion of Lemma 2.7. We will use the
notation

(2-11) TO = / f^^f ̂  x e ̂Jn \B{x,p(x,y))\
for the fractional integral transform on Q..

PROPOSITION 2.12. — Let K be a compact subset ofO, and B =
B(xo,r), XQ e K, 0 < r < ro. There are positive constants C, c, and ro
depending only on K, ̂  and {Xj} such that ifk = 0, ±1, ±2,. . . , and Sk,
S^ are denned by

Sk = {x € B : 2k < |/0r) - fB\ < 2^1},
,̂  ={xecB:2k< \f(x) - fa\ < 2fc+l},

then
\f(x) - fB\ ̂  CT(\Xf\^ ,)(x) + C— ( \Xf\dy

\jJ\ J B
for all x € Sk and all f € Lip(cB). Moreover,

\f{x) - fe\ ̂  CT(\Xf\^B)(x), x e B.

Proof. — For a; € 0, define
p"-1 if \f(x)-fB\^2k-l

fk{x) = < \f(x) - fa\ if 2fc-l < \f{x) - fB\ < ̂
{^ if \f(x)-fB\^2k.

Then 2k-'l ̂  fk(x) < 2k-l + \f(x) - fB\. Thus if a; € Sk,

^=fk(x)<\fk(x)-(fk)B\+{fk)B

^ CT([\Xfk\ + fk}XcB)(x) + 2k-l + — f \f - fe\dz
I-0! J B

by Lemma 2.7

^ CT(\Xf\^j{x) + CT(fkXcB)(x) + 2k-l + — f \f - f^dz
\•D\ J B

since \Xfk \XcB < \Xf\^_^

Since 2k~l :< A < 2^,

T(fkXcB){x) < ̂  I ——^——.dy < Cr^
JcB \B{x,p{x,y)\ tf -

where r = r(B) (cf. (2.9)). By applying the known Poincare inequality for
Lebesgue measure and p = q = 1 (see for example [J]), we obtain

^ !/(.)- fB\d^C^^\XfWy.
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Combining estimates, we have for x € Sk that

2k < CT(\Xf\xs^J(x) + Cr^ + 2^ + C— f \Xf\dy.

Since 2k~l = -2^ and Cr2k < -2^ when r is small (independent of fc), we^j o
obtain by subtracting that

2fc<C'T(|X/|^_,)^)+C',—y |X/|dy, a; e S^,

for small r. The first statement in Proposition 2.12 follows from this
since \f(x) — fa\ < 2fe+l for x € Sk- The second statement in the
proposition (which is (1.2)) follows from the first one by simply noting
that T(\Xf\xs^) < T(\Xf\XcB) and (by (2.10))

^jw^cfmw^^^.^B,
^ CT(\Xf\XcB)(x)^ x € B.

This completes the proof of Proposition 2.12. D

3. Proof of the Poincare estimates.

As noted in the introduction, Theorem 1 is a special case of Theorem
2. To prove Theorem 2, we first derive a weaker version in which the domain
of integration on the right side of the Poincare inequality is an enlarged
ball cB, c > 1, rather than B. In order to prove this weaker version for
a given B, we will use the following slightly different form of the balance
condition (1.5) :

/,,. r{I)_ (W2(7)V /Wi(J)\?
w r(B){w^(B)) -'{w^B))
for all balls I with center in cB and r(J) < r(B). The restriction r(I) <
r(B) may be replaced by r(J) ^ cr{B) by doubling. Theorem 2 itself will
follow from its weaker version for the same values of p and q by the results
in §5 of [FGuW]. Some further comments about how to do this, including
an indication of how (3.1) is used in conjunction with (1.5), are given at the
end of the proof of Theorem 2. In fact, by a similar method, it is possible
to prove a version of Theorem 2 for domains other than balls, as mentioned
in the introduction.
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Using Proposition 2.12, we will be able to derive the weaker version of
Theorem 2 by the sort of argument used in [SW], including the adaptation
of this argument to the case p = 1 given in [FGuW]. We need the following
estimate for Tf which is essentially a special case of Theorem 4.1 (and
Remark 4.3) of [FGuW] (see also [GGK] and [SW]).

