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1. Introduction.

Consider the semilinear elliptic boundary value problem

(1) Au = -f(u) in Q , u = 0 on 9ft.

A very interesting problem concerns the extent to which one may determine
9u

the function f(u) from knowledge of the outward normal derivative —w an
corresponding to a nontrivial solution u. This inverse problem arises in

an

several contexts, for instance in plasma physics in connection with the
modelling of Tokamaks, [6]. For planar domains with corners some partial
answers to this problem are already known (cf. [3], [4]). Roughly described
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it is shown in these papers that if / is sufficiently regular and if one

requires that —f(u) < 0, then complete knowledge of — near a corner
w 9^

determines the value of / and all its derivatives at 0.

For smooth domains the situation is much more complicated. Con-
sider for instance a ball : due to the symmetry result of Gidas, Ni and
Nirenberg, [10], any positive solution to An = —f{u) in ^, u = 0 on 90, is

a function of radius alone (assuming / is Lipschitz). The function — is
w Qfl

therefore constant, and it is completely impossible to determine f(u) (even
the value of / at 0). There is however reason to believe that, at least in the
case of positive solutions, balls are the only simply connected domains for
which recovery of f(u) fails so miserably. A result of Serrin, [14], asserts
that balls are the only domains for which positive solutions of (1) can have

Qua constant normal derivative — (again assuming / is Lipschitz).
9y 9n

In this paper we shall study a very simplified version of this inverse
problem for smooth, planar domains. We shall take / : R —> R to be
an affine function and examine to what extent knowledge of the normal

r\

derivative — of a solution to An = —cu — d in Q, u = 0 on 90. permits
Qv 9^

us to determine the constants c and d.

To see how degenerate the inverse problem is on a disk, even for
affine /, consider f 2 = D = = { r ^ l } c R 2 . Let Jo and Ji denote the
Bessel functions of the first kind of order 0 and 1 respectively. Let Jo and
/i denote the modified Bessel functions corresponding to Jo and Ji (i.e.,
I^z) = e'^^J^iz)). The functions Jo and Jo solve the equations

(2a) - , -^JO+--T^O+JO==O,dz2 z dz

and

(2b) -^To+1-^o-^o=0,
dz1 zdz

respectively. The functions of order 0 and order 1 are related by

/ \ d _ - - d _ _
(3) —Jo = -Ji , and —Jo = h'dz dz

For values on the positive real axis the four functions Jo, Ji, Jo and Ji are
all real valued. The two functions Jo and Ji are furthermore positive on the
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positive real axis. Let ^//^ denote the smallest positivezero of Jo 5 then the
functions Jo and Ji are both positive on the interval (0, ^/7^). If \/c is a
zero of Jo then c is an eigenvalue for -A with Dirichlet boundary condition
and Jo(\/c r) is a corresponding eigenfunction. If ^/c is a zero of Ji then c
is an eigenvalue for —A with Neumann boundary condition and Jo(v/c r)
is a corresponding eigenfunction. The eigenvalues one obtains that way are
exactly those corresponding to which there exists a radial eigenfunction.
For any c € R for which ^/c is not a zero of Ji we define the function

,,, , . 1 fJo(Vcr)-JQ(Vc)\
(4) uc(r) = Tc [———W)———) •

For c < 0 the square root is defined as ^/c = ^V^l; in this case it may be
more natural to use the expression

1 (k(V\c\r)-lQ(^\)\
V\c\ { A(^R) ) '

for Uc. From the definition of Uc and the equations (2a), (2b) and (3) it
follows that Uc is a solution to the overdetermined Cauchy problem

AlAc = -cue - dc in D,
r\

(5) Uc =0 and -^-Uc = -1 on 9D,v / ov
with the constant dc given by

, ___ V^O^) Q

ac ~ ——7 / /-\ ?Ji(Vc)

and

^^o(^ ^o.
A(v^)

The formula (4) has a removable singularity at c = 0, and consequently
the Cauchy problem (5) also has a solution for c = 0; the corresponding
solution is UQ = (1 - r2)/2 and do = 2. It follows immediately that there
is a continuum of coefficient pairs (c,dc) € M2, and therefore a continuum
of affine functions, which give rise to the same normal derivative on the
boundary (one affine function corresponding to each value of c G K. for
which y^ is not a zero of Ji, as well as one corresponding to c = 0).

