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MOTIVES OVER TOTALLY REAL FIELDS
AND p-ADIC L-FUNCTIONS

by Alexei A. PANCHISHKIN

0. Introduction.

Let p be a prime number. In this paper we are interested in the
arithmetic of special values of various twisted zeta functions of the type

00

^ ̂ (n)a(n)n~8

n=l

where \ is a varying Dirichlet character. In last decades many results were
found on p-adic properties of such special values. It is essential for certain
arithmetical problems to study more general special values which have the
form

^xWa(n)Afn-8

n

where summation is taken over integral ideals n of the maximal order of
a number field -F, \ is a Hecke character of finite order, and Afn is the
norm of n. General examples of Dirichlet series with Euler product of the
above type come from motives over -F and their Galois twists. It turns
out that in the case of a totally real field F there exist many analogies
between arithmetical objects over F and over Q. In particular this analogy
extends to properties of the above special values. For example, the special
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values at negative integers of the Dedekind zeta function C^(5) are known
to be rational numbers due to H. Klingen [Kll], [K12], the fact which was
established by Riemann for F = Q. More recent arithmetical examples
are related to proofs of Iwasawa conjecture and Brumer conjecture over
totally real fields by A. Wiles [Wi] using arithmetic of the special values
at negative integers of the Hecke L-functions. Their p-adic interpolation
was built earlier by P. Deligne and K. Ribet [DeRi], D. Barsky [Ba], and
P. Cassou-Nogues [Cass-N].

This paper has two purposes. First we describe some algebraic pro-
perties of the critical special values with varying Hecke character \ using
Deligne's conjecture on special values [De3]. Also we describe the p-adic
interpolation of such values using recent works of J. Coates and B. Perrin-
Riou [CoPe-Ri], [Co]. We try to touch the delicate case of motives M over
F which are not p-ordinary in the sense of [CoPe-Ri]. As was pointed out to
the author by M. Harris, there exist examples of non-p-ordinary motives,
for which the existence of bounded p-adic L-functions can be proven. In
particular this is the case for the Katz p-adic L-functions for CM-fields
at certain primes. We formulate a general criterion for the existence of
bounded p-adic L-functions in terms of the coincidence of the Newton and
the Hodge polygon of a motive M at the point cT^M) (the dimension of
Deligne's subspace M"1" of the Betti realization of M). In a more general
situation we formulate a conjecture on the existence of p-adic L-functions
of logarithmic growth using the technique of admissible measures of Visik-
Amice-Velu (see [AmV], [VI]). Following an observation of A. Dabrowski
we use the difference between the Newton and the Hodge polygons at the
point d^{M). We give some examples of L-series for which these conjectural
algebraic and p-adic properties were recently proved.

Content of the paper. — In Section 1 we recall some properties and
definitions on the motives over number fields and their L-functions. Then
in Section 2 we describe a factorization of Deligne's periodes c±{M) into a
product whose factors c±(a^ M) indexed by the (real) embeddings a of the
ground field F. Then we recall in Section 3 the definition by J. Coates of the
modified L-function of a motive M over F and we state there a modified
period conjecture which gives a description of the critical special values of
arbitrary twists M{\) with Hecke characters \ of finite order in terms of
the factorization of Deligne's periods of the original motive M. In Section 4
we recall the notion of an /i-admissible measure over a Galois group and
properties of its Mellin transform. Then in Section 5 we discuss p-ordinary
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and admissible motives over F using the Newton polygons and the Hodge
polygons of them, and formulate in Section 6 a general conjecture on p-adic
L- functions of such motives. Various examples are given in Section 8, after
recalling in Section 7 some basic properties of Hilbert modular forms and
their zeta functions.

Through! the paper we fix embeddings

Z o o : Q ^ C , Z p : Q ^ C p ,

and we shall often regard algebraic numbers (via these embeddings) as
both complex and p-adic numbers, where Cp = Qp is the Tate field (the
completion of a fixed algebraic closure Qp of Qp), which is endowed with
a unique norm | • \p such that |p|p = p~1.