LEMMA 3.2. — Let l < p < q < o o , K b e a compact subset ofQ,,
B = B(xQ,r), XQ € K, and

(x.^-L'^wS^^w=
J B

for x € B and f > 0. There are constants TQ and C depending only on K,
Q. and {Xj} such that ifr < 7*0 and Wi, W2 are nonnegative weights then

I w^dx < (CL|[/||^(5)A)9, ^>0,
JBn{TBf>t\ 1JBn{TBf>t}

where a \ VP
sup W2(B(^))1/9 ks^yY'w^y^'^dy) Up

L={ ^
sup w^B^x.s))1^ ( ess s\ip[ks(x,y)/Wi(y)]} ifp= 1.

I \^B /

>1

Here,
i f \ ' f s p^^y) \ks(x, y) = mm < ———rr, .-. . .. f

[\B(x,s)\ \B(x,p(x,y)\)

^ = p / ( p — 1), and the sup is taken over all x and s with x € B and
B(x,s)c5B.

We now prove the version of Theorem 2 with an enlarged ball cB on
the right. Let B be a ball of radius r for which the conclusion of Proposition
2.12 is valid. Then
(3.3)

t \f(x)-fB\qw^x)dx= [ • • • + (
JB «/Bn{|/-/B|<2M+l} ^Bn{|/-/B|>2M+l}

where M is selected so that

2^ < C— ( \Xf\dx < 2^
I-0! J B

C being the same constant which appears in the second term on the right
of the conclusion of Proposition 2.12. With Sk as defined there, the right
side of (3.3) is bounded by

2(M+l)^w2(B)+ ^ ( ...^^^(B)^ ^ 2^+1^W2(^).
fc>M+lvsk fc>M+l
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For k >: M + 1, it follows from the choice of M and Proposition 2.12 (with
T and S^ as denned there) that

Sk C [x e B : T(\Xf\xs^)(x) > 2fc-l/C}.

Set A = sup tw2(Bn{Tf > t})1^ where the sup is taken over all t > 0 and
all / > 0 with supp(/) C cB and ||/||j^ < 1. Then

f 2fc-l/^ }~q

W2W<A^ , /G———I .[IIWIx^JI^J
Therefore, (3.3) is bounded by

2(^)^(5) + ^ 2^1)^A^{c[||X/|^_JI^/2fc-l}9

fe>M+l ;

( \ 9/P

^ 2(M+1)^W2(B) + (4GA)^ ^ /> |X/|PWI& since q>pfc^M+i"^-! y
( r r \q / f \ q / p

^(4C)^2(B) .^y |X/|&j +^CAy^ \Xf\Pw,dx)

by definition of M and since the 5^_i are disjoint. Dividing by w^B) and
taking the ^th root, we obtain

( \ [ \V9(3.0 [^mL^-'^)
^jw^^^w^".

In case p = 1, the fact that wi e Ai implies that the first term on the right
of (3.4) is bounded by a multiple of (r/wi(B)) J^ \Xf\w^dx. On the other
hand, i f p > l , b y Holder's inequality and the fact that wi e Ap, we have

r r r / r ^ ^ x ^ - 1 ) / ? / / ' \ i / pw /,Mdx £ w (/, "r 'dx) {Lm{'^}
( i r V^

^(...w/,'̂ '"^) •
Thus, in any case,

/ i r \ i /9
—7^ / l/'/Bl^^

(3.5) VW2(B) yB /

r AwifB)1^] f i r \ l /p^r^s^K^Lwi'^) •
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We now show by using Lemma 3.2 that the term Aw^BY^/rw^B)^
which appears on the right in (3.5) is bounded. Consider first the case
p = 1. By the definition of A, Lemma 3.2 applied to the ball BQ = cB, and
doubling, it is enough to show that if x € BQ and s < cr(Bo), then

(3.6) W2(BOr,5))1/^ esssup L(^)——1
2/CBo L ^l(?/)J

is bounded by a multiple ofr(BQ)w'2(Bo)l/q/w-i(Bo). Indeed, the assertion
then follows by doubling since BQ = cB. Let x,y ^ BQ and suppose that
y C B(x, 2A;+15)\ B(x, 2^5) for some k = 0,1,.... (The argument for the
remaining case when y e B(x^s) will be similar but simpler.) We may
assume that 2ks <, cr(Bo) since all points lie in Bo. Then

k ( \ 1 2ks 1
wy)w,{y)-c\B(x^s)\w,(y)

by definition of ks(x^y) and (2.1) (with a = N > 1)
2ks IB^^)!

