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REFINED THEOREMS OF THE BIRCH AND
SWINNERTON-DYER TYPE

by Ki-Seng TAN

Introduction.

In their paper [MT2], B. Mazur and J. Tate propose conjectures
which are analogues of the classical Birch and Swinnerton-Dyer conjecture
for each Well curve E defined over Q. In this paper we will generalize the
context of their conjectures by replacing Q by any global field, even of
finite characteristic, and sharpen, in a certain way, the statement of their
conjectures. Our main result, then, will be to establish the truth of a part
of these new sharpened conjectures, provided that one assume the truth of
the classical Birch and Swinnerton-Dyer conjectures. This is particularly
striking in the function field case, where these results can be viewed as
being a refinement of the earlier work of Tate and Milne (see [T2] , [Mil]),
who establish the classical Birch and Swinnerton-Dyer conjecture in that
context, subject only to the hypothesis that some ^-primary component of
the Shafarevitch-Tate group is finite (for any £).

As in the classical Birch and Swinnerton-Dyer conjecture, the main
part of the Mazur-Tate conjectures also contains two parts: one is about
the «order of vanishing)) and the other, the «leading term)) (the refined
formula). In the Mazur-Tate conjectures, the analogue of the classical
L- function is the theta element. For each positive integer -D, the theta
element QD is defined via the modular form associated to E. It is an
element of the group ring ZIM"1]^/ =L DZ)*], where M is an integer
which depends only on E. The theta element interpolates the special values
of the L-series attached to the characters of the group (Z/ =L DZ)*, and is

Key words: Elliptic curve - -L-function - Birch and Swinnerton-Dyer conjecture -
Mazur-Tate conjecture - Height pairing - Corrected discriminant.
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in fact characterized by this property. This theta element can be viewed as
a «-D-adic L- function », in the sense that if we take D = p"' for a prime p,
and n > 1, and take the projective limit of Qpn, then essentially the p-adic
L-function studied in [MTT] is obtained.

The «order of vanishing» conjecture says that for D admissible
(see Section 3.1) QD should be in the r-th power of the augmentation
ideal I . Here r is the rank of the associated extended Mordell- Weil group
(see 2.2).

In the refined formula (see conjecture 1 in Section 3.1), the analogue
of the elliptic regulator is called the corrected discriminant. It is defined via
the Mazur-Tate global pairing which depends on D. There is a canonical
mapping sending the corrected discriminant into an element of J7'//7^1. The
right-hand side of the refined formula is a product of this element and other
arithmetic data of the elliptic curve such as the orders of III, E(Q)tor? etc.
The left-hand side is just the image of QD in I 7 ' / ! 7 ' ^ ' 1 . The conjecture can
be viewed as the finite « exponentiation » of the conjecture raised by Mazur,
Tate and Teitbaum in [MTT] (see also [MT2] ). An interesting feature of
these conjectures is the possibility of the « extra order of vanishing », which
occurs when r > rfc(E(Q)). In this case, the extra rank of the extended
Mordell-Weil group comes from the number of split-multiplicative primes
dividing -D, and the local Tate period is involved in the conjecture. For
result about the case r = 1 and rfc(E(Q)) = 0, see [GSt].

To generalize the conjecture to each elliptic curve E/j<- over a global
field K, we need to define the theta element and the corrected discriminant
in the general context. The Mazur-Tate pairing and the associated corrected
discriminant are actually defined for every global field as long as D is
admissible [MT2]. Over the function field, Deligne has shown [D] that every
non-constant elliptic curve is modular. Using this, in [M], Mazur defines an
associated theta element. In [Tn2] the theta element for any elliptic curve is
studied. It is shown that the theta element is in the group ring Z^^lYo],
where p is the characteristic of the field. The coefficients of QD have
bounded denominators. For certain cases, a bound can be obtained as a
function of the genus of the field and the arithmetic conductor of the
elliptic curve.

Over number fields, not much about the theta elements is known
except for the case discussed in [MT2] .

In this paper, for each extended divisor D of K (see 1.1), we define
the theta element QD as an element of the group ring of the Weil group WD
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characterizing the abelian extensions of K with the conductors dividing D,
provided that the analytic continuations of some L-series exist. It is defined
to interpolate special values of the L-series attached to characters of WD'
Notice that this definition makes sense for the number field case as well.

For each quotient group G of WD^ we define, via the quotient map,
the theta element QG' Assuming that there is an integer M such that
QG € ZtM"1]!^] (this is true in the Mazur-Tate case and in the function
field case) and that D is admissible, we then propose the conjecture
(conjecture 1), which generalizes the main part of Mazur-Tate conjecture.
Over the function field, this conjecture generalizes the classical Birch and
Swinnerton-Dyer conjecture (see 3.2).

Conjecture 1 depends on the chosen integer M. If r > 0 and G is killed
by M, then it is easy to show that QG e P for every i > 0 and conjecture 1
is trivially true (see 3.3). It is then natural to multiply QG by an integer z
such that z ' QG €: Z[G] and to try to sharpen the conjecture using z ' OG-
In this paper, we treat the case where G is of the type ( £ , . . . , £) for some
prime number £ (the horizontal case). The reason for choosing this type of
group is that the augmentation quotient P/P~^1 (I being the augmentation
ideal of Z[G]) is well studied. A theorem of Passi and Vermani (see [PV],
restated as Proposition 3.8 in this paper) identifies this F^-space with the
space of F^-valued zth degree homogeneous polynomial functions on the
space G' = Hom^(G,F^). Using this, we are led to believe that z ' OG
should be in J6, for some e >_ r defined in 3.4, and hence, the sharpened
conjecture, conjecture 2, is of a refined formula of two elements of f/I^1.
We have e > r if and only if t divides z. If this is the case, then conjecture 1,
which deals with P / P ^ ~ 1 , is trivial while conjecture 2 usually is not.

The main results proved in this paper concern conjecture 2. Assume
that G is horizontal. Let L / K be the field extension with Galois group
equal to G. To obtain our main theorems, we need to assume that
the Birch and Swinnerton-Dyer conjecture is true for E/^-, and in the
number field case, it is also true for E/i/ for every intermediate field
extension L ' / K . As our conjectures relate the analytic and the arithmetic
feature of an elliptic curve, this kind of assumption seems inevitable unless
we are expecting to prove some result about the Birch and Swinnerton-
Dyer conjecture. To simplify the argument and to avoid certain difficulties,
we also assume that t is outside a finite set of primes which depends only
on E/K (see Definition 3.13). Under these assumptions, we have z ' QG € /e

(Theorem 3.12) and the eth degree homogeneous polynomial functions
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corresponding to both sides of the formula in conjecture 2 have the same
zero set (Theorem 3.14). These are the main theorems of this paper. They
imply that if either G is cyclic or e = 1, then conjecture 2 is true up to a
non-zero constant in Fj" (Theorem 3.16). Theorem 3.21 says conjecture 2
is true, if K is a function field with characteristic ^, rk(E(J^)) = 0 and
QD ^ ^^[G]. For the examples of elliptic curves satisfying these additional
conditions, see [Tn2].

This paper is organized in the following way. In Section 1, we discuss
the definition of the theta element. In Section 2, we recall briefly the
Mazur-Tate pairing, and the associated corrected discriminant. We also
derive some related results to be used in the proofs contained in Section 4.

In Section 3, we discuss the conjectures and state the main results
of this paper. Conjecture 1 is proposed in 3.1. In 3.2, we show that in the
function field case it generalizes the classical Birch and Swinnerton-Dyer
conjecture. In 3.4, we propose conjecture 2 and show that in some special
case we can use the main theorems to deduce the truth of conjecture 2.

The proofs of the main theorems, Theorem 3.12 and 3.14, required
some preliminary developments. The necessary technical tools are given in
Section 4 and 5 and the proofs of the main theorems then follow easily, and
thus are postponed until Section 5. The proofs of the main theorems rely on
the thorough understanding of the possible degeneracies of the Mazur-Tate
pairing. This is the main content of Section 4.

Section 5 then concludes the paper by using the results of Section 4,
the Birch and Swinnerton-Dyer Formula, and a product formula for the
L-functions (in 5.2) to complete the proofs of the main theorems.

We should remark that some of our main results and their method
of proof are analogous to those used by Gross [G], in his formulation of a
conjectured refined class number formula, which itself is an analogue of the
Mazur-Tate conjecture. In this conjecture, the theta element interpolates
the special values of the abelian L-functions and the counterpart of the
corrected discriminant is the G-regulator. Gross also uses the product
formula of the L- function, the classical class number formula, and the
genus theory to obtain a result for the horizontal case. As the Birch
and Swinnerton-Dyer formula is an analogue of the class number formula,
our theory in Section 4 can be viewed as «the genus theory for elliptic
curves)). Recently in [Tn4], new results about the Gross conjecture for the
«vertical case)) (e.g. G c^ Z^) have been obtained. We hope to discuss the
vertical case for the Mazur-Tate conjecture in a forthcoming paper.
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of the manuscript.

1. The theta element.

In this section, we define the theta element associated to an elliptic
curve over a global field and discuss some of its basic properties. To
make such a definition, we need to assume the existence of the analytic
continuations to s = 1 of certain associated L-functions. When the global
field is a function field or the elliptic curve is a Weil curve over Q, the theta
element will have good rational and integral properties.

1.1. Notations and assumptions.

Let K be a global field. We use the usual notations A = Aj<,
A* = A^- for the adele ring and the idele group of K. For each place ^,
use respectively the notations Ky^ 0-y, ky, g^, for the completion of K at v^
the v-integers of Kv, the residue field (for non-archimedean v) and its order.
The notation 5oo will denote the set of all archimedean places of K.

An extended divisor is a formal sum

D=^av'v, o^eZ,
v

with the restriction that ord-u(-D): = Oy is 0 for complex v and either 0 or 1
for real v. The finite (non-archimedean) part and the infinite (archimedean)
part of D will be denoted by -Do and Doo respectively. The support of D,
denoted Supp(D), is the set consisting of places v such that ord^(-D) 7^ 0.

Throughout, whenever we refer to a quasi-character, we assume that
it has the following property.

ASSUMPTION 1. — Each quasi-character \ of the idele class group
K* \ A^- is assumed to be trivial on the connected component of K^ for
each archimedean v.
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Thus for real v, the component ̂  depends only on its value at —1.
This is either 1 or —1, in which case we write c^v(x) = 0 or 1, and call \
even or odd at v, respectively. For each finite v, use dv{x) ' v ^° denote
the conductor of the ^-component \y. From this we define the extended
conductor of \ as the extended divisor

DX=^a^X)'V.

v

For a non-archimedean place v ^ Supp(D^), the value Xv{^v) for a prime
element Tr-y of Oy is independent of the choice of Try. Thus define

x{v) = x(^v)'

Analogously, we also define the extended conductor of an abelian
extension L / K in the obvious way.

For an extended divisor Z), let

^o = n ^ n (i+c^-a),
v^Supp(-Do) v€Supp(Do)

u^ =( n ^ ) - ( n^) '
v^Supp(Doo) ^eSupp(Doo)

where only the non-archimedean (resp. archimedean) v are taken in the first
(resp. second) formula. Let UD = ^Doo x ^o- Then UD can be embedded
into A* in the obvious way. The (discrete) Well group is defined as

WD=K^\^/UD.

The Weil group is finite in the number field case. In the function field case,
it is an extension of Z by a finite group. For a place v ^ Supp(^) the prime
element TT^ determines an element [v] € WD called the Frobenius element.
This is independent of the choice of TT-y.

A quasi-character \ of the Weil group WD can be pulled back to
a quasi-character (also denoted by ^) of the idele class group K* \ A*.
The quasi-characters obtained from WD are those whose extended
conductors divide D. A quasi-character \ of WD is called primitive
if D^ = D.

Let R be a subring of C. A quasi-character \ of WD can be extended
uniquely to an JP-algebra homomorphism from the group ring ^[TVo] to C.
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All the ^-algebra homomorphisms from JR[WD] to C can be obtained in
this way.