The smallest positive zero for Jo, y^, is also the square root of the
principal eigenvalue for —A with Dirichlet boundary condition. Using the
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remarks which we made above concerning the sign of the four functions Jo?
Ji, IQ and Ji it is not difficult to see that for c < ^i the function Uc is
indeed a solution to

(6a) /\Uc = —cue — dc <: 0 in JD,
r\

(6b) Uc = 0 and —Uc = -1 on 9D,6v

i.e., the same Cauchy problem as before, but with a sign condition on the
right hand side. The inverse problem with a sign imposed on the right hand
side therefore also possesses a continuum of affine solutions. It is easy to
see that there are no solutions to (6a), (6b) corresponding to c > /^i.

The results which we prove in section 3 of this paper show that for
"most" smooth, planar domains and "most" normal derivative data the
inverse problem is not nearly as degenerate as seen above. Indeed there
exist at most finitely many pairs of coefficients that give rise to solutions
with the same non-zero normal derivative. In the case where we consider
solutions to the boundary value problem with a sign imposed on the right
hand side it suffices to assume that 0 is not a disk to obtain such a result
(cf. Theorem 3.1). The strong version of the Maximum Principle makes
any assumptions on the normal derivative data superfluous. For the case
of solutions without the sign condition imposed we must impose extra
conditions on the domain and conditions on the normal derivative. The
conditions on the normal derivative are quite simple, the conditions on the
domain are more subtle; they are for instance satisfied for convex domains
which have maximal and minimimal diametrical thicknesses that are well
separated and whose boundary curvature is only zero at a countable number
of points (cf. Theorem 3.2). One of the extra conditions is that the domain
have the socalled Schiffer property. A simply connected C2^ domain Q. is
said to have the Schiffer property if (for any c) the only solution to the
overdetermined boundary value problem

At; = —cv — d in n,
r\

(7) v = 0 , —v = 0 on <9^,

is the trivial solution v = 0 (corresponding to d = 0). Here and in the
following when we talk about solutions to a problem like (7) we always
mean classical solutions in the strong sense that v € C2^). It is possible
to define a nontrivial notion of Schiffer property for domains that are less
smooth than C2^ (for instance for domains with corners) but then it is in
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general necessary to relax the notion of classical solution to the problem
(7). It is clear that there is some connection between the inverse problem
we study and other studies related to the Schiffer property. It is well known
that disks do not have the Schiffer property, indeed for any A 7^ 0 for which
Ji(\/A) = 0, the function

1 (Jo(V\r) \

^^A'M^'1)1

is a solution to (7) with c = A and d = 1.

The Schiffer conjecture asserts that in any dimension balls are the only
simply connected C250' domains for which (7) has a nontrivial solution for
even a single value of c. It has been shown in ([15]) that for simply connected
C2^ domains the possession of the Schiffer property is equivalent to the
possession of the socalled Pompeiu property. We shall not here define what
is the Pompeiu property, instead we refer the reader to the paper by Brown,
Schreiber and Taylor, [8]. In that same paper it was proven that any convex
planar domain with a corner has the Pompeiu property. Subsequently it
was shown by Williams, [16], that any simply connected Lipschitz domain,
the boundary of which is not real analytic, has the Pompeiu property; a
simply connected (72'0' domain, the boundary of which is not real analytic,
therefore has the Schiffer property. In a sense the result of Brown, Schreiber
and Taylor is similar in spirit to the uniqueness result we established in ([3])
and ([4]) for the inverse problem for analytic /. Recently large classes of
planar real analytic domains with the Schiffer property have been exhibited
(PI).