- c\B{x,2ks)\ Wl(B(^,2fc+ ls))
for a.e. y € B(x^ 2A;+ls) by the A\ estimate on w\

ofcs

^ c—I~D(—oT"^" ^ doubling.Wl(Jy(.z;,2/cs))
This estimate is also valid with k =J) in case y € B{x, s). Multiplying both
sides by w'2(B(x^s))l/q and using the balance condition (3.1) in the form

2^ /w^^^n179^ ^1(^(^,2^))
^(Bo) \ W2(Bo) Y -c wi(Bo)

(recall that p = 1 and 2^5 < cr(Bo)) and the doubling property of the
weights, we see that (3.6) is at most a multiple of

r(Bo)w2(Bo)1/^ f W2(B(^,5)) V79 ̂  r(Bo)w2(Bo)1^
wi(Bo) 1 fc>5 W2(B(a;, 2^)) J wi(Bo)

as desired.

In case p > 1, with the same notation as above, if a; € Bo and
s < cr(Bo),

f k^yY'w^y^^dy
JBQ

^ g (iB^) L^^'^
B(!E,2fc»)CcBo

y [ 2fe5
^c

*< 1^'
^ [wi(B(.r,2^))i/PfcSo

2''»$cr(Bo)
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since wi e Ap and by doubling

^p^H E »,(B(̂ ,)-
fc>0

2ks<cr(BQ)

by (3.1)

^ ̂  r^o)w2(Bo)^1 1
- [ w^BoV/P J W2(B(a;,s))PV9

since the reverse doubling condition w^(B(x, 2s)) >_ ^w^{B(x, s)) for some
7 > 1 implies that the last sum is at most ^ {^w^B^x, s))}-^ =

k>0
cw^{B(x, s))-^^. This form of the reverse doubling condition follows easily
from the doubling condition in any metric space in which annuli are not
empty (see [W], (3.21); in fact, the value of a there can be chosen to be
2 in the case of a metric space, as the argument shows). If we combine
the estimate above with Lemma 3.2 and the definition of A, we obtain the
desired estimate for A.

Thus it follows by (3.5) that
/ 1 f \1/^ / i r \ I/P

[^B)]^-^9^) ^(wWj^l^) •
which is the weaker version of Poincare's inequality. Note that the constant
fp in this weaker version can be taken to be the Lebesgue average of / over
B.

As mentioned earlier, this weaker version leads to Theorem 2 itself by
using the results in section 5 of [FGuW], and we now briefly outline those
results, which hold in a more general context. If (5, d) is a metric space, we
say that an open set D c S satisfies the Boman chain condition F(r, M),
r > 1, M > 1, if there exists a covering W of D consisting of balls B such
that

(i) E XrB(x) < M^D(x) for all x e S.
B€W

(ii) There is a "central" ball Bi e W which can be connected to
every ball B e W by a finite chain of balls Bi,. . . , B^B) = B of W so that
B C MBj for j = 1, „ . . , £(B). Moreover, B^nBj^ contains a ball Rj such
that Bj U B^-i c MRj for j = 2 , . . . , £(B).

We then have the following result.

THEOREM 3.7. — Let r, M > 1, 1 < p < q < oo and D satisfy the
Boman chain condition ̂ (r, M) in a metric space (S, d). Also, let p, and v



596 B. FRANCHI, G. LU & R.L. WHEEDEN

be Borel measures and fi be doubling. Suppose that f and g are measurable
functions on D and for each ball B with rB C D there exists a constant
fa such that

\\f-fB\\L^W<A\\g\\^rB)

with A independent of B. Then there is a constant fo such that

II/ - fD\\L^{D) ^ ^IHlL^D)

where c depends only on r, M, q and p,. Moreover, we may choose fo = /Bi
where Bi is a central ball for D.

The proof of Theorem 3.7 consists simply of adapting the argument
given in [Ch] in case S = M71 and d{x, y) = \x - y\. The result also holds in
d is merely quasimetric. See the remarks following Theorem 5.2 of [FGuW],
and see [Bo] and [IN] for earlier basic results.