Acknowledgement. — This paper is written as an extended version
of talks, given in the University Paris-Nord and at the Seminar of the
Groupe d'Etude d'Analyse Ultrametrique during a visit of the author to
Paris in February 1991. It is a great pleasure for the author to express
his deep gratitude to Professor D. Barsky, to Professor G. Christol and
to the University Paris-Nord for arranging this visit and the talks, for
the hospitality, the support and very helpful discussions. Also, the author
thanks M. Harris and A. Dabrowski for some crucial observations.

1. Motives over number fields and their L-functions.

By a motive M over a number field F of degree n = [F : Q] with
coefficients in another number field T we shall mean a collection of the
following objects:

MB,O = Mcy, MDR, MA, IOO,(T, I\,a,

where a runs over the set J p of all complex embeddings of F,

Ma is the Betti realization of M (with respect to the embedding
a € Jp) which is a vector space over T of dimension d endowed for real
a € JF with a T-rational involution p a ;

MDR is the de Rham realization of M, a free T (g) F-module of rank
d, endowed with a decreasing filtration {FD^(M) C MDR \ i e Z} of
T 0 F-modules (which may not be free in some cases when F -^ Q);

M\ is the A-adic realization of M at a finite place A of the coefficient
field T (a 7\-vector space of degree d over T\, a completion of T at A) which
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is a Galois module over Gp = Gal(F/F) so that we a have a compatible
system of A-adic representations denoted by

rM,\ = rx : GF ^ GL(Mx).
Also,

^oo,<r : My (g) C ̂  MDR 0 C
Q F,a

is the complex comparison isomorphism ofT0C-modules for each a e J p ,

IX^'-M^^T^-^MX
T

is the A-adic comparison isomorphism of 7\-vector spaces. It is assumed in
the notation that the complex vector space My <g) C is decomposed in the
Hodge bigraduation

MO- 0 C = C My
Q i j

in which p^(My) c My for real a € J p and the Hodge numbers
/l^ J') = h{i, j, M) = dime My

do not depend on a. Moreover,

^oc, Je M^^^F^M) ^C.
Vz^z / ^o-

Also, I\^ takes p^ to the r^-image of the Galois automorphism which is
denoted by the same symbol pa C Gp and corresponds to the complex
conjugation of C under an embedding ofF to C extending a. We assume
that M is pure of weight w (i.e. i + j = w).

The L-function L(M, s) of M is defined as the following Euler product
(which takes values in T 0 C):

^M.^^^M.A/p-5),
p

extended over all maximal ideals p of the maximal order Op of F and
where

Lp(M,X)-1 = det(l - X • ̂ (Fr?-1) | M^)

= (1 - ̂ )(p)X) . (1 - ̂ (p)^) ..... (1 - a^(p)X)
=l+Al(p)X+. . .+Arf (p)X d ;

here A/p is the norm of p and Fr? e G^ is the Frobenius element at p,
defined modulo conjugation and modulo the inertia subgroup Jp c Gp C
GF of the decomposition group Gp (of any extension of p to F). We assume
the standard hypothesis that the coefficients of Lp(M, X)-1 belong to T,
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and that they are independent of A coprime with A/p. Therefore we can
and we shall regard this polynomial over the ring T <S) C so that

Lp(M,X)-l=(^T)(M,X)-l),^=(l+Al(p)rX+...+A,(p)rXd),.

We shall need the following linear algebra operations on motives which are
defined by means of their realizations and can be obviously expressed in
terms of the corresponding L- functions:

Mv (dual motive): its A-adic representation is contragredient to that
ofM;

Mi © Ms (direct sum of motives Mi, Ms): its A-adic representation
is the direct sum of those for Mi, Ms, and the corresponding L-function is
the product of those of Mi and Ms;

Mi 0 Ms (tensor product of motives over F): its A-adic representation
-F

is the tensor product of those for Mi, Ms, and the corresponding L-function
is a kind of a "multiplicative convolution" of the L-functions of Mi and
Ms;

R F / F ' M (restriction of scalars to a subfield F ' of F) is a motive over
the smaller field F ' whose A-adic representation is obtained by inducing
that of M from the subgroup Gp C Gp' (its L-function coincides with
that of M).