Let E be an elliptic curve denned over K. For each non-archimedean
place 'y, let E/<^ be the Neron model of E/j^ and let E/j^ be the special
fibre of E/(^ at v. Denote by Eo/^ the connected component of E/^,
Eo(^) the part of 'E(Ky) whose reduction at v is in Eo/^, and E^(Ky)
the part of Eo(Kv) with trivial reduction. The number of ^-rational
components of E/j^ will be denoted by my. The arithmetic conductor
of E/j< will be denoted by N.

For a real place v, let my denote the number of components of E(JCy)
regarded as a topological group. Then my is either 1 or 2. Denote the
identity component ofE(JCy) by Eo(jFCu)-

For a non-archimedean place v, let \y be the integer defined by

(1) A,
1 + Qv — |Eo(A^)| for good reduction,

Qv — |Eo(fcu)| for bad reduction.

For each quasi-character \ and each non-archimedean v not in
Supp(^), let

f 1 - A, . xW • ̂ s + XW2 • ̂ -2S it v 1 Supp(TV),
(2) L^s)={

[ l - X v x(v) • q^8 live Supp(TV).

For other v, let Ly{^ s) = 1. The associated L-series

LOc,s)=LE/^(x,5)
is defined as

£(x,s)=n£,(x,s).
V

If ^o ls the trivial character, we denote

L(5)=LE/^(s)=L(^o,5).

In this paper, a field extension L / K is always abelian, with its Galois
group usually denoted by G. For a place v of K, we will fix a place w
of L, which is sitting over v. Denote Gy = Gal(Liu/JC^). Sometimes we
denote Ly = Lyj when the choice of w is not important.
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1.2. The global period.

In this section we define the relative global period 0^ ofE/j^ associated
to a character \ of A*/Jf*. The basic idea comes from Tate^s paper [T2].

Let [i = (f^v)i where for each place v of K, fJ,y is the Haar measure
such that

( /^y(O-y) =1 [fv non-archimedean,

liv = Lebesgue measure if v archimedean.

Let dj<, r2 and QK denote respectively, the absolute discriminant, the
number of complex places and, in the function field case, the genus of K.
Recall (c/. [Wl]) that the measure \^\ of the compact quotient A/K can be
evaluated as

f ll^fc ||-1/2 2~r:2 in the number field case,/r»\ 1 1 1 " 1 1

(3) |/^| = <
t q91^ - in the function field case.

For x € Ky, let \x\y denote the normalized absolute value, i.e.,

p,v(xU) = \x\y ' p,v(U) for U C Ky.

Choose a nonzero JC-rational first degree invariant differential form a; on E.
Then u) and fly determine a Haar measure [o;|^^ on the compact analytic
group E(JCy) in a well-known way (c/. [W2]).

For archimedean v, define the local period

(4) ^= / M .̂
^E(^)

For non-archimedean v, let a;o,u be a local Neron differential, i.e. a first
degree invariant differential form on the Neron minimal model E/<^ such
that the restriction o)o,v of UJQ^ on the special fibre E^ is nonzero. On the
generic fibre, we have U J / U J Q ^ 6 K^ and define the local period ̂  as

UJ
(5) 0; =

I Cc/0,1; Iv

We put these local data together to define the global period.
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DEFINITION 1.1. — With the notation of (4) and (5), the global period
is defined as

(6) ^ = ^ E / K = ^ ^ = I I ^ -
v

By the multiplication formula of the norms, Y[ \x\y = 1, for all x € K*
v

and we see that the definition of fl, is independent of the choice of u.

Consider a Weierstrass equation of E over K,

y2 + a\xy + a^y = x3 + a^x2 + a^x + OG,

and the differential a; (see [T3]),

uj = drc/2z/ + a^x + 03 = d^//3a;2 + 2a2^c + 04 - oi2/-

Let <$ be the discriminant associated to this equation. For each non-
archimedean place v, choose a minimal Weierstrass equation and take the
corresponding invariant differential c^ in the similar way and let 6y be the
discriminant of this equation.

DEFINITION 1.2. — Define the global discriminant A = Aj< by

(7) A = ^ ordv(6v)'v.
V<^S^

Since each o^ can be extended to a Neron differential over 0-y, we
have the following equality of divisors

(8) A-12.V ordj^-)^=(<5).
4^o ^o-v/

Note that if K is a function field with constant field Fg, then ^ is just
the norm of ^ ord^(a;/a;o,v) • ^5 so (8) and the multiplication formula

V^S'oo

together imply

(9) n = g-^^V12.

Let ^ be a character of the idele class group and L / K the cyclic
extension determined by ^. Let Odd^ be the set of real places where \
is odd. For each v € Odd^, let w be the unique complex place of L sitting
over v.
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DEFINITION 1.3. — The relative global period ̂  is defined as

do) ^ = n^^'^^^^'n^
^Odd^ JE(L,) 1̂  • ̂  ^Odd^

The definition depends on \ and E. It is independent of the choice of a;.

DEFINITION 1.4. — For each finite separable extension L/K^ define
the relative discriminant (of the elliptic curve E) as

(11) ^L/K := A^ - A^.

Here we view Aj< and hence ^L/K as a divisor of L.

Notice that Aj< is an effective divisor supported only on places which
are both ramified (under the extension) and bad (for the elliptic curve).
Using (8), one can easily see that ^L/K ls divisible by 12.

For an abelian extension L / K , by the class field theory we identify
each character of Ga\{L/K) with a character of the idele class group of K.
By the definitions of ^ and f^, the multiplication formula and (8), we have

(12) n^llA^II-1/12.!]^
X€Gal(L/J<)

1.3. The Gauss sum.

Let ^ be a non-trivial character of the additive group K \ AK and (j>
a differential idele attached to ^ [Wl]. The Gauss sum is now defined as
follows.

DEFINITION 1.5. — For each pJace v and quasi-character ^, we
define r^v as follows. Ifv is non-archimedean and o.v = ordv(-D) > 0, define

(13) r ,̂ = ^ ^(x)x(x).
xe 0;-lw;^at••(0;;/l+lr?''0„)

Otherwise, define

(14) r^ = (2^/^l)°vx(<^l)•
The Gauss sum is defined as(15) 7-x=n7^-

V

It is easy to see that the definition of T^ is independent of the choice
of 1^, (f> and Try.
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Note that our Gauss sums are slightly different from the usual ones.
When K = Q, for each positive integer D we can identify (Z/D)* with
WD+OO by identifying each prime number p, such that {p,D) = 1, with
the element [p] C WD+OO- In this case, for any primitive character \ of
WD-^-OO = {^/D)*^ our Gauss sum r^ equals cl\/~=\ times the usual Gauss
sum of ^-1. We define the Gauss sum so as to avoid the appearance of \~1

in the definition of the theta element (see [MT2] and Section 1.4).

The following lemma can be proved by the usual method (see for
example [L]).

DEFINITION 1.6. — For an extended divisor D, define its norm as

(16) Pll^poll^-^^PP^-).

LEMMA 1.7. — Let \ be a character and f^ be the complex conjugate
ofr^ viewed as complex numbers. Then r^-i = r^ and

T^=||DJ-1.

1.4. Theta elements.

In this section, we define the theta element by identifying its
characteristic properties.

Throughout, whenever we refer to a quasi-character \ of WD
(c/. Assumption 1) we assume that it has the following property:

ASSUMPTION 2. — For any extended divisor D, we assume that the
analytic continuation L(^, 1) is defined for each quasi-character \ ofWo-

Examples in which Assumption 2 is satisfied include Weil curves and
curves over function fields.

Let R be a subring of C. Suppose D and D' are two extended divisor
of K such that D' > D. Let

(17) ZD^R[WD'}—R[WD\
be the ring homomorphism induced by the projection. Also let

(18) VD''.R[WD\——R[WD'}
be the trace map.

Using the above notations we may now define the associated theta
element Op € I? [Wo] using the following characteristic properties.



328 KI-SENG TAN

DEFINITION 1.8. — The theta element QD is the unique element
of R\WD\ which satisfies the following properties:

(i) The compatibility property: for D1 > D, we have the following:

(a) Ifv^. Supp(TV) U Supp(J9) is non-archimedean^ then

ZD(Q^D) = (A. - M - M-1) • QD.

(b) Ifv € Supp(AQ and v i Supp(P), then

ZD(Q^D)={\v-[y}~l)'QD.

(c) Ifv is non-archimedean^ v ^ Supp(TV) and v € Supp(D), then

ZD{QV-\-D) ~ A-u • QD + VD^QD-Z;) = 0-

(d) Jfz;e Supp(JV) and v e Supp(D), then

ZD^OV-^-D) = A^ • QD-

(e) Ifv^. Supp(Z>) i's reaJ, tAen

^D(e^+D) = (-I)27771- • my ' QD.

(ii) Special Values: for each primitive quasi-character \ ofWDi we have

^(e^^.^.i/.i.LO^i),
where 0^ and r^ are the relative global period and the Gauss sum.

Note that the defining properties determine the values ^(©D) for each
quasi-character \ of WD. In fact, from the compatibility property, there is
an algebraic number C^ which is a polynomial (with rational coefficients)
in %(v) and A^,, v 6 Supp(-D), such that

(i9) ^e^^^.T^^.H.Hx,!).
Since the group ring C[lVo] is reduced, by (19) OD is uniquely determined
as an element of it. In the number field case, the existence of OD € C[TVo]
follows from using the inverse Fourier transform. In case that K = Q
and E is a Well curve, our definition agrees with the formula given by
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Mazur and Tate (see [MT2], [Tnl]). In this case, there is an integer M
depending only on E such that Qr> is in Z^^^TY^]. If K is a function
field of characteristic p and E is not a constant curve, then, after a slight
modification (see [Tn2]), our definition agrees with the formula given by
Mazur [M]. In the function field case, for each elliptic curve, the theta
element QD always exists inside Zip"1]^^], and the denominators of the
coefficients of QD are bounded for all admissible D. In particular, when K
is a rational function field and E is semi-stable, the denominators of the
coefficients are all bounded by

deg(N)/2-deg(AK)/12-<^-l^

2. The Mazur-Tate pairings.

2.1. Local trivializations.

In [MT1] and [MT2], Mazur and Tate introduce various local Neron
type pairings for abelian varieties. As pointed out by Zarhin in [Z], the
Neron type pairings between zero cycles and divisors are equivalent to
splittings of the canonical biextension. This is the method used in the
above papers. These local pairings can be put together to define a system
of global pairings which are the analogues of the global Neron-Tate pairing.
In this section, we recall some basic definitions and constructions of local
trivializations.

Let E'/j^ denote the dual elliptic curve of E/j< and P/j< the canonical
biextension (see [Mu], [SGA71]), associated to the duality, ofE/j<- and E'y^
by Gm- We can identify E^ with E/j<. But in the global pairing they do
not play symmetric roles. As in [MT2], different notations for them will
be used. If P is a biextension of commutative groups A and B by the
commutative group C, then for a € A, b G B, we denote by {a}P^ P{b} tne

subsets of P which sit over {a} x B and A x {b} respectively. By identifying
{a} x B with B and A x {b} with A, {a}P ̂ d P{b} become group extensions
of {a} x B and A x {&} by C.

DEFINITION 2.1. — Let v be a place of K. A local modification
of ^(Ky) is a triple (av, ^v> Pv) ofmorphisms:

(a^ : A^——E(^),
\ ̂  : B,——E'(^),
[^ : K:—^C^.
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Let Pv: = (a^*,/?v*)P(^) be the biextension obtained from P(-ft^)
by pullback via homomorphisms ay and f3y.

DEFINITION 2.2. — A local trivialization, {oi.v,f3v,pv^v)^ ofP(Kv)
consists of a local modification {av^Pv^Pv) and a local splitting ̂ , i.e. a
map from P^ to Cy such that (cf. [MT1])

(a) ^(c • a*) = pv{c) • ̂ (x) for c € K^ and x € Pv\

(b) for each a.y e A^ (resp. bv € B-y) the restriction of ipv to {a^}Pv
{resp. Py{bv}) ls a ̂ TOUP homomorphism.

In (L1)-(L5) below are five canonical local trivializations

^ = (o^A^Pv^)

used for defining the global pairings. For the explicit definition of the
canonical splittings and their expressions in terms of the zero cycles and
divisors, see [MT2] (also the following remarks).