For the next result, we impose the following "segment" (geodesic)
property for a ball Bo in the metric space (S, d) :

If B is a ball contained in Bo with center x p ,
then for each x € B there is a continuous one-to-one curve

(3.8) 7=7^(^0<^1, inB
with 7(0) = XB, 7(1) ^ x and d(xa, z) = d(xB,y) + d(y, z)
for all y , z € 7 with y = 7(5), z = 7(1) and 0 < s < t < 1.

We then have

THEOREM 3.9. — Let (S, d) be a locally compact metric space, BQ
be an open ball in S which satisfies condition (3.8), and p, be a doubling
measure on BQ. Then BQ satisfies the Boman chain condition ^'(r,M) for
any given r with M depending only on r and the doubling constant of p,.

For a proof, see the proof of Theorem 5.4 of [FGuW].

Let us now indicate how to use Theorems 3.7 and 3.9 to complete the
proof of Theorem 2. Fix a ball B = B(x,r) with x e K and 0 < r < 7*0.
Condition (1.5) for B (together with the doubling property of the weights)
clearly implies that

'^f^Tr(J) /W2(J)V /Wi(J)y
r(J) {w^J)} -^{w,(J))r ( J ) \W2(J)^ \Wi(J)^

for all I with center in cj and r(I) < r(J) provided J is any ball with
the property that r J c B for a suitably large constant r depending on c.
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Since this is just condition (3.1) for J, we may apply the weaker version of
Theorem 2 to any such J, obtaining

/ i [ \i / i r \i
(——^{f-fj^dx] <Cr{J)(——— \Xf\?w,dx) .
\^2(J) J j ) V^l^) JcJ )

We also have
w^J)^r(J) w^B)^r(B)

W^JV/P - W^BY/P

for all such J by (1.5). Moreover, condition (3.8) holds for B. In fact, (3.8)
holds for balls in complete metric spaces of homogeneous type for which
the metric is the infimum of the lengths of the curves between two points
(a length space in the sense of [G]); indeed, this follows from [Bu] since
any complete metric space of homogeneous type is locally compact. The
conclusion of Theorem 2 now follows from Theorems 3.9 and 3.7, applied to
B. Note that since the constant fa in the weaker version of Theorem 2 can
be chosen to be the Lebesgue average of / over j8, it follows from Theorem
3.7 that the constant fp in Theorem 2 can be chosen to be the Lebesgue
average of / over a central sub-ball in B. By a standard argument, fe can
also be taken to be a w^(B)~1 fg fw^dx.

In passing, we note that the argument used above in order to obtain
Theorem 2 from its weaker version can be adapted to derive an analogue of
Theorem 2 for suitable Boman domains. In fact, let D be a Boman domain
of type ̂ (r, M), and let B\ be a central ball for D. By definition, each ball
J in the covering W of D satisfies rJ C D. Define

A = sup
i,j:

IC.J,rJcD

'r(J) /W2(7)^/wi(7)\-?'
r(J) \W2(J)} \wi(J)}

If D is a compact subset of 0 with small diameter, and if r is sufficiently
large, it follows from the argument used above that

\\f-fD\\L^(D)^cA\\Xf\\^(D),

with /D equal to the Lebesgue average of / over B\.

The verification of the result forp = g, 1 < p < oo, which is mentioned
in Remark 1.6 is analogous to that of Theorem II in [FGuW] and can be
derived directly from the strong type estimates for T given in Theorem
3(a) of [SW], using only the representation (1.2) rather than the more local
version. Actually, all the cases of Theorem 2 except the case p = 1 can also
be derived in this way. We omit the details.
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Finally, in case p = q = 1, if we assume that w^ is doubling and
wi,W2 satisfy the condition

(3.10) ——— / ——^-V——^Wdx < c-^w^y) a.e. in Iw ^ I ) J i \B(y,p(x,y))\ - wi(J) lu//

for all balls I C B, then the conclusion of Theorem 2 holds with p = q = 1.
In fact, by Proposition 2.12 and FubinFs theorem, if J is a ball with cJ C B,
c > 1, then

^/W-fMx)dx

£c«i')/.wfe)l(/,^&w2(^)-"
^^L™^'"1^

by (3.10) with I == cJ (note that \B(x, p(x, y))\ - \B(y, p(x, y))\). Theorems
3.7 and 3.9 then show as before that

——— / \f-CB\^dx<c^- ( \Xf\w,dx^(^f) J B w-t(B) J B
for some constant CB, and as usual CB can be taken to be w^(B)~1 f^fw^dx.