M^K (extension of the ground field (base change), K / F being a finite
extension) is a motive over K whose A-adic representation is obtained from
that of M by restriction to the open subgroup GK C Gp.

The important examples of motives are: the cyclotomic (Tate) motive
F(l) and the motive [^] associated with a Hecke character of finite order
\ : AX./FX —^CX. The A-adic representation of F(l) is defined by the
action of Gp on the Z-power roots of unity (where ( is the characteristic of
A) so that Frp acts as a scalar A/p and L(F(1), s) = <>(5+1), C^(5) being
the Dedekind zeta function of F. Also F{m) will denote the m-th tensor
power of F(l) if m >_ 0 and the —m-th tensor power of F{—1) = F{iy
if m < 0. The A-adic representation of [^] is given by class field theory
so that L([^],s) coincides with the Hecke L-function L(s,\~1) of the
character ^-1.

The twist operation: for an arbitrary motive M over F with coeffi-
cients in T an integer m and a Hecke character \ of finite order one can
define the twist N = M(m)(^) which is again a motive over F with the
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coefficient field T(^) of the same rank d and weight w so that we have

L(N,s) = n^Wx-^A/p-8-"1).
p

Conjecturally the function -L(M, 5) can be analytically continued to
the entire complex plane and it satisfies the functional equation of the type

A(M, s) = 6(M, s)A(M^(l), -s)

where A(M,«) = Loo(M,s)L(M,5), Z/oo(M,5) is the r-factor, which is
completely determined by the Hodge structure of RM = Rp/o^M^ e(M, 5)
is a certain e-factor, which can be decomposed into a product of local
factors Cv{M^ s)(v runs over places of F). Moreover, A(M, s) is entire,
unless the weight w is even and Q(—w/2) is a direct summand of RM.

Conversely, if we have a zeta function Z{s) satisfying a functional
equation of the above type, and if we know that Z{s) = L(M, s) for a
motive M then we can use this functional equation in order to determine
the Hodge type of the motive.

2. Factorization of Deligne's periods over a totally real field.

2.1. According to the famous conjecture of Deligne on critical values
for a motive M over Q the values of L{M, s) at some points (the critical
values) can be described modulo Tx C (T (S) C)x in terms of periods
^(M) € (T(g) C^ which are defined (modulo T^ so that the quantity

^(M) = (^(M)^)),^

may be regarded as a set ofnon zero complex constants c^M)^ which are
defined modulo ̂ T^ C Cx. Then Deligne's conjecture on critical values
states that if s = 0 is critical for a motive M over Q then

L(M, (^(M)-1 e r c r (g) c.
Using periods c±{M) and the Gauss sums one can also describe the critical
values of the twisted motive M(m)(^) where ^ is a Dirichlet character and
m is an integer such that M{m}(\) is critical at s = 0.

If M is a motive over F then we have that

L(M, s) = L(RM, 5), RM = Rp/QM
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hence the above description can be used for a motive M over an arbitrary
number field F. However we wish to extend this description to arbitrary
twists M{\) with Hecke characters \ of finite order in terms of the original
motive M.

In order to do this we introduce first a factorization of periods of
a motive M over a totally real field F. For each (real) embedding a
consider the eigenspaces M^~ and My of the T-linear involution pa with
eigenvalues 1 and -1 respectively. Assume that py acts on M^2'^2 as a
scalar (—I)5 which does not depend on a. This will automatically implied
by our assumption made later that M is critical at s = 0. Note that under
this assumption the dimensions d^(M) = d±{M) do not depend on a. It
follows also that one can choose appropriate terms F^M and Fp^M of
the de Rham filtration such that

dim{MDR/F^M) = ̂ (M), dim(M^/F^M) = d-(M)
and that the comparison map loo,a induces isomorphisms

J^:M^C^M^C,
Q F^(T

where Mj^ = MDR/F^M. In order to define cr-periods we put
c±^M) =: (c^M)^)) =det(J^) € (r^C)^

where the right hand side denotes the determinants of matrices representing
the maps relative to some T-rational bases of the sourse and target.
Note that the quantities c^^a^M) are defined modulo the multiplicative
subgroup (T 0 ^(F))" of (T 0 C)" because in the (T 0 C)-module
M^ 0 C an obvious rational structure is defined only over T 0 cr(F) so

F,<7

that the quantity c±(o', M)^ is a complex constant which is a priori defined
modulo (-^(r^F))^ where r(T)a(F) is the composite of the subfields
r(T) and a(F) in C.