The result related to the Schiffer conjecture which falls closest to the
results we prove here is that of Berenstein ([!]). He shows that for any C2^
planar domain which is not a disk there are at most finitely many values
of c for which (7) has a solution for d 7^ 0 (the example given above shows
that for a disk there are infinitely (countably) many such c's). Indeed the
technique we use to prove our results about the inverse problem^applies to
give a very direct and elementary proof of Berenstein's result for convex
domains ^2, for which the curvature of the boundary is not too degenerate.
Since we find this of independent interest we start the paper by giving the
details of this proof.
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2. A result due to Berenstein.

In this section we prove in a very simple fashion a result due to
Berenstein [I], related to the Schiffer conjecture. The technique of proof
we develop has two main components - the formation of appropriate line
integrals (a Radon Transform) and a subsequent asymptotic analysis by
means of stationary phase. In the section following this we use the same
technique to obtain a similar "finiteness" result concerning the inverse
problem.

THEOREM 2.1. — Assume that Q, is a bounded, convex C2^ domain
in R2 such that the curvature of 90. vanishes at most at a countable set of
points. Assume that there exist infinitely many different A for which the
Cauchy problem

r\

(8) AZA = —\u — 1 in fl, , u = 0 and -^—u = 0 on 90,,
ov

has a solution. Then 0 is a disk.

Note. — For (8) to have a solution it is necessary that A be positive;
indeed A must be a nontrivial eigenvalue for —A with Neumann boundary
condition.

The theorem as stated in [1] does not only pertain to domains that are
convex, nor does it require that the curvature vanish at most at a countable
set of points. The requirement there is that Q, be simply connected. We
restrict attention to convex domains with the curvature condition because
this permits us to give a proof which does not depend on the (highly
nontrivial) result due to S. Williams [16], asserting that any domain which
does not possess the Schiffer property has a real analytic boundary. The
technique we develop here could in combination with that result also be
used to prove the more general result. In subsequent work Berenstein and
Yang have extended the "finiteness" result to higher dimensions. Even
though we have not carried out the analysis we suspect that the technique
we present here may also be applied to higher dimensions. D

Proof. — Fix a coordinate system and let ^ denote an arbitrary, but fixed,
unit vector. We introduce the notation

mf = inf { ' x , Mf = sup {• • x.s ^ s ^
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Corresponding to the numbers m^ and M^ there exist points on the
boundary, Xi and x^, such that

m^ =^-a;i , M^ =$-a;2,

(^ is a normal vector to 90, at such points x\ and ^2). Since ^ is strictly
convex (due to the curvature condition) it follows immediately that the
points x\ and x^ where $ • x attains its extremal values are unique for any
vector $ e S1. Let -R^(s), m^ < s < M^ denote the function

W = IJ^
u,

'^•x=s

where u e C'2(^) is a solution to (8). The integral is taken over that part
of the line $ • x = s which lies inside 0. The functions R^ for all $ e S1

represent the Radon Transform of u. It is not difficult to see that R^ is twice
continuously differentiable in (m^,M^). Let ^-L denote the vector obtained
by rotation of $ Tr/2 radian counterclockwise. Let 9/9^ and 9/9^ denoter\
the derivatives in the direction $ and ^-L respectively. Since —r^ vanishes

°^on the boundary it follows immediately that

/* f / f) \ ^ r / ^ \2 /* / ^ \ 2
(9) / An=/ (^) n+/ f^r) -= f^) -^^=s J^x=s\^U J^x=s\Q^ ) J^x=s\QU

A simple computation yields that

(^L-U^-
r\

Here we have used that u as well as —u vanish on 90. We recall that thed^
function u satisfies An = —An — 1 in 0; upon integration along the line
$ • x = s and use of the identities (9) and (10) this yields the following
equation for R^

2/ dY
( d s ) ^--^-^(^

where L^(s) denotes the length of the line segment {^ • x = s} D 0. Since
u and (9/9v)u vanish on 90 the function R^ satisfies the following set of
boundary conditions

R^(s) = ( — ) R^{s) = 0 at s = m^ and s = M^\as/
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The two conditions at s = m^ together with the equation for R^ imply that

i r8
R^(s) == --- / L^(t) sin V\(s -1) dt.