We would like to point out a misstatement in Lemma (6.1) of [LI,
page 395]. It should instead be stated there that a condition like (3.1) above
with (p,g) leads to the two-weighted Poincare inequality in Lemma (6.1)
with (p, go) for some go < q, instead of with qo = q as stated. This can easily
be proved by using Lemma (6.9) in [LI]. The difficulty with the proof as
given in [LI] comes in the passage from the balance condition (3.1) for the
original vector fields to the one for the lifted vector fields. However, such
a loss in q in Lemma (6.1) does no harm in deriving Theorem A in [LI].
On the other hand, by using the new representation formula in Proposition
2.12 above for the original vector fields, we have avoided such an argument
altogether and proved the weighted Poincare inequality for the same value
of q that appears in the balance condition.

4. Isoperimetric results.

In this section, we prove Theorem 3 and briefly discuss some of its
variants, including an analogue for the degenerate vector fields of type [F],
[FGuW].
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Let E be an open, bounded, connected set in Q. whose boundary 9E is
an oriented C1 manifold such that E lies locally on one side of its boundary,
i.e., assume that for any x e 9E there is a neighborhood 0 of x in R^ and
a C1 diffeomorphism (p : 0 —> y?(0) C W1 such that

^(On9E) ={ye ^(0) : VN = 0}
(4.1) ^(On^) = [y € ^(0) : VN < 0}

^(0\E) = {y e ^(0) : ̂  > 0}.

Let {(Oj, y?j) : j = 1,..., 1} be a finite collection of such local coordinate
i

systems such that |j Oj covers a neighborhood of 9E, and let {^j}^=i be
j=i

a corresponding smooth partition of unity with supp ^j C Oj and ^j > 0.

If (pj = (y^-i , . . . , (pjN)i it is easy to see that the function
i

a(x)=^/tl;j(x)(PjN(x)
j=i

is a C1 function in a neighborhood Wo of 9E such that
a{x) > 0 in WQ\E, a(x) < 0 in WQ H E,
and a(a:) == 0 if x € (9£1.

Moreover, ^7a(x) ̂  0 on 9£', and hence we may assume that ^7a(x) -^ 0 in
Wo, and without loss of generality we may also assume that [Va(.r)| < 1
in WQ. In fact to show that Va(x) -^ 0 on 9E, note that

Va(rc) = ̂ ^j(x)^(pjN(x) if x € 9E,
3

since, by (4.1), ipjpf(x) = 0 on 9E, and so also V^j(a;)y?jjv(^) = 0 on
9E. Now let ^(a') be the outer (relative to E) normal to 9E at x. Since
V^TV^O:) is also normal to 9E at a;, and in fact by (4.1) is an outer normal,
(V^-N(^), ̂ )) > 0 for x € 9EnOj, j = 1,..., I . Thus, by the formula for
Va on 9E, we have (Va(a:), i^(x)} > 0 if re € 9£1, and therefore Va 7^ 0 on
9E.

For small e > 0, let
a"1"^) ==max{0,<7(.r)} if a; € Wo, and cr4'^) = 0

if a; G £W,
^(^ma^O.l-^Ve}.

Then both cr4" and /c are Lipschitz continuous functions defined in a
neighborhood of£', and the Lipschitz constant of a4" is at most 1. Moreover,
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cr^(x) = 0 if and only if x € £", and \QE\ = 0, so that fe converges a.e.
to the characteristic function of £1, ^^;, as e —»- 0. Keeping in mind that
(7+(rc) = a(x) if a(x) > 0, we get from Theorem 2 (with p = 1) that

(/a ̂ - W^B) //^w^-^rB W2(,.D; Jfi

<Cr

<Cr

-^^f^Xf^^dx

w2(By/q 1 / |X<7(;r)|wiOc)(fa
Wl(.D) e JBn{0<<r(a;)^e}

if B = B(x,r), x € K, 0 < r < ro. We can cover A" by a finite family of
balls [By = B{xj, ro), j = 1,..., J}. By (1.5) for p = 1,

W2(B)1/" W2(B(^,ro))1^
wi(B) - 0 wi(B(^,ro)) •

On the other hand, x € B, for some j = 1,..., J , and hence Wi(B{x,ro))
is comparable to w,(Bj), ^ = 1,2, for this j by doubling. Hence,

rw2(B)1/" . r wa^j)1/9 . , ,-i
————— <cmax^ro————, J =1,...,J>wi(-B) I wi(Bj) Jwi(B) - I " wi(Bj)

=CK.