Now let us fix a basis {aj of MDR^C as a free (T0F0C)-module.
Note that (RF/QM)DR coincides with MDR as T-module (forgetting
the F-structure). Therefore for a basis {/3/j- of F over Q we have that
{ai 0 (1 0 f3j)} form a basis of

(RF/QM)DR (8) C = MDR 0 C
Q F^CT

as a free (T 0 C)-module. Using this basis let us compute the quantity
c^^^RM) which is well defined modulo T x . Taking into account that
det(/3p - D^2 mod C^ we see that

c^RM) - (^DyV'^JJc^M) modT' ^d{M)\\c£(a,M)modTX.



996 ALEXEI A. PANCHISHKIN

We can easily compute cr-periods of the twisted motive M(m): for v =
sg^-l)771

^(a.A^m)) == (2m)d£vmc^{a,M) mod (c^Ty.
Note that the periods of the twisted motive M{m) are given by:

^(A^m)) = (27^^)d£'nmc£I/(M) mod T^

where (-I)7'1 = ̂  • 1, (y = ±).

2.2. Periods of the twist with a Hecke character of finite order
^:A^/FX-.CX.

We shall denote by the same letter \ the corresponding character
of the group J(c) of ideals of F prime to the conductor c of ^, and we
shall identify \ with the character of the Galois group Ga^F^/F) such
that ^(Frp"1) = ^(p) for all prime ideals p which do not divide c. Let
Sgn^ C F^ denote the group of signs of F (elements of order 2 in F^,),
where Foo = F 0 R ̂  R/1. If we define the sign sgn(^) of \ by

sgn(x) = sgn(^oo) = (^) = (^(^)) € Sgn^
then we see that d^M^)) = rf^^M) and
c^M^))

= (G^)-1^172)^^^]^^^^^ e ̂ ^C)X modFO^
cr

where £ = ±, £(^) is any of^(^), G(^) is the Gauss sum (see [Shi6], [De3]):

G(X) = ^ X(W^) 0 e(Tr(x)) e Q(x) 0 C,
a;^-ic-i/o c^

(?) is the different of F, Tr(x) = x^ + ... + ^crn, e(a;) = exp(27r^)). Note
that in the case when M^ ^ {0} the involution p^ acts on M^ as a scalar
independent of cr, hence e^{x) does not depend on cr, and if M^ = {0}
then the dimensions d^^^ = dim/r^) M(x)£ = d^~ = d~ = d/2 also do
not depend on cr.

Combining the above equalities we get the following general formula
for the periods of the twist M{m)(\):

c^M^m)) = (G(x)-l(l0^/2(27r^)nm))d£'£(')(M)JJc^^(a,M)
a

ecr^c^ modr^.
Starting from this formula we may hope to determine the cr-factors

^(a.M) more delicately, namely, modulo the group T x . Following a
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suggestion of A. A. Beilinson we formulate this hope as the following
conjecture.

2.3. CONJECTURE ON FACTORIZATION OF THE PERIODS. — As-

sume that there exists an integer m such that M(m) is critical at s = 0.
Then there exist constants

^(^AOeCr^c)^ {e=±)
which are defined modulo ̂ x such that

c^^M) = 0s {(T, M) mod (7(F)><^X

and if we put for a Hecke character ^, sgn(^) == (Co) and an integer
m, v = sg^—l)771 such that M(\)(m) is critical at s = 0,

c^(M{x)(rn)) = (G(x)~1^ ̂  (D^^m)^))^ ̂  ]"[ c^ ̂  (a, M)
a

eCr^c^modJW
then

L{M(x)(rn)^(M(x)(rn))-1 e r(x).