Let S be a finite set whose elements are real or non-archimedean
places of K^ and let Sm ^ S denote the subset of S consisting of all the
split multiplicative places of E inside S.

Example: five important local trivializations.

(LI) The trivial trivialization^ for v archimedean and not in S. Here
Av = E(^), By = E'(^), Cy = {1}, cty, f3y, py are the obvious
homomorphisms and ̂  is the trivial mapping.

(L2) The real ramified trivialization, for v real and in S. Here Ay = Eo(Ky),
By = Eo(^), Cy = 1R*/R^ ^ ±1, ay, f3y, pv are the obvious
homomorphisms, and ̂  is the unique continuous splitting.

(L3) The Neron unramified trivialization^ for v non-archimedean and not
in S. Here Ay = E(^), By = Eo(J^), Cy = K^/0^ ^ Z, o^, ̂ , ̂
are the obvious homomorphisms, and ̂  is the unique splitting. This
corresponds to the non-archimedean local Neron pairing.

(L4) The tamely ramified trivialization^ for v non-archimedean and
in S - Sm- Here Ay = E(^), B^ = E'i(^), Cy = K^/{1 + ̂  • 0),
a^, ^, pv are the obvious homomorphisms, and ^ is the unique
splitting.

(L5) The split multiplicative trivialization, for v G Sm' Let Qy be the
multiplicative period of the Tate curve E/j<^. The Tate parame-
trization gives exact sequences (of rigid analytic groups)
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f 0 -^ (Q,) —^ JC -̂  E(^) ̂  0,
(20) {

(0 -. <Q.) —. K^ -̂. E'(^) ̂  0.

Here Ay = -By = Cy = -K^, a,;, /^, p.y are the obvious homomor-
phisms, and ̂  is the unique analytic splitting.

Remarks.

(1) By Definition 2.2, for each a € Av, the splitting ^y induces a
splitting of the following extension of either topological groups or rigid
analytic groups

(21) 0 -. Cy —> {a}(p^Py) —^ {a} x By -^ 0.

These splittings of group extensions for all a G Ay also determine the
splitting ^y. It is true that in any of the cases (L1)-(L5), the group
Hom(B,y,Hom(-B.y,C^)) (for either topological groups or rigid analytic
groups) is trivial. Therefore the local splitting ̂  is canonical (see [MT1],
Lemma in p. 721 and p. 726).

(2) By the canonical property, the splitting in (L4) «extends)) the
splitting in (L3) in the following sense. If x € Pv is eligible for both
splittings in (L3) and (L4) (for different 5'), then the splitting on x in (L3)
can be obtained by applying to x the splitting in (L4) and then applying
the quotient map K^/{1 + TT^ • Oy) -^ K^/0^.

(3) In any of the cases (L1)-(L5), we can identify E' with E, and By
with a subgroup of Ay. Then Py and P^: == (/%,Q^)P(i^) are subgroups
of (o^,o^)P(JCy). On P^, we have the canonical splitting ^ ' y ' . P y —^ Cy
(the «mirror image)) of ^v). By the uniqueness of the splitting of (21),
on Py n P^, we have ̂  = ̂ v

(4) Note that for a fixed 5', each place v satisfies exact one of the
conditions of (L1)-(L5). A place v is said to be of type %, if it satisfies the
condition of (Lz) for i = 1,..., 5. Let L / K be an abelian extension. For a
place v, the associated local extension L w / K y is called compatible with the
set S, if a finite set S(L) of places of L can be chosen such that if v is of
type i (with respect to <?), then w is also of type i (with respect to 5(L)). In
this case, the set S(L) is called compatible with S at v. If vis complex or split
multiplicative, or w is neither complex nor split multiplicative, then L ^ / K y
is compatible with S. In particular, if [Lyj: Ky] is prime to 2, then L ^ / K y is
compatible with S (see [T5]). For the rest of this paper, if an extension
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L / K is given, we will always assume that a set S(L) has been chosen. Thus,
for each place w of L, there is the associated trivialization 6^. If L ^ / K y
is compatible with the set 5, then we assume that the set S(L) is also
compatible with S at v. Suppose that either L ^ / K y is compatible with S
or v is archimedean. Then we have a natural embedding of Py into P^. For
points ̂  e A^ and ^ e A;, the Galois group G^ = Gal(L^/^) acts on
the groups ^}Pw and P^^ with the groups of fixed elements containing
{a^}Pv and Py{b^} respectively. Furthermore, the canonical property implies
that except for the case in which Ky = R and L^ = C, the restriction to P^
of the splitting on P^ equals the original splitting on Py.

L^ NG, denote the norm mapping for a G^-module.

DEFINITION 2.3. — Let a^ G A^ and by e B^ An element of K^ A^
^ {a^}Pv or Pv^} will be called a G^-norm, if it is in the image of the
norm mapping NG^ on the corresponding group L^, A^, B^, ^P^ or
^{M-

The following lemma is a direct consequence of Remark 4.

LEMMA 2.4. — Suppose that L^/K^ is compatible with S. If either
P € {a^}Pw and NG^P) e {a,}P^ orp e P^^} and Nc^p) € P^}, then

^°NG.(P)=NG^^{P).

LEMMA 2.5. — Suppose that v is real and L ^ / K y is not compatible
with S. If an element p^ of the groups ̂ P^ (resp. P^^) is a Cy-norm,
then we have ^v(pv) =0.

Proof. — We have K^ = R and L^ = C. Then both ̂ }Pw and P^^}
are connected. Since the norm mapping and the splitting are continuous,
^v(x) must be in the identity component of ±1. Q

2.2. Global pairings.

In this section, We recall the definition of the global pairing and also
discuss some of its useful properties.

For given K and 5', the extended Mordell- Weil group is defined as
follows. For each v, let ^ :E(K) -^ E(^) be the canonical map. Also let
(Ay,Bv,Cv) and 6y = (Q^,/^,py,^) be one of the local trivializations
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defined in (L1)-(L5) in Section 2.1. The group As is the abelian group such
that the following diagram is cartesian,

As ———a——— E(K)

(22) 1 [i=(iv)

n^ —^ n^)
v v

Thus, a point a € As is described by a point x G E(J^) together
with an element (dv)v ^ Ti^v such that Cty(a-u) = z-y(:r) for all v. Write

v
a = (a;, (ay)). Similarly, define the group Bs ( and the homomorphism f3)
associated to {By}v. Then As and Bs fit into the exact sequences

(23) 0 -> n (0,) —. A^ -^ E(^) -. 0,
^e's'm

and

ft . TTT' / r^\(24) 0 ̂  JJ <Q,) ̂  Bs ̂  E (JC)
^eSyn

^ ( F[ E^fc,)) x ( n (E'/Eo)(^)).X

ve5-(5'ooU5'm) ' '-y^(5'oo-5)U(S'-5oo)

Let

^ = ( n ^ ^ n ^ ^ n ^ )
veSoo-s ves^ns v^suSoo

x ( ^( l+7 r t )• a))x(^( l)) ''tf ^V)

'veS-{S^USm) ' 'veSrr

and define

Cs=K^\A],/Us.

The Mazur-Tate canonical S- pairing {•, -^ : As xBs -^ C'5' is a pairing
induced from (L1)-(L5). It is defined as follows. Let PS = (a*,/?*)P(^).
Then PS is a biextension of As x B^ by K * , and we have

0 -̂  JT ————^ ?5 ——!r!——^ As x B^ ———^ 0

(25) I | 1-^
l l ' f

0 -^ ^r* ————^ P(-ftT) ———^ E{K) x E'(J<:) -^ 0.
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The injection i = (iy) (see [Ml], p. Ill) and the map Y[^v induce
v

(26) ^..ps-^^-IL^^c.-^Cs.
v v

Let a C As and b e Bs.By (25), there is an element p e PS such that
^s(p) = axb.

DEFINITION 2.6. — For a e As, b e Bs, let p e PS be such that
7Ts{p) = a x b. Then

{a,b),=WeCs.

Since p is unique up to elements ofK*, and 9(K*) = 0 C Cs, the pairing
is well-defined.

Suppose that VQ G Sm and Qvo is the local Tate period. Using the
embedding Ay^ —> Y\Ay, we can view Qvy as an element n^v- By the
self-duality of E, we can also view Qvo as an element of ]"] ̂ •

v

DEFINITION 2.7. — Define

[QJ '•= (0,0.o) ^ A^, [Q.o]' ••= (0, QzJ ^ ^5.

Denote by Qy^ the image ofQv^ under the natural map

V* v A * /^K^ —> A^ —> Cs.

Then we have (see [MT2])

(27) {[Q.oUQ^},=Q.^
DEFINITION 2.8. — Suppose that for a fixed S, G is a quotient ofCs

and Cs -^ G is the quotient map. We define the G-pairing ( ' , -}G by the
composition of maps

< • , ' ) c : As x Bs -(-^ Cs ̂  G.

Note that the G-pairing depends on the set S^ too.

Denote by (• , •) the Neron-Tate pairing. If K is a function field with q
equal to the order of the constant field, then ( • , -) is related to { • , -}c for
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some special S and G. Namely, if S = 0 and G = Z is the quotient of Cs
defined by the degree map, then we have

(28) (a,6)z = ——— ' (a(a),/?(&)), for all a G As, b € B^.
\og{q)

For the rest of this section, we assume that G is a finite quotient
of Cs- Then G is the Galois group of a finite abelian extension L / K which
is unramified outside S and at most tamely ramified at each v € S — Sm-

DEFINITION 2.9. — Suppose that L / K is compatible at every non-
archimedean place ofK (see Remark 4 in 2.1). Let a x b G As x Bs. Call
an element p €{a} PS (resp. Ps{b}) a locally normed element {with respect
to G) if each v-component ofis(p) is in NG^({a}Pw) {resp. NG^ {Pw {&}))•

Then Lemma 2.4 and Lemma 2.5 together imply the following.

LEMMA 2.10. — Suppose that L / K is compatible with S at every non-
archimedean place ofK. Let p be an element of PS such that 7Ts(p) = axb.
I f p is a locally normed element of PS with respect to G (viewed as an
element of either {a}Ps or P^}), then (a, b)c = 0.

The formula (27) can be generalized in the following way.

LEMMA 2.11. — Suppose that a = (a;, (a-y)^) G As, b == (^/, (bv)v) € Bs
and VQ € Sm' Then the following are true:

(a) The pairings (a, [Qvo^s and ([Qvo], b)s depend only on a^ and b^.

(b) Suppose that G is a cyclic quotient of Cs- Then (a, [Qvo\')G = 0
(resp. {[Qvo}j V)c = 0) if and only ifa^ {resp. b^) is a Gy^-norm.

In order to prove Lemma 2.11, we need the following result. The
diagram (25) induces

0 -^ JT ———— {a}Ps ——^—— {a} x Bs —— 0

(29) ^ ax^
ii ^ p ^

0 -^ K* ———> ^}P(K) ———^ {x} x E'(K) —^ 0.
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Locally at each v, we have

0 —^ K^ ———> ^p^ ——^—, {^j x ̂  ——, 0

(30) | ^7. [ a.x/3.

0 —^ ———- {.}P(^) -f—— {x}xEf(K^ —. 0.

Since G is cyclic, taking cohomology groups, we have the following
diagram

(31) K:/Na^} ——— ^P./NG^P^)

. i . 1-
Hl(G^{x}xE/(L^) -. K:/NG^) ̂  <.}P(^)/^(^P(^)).

Recall that there is a local duality pairing (see [M12], p. 53, p. 354 and
[Tl]), which is a perfect pairing

(32) ( • , ')^E(^) x H\K^E) —— Q/Z.

The inflation map identifies ^((^(Z^)) with a subgroup of
^(Kv.E). Directly from the definition of the local duality pairing, we
have the following lemma.

LEMMA 2.12. — Let v be a place of K. Suppose that x e E(^),
$ C ^(Gv.E^L^)) and (x^)y e Q/Z is the value of the local duality
pairing. Let 9 be the map in (31). Then (x, ̂  equals the image of^ under
the following composition of maps

Hl(G^Ef(L^)-^Hl(G^{x}xE/{L^)

-9^ K:/NG^) c Br(^) -^ Q/Z.