Hence,
(4.3)a i r \ fq

l^ - ~Tm / ^(^^(^^l^s^)^? W2(^} JB /

<^ l/> (^X^x^'w^dx
€ 7Bn{0«T(rr)<e} v ̂  /

-CK\ I'dt { (^(^^^Y^BMwi^d^-i^)
e JO J{a(x)=t} ^ J ' \va\/ /

by the co-area formula ([Fe], Theorem 3.2.12) and since w\ is continuous
by hypothesis. Now let c —^ 0. The term on the left in (4.3) tends to

i

^ - a^ '-'̂ )a w^B^E) \9
'B \^' W2(B)

=[(•^))'-^+(^))'-^'
1 •}1/Q

r / i \ 9 -ji/9
> M min{w2(Bn^),W2(B\£)}

= jmin{w2(BnE),W2(B\£)}l/g.
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To study the behavior of the expression on the right side of (4.3),
we first consider the inner integral there with ')Ca(x) replaced by a larger
continuous analogue ^(x), rj > 0, 0 < \ri <: 1, with ̂  = 1 on B and
supported in an ^-neighborhood of B (in the usual Euclidean sense) :
consider then

/ \ i / 2

(4-4) ^ ̂ <x^)2) ^x^^-^

Consider the set G = {(x,t) C WQ x (-6,6)}, for small 6 > 0, and the
function F(x, t) = a(x) -1 in G. Since \7a(x) -^ 0 in WQ D 9E, we may
assume by the implicit function theorem that WQ = UQi is the union of a
finite number of Euclidean cubes Qi with centers on 9E such that

{(x, t) C Qi x (-6, 6) : F(x, t) =0} = {(x', ̂ Qz/, t), t) : x' € Q[,t e (-^ ̂ )},
for instance, where (^ is the projection of Qi along one of the ^-coordinates
(we choose the XN -coordinate above for simplicity; the coordinate may
vary), and gi is a C1 function. Thus, for t € (-6,6),

{x € Qi: a(x) = t} = {(x'.g^.t)) : x' € ̂ },

so that we can parametrize {(r(x) = t}^Qi for small t by means of g i ( x ' , t),
x ' e Q\. If {^} is a corresponding smooth partition of unity, then (4.4)
equals

/ \ i / 2

E / E^-' |̂ )2 X^iW,dH^iJQin{aW=t} \^ |V(T| ;<Q^W=t} \Y J5 1^1

=E / (•••)l/2(a;^^(^^))Xr,(^,^(^^))^(^,^(^^))•
^ ' / ^

wi(^,^(^,^))(i + iv^Oz/.t)!2)1/2^.
By the continuity of all functions involved (recall that Vcr is continuous and
|Vcr| 7^ 0 in WQ, so that Vcr/|Vcr| is also continuous), this sum is continuous
at t = 0. Since {x : a(x) = 0} equals QE by (4.2), and Vcr/|Va| = v on
9E, it follows that the limit as e —> 0 of the expression on the right of (4.3)
is at most

CK I (Z^'5^2) X^dHN-i.JOE v ^ /

Theorem 3 now follows by letting rj —> 0.

If E is not a regular domain, the following relative isoperimetric
inequality can be proved by repeating the arguments used in the proof of
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Theorem 3.2 of [FGaW2], except of course that we use Poincare's inequality
instead of Sobolev's inequality.

THEOREM 4.5. — With the same assumptions as in Theorem 3,
except that now w\ need not be continuous and E may be any measurable
set in f^,

mi^w^BnE)^^^)}1^ ^ c lim inf-Wi({;r C B : p{x,9E) < e}),

with c independent of B and E.

As in [FGaWl], [FGaW2], we can call the expression on the right above the
(N — l)-dimensional lower Minkowski p-content of 9E in B with respect
to the measure wi.

Analogues of Theorems 3 and 4.5 can be derived for vector fields of
type [FL]. The required Poincare estimates are discussed in Theorem 1 of
[FGuW] and in the comments at the end of the introduction there. These
analogues include the isoperimetric results in cases II and III of Theorem
3.2 of [FGaW2]. We omit their precise statements, and mention only that
their proofs use the sort of representation formula in [FGuW].
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