3. Modified L-function of a motive over F.

3.1. Following J. Coates we shall formulate this modified period
conjecture in a form appropriate for further use in a p-adic construction.
First we multiply L{M^ s) by an appropriate factor at infinity and define

A(^)(M, 5)^=Eoo(M, s)Ws)^

as A(oo)(r, jR^/qM, p,s) in the notation of J. Coates [Co] with p = i so
that £'oo(M,s) = EOQ^T^RF/QM^P^S) is the modified r-factor at infinity
which actually does not depend on r. Also we put

A(oo)(M, 5)=(A^(M, s)^)reJT

for the modified L-function with values at T 0 C and put

^(M) = (^(M)^) = c^/PM^^)^^ e (T(g) C)^

where

^(-l)^ r(^M)=^j/i(z,j,^/QM)=^^(z,j,M), n=[F:Q],
J'<0 j<0
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c^^RM) = C^^RF/QM) is the period of Rp/^M. Then the period conjec-
ture can be stated in the following convenient form: if s = 0 is critical for
M then for any m such that M(m) is critical at s = 0 we have that there
exists an element a of T such that

A^M^O)^) _
riiy/H/fV-rt ~r\a)'>^(M)^)

i.e. that
^{M(m)^{M)~1 € T C T0 C,

where ;/ = sg^^l)^ = db.

In order to deduce this statement from the original conjecture on
critical values we can use the same arguments as in J. Coates's work [Co],
where it was shown that

J^oo(M, 0) ~ (27n)r(RM) mod CT,

and it follows that

£;oo(M(m), 0) ~ (27^^)r(JRM)-md£^M) = ̂ i^rW-md^M)) ̂ ^ QX

where e = + if j < 0 and e = — if > 0 for j = w/2.

If we combine this fact with the equivalence

c^~(M(m)) ~ (2m)dvnmc^M) mod Tx

we deduce from the above form of the conjecture that

A(oo)(M(m), 0) ~ (27^^)n(r(M)-md£(M)+mdl/(M))cI/(M).

Note that in our situation we have that dE(M) = d^^M) because both M
and M(m) are critical at s = 0: we have that v = + only for j — m < 0
because M{m) is critical but according to Lemma 3 in [Co] the condition
j < 0 is equivalent in this situation to j — m < 0.

Taking into account the conjecture on factorization of the periods of
Section 2, we now can state the following:

3.2. MODIFIED CONJECTURE ON THE CRITICAL VALUES. — Assume
that M is critical at s = 0. Then there exist constants (^(c^M) 6
(r 0 C)x{ea• = =1=) denned modulo Tx such that if we put for a given
sign eo = (£o,a) e Sgn^

^o, M) = (1 0 (2^))^^) n c50'- (^ M)
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with r(M) = ^ jh(i^j, M) then for any integer m and Hecke character \
j<o

such that M(^)(m) is critical at s == 0 and £a(x)^ = ̂ 0,0- we have that

A(o,)(M(x)(m), O^Gixr^^D^^^^M))-1 e T(x)
where v = sgn((—l)m) = ±.

We recall that by definition

Eoo(M, s) = £00 (r, RF/QM, p, 5) = £ooW P, 5),
where ?7 runs over direct summands of the Hodge decomposition, p = i
and Eoo(U, p, s) is given by:

(a) If U = M^ © M^3 with j < fc, then E^(U,p,s) = :Tcp(s -
^0,^

(b) If £/ = M^^'^ with k > 0, then Eoo(t7, p, 5) = 1;

(c) If U = M^ with k < 0, then Eoo((7, P, s) = -RooW P, s).

Here
p-8 = exp(~/?7rs/2), rc,p(5) = ̂ -^0(5),

rc(5) = 2(2^-^(5), rR(5) = Tr-^r^/^,
AooWp,5)=L^(r,£7, 5)/(6oo(r,£/^,5)L^(r, ^(1), -5))

with £-and ^-factors described in [De3] on p.. 329, so that we have in case
(c)

FRO - k + 6) _ 2F(s - k + 6) cos(7r(s - k + 6))/2
^^P^)- ̂ (i-s+k-6) ~ i6^)8-^6

where 6 = 0,1 is chosen according with the sign of the scalar action of pa
on U = M^ so that pa acts as (-l)^6.