VA Jm^

The two conditions at s = M^ imply that

r^ r- r^
\ L^t) sin V\(M^ -1) dt = / ^(t) cos \/A(M^ - ̂  = 0,

^m^ Jyn^

which is equivalent to

(11) / ' L^t)e±ivxtdt=0.
</m^

It is not difficult to see that L^(t) is twice continously differentiable in
(m^,M^). We shall initially only consider $ which are regular in the sense
that they belong to the set

S = {^ e S1 : the curvatures at points on 9fl where $ • x attains
(12) its extremal values are nonzero}.

For $ € «S one obtains, as t \ m^, the asymptotics

L^t) w 2C(t - r^)1/2, L^t) w C(t - m^)-1/2

(13) andL^)^-^-m^)-3/2,

where the constant C is given by C = ^I/KQ^X^}, K^(x^ denoting
the curvature of 9fl at a;i. Here we have used the notation g(t) w h(t) to
signify that g(t)/h(t) -^ 1 as t \ m^ Similarly, as t / M^ one obtains

L^t) w 2D(M^ -1)1/2, L^t) ̂  -D(M^ -1)-1/2

(14) and L^) ̂ -^(M^)-3/2,

with D = ^/2/KQfl(x2). Integrating the left hand side of the identity (11)
by parts and using the fact that L^ vanishes at the endpoints we obtain

/.M(
(15) / L^e^ * dt = 0.

Jm^

Assuming there exist infinitely many A for which the problem (8) has a
solution, the identity (15) is satisfied for the same infinitum of A's. It is
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easy to see that these A's must necessarily form a sequence of positive

numbers whose only limit point is +00 (for any such A the pair ( A , u + - )
\ A )

represents a nonzero eigenvalue and a corresponding eigenvector for the
operator —A with Neumann boundary condition). Since V\ and Lc are
real, the two signs in (15) just correspond to complex conjugation. It is to
the identity (15) that we shall apply the method of stationary phase.

It is not difficult to check that, due to (13) and (14), the function
(j>(t) = Le(t) satisfies the prerequisites of Lemma 4.1. As a consequence we
conclude from (15) that

pTri/4 .,—7ri/4
(16) ——==e^ m^ - ———==e^^ M^ = o(l)

V/^anOKl) \/AW^2)

as A approaches 4-00 along a particular sequence of real values. Here and
in the following o(l) denotes a term that converges to zero as A approaches
infinity. It is important to note that the sequence of A's is independent of
$ € S - it consists of exactly those values for which (8) has a solution. The
equation (16) may be rewritten

(17) i+^^^-^J^2^12 =oW'
V K9fl(x^)

Consider the set

M={M^-m^ ' . ^ E S ^ C R .

Since f2 is strictly convex it is not difficult to see that the mapping
V : S1 3 ^ —^ M^ — m^ is continuous (convexity alone does not suffice
to guarantee continuity). It is therefore clear that M. is connected. We
now proceed to show that M. consists indeed of a single value. Due to
Al's connectivity we can accomplished this by showing that M. is at most
countable. The set M. may be decomposed as

M=/D(S)UV(S1\S).

Since the set of points on 90, where the curvature vanishes is at most
countable, the set V{S1 \S} is at most countable. Because of the continuity
of the curvature the set S is open. Let

00

S=\J^k
k=l
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be the decomposition of S as a union of its (at most) countably many
connected components. We now show that V is constant on each of the
connected components, from which it will directly follow that P(«S) is
at most countable. Let a; be anyone of the connected components (for
simplicity we drop the index k). To reach a contradiction let us assume
that V attains two different values

%)<%)

at two points ^o and $1 in a;. Select a subsequence {An} from those A for
which the problem (8) has a solution, with the property that (n+ l)V\n <
^/An+i. We now apply Lemma 6.1 with

^ == ^($o), b = P($i), L = 27T, Cn = n + 1, [in = V\n, and t = 0.

This lemma asserts the existence of an P($o) < s < P($i) such that

\\nS —^ 0 modulo 27T.