Proof of Lemma 2.11. — We show part (a). Part (b) follows similarly.

Note that the diagrams (29) and (30) are nothing but pullbacks of
the group extensions via the right vertical arrows. With the notations used
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there, since a x /3(a x [QJ7) is the identity of the group {x} x E'(^), there
is a unique p C{a} PS such that,

7Ts(p) = a x [Q^y and js(p) = identity in {x}P(K).

Suppose that is(p) = (py)^ e fl^. Then p^ is the unique element
^{^Rvo such that

^o (Pvo) = a^ x Q^ and 7^ (p^) = identity in {^}P(^J.

If ̂  ^o, then pv is the identity of the group {^}PV and ^(p^) = 0 € Cy.
It follows that (a, [QJ^ equals the image of V^(^J in Cs and depends
only on a^. This shows the first statement.

To evaluate -0z/o(pvo)» w^ consider the diagram

0 -^ K^ ————^ ^{Q,,} —'—> A, x {Q^} —— 0

^o ^ox^o

/
0 -^ ^o ———^ n^o){o} ——0-^ E(^)x{0} -. 0.

Note that we can identify P(^J^ with E(^J x ̂ . The element
x x 1 e P(^o){o} is ^so in {^}P(^). Using the expressions in terms of
zero cycles and divisors, we can show directly that a; x 1 is the identity of the
group {x}P(Kv). As a consequence, p^ is the unique element of P^r,, ,
such that {QVO}

^(Pvo) = a^ x Q^ and 7^0 (Pvo) = x x 1.

Fix a place wo of L sitting over VQ and let G^ be the decomposition
subgroup associated to wo. Then L^/K^ is compatible with S (see
Remark 4 in 2.1). We also identify P(L^)^ with E(£,J x L^. Suppose
that OVQ = N0^(0^0) is a G^-norm. Let p^ be the unique element
ofP^o^Q^ i such that

^wo(pwo) = a^ x Q^ and 7wo(pwo) = ^wo(awo) x 1 C P(^J^^.

Then p^ = ^,(pwo). By Lemma 2.4, ^(p,J is a G^-norm and
(a? [OvoDc = 0. This shows the «if» part of the second statement.
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Consider the diagram (31) for v = VQ. Let pvy be the image o^-pvo m
{a^}Pvo/NG^({a^}Pwo)' Then Pvo generates the kernel of the map 7^. By
Lemma 2.4, the local splitting '0^ induces

^o ''{a^}PvjNG^({a^}Pwo) —— K^/NG^(L^).

If (a, [Qvo}G} = 0 then ^vo(pvo) = 0 ̂ d the map -0vo induces a map

r^ : {,}P(^)/^ (^WJ) —— </^ WJ

such that j o fjvQ is the identity map. It then follows that the map 9 is
trivial. By Lemma 2.12 and the local duality, we see that a; is a G-uo-norm.

Since a; is a G^o-norm, we can find an a^ e NG^ (A^o) such that
^0(^0) = x ' ^et af = (^ ^v) € ^s be such that a^ = av for v ̂  VQ. Then
a' = a + n • [Quo] ^or some integer n, and by the «if» part of the second
statement of the lemma, we have (a7, [Qvo]')(? == 0. As a consequence, we
have {n • [QJ, [Qv^G = 0. By (27), % C ̂  must be a G^-norm and
so is a,vo. D

2.3. The corrected discriminant.

In this section we recall the definition of the corrected discriminant
(see [MT2] ) associated to the global pairings defined in 2.2. The corrected
discriminants are the analogues of the regulators for the Neron-Tate pairing.

According to the recipe detailed in [MT2] , we have to choose a pair
of compatible orientations on the real vector spaces As 0 M and Bs <8) K.
In our situation, these two spaces are naturally isomorphic and a pair
of orientations on them is compatible if and only if under the natural
isomorphism, they become the same orientation.

Let {cti) and (6j) be a pair of compatible bases of As and Bs modulo
the torsion elements, i.e., they give compatible orientations on As 0 M
and Bs 0 M. Note that by (23) and (24) the groups of torsion elements of
both As and Bs are embedded into E(jFC)tor-

DEFINITION 2.13. — Denote

r^=rk(E(^)),

r : = TK + #Sm = rk(A^) = rk(^),

w=|E(^)tor|.
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Define the discriminant of the S-pairing as

discs = |(A5)tor|-l|(B5)to^|~ldetl<^<,((a„^)5) € z[^] 0Sym,((%).

If (a^) and (^.) are another pair of compatible bases, then the induced
determinant deti<^<y.((a^.)5) differs from that induced from (a,)
and (bj) by at most an element of Sym^C^), and this element is killed
by w. So the definition of the discriminant is independent of the choice of
the basis.

Suppose that Sm C T C 5. For each positive integer n, the projection
Cs —^ CT induces the Zlw'^-morphism

(33) Z^s : Z[^] 0 Sym^Cs) —— z[^] 0 SymJGr).

There is a unique Zlw'^-morphism

(34) ^/r :Z[^] 0 SymJGr) ̂  z[^] 0 Sum,(C^)

such that for all Ci e (7^,

(35) ^y o Zr,5'(ci 0 C2 (g) • • • 0 Cn)= 2i^w)i. ( n^-^^i^^^-.^c..
v€5'-T-5'oo

DEFINITION 2.14. — Denote

js = cokernel(B^ - 1] W^) x 11 ̂ /W^))[
ves-Sm-Soa vesnSaa

The corrected discriminant of the S-pairing is defined as

(36) Vs = VsW

:= E(-l)#(T~5m)^T(^discT) € Zfi] ̂  Sym^(^).
0 /-'TI- 0 LWJ5'mCTC5

Then P^ is corrected in the sense that when S varies, the Vs are
related by desirable compatibility formulae (see [MT2] and [T4]). We
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conclude this section by recalling these formulae. Let 5" = S U {v}, and rf

the rank of A^/. Then

, f r if v is not split multiplicative for E,
(37) r = ^

t r + 1 if v is split multiplicative for E.

Suppose that v is a non-archimedean place of K. Let riy = #(Eo(fcv)).
If v is not a split multiplicative place of E, then (see [MT2])

(38) ^ s ' ( P s ' ) = (qv - 1 - n^) • 2^.

Let c(<Syn, v) be the order of the image of the natural mapping

Bs^u{.} — (E'/Eo)(fc.).
If v is a split multiplicative place of E, then (see [MT2])

(39) c(Sm.v) ' ^ s ' ( P s ' ) = Q y ' V s e z[-^j 0 Sym^(Cs).

If v is a real place, then (see [T4])

(40) Zs^s'(W = (-l)2/^ . my . Vs € A 0 Sym^C^).

3. The Mazur-Tate conjectures.

3.1. The Mazur-Tate conjecture

In this section, we describe the Mazur-Tate conjecture. To do this, we
need to make an assumption about the theta element (see Assumption 4
below). This assumption is satisfied when E is a Weil curve over Q or E is
defined over a function field.

DEFINITION 3.1. — Let D = ̂  ordv(D) • v be an extended divisor. We
v

say that D is admissible, iford,,(-D) < 1 unless v is a split multiplicative
place ofE.

Suppose that S is a finite set of places of K containing the support
of an admissible divisor D. Then the Weil group WD is a quotient of the
group Cs defined in 2.2. Recall that the definition of the theta element
depends on the divisor D, while the definition of the corrected discriminant
depends on the set S.
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ASSUMPTION 3. — For the remainder of this paper, assume

S = Supp(D).

Let G be a quotient group of WD, and consider the quotient maps

WD^G, pTs-.Cs—^WD-^G.

These maps can be extended to morphisms of the group rings and
morphisms of the symmetric tensors.

DEFINITION 3.2. — We define the theta element as

QG=pr^(6D),

and the corrected discriminant as

VG = pr^).

ASSUMPTION 4. — There is a positive integer M such that QG is in
the group ring ^[M-^G] and M is large enough such that it is divisible
byw.

Recall that w is the order of the group E(^)tor. Under Assumption 4,
we have

(41) VG € Z[^j 0 Sym^(G).

Let I be the augmentation ideal of the group ring ZIM"1]^]. The
natural morphism

( G ^ I / I 2

\ gi—^l-g
(42)

can be extended to a homomorphism of graded algebras

d: ̂ Ijf] 0 sym»(G') -^ ̂ j^] e III2 ® • • • ® ̂ /7"+1 • •..

We denote

detc = d(pc) € r/r-1-1.
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DEFINITION 3.3. — Let ord(QG) be the maximal n such that 9c € J71.
If ord(©G) > ri, we denote by O^ the image of QG under the quotient
mapr1-^71//7^1.

DEFINITION 3.4. — Define

(43) ^ = ̂  = coke^E'W - n E'/E^fc.)} |.
V^Sm^Soo

Let IH.K be the Shafarevich-Tate group ofE/^.

The Mazur-Tate conjecture is the following:

CONJECTURE 1 (see [MT2]). — We have ord(6G) > r, IIIj< finite, and

(44) ^^Iffl^l.^-detG.

Note that OG and detc? depend on the admissible divisor D. But
conjecture 1 basically depends only on G, as we have the following
compatibility lemma. It can be proved directly by using the compatibility
property of the theta element together with (1), (38), (39), (40).

LEMMA 3.5. — Suppose that D', D are two admissible divisor and
D' >_ D, Let G be a quotient ofWo and G' a quotient ofG. If conjecture 1
is true for (jD, G), then it is also true for (D', G').

3.2. The conjecture of Birch and Swinnerton-Dyer.

This section begins with the review of the Birch and Swinnerton-Dyer
conjecture for elliptic curves over a global field. The basic reference is [T2].
When K is a function field, this conjecture is a special case of conjecture 1.
We will show this at the end of this section.

Recall the notations in 1.2. For a fixed invariant differential a;, a place v
is said to be bad if either it is archimedean or ord.y(^/o;o,i;) 7^ 0. Let S
be a finite set of places containing all the bad places for uj and all the
places where E has bad reduction. For such an S there is an associated
L-function L:s(s) (see [T2]). Let J?(E/j<) be the regulator defined by using
the Neron-Tate canonical pairing on the Mordell-Weil group.
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BIRCH AND SWINNERTON-DYER CONJECTURE. — The Shafarevich-
Tate group IIIj< is finite, and at s = 1, the associated L-series L^{s) has
order of vanishing equal to r^. Further more, we have

(4S) ^W^W-W,.).
• ' s-»l (s - 1)̂  W2

Let ^o be the trivial character and -L(s) = L(\o, s) denote the Hasse-Weil
L-function. Recall the measure \fji\ and the period fi defined in 1.2. We have
(see [T2])

H • n w
^^•n^n^)^-v ves

It follows that formula (45) is equivalent to

|m^|.a(E/^).n^
w i- ̂  = ——,——-" • i.i-1-

When K is a function field, the Birch and Swinnerton-Dyer conjecture
reduces to a conjecture about the finiteness of IIIj<.

THEOREM 3.6 (see [T2], [Mil]). — Suppose that K is a function field.
Then the following statements are true:

(1) At s = 1, the order of vanishing ofL(s) is always > TK-
(2) The following statements are equivalent:

(a) The conjecture of Birch and Swinnerton-Dyer is true.

(b) The ^-primary part of the Shafarevich-Tate group is finite for
some prime number £.

(c) The order of vanishing ofL{s) at s = 1 equals VK-

Remark. — Recall that r = r^ + #Sm' If r > 0 and \o is the trivial
character of A^-, then by using the defining properties of the theta element
(see Definition 1.8), we see that the Birch and Swinnerton-Dyer conjecture
implies that QD € I . If r = 0, then by using the same method, we see
that conjecture 1 is just a consequence of the Birch and Swinnerton-Dyer
conjecture.

We conclude this section by showing that when K is a function field,
conjecture 1 generalizes the Birch and Swinnerton-Dyer conjecture. Let
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D = 0 , S ' = 0 , G = Z and the quotient map WD —^ G be the map induced
by the degree map on A^. Let \s denote the quasi-character of WD which
sends each element x € WD to \\x\\8. Then \s induces a ring isomorphism

^z^l^z^]^].