4. Non-Archimedean integration and admissible measures.

4.1. In this section we recall the notion of the /i-admissible measures
over a Galois group and properties of their Mellin transform. This Mellin
transform is a certain p-adic analytic function on the Cp-analytic Lie group

^=Homcontin(Galp, C^)

consisting of all continuous characters of the Galois group Galp, where

Galp = Gal(F^/F)
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denotes the Galois group of the maximal abelian extension F^^ of F
unramified out side primes of F above p and oo. Recall that by class field
theory the group Galp can be described as the projective limit

Galp = Innff(m), H(m) = J(m)/P(m),
m

where m runs over ideals of F with the support in the set of prime divisors
p of p in F, J(m) denotes the group of ideals prime to m,

P(m) = {(a) € J(m) | a » 0, a = 1 mod m}.

There is the natural exact sequence

1 -^ Galp -> Galp -^ Gi -̂  1

where (?i = Gal(F(oo)/F), ^(oo) is the maximal abelian extension of
F ramified only at oo, Gal^ = 0^/c\os(0^), Op = Op ^ Zp = n °p^

Pb
clos(O^) denotes the closure of the group of all totally positive units 0^.
in F. The canonical Cp-analytic structure on Xp is obtained by shifts from
the obvious Cp-analytic structure on the group

Homcontin((^ 0 Z^/CIOS^), C^).

We regard the elements of finite order \ e ̂ ors as Hecke characters
of finite order whose conductor c(^) may contain only primes p of F lying
above p, by means of the decomposition

X : Aj^^ class field.theory Qalp - (̂  ̂  C><,

where Zoo is the fixed embedding. The characters ^ € ^ors form a
discrete subgroup ^ors C Xp. We shall need also the following natural
homomorphism

Mxp : Galp ̂  Gal(Q^/Q) ̂  Z; -^ Cp^ Afxp e ̂ p.

Recall that a p-adic measure on Galp may be regarded as a bounded Cp-
linear form ^ on the space C (Galp) of all continuous Cp-valued functions

(p -^ ^((p) = \ (pdp. € Cp, (p € C(Galp),
JGalp

which is uniquely determined by its restriction to the subspace C1 (Galp)
of locally constant functions. We denote by /^(a + (m)) the value of ^ on
the characteristic function of the set

a + (m) = [x C Gal^ | x = a mod m} C Gal^ .
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The Mellin transform L^ of /i is a bounded analytic function

Lp,: Xp —> Cp, Lp, (x)= y^cCp, x ^ X p ,

on Ap, which is uniquely determined by its values Lp,(\) for the characters
x e ̂ tors.

A more delicate notion of an ft-admissible measure was introduced by
Amice-Velu and Visik (see [AmV], [VI]). Let C11 (Galp) denote the space
of Cp-valued functions which can be locally represented by polynomials of
degree less than a natural number h of the variable Afxp e Xp introduced
above.

4.2. DEFINITION. — A Cp-linear form

^ : ̂ (Galp) -^ Cp

is called h-admissible measure if for all a € Galp and for all r = 0,
1, • • • , h — 1 the following growth condition is satisfied

sup | / {Afxp-AfapYd^ ^(Iml7;-'1).
aeGalg ' Ja+m

4.3. Note that the notion of a bounded measure is covered by the
case h = 1, but the set of 1-admissible measures is bigger: it consists of the
so called measures of bounded growth [Ma4], [VI], which grow on the open
compact sets slower as o(|Tn|p1). We know (essentially due to Amice-Velu
and Visik) that each fa-admissible measure can be uniquely extended to a
linear form on the Cp-space of all locally analytic functions so that one can
associate to its Mellin transform

L^{x) = I xd^e Cp, x e Ap,L/p, '• f^p —^ ^p? 1J^
./Galp

which is a Cp-analytic function on Xp of the type o(log^(-)). Moreover, the
measure [i is uniquely determined by the special values of the type

Mx^p) (x e ̂ p^8, r = 0, 1, .. • , h - 1).
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5. The Newton polygon and the Hodge polygon of a motive;
p-ordinary and p-admissible motives.