Since uj is connected it follows that there exists $* e u such that P($*) = s.
We have therefore found ^* G uj such that

(18) \/A^(M^ - m^) = \/An2>(r) -^ 0 modulo 27T,

i.e. such that

ei^^-rn^-^\ osn^oo.

It follows now directly from the formula (17), with $ = ^*, that

/^^D_
^V^^)

which represents an obvious contradiction. We therefore conclude that V
is constant on uj. This completes the proof of the fact that M is at most
countable, and thus shows that M. consists of a single value. In summary
there exists DQ such that

(19) M^-m^=Do ^eS\

Let (a;i,a;2) be a set of extremal points corresponding to any $ e 51, i.e.,
m^= inf ^ • x = ̂  • rci and M^ = sup ̂  • x = ̂  ' x^. Let t^ and ̂  be the

xewl x^fl
tangent lines to 9^1 through x^ and x^ respectively. The distance between
these two parallel lines is M^ - m^ == DQ. Consider the line £ that goes
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through a;i and x^. This line ^ must be orthogonal to t^ and t^ ; because
if not, then that segment of this line that lies between t^ and t^ will have
length greater than DQ and it follows immediately that M^ — m^ > Do,
where rj denotes a unit vector parallel to the line £. This however is a
contradiction to (19). If ̂  denotes the line through x € <9^, orthogonal to
(9f^, and if diam(a*) is defined by

diam(a*) = sup \x — y\,
2/e^no

we therefore have established that

diam(a;i) = Do, i = t^ = 4^ and x^ is the
(20) unique point on £ n Qfl, with |;z-i — 3:2! = diam(;ri).

It is quite clear that

(21) V\ Do -^ 7T/2 modulo TT,

as A approaches infinity along the sequence of values for which (8) has a
solution. If not, one could find a subsequence such that e^ Do approaches
some number with real part ^ 0, and according to (17) this is clearly
impossible. From insertion of (21) into (17) we get the limiting statement

(22) l±/^l)=0.V KQ^X^
It is obvious that the above equality with + is impossible (i.e. we must really
have V~\ Do —> 7T/2 modulo 27r). The remaining identity (corresponding to
—) implies that

(23) KQ^{X,) = ̂ (^2),

for any extremal pair (^1,3:2) corresponding to any ^ e S. The mapping
which given x\ selects a $ for which it is extremal (say ^ • x\ = inf^o $ • x)
and then assigns x^ (the other extremal point) is a continuous mapping.
It therefore follows immediately that (23) holds for the extremal pair
corresponding to any $ e S1. The statements (20) and (23) imply, according
to Lemma 5.1, that Q. is a disk of radius Do/2. D
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3. Two results for the inverse problem.

In this section we proceed to show how the technique developed in
the previous section applies to the inverse problem. We start by considering
solutions corresponding to nonpositive right hand sides.

THEOREM 3.1. — Assume that fl, is a bounded, strictly convex C3^
domain in ]R2, which is not a disk. Given any ^ e C1^), which is
not identically zero, there exist at most finitely many different pairs of
coefficients (ck.dk) € R2 such that the Cauchy problem

r\

(24) Ai; = -CkV - dk <: 0 in ̂ , v = 0 and —v = ̂  on 90,
ov

has a solution.

Note. — The case -0 = 0 is very special. It is not hard to see that the
only solution that can satisfy (24) with ^ = 0 is the trivial solution v = 0
(see the beginning of the proof of Lemma 3.1). This solution corresponds
to d = 0 and arbitrary c. D

Before we give the proof of Theorem 3.1 we shall show that the sign
condition on the right hand side of the P.D.E. in itself guarantees that
corresponding to a fixed c there is at most one d for which (24) has a
solution.

LEMMA 3.1 — Assume that fl, is a bounded C2 domain in R2. Given
any ^ e C^QO), and given any c € R there exists at most one d € R such
that the Cauchy problem

r\

(25) Av = -cv - d < 0 in 0, v = 0 and —v = ib on <90,
Qy

has a solution.