This isomorphism sends J7' to (1 — q'8)1'. Apply \s to the equation (44)
of conjecture 1. Then by Definition 1.8, the left-hand side of equation (44)
becomes

^-1 • |/z| • L(s + 1) (mod (1 - g-8)7'^1).

By (28), the right-hand side of (44) becomes

|fflK| • 4>s • w-2 • [^(K): B s ] ' R(w (1 - q-8)^ (mod (1 - g-T^).iog(q) K

Directly from Definition 3.4, we have (f)s ' [E'(.K'):B.s] = n771^- It then
follows that (44) is equivalent to (46). v

3.3. The horizontal case.

Suppose that G is a finite group with order dividing M. Then it is true
that ifJis the augmentation ideal of the group ring Z^^^C], then J = J71

for every positive integer n. Furthermore, as explained in the remark at the
end of 3.2, if r > 0 and the Birch and Swinnerton-Dyer conjecture is true,
then we should have OG € J = J71. In this case, conjecture 1 is a consequence
of the Birch and Swinnerton-Dyer conjecture. This phenomenon would not
occur, if we can work over Z[G] instead of ZIM"1]^]. For this reason, we
would like to modify OG and T>G m a way such that their « coefficients » are
all integers. For instance, when G is finite, we can find an integer z such
that zQc ^ Z[G] and z ' PG ^ Symy.(G), and then study this new theta
element and new discriminant. For the rest of this paper, we will consider
this for the case where G is « horizontal)), i.e., it is a group of (^,... ,<)-type
for some fixed prime £. We will raise a conjecture (conjecture 2) similar to
conjecture 1, and prove some partial results about it.

For the remainder of this paper, we assume that G is horizontal.
In this section, we will reprove a theorem of Passi and Vermani concer-
ning the augmentation quotients of the integral group ring (see [PV]).
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Let I be the augmentation ideal of the group ring Z[G]. Define the
associated graded algebra

gr(z[G]) := z e ( i / i 2 ) e (i2/!3) e • • • .
As in 3.1, there is a canonical epimorphism of graded algebras

(47) d:^SymJG)——gr(Z[G]).
n

Let x = {^1,^25 • • • ^Xk} be a basis of G as a vector space over ¥i
and t = { t i , . . . , t f c } a set of k variables. Then the assignment ti ^ Xi
extends to a non-canonical isomorphism of graded algebras between
¥^[t] and ^Sym^(G). Composing this isomorphism with d, we get a

n
noncanonical epimorphism

^):F^]^gr(Z[G]).

The theorem of Passi and Vermani says that the kernel of d( x) is the ideal
generated by

txi, x^Xj - x^Xi for i , j , = 1 , 2 , . . . , k.

In the following, this result will be restated as Proposition 3.8.

Consider the dual space of G,

G' =Rom(G,¥^).

Via the isomorphism

F^l^QSymJG),
n

we view each polynomial f{t) e Z[t] as a F^-valued function / on Q'.
Suppose that C is a chosen primitive £-th root of 1. Then via C, we
can identify G' with the dual group G and also identify / with a C-
valued function on G. Namely, if \ e G and s = («i , . . . , Sk) is such that
\(xi} ̂ ^.then

(48) f^)=^-\

DEFINITION 3.7. — For an element Q € Z[G], denote by ord(O) the
maximal n such that Q e In. Also, denote by o(^, 6) = ord(i_^)(^(9)) the
valuation of the element ^(9) at the prime ideal (1 - ̂ ) of the Dedekind
domain Z[C].
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If ord(9) > n, then we have o(\, 6) ^ n for every \ e G. Therefore \
induces a map from V^G}/^ to Z[C]/(1 - C)". By abuse of notation, we also
denote this map by \. Thus for an element 0 C ^[G}/!71', it still makes sense
to say either o(^, 0) = i for i < n, or o(\, 0) > n. Suppose that / € Z[<] is
a homogeneous polynomial of degree n. Let

e^d^f)^!71/!^1.

Then 9 is the image of /(I - a;i,..., 1 - Xk) under the quotient
jn __, jn/jn+i ̂  ̂ ^ ̂ ^^ ̂ ^ ̂ ^ y^^ ̂  ̂ ^ following way. Note that
for x, y € Z[G'], we have

( l - ^ ) . ( l - i / )= ( l -^ )+( l -y ) - ( l - a ; .2 / ) ,

and consequently,

1^^=^ . (1_^ ) (mod(l-C)2).

Using this, we obtain

(49) ^)=7(^).(i-^)n (modO-C)^1).

PROPOSITION 3.8 (see [PV]). — Suppose that f e Z[t] is a
homogeneous polynomial of degree n > 0 and 0 == dfx)(f) € J71/^4"1.
Then the following statements are equivalent:

(a) 0 is trivial in F1/!71-^,

(b) o(^, 0) > n + 1 for aii characters \ e G,

(c) 7=0.

(d) / is in the ideal J generated by

txi, x^Xj - xjxi for %,j;= 1,2, ...fc.

Proof.

(a) =^ (b): trivial.

(b) ^ (c): by (49).

(c) =^ (d): We prove this by induction. It is obvious for n = 1. In general,
write / = /i + ^i • /2 such that /i contains only the variables ̂  • • • ,^fe.
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By taking ti = 0, we see that /i = 0. By the induction hypothesis, we have
/i € J . Since ?i • /2 = 0, we have

/2( l ,52, . . . ,5fc) ==0 (mod£) for all 5 2 , . . . , 5 f c € Z .

Thus by atheorem ofChevalley (see [BS], Section 1.1), /2(1, ̂ Ai,..., tk/ti}
is in the ideal of Z^AI , • . . , 4/^i] which is generated by the elements i and
(ti/tiY — ti/t\ for i = 2 , . . . , k. So there are polynomials pi, t = 2 , . . . , fc,
such that

fc
/2(^2,... ,4) = Y,9i' (ti - titi-1) (mod £).

i=2

This shows that i\ • f^ is in J and so is /.

(d) => (a): for x C G, we can write

1 = (1 + (x - 1)Y = 1 + (x - \Y + £ . (a; - 1)(1 + (x - l)h(x)).

Since 1 + {x - l)h{x) = 1 - (x - l)h(x) + • • • is invertible in the J-adic
completion of Z[G], we have

(50) £ . (1 - x) = (1 - xY (mod ^+1),

and consequently,

(1 - XiY . (1 - x,) = £ . (1 - x,) • (1 - ̂ .) (mod J^+2)
=(l-Xi)'(l-XjY (mod ^+2).

Therefore, if / C J, then 0 is trivial. D

By (50), if 6 € r1 and n > 0, then t. 6 C J71^-1. This multiplication
by ^ induces a homomorphism of groups

£ ' J71//71"1"1 __». JTI+^-I /jn+^

In fact, we have the following.

LEMMA 3.9. — The following are true:
(a) For every n > 0, the map t : I71/!^1 —, jn-K-i/jn+^ ^ ̂

injection.

(b) Ifz is an integer prime to £, then the multiplication by z induces an
isomorphism I71/!^1 -^ J71/^1.
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Proof. — Let 0 € F1//714'1, and /,^ € Z[<] homogeneous of degree n,
n + ^ - 1 such that d(^)(7) = 0 and d(^)(^) = t(0). Then by (50) and
Proposition 3.8 , / = g as functions on G'. The first statement then follows
from Proposition 3.8 .

Since z is invertible in Z^, the second statement follows after we tensor
everything with Z^. D

3.4. Conjecture 2.

In this section, we will propose a refinement of conjecture 1. Then we
will discuss the main results about this refined conjecture. Their proofs will
be postponed untill Section 5. As in 3.3, we continue to assume that G is of
the (^,. . . , ̂ )-type for a fixed £. Let I be the augmentation ideal of Z[G].

DEFINITION 3.10. — Suppose that z is an integer such that zQ € Z[G]
and Z'VG ^ Sym^(G). As before, ifzQ is in F1, then we denote by (zOc^
its image in Z71//71"1"1. Also denote

zdetc = d(z ' Vc) and e = (£ - 1) • ord^) + r.

Then Lemma 3.9 and conjecture 1 together suggest the following
conjecture.

CONJECTURE 2. — Assume that G is horizontal, OG e Q[G] and
r > 0. Then we have ord^zOc) > e and

(51) (^c)^ = |m^|. (f>s • zdetc .

Note that the number e and hence the conjecture depend on z. But
by Lemma 3.9, we see that for every z ' divisible by z, conjecture 2 is true
for the pair (G, z ' } if and only if it is true for the pair (G', z).

As before, we denote by L / K the field extension corresponding to G.

DEFINITION 3.11. — When K is a number field, we say that the
conjecture of Birch and Swinnerton-Dyer is true for (E, G), if the conjecture
is true for E/j<, and for every cyclic subextension L' / K of L/K\ it is also
true for E/^/. When K is a function Geld, we say that the conjecture of
Birch and Swinnerton-Dyer is true for (E, G), if it is true for E/j<.

In 5.1, we will show the following theorem.
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THEOREM 3.12. — Assume that i -^ 2,3. If the Birch and Swinnerton-
Dyer conjecture is true for (E, G) and r > 0, then we have zQc e J6.

Suppose that the Birch and Swinnerton-Dyer conjecture is true
for (E,G). By Proposition 3.8 and Theorem 3.12 , let /i,/2 € Z[t] be
homogeneous polynomials of degree e such that

(52) d(,)(/i) = (zOc)^

and

(53) d(^(72)=|IIIj<|.<^^detG.

Then in this case (51) is equivalent to the following.

CONJECTURE 2'. — We have:

(54) 7i=/2.

DEFINITION 3.13. — The pair (t, G) will be called good , if the Birch
and Swinnerton-Dyer conjecture is true for (E, G) and

(55) 6 .w- | I I Ix | - n m^O (mod£).
V^Soo

If ]HK is finite, then (55) is satisfied for almost all t. In 5.1, we will
show the following theorem.

THEOREM 3.14. — Suppose that r > 0 and (i^G) is good. Jf/i and
/2 are defined by (52) and (53), then their zero sets on G' are the same.
Namely, for g ' e G', /i(^) = 0 if and only ifh{g') = 0.

Recall that S = Supp(D). Conjecture 2 depends on the choice of D.
But by Proposition 3.8 and the compatibilities of the theta element (see
Definition 1.8) and the discriminant (see (38), (39), (40)), we have the
following lemma.

LEMMA 3.15. — Suppose that D is an admissible divisor and G
is a quotient of WD' Then any one of conjecture 2, Theorem 3.12 and
Theorem 3.14 is true for (D,G), if and only if it is true for every pair
(D\H) where D' is an admissible divisor such that D' >, D, and H is a
cyclic quotient ofG.
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Usually, Theorem 3.14 is not strong enough to imply (54). However,
if e = 1, then /i and /2 are linear functionals. In this case, if they have the
same zero set, then they are proportional to each other, i.e., (54) is true up
to a constant in F^. The same is true when G is cyclic, since in this case
the space of e-th degree homogeneous functions on G' is of dimension one
over F^. Thus we have the following theorem.

THEOREM 3.16. — Suppose that r > 0 and (^,G) is good. Ife=l
or G is cyclic, then (54) is true up to a constant in F^.

To push our results a little further, we need to make the following
considerations. Recall the isomorphisms d and d(^) denned in 3.3. For an
element y G G, let fy € F^] be the unique linear polynomial such that
d^{fy)=d(y).

DEFINITION 3.17. — A homogeneous f 6 F^[t] is called special, if
e

there exist 2/1, . . . , ye € G satisfying the condition that f = ]~[ fy^ and
1=1

every subset of(e — 1) elements of {2/1, . . . , ye} spans an (e — 1)-dimensional
subspace ofG.