5.1. We shall formulate in the next section a general conjecture on p-
adic L-functions of motives in terms of the existence of certain ft-admissible
measures, where the quantity h is defined in terms of the Newton polygon
and the Hodge polygon of a motive. Properties of these polygons are closely
related to the notions of a p-ordinary and a p-admissible motive; such
motives will correspond to the case h = 1.

From now on we fix an embedding r : T —^ Q in order to deal with
p-adic L-functions. It is often convenient to omit the symbol (r) from the
notation

L(M,s}^\ A^M,^), c^M)^, n(£o,M)^

viewing these quantities as complex numbers. Then for a motive M over
F with coefficients in T under the assumptions of the period conjecture of
Section 3 the algebraic number

A(oo)(M(x)(m),0)(G(x)-l^/2)deo(M)"(^o,M)-l € T(x)

can be regarded via Zoo •' Q —> C, ip : Q —> Cp as an element of both C
and Cp. Also, with an embedding a € J p one can associate the embeddings
F —> Q, F —^ Cp and define a prime divisor p = p(o-) of p in F attached
to a (keeping in mind that the same p might be attached to different a).

We are going now to define the Newton polygon PNewton,<r(^) =
-PNewton,^, M) and the Hodge polygon Pnodge,a(u) = PHodge,a(u,M)
attached to M, a (and to the fixed embedding r € Jr)- First for p = p(a)
we consider (using ioo) the local p-polynomial

^(M.Xr^l+A^X+.-.+A^p)^
= (1 - ̂ (ppO . (1 - a^(p)X)..... (1 ~ c^(p)X),

and we assume that its inverse roots are indexed in such a way that
ordpc^p)^ ordpa^p)^—^ ordpC^p).

5.2. DEFINITION. — The Newton polygon PNewton,<r(^)(0 < u < d)
of M at p = p(o-) is the convex hull of the points (z,ordpAi(p)) (i =
0,1,...,^.
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The important property of the Newton polygon is that the length
the horizontal segment of slope i is equal to the number of the inverse
roots a^(p) such that ordpQ^(p) = i (note that the number i may
not necessarily be integer but this will be the case for p-ordinary motives
below).

5.3. The Hodge polygon PHodge,<r(^) (0 < u < d) of M at a is defined
using the Hodge decomposition of the d-dimensional C-vector space

M^ = Ma <g) C = C M^3

T,r i,j

where we keep r fixed and regard M^'3 = M^3 <S> C as the C-subspace
T,r

of My on which T acts via r € JT- Note that the dimension h ' d ' (i,
j) = dime M ^ ' ' 3 may depend on r and cr (but in case F = Q this number
is independent of r, see Deligne [De3]). The Hodge polygon PHodge,<r(^) by
definition passes through the points

(0,0), .... (^/Wj), ̂ i'hy(^',j)),...,(d^i'hy(it,j)),
i'<i i'<i i'<d

so that the length of the horizontal segment of slope i is equal to the
dimension nS (^j)-

5.4. Now we recall the definition of a p-ordinary motive in the simpliest
case F = T = Q (see [Co], [CoPe-Ri]). We assume that M is pure of weight
w and rank d. Let Gp = Gal(Qp/Qp) be the decomposition group (of a
place in T over p) and

^:Gp-Z^

be the cyclotomic character of Gp. Then M is called p ordinary at p if the
following conditions are satisfied:

(i) The inertia group Ip C Gp acts trivially on each of the (-adic
realizations Mi for I -^ p;

(ii) There exists a decreasing filtration FpV on V = Mp = MB 0 Qp
of Qp-subspaces which are stable under the action of Gp such that for all
i € Z the group Gp acts on FpV/Fp^V via some power of the cyclotomic
character, say ^p"61. Then

e i (M)>. . .>e t (M)

and the following properties take place:



1004 ALEXEI A. PANCHISHKIN

(a)
dimQ, F;V/F^V = h(e^w - e,);

(b) The Hodge polygon and the Newton polygon of M coincide:

^Newton(^) = ^Hodge^)-

If furthermore M is critical at s = 0 then it is easy to verify that the
number dp of the inverse roots a^\p) with

ordpO0^?) < 0 is equal to d^ == d^~(M).