Proof. — The Maximum Principle asserts that any solution of (25) is
either strictly positive inside Q, or constantly equal to zero. The strong
version of the Maximum Principle, frequently referred to as the Hopf
Lemma, furthermore asserts that either —v = ̂  is strictly negative on all
of Qfl, or v is constantly zero (cf. [13]). If the function ip is equal to zero it
therefore follows that the only possible solution is v = 0, which necessarily
corresponds to d = 0 (for any value of c). We proceed to consider the case
that '0 is not identically zero.
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If c is not an eigenvalue o f — A with Dirichlet boundary condition,
then the uniqueness of d is clear. If such a d exists it must necessarily be
positive (since ^ is not identically zero) and be given by

(26) ^fc^,
J^t^

where w is the unique solution to

(27) Aw = -cw - 1 in 0 , w = 0 on 00.

Note that the fact that there exists d > 0 for which (25) has a solution
implies that the right hand side of (27), -cw-1, is nonpositive. The strong
version of the Maximum Principle, implies that the functions ^ and —

Qv
are both strictly negative on all of 90,. As a consequence the denominator
as well as the numerator of (26) are both strictly negative.

It remains to consider those c's that are eigenvalues for —A with
Dirichlet boundary condition. Let ii\ and <^i denote the principal eigenvalue
and the principal eigenfunction o f — A with Dirichlet boundary condition.
The eigenvalue /ii is simple and the eigenfunction <^i is of one sign; we
shall take it to be positive inside fl,. By integration by parts it follows
immediately that

P'i j v</>i dx = - Av<^i dx = c / v^i dx -h d \ <^>\ dx,
Jn Jfl J^ Jn

i.e.,

(28) (/^i - c) / v0i dx = d [ <^i dx.
Jfl J^i

If there exists a solution to (25) then we necessarily have v > 0 in fl,
(since we at this point assume that ^ is not identically zero). For c = /^i
the left hand side of (28) becomes zero and the only possibility for d is
therefore d = 0. For c > [i\ the left hand side of (28) would be negative,
since J^v^i dx > 0. The right hand side would be nonnegative, since
d >. 0. This shows that (25) has no solution for any c > ̂  (eigenvalue
or not). In combination with the result for c = [i\ this in particular gives
the uniqueness of d for any c which is an eigenvalue o f — A with Dirichlet
boundary condition. D
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We are now ready for

Proof of Theorem 3.1. — As noted in the previous proof it follows
directly from the strong version of the Maximum Principle (and the fact
that '0 is not identically zero) that when (24) has a solution then we must
necessarily have

^ < 0 on 9^.

To arrive at a contradiction let us now assume that (24) has a solution
corresponding to a sequence of infinitely many different pairs (c^, dk) € M2.
We denote by Vk a solution corresponding to the pair (ck^dk). From
Lemma 3.1 it follows immediately that there must be infinitely many of the
constants Ck that are different. By extraction of a subsequence, if necessary,
we may assume that all the constants Ck are different and nonzero. By
subtraction we arrive at the functions Wk = Vk - v\ which satisfy

r\
Awjfc + CkWk = (ci - Ck)vi + (di - dk) in 0 , wj, = 0 and —Wk == 0 on 9^1.

w
Using the exact same approach as in the derivation of the identity (11) we
now get

/*^$ /»M$
(29) (ci - Ck) / V^e^^ t dt + (di - dk) / L^e^^" ( dt = 0,

Jm^ J m^

for any ^e S1. Here L^(t) is the length of the line segment {$ • x = t} D ̂
and V^(t) is defined by

V^t) = I v,.
J^x=t

We already know that for $ 6 S

L^t)w2C(t-m^l/2 ost\m^ and
(30) L^t) w 2D(M^ -1)1/2 as t / M^

including derivatives of order < 2 (cf. (13) and (14)). The constants C and
D are given by

C = v/2/^Q^i) and D = ̂ 2/^(^2).

Similarly it is very easy to see that for $ € S

(31) V^t) ̂  -^C^(x,)(t - m^2 ̂  t \ m^ and

(32) V^t) ̂  -JD^-(^)(M^ - t)3/2 ̂ st/M^