LEMMA 3.18. — Suppose that fei,/i2 € Ve[t] are e-th degree
homogeneous polynomials and h'z is special. If hi and h^ have the same
zero set, then there exists a c €. F^ such that h\ = c • h'z.

e
Proof. — Suppose that h^ = ]~[ fy^ and ( t) = (^i, i^..., t^). Without

1=1
loss of generality, we can assume that fy^ = ̂  for i = 1,..., e — 1. Then we
can write

h'2 = ti • • •te-i • /2/e-

There is an (e — l)-th degree homogeneous polynomial, /i'(t), such that

M^)=Mo^2,...,4)+^l•fa/lO)•
Since h\ and ^2 have the same zero set and ^2(0?^2» • • • ^k) = O? we see
that ^i(0, ^2? • • • ^fc) =0 and /ii = ?i • h^. We can then replace h\ by ^i • h'
if necessary and assume that h\ is divisible by i\. Using a similar argument,
we can assume that

hi(t)=t^"te-i'h(t).

Since h\ is homogeneous of degree equal to e, the polynomial h must be
a linear form. Suppose that fy^ is not proportional to any of the fy^ for
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z = 1,..., e — 1. Then the zero sets of h and fy^ are the same. Since they
are both linear, they must be proportional to each other, and the lemma is
proved. Suppose that fy^ is proportional to some fy^. Since h^ is special,
this can happen only when e = 2. In this case, the zero set of h must equal
to that of t\ and both h\ and h^ are proportional to ff. D

When S = Syn, r^ = 0 and (^, G) is good, the polynomial /a can be
chosen as a product of linear factors. This is explained in the following.
Suppose Sm = {^ i , . . . ,'yr}. For Vi € Sm, let yi € G be the image of Qy,
(defined in 2.2) under the projection Cs -^ G. Then by (27), (39), (43)
and (55), we see that if e = r, then /s can be taken to be proportional to

e
the product ["[ fy,. If e > r, then by (50), f^ can still be taken as a product

z=l
of linear forms (in this case, /2 cannot be special).

DEFINITION 3.19. — We call a quotient group G ofCs special ifG is
horizontal and f^ can be taken taken to be a special polynomial.

LEMMA 3.20. — Suppose that S = Sm, r^ = 0, e = r, and K is a
function field of characteristic p = i. Then each horizontal quotient of Cs
is a quotient of some special quotient H o f C s '

Proof. — By a result ofKisilevsky (see [K], or [Tn4]), as a topological
group, the pro-p completion of Cs is a countable product of Zp. It is

e-l
enough to show that in Cs, if ]"[ OS: ls a P~^ power for some integers a^,

i=l
% = l , . . . , e — 1 , then each 0,1 is divisible by p. Under the hypothesis, there
are ui € K^ for i = 1,..., e and u € K* such that

^ = u^ ' u, in Ky, for i = 1,..., <.vi for i =l , . . . ,e- 1,OS:

and

1 == u^ • u in Ky^.

By the local Leopold! lemma (see [K], [Tn4]), the element u must be ap-th
power in K * . This implies that every Q^, for i = 1,..., e— 1, is ap-th power
in K^. Since by (55), p is relatively prime to m^ = ord.u(<3^), a^ must be
divisible by p. D

THEOREM 3.21. — Suppose that r > 0, (^, G) is g-ood and /i, /a are
denned by (52) and (53). Then the following are true:
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(a) If the polynomial /a can be chosen to be special, then f\ and f^ are
proportional to each other.

(b) Assume that K is a function field with characteristic p = £
and r^ = 0. If S = Sm and for every horizontal quotient H of Cs-i
QH ^ 2^[Jf], then conjecture 2 is true.

The first statement is a consequence of Lemma 3.18. To show the
second statement, we first use Lemma 3.20 to find a special quotient of Cs-,
which has G as a quotient. By Lemma 3.15, we can replace G by this special
group. Note that after doing so, the pair (^, G') is still good. Then by the
first statement, there is a c € F^ such that

(*) 7l=^/2.

We need to show that c = 1. By Lemma 3.20 again, we can assume that
the constant field extension of degree £ is contained in L. The Galois group
of this constant field extension is a quotient of G. We then replace G by
this quotient and still call it G. After doing so, the equation (*) still holds.
Note that since e = r, the equation (54) is equivalent to (44). The quotient
map Cs —> G factors through the degree map Cs —>• Z. As explained
in 3.2, the Birch and Swinnerton-Dyer conjecture (for E/j^) is equivalent
to the formula (44) (for Z). Assuming the Birch and Swinnerton-Dyer
conjecture, the formula (44) is also true for Z. By taking the quotient map
from Z to G, we see that (44) is true for G. This implies

7l=/2.

By Lemma 3.9, we have c = 1 unless /s = 0- But by (55), both
|IIIj^| and (f)s are prime to ^, and yi -^ 1 € G for i = 1,... ,r. Since

/2 = IIIIjd • ^s • f E[ fyi) ̂ l t is nontrivial. D\,—-i /

4. The degeneration.

To prove Theorem 3.14 , we need to compare the zero sets of the two
functions /i and f^. By Lemma 3.15, we can assume that the admissible
divisor D is the conductor of the abelian extension L / K . In this section,
we study the zero set of /2 under the above assumption. For a positive
integer n, a character \ G G and an element 0 € J71/?1"1"1, let o(^,0) be
the valuation defined in 3.3. By Proposition 3.8 , we need to determine
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whether o(^, |III| • (f)s ' zdetc) is greater than e. Since the result for the
trivial character is obvious, we can assume that \ is nontrivial. As in
Section 3, i is a prime number and G denotes the Galois group of the
abelian extension L / K .

ASSUMPTION 5. — In this section, we assume that G is cyclic of
order £, (£, G) is good, D is the conductor of the abelian extension L / K ,
and \ is a nontrivial character of G.

Note that by Remark 4 in 2.1, since (^,2) = 1, the extension is
compatible with the set 5' at every place. Thus Lemma 2.4 can be applied.

Our main result is the following proposition, which will be proved
in 4.5. Recall that

We also denote

r^=rk(E(^)).

rL=rk(E(L)).

PROPOSITION 4.1. — Suppose that G is cyclic oforder £, (£, G) is good,
D is the conductor of the abelian extension L / K , and \ is a nontrivial
character ofG. Then o(^, |III| • (fes ' zdetc) > e if and only if at least one of
the following is true:

(a) TL > TK\
(b) IIIj, has non-trivial S-primary part.

4.1. The valuation of the discriminant.

The pairing ( • , -}c induces a pairing

(., -)G,F, : As (g) ¥e x Bs ̂  F^ —> G.

Since (^,G) is good and £ is prime to w (see (55)), the F^-dimensions of
As (8) F^ and Bs 0 F^ both equal r. By fixing a basis for these F^-vector
spaces, we can define the discriminant of (•, •)G',F^

discG,F< ^ Syniy. G.

Let pTs be the projection Cs —^ G and discs the discriminant defined
in 2.3. Then pr^(disc.s) and disease differ at most by a constant in F^.
The pairing (•, '}c,¥e 1s degenerate if and only if the discriminant discG?,F^ is
trivial.
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DEFINITION 4.2. — We will say that the pairing (•, -)c is degenerate,
if the pairing <•, ')c^ is degenerate.

LEMMA 4.3. — Suppose that G is cyclic, (^, G) is good, and \ is a
nontrivial character of G. Then o(\, |III| • (f>s • zdeto) > e if and only if at
least one of the following is true:

(a) We have

|cokernel{B^ ̂  JjE'(^)}|=0 (mod £).
ves-Sm-Soo

(b) The pairing ( • , -)c is degenerate.

Proof. — By (43) and (55), the numbers |III| and (f>s are relatively
prime to i. By Lemma 3.9, we see that

o(^, |m| • (j)s ' zdetc) = o(x» detc) - r + e.

Recall the morphisms d (defined in 3.3, (47)) and US,T (defined in 2.3, (34)).
Since the support of the conductor of \ is S, we can view \ as a character
of Cs- For each proper subset T of 5, we have

X(^5,r(c)) = 1 for all c C Cr.

Therefore

o(^, detc) = o(^, js • d o pr^disc^)).

By (55) and Definition 2.14, we see that (a) holds if and only if

js = 0 (mod £).

It then remains to show that (b) holds if and only if

dopr^ (discos') = 0.

This will follow from the facts that pr^(disc.s) is proportional to disccp^
and d is an isomorphism for G ̂  F^. Q
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4.2. The global duality theorem.

In this section we recall the global duality theorem of Tate and Milne.
We need only-a part of it. The references are [Tl] and [M12].

Denote by E(K,S) and E(Ky,t) the ^-adic completion of the groups
E(K) and E{Ky). Also, denote by ^(K^i) and ^(Ky^e) the £-
primary components of the cohomology groups ff^^E) and ^(Ky.E).
Using the local duality theorem, we can identify ^(Ky.E.e) with the
topological dual group of E(^, £).

Let Ao and Ai be the localization maps:

Ao:E(^)-^;[jE(^^),
v

Ai -.H^K^e) -^ (^H^K^E,^.
V

These and the above identifications induce the following sequence:

(56) H\K^£) -^^H^K^C) -^E(^)*.
v

Here E(J^,^)* is the topological dual of the compact group E(J^,^).
The global duality theorem says the following.

THEOREM 4.4 (Global Duality, [Tl], [M12]). — If the i-primary part
of III is finite, then the sequence (56) is exact.

4.3. The null space of the pairing.

DEFINITION 4.5. — Define the null space of the G-pairing as

AT = {a e As | (a, b}c = 0, for all b € Bs}.

Then we have

C-AscM.
The pairing (• , •)(; is degenerate if and only if

A T ^ e ' A s .
In this and the next sections, we study this degenerate situation.
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Let A^ be the kernel of the natural morphism,

As -^ n E^)-
v€Sm

Then A^ is generated by the local periods [Qv],v € Sm' Since (<,G) is
good, the assumption about the order of the torsions (see (55)) implies that

A°sne'As=e'A°s.

DEFINITION 4.6. — We say that the pairing (•, ̂ c is degenerate of the
first kind, if

Arr}A°s^e'A°s.

It is degenerate of the second kind, if

MnA°s=e'A°s and AT^e'As.

Note that ( • , ')c is degenerate if and only if it is either degenerate
of the first kind or degenerate of the second kind. In this section, we will
treat the first case.

DEFINITION 4.7. — A nontrivial element of ^(K^E) is called of
G-type if its image under the localization map ^(K.E) —> QH^-^Kv.E)
is contained in Q) H1 (Gy, E{Ly)). v

v

LEMMA 4.8. — Assume that G is cyclic of order i and (<, G) is good.
There is a nontrivial G-type element in ^(J^E) if and the only if the
natural morphism

E(K) -^ n^) -" n^v^^))
v v

has nontrivial cokernel.

The natural maps

^H^G^L.)) ̂ Q)H\K^E),

nE(^)^n^)/^j^)
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and the local duality pairing induce a perfect pairing

^^(G^E^)) x nE(^)/7v^(E(L,)) -^F,.
v

The natural morphism

EW — n )̂ -^ Y^W^/NaM
V V

has nontrivial cokernel if and only if the natural morphism

^^(G,,E(L,)) —.(D^^E) -^E(J^)*

has nontrivial kernel. Here A$ is the map defined in 4.2. The lemma is then
a consequence of Theorem 4.4. D

Denote

E(^)=E(^)/A^(E(L,)).

Since (^, G) is good, by (55) and Lang's theorem (see [Tl]), E((^) is trivial
for v ^ S. For v ^ S — Sm, the extension L/J^ is tamely ramified at v, and
E(<^) c± E ( k v ) / ^ ' E(kv). For ^ € 5'yn, it is well-known that E((^) is either
trivial or cyclic of order £. It is nontrivial if and only if the local period Qy
is a Gy-noTm in K^. Let

S°^={veSm\ E(G,) is nontrivial}.

Then we have

(Z/^Z for v € 5^,

(57) E(G,)^ E(^)/^.E(^) for v €5-5^,
0 otherwise.

LEMMA 4.9. — Assume that G is cyclic of order <, (^, G) is good and
D equals the conductor of the extension L / K . There is a nontrivial G-type
element in ̂ (J^E) if and only if at least one of the following is true:

(a)

cokernel^B^ -> ]"J E^)^ = 0 (mod £).
ves-Sm-Soo

(b) The pairing ( • , -)G is degenerate of the first kind.



358 KI-SENG TAN

Proof. — Let

E°(K) = ker{E(^) -. JJ E(fc,)}.
^€6'-S'^

Then we have the diagram,

0 —— E°(K) ——————> E(K) ————. E(K)/E°(K) -^ 0

(58) 1 1 1

o — n^.) —^ n^.) x n^-) — n^) -^0-
^€5^ ve^ ves-Sm ves-Sm

Since for ?; e S - Sm, the number ^ is prime to the residual
characteristic of v, E^(Ky) (defined in 1.1) has trivial ^-primary part,
by (57) we see that

cokernel^E^) -̂  JJ E(^)l| EE 0 (mod e)
ves-Sm

if and only if

cokernel{E(^) -. JJ E(^)II = 0 (mod £).
v€S-Sm

Also

cokernel{E(^) ̂  JJ E(^) x JJ E(^)} | = 0 (mod ^)
v€5'm v€S-Sm

if and only if

cokernel{E(^) -^ JJ E(^) } | = 0 (mod ^).
ves

Since ^oo = 0 (Assumption 3), we have

cokernel^B^ ̂  JJ E^^)}! = 0 (mod £)
VCS-Sm-Soa

if and only if

cokernel{E(^) ̂  ][JE(^)}J=O (mod £).
ves-Sm
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By these and by applying the «snake lemma » to the diagram (58), we see
that it is sufficient to show that (b) is true if and only if

cokernel{E(^)° -̂  J] E(^) } | = 0 (mod £).
^%

Recall the map (3 defined in (24). We have the following commutative
diagram

0 -̂  (D Z[Q,]7 ————— Bs ——0-—— E°(^) —— 0
ves° | I l

o — n ^/^w^w) — n E(^)<
^% ^€%

It is then sufficient to show that (b) holds if and only if

(59) cokernel^ -^ JJ B^/NG^B^\\ = 0 (mod £).
ves°

By Lemma 2.11, the global pairing { • , '}c induces a pairing

(D 7.1 i. Z[Q,] x lm[Bs -^ IJ B^NG^)} -^ G.
^€% ves^

By counting and by Lemma 2.11, we see that (59) holds if and only if there
is an element

ae (]) z[Q,]n^- ^^.Z[Q,].
^e% v€%

To complete the proof, we need to show that

^nA^c(^n (f) z.[o,])+<.A^
ves^

For this, suppose that

a = ̂  ay ' [Qy] eAfnA°s-e'A°s.
v€Sm

If v e Sm such that ay ^ 0 (mod ^), then by (27), we see that Qy is
a G^-norm and E(Kv)/Nc^(Lv) is nontrivial. Therefore a is an element
of©Z.[0,]+^A^. D

ve5'°
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4.4. Schneider pairing.

In this section, we study the second kind degeneration for the
pairing ( • , -}c. We will assume that the cokernel of the map

TO — n E(A:,)
ves-Sm

has trivial ^-primary part. Under this technical assumption, our theory will
be sufficient for the proof of Proposition 4.1.

To simplify the notation, we will identify E7 with E and view Bs as a
subgroup of As in the obvious way.

DEFINITION 4.10. — Define the pairing (., .)^ : Bs x As -^ G as the
« mirror image}) of {•, ' ) c , i.e.,

(b, O)G = (a, b)c, for a € As, be Bs.

By Remark 3 in 2.1, we have

(60) (6, a}c = (b, a}'G = (a, b}c, for all a, b <E Bs.

We can extend the pairing < • , ' ) c to As (g) Z^ x Bs 0 Z^, and also
make the similar extension for ( • , .)^. These extensions do not change
the degenerate situation of the pairing. Since (£, G) is good, the order
of torsion w is relatively prime to £, As <S) Z^ and Bs 0 Z^ are free
Z^-modules. We can choose a basis of As (g) Z^, {ai , . . . ,a^}, such that
{b! = ̂  ' a i , . . . , br = ̂ r ' dr} is a basis of Bs 0 Z^ and ^i > ... > /^..
Let m be greatest integer such that p,rn > 0. By (60), we have

(61) (a,, bj)c = ̂ j ' (a,, a^ =0, i = m + 1,..., r; j = 1,..., m.

By choosing a generator of G, we identify G with F^.

LEMMA 4.11. — Assume that G is cyclic of order i, (£,G) is good,
D equals the the conductor of the extension L / K , and the cokernel of the
mapE(K) -^ ]~[ E(^) has trivial e-primary part. Then

ves-Sm

(a) The matrix «a^, &j)G)i<z,j<m is non-degenerate over ¥^.

(b) If a is an element of At - (A°g U £ • As), then for each v € 5^, a^ is a
Gy-norm, and a e As H Bs 0 Z^ c As <S> Z^.
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Proof. — Assertion (b) is a direct consequence of (a) and Lemma 2.11.
To show (a), suppose that (a) is false. Then following from (61), there is a
b e (Bs H i ' As) - t • Bs such that

(*) (a', b}c = 0, for all a' € As.

Thus, we wish to show that (*) cannot happen.

Let b' C As such that b = £ • &'. Since b' is not in Bs, we can find
VQ € S - Sm such that V ^ B^ = Ei(J<zJ (see (2.4) in 2.1). As before,
let wo be a chosen place of L sitting over VQ, and Gyo = Gol(Lwo/Kvo). As £
is prime to the residue character (= I ' ) of Ky^ and Ei(L^o) is a Z;/-module,
we have

Ei(^o)=^^(Ei(L,J).

Let i/u/o € Ei(Liuo) be such that

^G.o(2/wo)=^

Then NG^ (h' - 2/wo) = 0 and bl - Vwo defines a class

^^(G.o^L^)).

Since G^o acts trivially on E(L^)/Ei(L^J and &' ^ Ei(L^), we must
have $ 7^ 0.

By assumption, cokernel{E(JC) -> [I E(J^)} has trivial ^-primary
part, so we can find an ves-Sm

a'=(^,«),)eA5n^ z,a,
Kz^m

with the condition that for v ̂  VQ, a^ C By, and for v = VQ, a^ e A^ such
that the local duality pairing

(a^Oz/o^O.

In the following, we will complete the proof by showing that the global
pairing (a'\b}c is nontrivial.

Recall the map a (defined in 2.2) and the biextension P/j< (defined
in 2.1). Let PS = (a*, a*)P(jFO. Then PS is a biextension of As x As by K * .
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As we identify Bs with a subgroup of As, we can also identify PS with a
subset of PS and obtain the diagram

0 —— K- -^ Ps ̂  AsxAs —. 0

I I u U
0 —— K^ -^ Ps -^ AsxBs —— 0.

Let p ' be a lifting of a' x b' in {a.'}Ps- Then p = £ ' p ' e^} PS is a lifting
of o! x b in Ps. Suppose that v ̂  VQ. Then < e By. By Remark (3) at the
end of 2.1, we have

Mpv) = ̂ y{pv) = e • W^) e e • a.
By the definition of the global pairing, the v-component of p has no
contribution to the pairing (a', b)c.

Since G is totally ramified at VQ, by the class field theory [AT],
G ^ Gvo/i ' CVQ. Let P^o be the subset of P(L^) sitting over
H^/wo) x Ei(L^o). We have the following diagram of exact sequences:

0 -^ ^o -^ {a/}P(^wo) ̂  {a'}xE(^)
U U

'•"00 -^ ^o ——^ {o'}-Pwo ———> {a'}xEi(L^).

The lower row of the diagram induces the exact sequence

(62) 0 - C^/£. C^ -^ {a'}P^/Na^ (^}P^)

-^ {a'} x Ei(^)/Ar^(Ei(L»J) = 0.

By Lemma 2.4, ̂  induces the inverse of the isomorphism in the above
sequence. If (a', b}c = 0, then

^(Pvo) € i • Cy^,

hence

Pvo €JVG^({a'}Pwo).

Suppose that pvo = Na^ (•n), where r) e {o'}Pwo- Then

^G,,n«>-»7)=0
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and (p^ — rj) defines a class

Ko-^6^^0^^^}^^)).
We have

.̂oJK, - ̂ ) = {a/} x ^ e H\G^{a'} x E(L^)).

Consequently,

W}x $)==(),

where 9: {a} x ^(Gy^E^L^)) -^ ^(G^,!^) is the boundary map of
cohomology groups induced by the above diagram. By Lemma 2.12, this
implies that (a^, Q^o = 0, a contradiction. D

Recall that for each v, we have E((^) = E(Kv)/E{Ly).

DEFINITION 4.12. — Let

(^E^e^E^^n^)}5

v

(^E^Ke^EW-^n^.)}-
V

Denote

i^Ker^-n^)}'^ = ixer<j DS -^ 11 ^(G,) j
V€S'TT

Let a:A5 —^ E(K) be the map in (22). Then a{B]g) C (G')E. At every
v € 5 - Sm, since the extension L-y/^ is totally (and tamely) ramified, we
have NG^(E(L^)) = £ ' E(Ky). This and the assumption that the cokernel
of E(K) -> n E(fc^) has trivial <-part imply that there exists an integer n

ves-Sm
such that (n, ̂ ) = 1 and

(63) n.^Ec^E^+a^).

For each x € ^E, consider the exact sequence:

(64) 0 -. L* —— {,}P(L) -^ {^} x E'(L) ̂  0.
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Locally we have the exact sequence

(65) 0 - K:/N^(L:) -. ̂ (K^/Nc^ ({.}?(£„)) -^ {x} x E(^).

Note that in the above exact sequence we have 0 at the left end, because
x € M^(E(£,,)) and by Lemma 2.12, we have the trivial map

Hl(G^{x}xE'(L^-^K:/NG^).

Suppose that y e ̂ E'. We identify (^E' with a subset of {a;} x E'(K) and
via (64) lift y to some ( €{^ P(K). Since locally, y e NG,(E.'(L^), by (65),
we have

4: = (< (mod NG^P(L^)))) € K^/NG^).

By the class field theory, we have the map

A,,: K^/NG^ (£;) -^ G., -^ G.

DEFINITION 4.13. — The Schneider pairing,

(•^Sch^Ex^E'—.G,

is defined as follows. For x € ^E, y e ̂  the pairing (a;, y)sch is defined by

{x,y)sch=^,x«(tv)•
v

This method of defining a pairing is first used in [S] for the p-adic
pairing.

LEMMA 4.14. — Assume that G is cyciic of order L Suppose that
a = (x, (a,,)) e As, b = (y, (&„)) e Bs such that a,, is a G -̂norm in A,, for
all v and bv is a Gv-aorm in By for all v. Then we have

(a) (x,y}sch={a,b)G,

(b) (y,x)sch=(b,a}'G=(a,b}G.

Proof. — We prove formula (a), then (b) can be proved by a similar
method. Recall the diagrams (29) and (30). Let p € [a}Ps be a lifting
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of a x b € {a} x Bs, and t = 75-(p). Locally, we have t = ^v(pv}- The
diagram (30) induces the following exact sequence:

0 - K:/NG^J ——— <a}P./^({a}Pw) —— M X B^NG^B^

Since by is a G-y-norm, we have

pyeK^NG^{{a}Pw)'

Let ̂  be the local splitting described in2.1.Ifi;^Srn» then by Lemma 2.4,
we get

fy = ^(pi,) (mod NG^ (L^)).

This shows that p and t respectively contribute the same amount to (a, b}c
and {x,y}sch-

Suppose that v € Sm' Then By = K^ and the kernel of the map
7u '' {a^}Pv -^ {x}^(Kv) is generated by the element e € {a^}^ such that

7i/(e) = 0 and 7Tv(e) = dy x Qy.

Since a^ is a G^-norm, there is a^ € L^ such that

^G^w) = av-

Let e' € Pw be such that

7w(e') = 0 and 7r^(€') = a^ x Q^.

Then as elements of Pw{Q^}i we have

^.(e')=e.

By Lemma 2.4, ^(e) € NG^{L^) and ̂  induces a splitting,

^ : {,}P(^)/^. ({.}P(^w)) ̂  K:/NG^).

Then by (65), we have

?„ = ̂ (t) == ̂ (Pv) (mod ^G,(^)).

This shows that py and t respectively contribute the same amount to (a, b)c
and {x,y}sch- D
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DEFINITION 4.15. — We define the null space of the Schneider pairing
as

MS = [x e ̂ E | {x, 2/)sch = 0 for all y e ̂ E'}.
Obviousfy, we have t • (^E C MS. We say that the Schneider pairing is
degenerate ifAfS ̂  (, - (Gf)E.

LEMMA 4.16. — Assume that G is cyclic of order t, (£,G) is good,
D equals the the conductor of the extension L/K, and the cokernel of
the map E(K) -> ]~[ E(ky) has trivial ^-primary part. The pairing {- , -)c

vES—Sm

is degenerate of the second kind, if and only if the pairing (., .)sch is
degenerate.

Suppose that x e AfS - i • ̂ E. Then a; is a Gy-norm for every v. We
can find a = (a-, (a^) e As such that for every v, dy is a G^-norm. Let
b = (2/, (by)v) C Big. Then by Lemma 4.14,

{a,b}c = {x,y)sch =0.

By Lemma 2.11, we can find a' e a + A°g such that (a',^ = 0, for all
b G Bs. This implies that (• , '}a is degenerate of the second kind.

Suppose that a = (x, (ay)y) is an element of M - A°g U t ' As. Then
by Lemma 2.11 and Lemma 4.11, a € Bs 0 Z^ and for every v, dy is a
G^-norm in Ay. After multiplying a with an integer relatively prime to t if
necessary, we can assume that a G Bs. Let y be an element of ̂ E' = ̂ E.
If y = a(b) e a(B^), then by Lemma 2.11 and Lemma 4.14,

{x,y}sch = {a,b)c =0.

l f y = e ' y / e £-E{K) and a{V) = y ' for some V C As, then by Lemma 4.14,

(x, y)sch ={x,e' 2/)sch = (£' &', a}G = 0.
By (63), x e MS. Since a ^ A^ U £ ' As, x ^ I . (^E and the Schneider
pairing is degenerate, r-,

It follows directly from the definitions that

(66) e'W)cNG(E(L))cMS.
To prove Proposition 4.1, we need to study the group ArS/NG(E(L)). Let

res.-ff^E)—^1^)
be the restriction map of cohomology groups. Denote

mL/^res^^E^nm^.
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LEMMA 4.17. — Assume that G is cyclic of order i and (^, G) is good.
We have

.A^/A^(E(L))c.m^/m^.

Proof. — Consider the diagram

H1 (G, E(L)) -mf-. H1 (K, E) ^ H1 (L, E)G -^ Jf2 (G, E(L))

<"> 1 1 1
O^G,,^)/-"^ Off^E) (re^ (D^L,,^.

v v v

Here the rows are exact, the vertical arrows are the localization maps.
For $ € ff^L.E), denote by (^)^ its image in Off^L^E). Since G is

•u
cyclic, we indentify I:f2(G,E(L)) with E(J<:)/TVG(E(L)). Then an element
x C E{K) determines a class x € ^(G.ECL)).

Recall that (• , ')v is the local duality pairing. Using another definition
of the Schneider pairing (see Proposition 3.1 of [Tn3]), for every x G ^E,
we can find an $ in ^(L.E)6' and an (^)-y in ̂  ^(Ky.E) such that

d($) =^, res^(^) =^,

and

<^,2/)sch = ̂ (y^v)v, for all 2/ C ̂ E'.
v

The element $ is unique up to elements of res^^J^E)), and for the
chosen $, the element r}v is unique up to elements of ini^ff^G^E^.y))).
The element x is in ./v'5' if and only if

^(2/,^).-0, for all y € ^E'.
v

If a; € A/^5, then from the above argument and the local duality, there is an
element (^ € ©inf^Jf^G^E^))) such that for every y € E'(^),

v
^Q/^)^ =^Q/,^)^

v u

By Theorem 4.4, there is an T]" € Jar^jFC.E) such that, for every v,

^/ =^ -rf^.

By replacing $ by ^ — res(77//), we see that when rr is in A/^5, the element ^
can be chosen as in III ̂  and vice versa. D
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The following lemma is a consequence of Lemma 4.16, (66) and
Lemma 4.17.

LEMMA 4.18. — Suppose that (^, G) is good, D equals the conductor
of the extension L / K , and the cokernel of the map E(K) —> ]"J E(kv) has

ves-Sm
trivial ^-primary part. Then (• , -}c is degenerate of the second kind if and
only if

(68) \Nc(W)/£. E(K)\ . |mf/m^| = 0 (mod £).

4.5. The Herbrand quotient computation.

In this section, we finish the proof of Proposition 4.1. We begin this
section by reviewing some relevant results about the Herbrand quotient
(see [AT] for details).

Let A be an abelian group and / an endomorphism of A. Denote
by Af and A^ the kernel and the image of / respectively. Also, let g be an
endomorphism of A such that p o / = / o ^ = 0 . Define

,(A):^,(A):=^.

if both the denominator and the numerator are finite.

Let G be a cyclic group and A a G-module. Let hi(A) be the order of
the cohomology group H^(G^A). Define the Herbrand quotient

h2(A)
^2/1 (A)-./l^- ̂ y

if both the denominator and the numerator are finite. If G is cyclic of
order i and A is a G-module such that qo,e(A) is defined, then (see [AT])
qQ^{A°) and h^/^A) are defined and

^ M"-^-
Taking A == E(L) in (69), we get

(70) ^(G.E^))! .r^ = \E(K)/Nc(E(L))\ .^-r^)/^-1).

Note that (70) implies that the number [TL — TK) is divisible by (£ — 1).
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We can now easily prove Proposition 4.1.

Proof of Proposition 4.1. — Since (^,G) is good, (, is relatively prime
to w and |IIIj<|- We have

(71) IE^V^-E^)^^.

Also, ]HL has non-trivial ^-primary part if and only if

|mf|=o (mode).

By the diagram (67), we see that there is a nontrivial G-type element
of ff^.E) (see 4.3) if and only if

imL/KH^G.E^lEEO (modi).

As a consequence of Lemma 4.9, the pairing (•, ')o is degenerate if and only
if either it is degenerate of the first kind or it is degenerate of the second
kind and the cokernel of the map E(K) —> ]"[ E(fc^) has trivial ^-primary

ves-Sm
part. By Lemma 4.3, Lemma 4.9, Lemma 4.18 and the above arguments we
only need to show that

^-^/(^.iniflEEO (modi)

if and only if

|mg|.|^(G,E(L))|.(^^)=0 (mod.).

But this is just a direct consequence of (70). D

5. The valuation of the theta element.

We now prove the main theorems (Theorem 3.12 and Theorem 3.14).
Let z € Z be such that z0c ^ Z[G]. We will study the valuation o(^, zQo)-
The main result of this section is the following proposition, the proof
will be postponed until 5.3. In 5.1, we will use this proposition to prove
Theorem 3.12 and Theorem 3.14. Recall that G is always a quotient of the
Weil group WD.
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PROPOSITION 5.1. — Assume that G is cyclic of order £, D is the
conductor of the abelian extension L / K , and \ is a nontrivial character
of G. The following are true:

(a) If the Birch and Swinnerton-Dyer conjecture is true for (E, G), where
t ̂  2,3 and r > 0, then

o(^, zOo) > e.

(b) Assume that (£, G) is good. Then o(\, zQo) > e if and only if at
least one of the following is true.

(i) rL > TK-

(ii) III^, has non-trivial C-primary part.

5.1. The proof of the main theorems.

In this section, we complete the proof of Theorem 3.12 and
Theorem 3.14.

Proof of Theorem 3.12 and Theorem 3.14. — By Lemma 3.15, it is
sufficient to prove the theorems for the case where G is cyclic, D equals the
conductor of L / K . Let \Q be the trivial character of G. Since r > 0, by
Definition 1.8 and (46), we have

(72) xo(0c) == 0.

This and Proposition 5.1 show that for all \ e G,

o(x,©G')>e.

Since z ' QG € J, Theorem 3.12 is then a consequence of Proposition 3.8.

Since z • dele € J, we have

(73) o(;<o^ • dele?) > e.

Recall that S = Supp(D). Theorem 3.14 is a consequence of Propo-
sition 3.8 , Proposition 4.1 and Proposition 5.1. Q
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5.2. The product formula.

As before, assume that G is cyclic of order £. Suppose that (. is prime
to 6. By Tale's algorithm [T5], for each non-archimedean place v of K and
a place w of L sitting over v, if E has additive reduction at v, then it also
has additive reduction at w. Because £ is prime to 2, if E has non-split
multiplicative reduction at v^ then the same is true of its reduction at w.
By these and (2), we get the following product formula for the L-functions.

(74) L^(s)= n^E/Jx^).
X€G

Suppose that D is the conductor of the abelian extension L / K and
©G ^ Q[G]. As \ runs through all nontrivial characters of G', the values
of ^(Oc) are conjugate in the cyclotomic field Q[Q]. By Definition 1.8, for
a nontrivial character \ of G, we have

(75) o(x,©c) = ̂  II °(^ ' ^ ' \^K\'L(^I)).
^€G-{id}

By Lemma 1.7, we have

(76) ]]; ^=\\D\\-^-1\
^€G-{id}

Recall the relative discriminant Aj^/j< defined in (11). Since L / K has tame
ramification at v € S — 5m,

(77) |A^<|^0 (mod^?).

By (10) and (12), we have

CT n"^-
^€G-{id}

For each 7 € Q*, denote by ord^(7) the ^-adic valuation, with the
normalization that ord^) = 1. Then by (75), (76), (77) and (78), we
obtain, for every nontrivial character \ of G,

(79) O^QG) = ord/pH-^-1) . |̂ -1 . ̂  . lim LE^)).
\ S2L 5-^1 LE/^(5)/

Recall that if (^,G) is good then the Birch and Swinnerton-Dyer
conjecture is true for (E, G) (see 3.4). In this case, the Birch and Swinnerton-
Dyer conjecture is true for E/L unless K is a function field.
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LEMMA 5.2. — Suppose that G is cyclic of order £ and (^, G) is good.

(a) If either the Birch and Swinnerton-Dyer conjecture is not true for
E/L or TL > TK, then

X(QG) = 0.

(b) IfrL = TK and the and Swinnerton-Dyer conjecture is true for both
E/K and E/L, then

W ^e^o^rl"-.^. ̂  •^-4^}-
v over K

If the Birch and Swinnerton-Dyer conjecture is not true for E/L, then
by Theorem 3.6, (74) and (75), x(Qc) = 0. If the Birch and Swinnerton-
Dyer conjecture is true for E/L and TL > TK, then (45), (74) and (75)
imply that ^(©0) = 0- This shows (a). The second statement is basically a
consequence of (46) and (79). It remains to show that the order of E(L)tor
is prime to t. Since (^, G') is good, t is prime to

w = |E(^)tor| = |E(L)?J. D

5.3. The conductor and the discriminant.

In this section, we complete the proof of Proposition 5.1. First we
consider the following formulae about the conductors and the discriminant.

Recall that dj< is the discriminant of the field K (see 1.2). Let d^/K
be the relative discriminant of the extension L / K . We have (see [Wl],
Sect. 13.10, Thm. 9)

\\dL/K\\ = n 1 1 ^ 1 1 = w~1'
^€G-{id}

Also (see [Wl], Sect. 8.4, Prop. 13 and 14),

\^L\=W'\\dL/K\\~^

These imply that

(81) \\D\\-^.^=1.
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Proof of Proposition 5.1. — By Lemma 5.2, it is sufficient to prove the
proposition for the case where TK = ^L and the Birch and Swinnerton-Dyer
conjecture is true for both E/K and E/L. Then we can use the formulae (80)
and (81). In (80), we have

(82) R(EL) = ̂
v / RW

For a fixed v, we have

(83)
J^fez if^^,

m^ \=e if v eSm.

The first statement then follows. To show the second statement,
we only note that since £ is prime 6, it is also prime to (Y[ m^/niv,
fOTV^Sm' ^ Q
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