In the general case (of a motive M over F with coefficients in T) the
notion of a p-ordinary motive can be denned using the restriction of the
ground field F to Q and the restriction of the coefficient field T to Q (the
last operation corresponds to forgetting the T-module structure on the
realizations of M). In this way we get a motive M1 over Q with coefficients
in Q of the same weight w and the rank

rk(Mf)=[F:Q}[T:Q]'d.

For p-ordinary motives over Q and their Dirichlet twists J. Coates
and B. Perrin-Riou [CoPe-Ri] have formulated a general conjecture on the
existence of bounded p-adic measures attached to such motives. However
it turns out that such bounded measures can exist even for certain non-
p-ordinary motives, which can be characterized by the following simple
condition:

5.5. DEFINITION. — The motive M over F with coefficients in T is
called admissible at p if for all a ^. Jp we have that

^Newton,^^) = ^Hodge,^^)

here d^~ = d^~{M) is the dimension of M^~ which under our earlier
assumptions is independent o f a e J p -

On the other hand, in a number of cases when M is not p-ordinary
and even when M is not admissible at p one can prove the existence of
the corresponding (growing) /i-admissible measures. One can show that
all these cases admit a unified description if we use the following positive
integer h which is defined in terms of the difference between the Newton
polygon and the Hodge polygon of M:

h = maxKPNewton,^) - PHodge,^))] + 1.
o-GJp
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Note the following important properties of the quantity h:

(i) h = h(M) does not change if we replace M by its Tate twist.

(ii) h = h(M) does not change if we replace M by its twist M = M(\)
with a Hecke character \ of finite order of conductor prime to p.

(iii) h(M) = hp(M^).

In the next section we state in terms of this quantity a general
conjecture on p-adic L-functions.

6. A conjecture on p-adic L-functions of motives
over totally real fields.

6.1. In order to formulate precisely a general conjecture on p-adic
L-functions of a motive M over a totally real field F with coefficients in T
we suppose that M is pure of weight w, M has the rank d, and there exists
an integer m such that the motive M(m) is critical at s = 0. Then we put

m* = min [m \ 3 X^^018 sucn tnat N = ̂ {x)^) ls critical at s = 0}

m* = max {m \ ̂ e^0118 such that N = M{\)(m) is critical at s = 0}.

Then the number m* — m* + 2 coincides with the width of the critical strip
of our motive M. The integers m* and m* can be characterized in terms
of the Hodge decomposition of M:

m^ = max {j \ 3 j, fc, j < k such that /i(j, fc, M) ̂  0} + 1,
m* = min {j \ 3 j, fc, j > k such that /i(j, fc, M) -^ 0} .

Furthermore for an integer m, a Hecke character \ of finite order and of
the conductor c(^) we put N = M{\)(m) and define the p-factors:

n (i-^p^p^p-^n (i-x-^p^prw-1)
z=d++l %=1

Ap(M(x),5)=^ for p MX)
f i /^p5 V0^^)

UU^W
otherwise.

.z=i \^W/
Let us fix a sign eo = {£0,0-} ^ Sgn^ = {d:!}^ Assuming that the modified
period conjecture of Section 3 is true we have that there exist constants

c^A^e^C^ (e^=±)
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defined modulo ̂ x such that if we put for e-o = (^o,^) ^ Sgn^

n(eo, M) = (1 0 (2^))^^) JJ c^ (a, M)
<r

with r(M) = ^ jft(j,A;,M), then for any integer m and Hecke character
j<o

\ such that M(^)(m) is critical at s = 0 and ^(x)^ == ^o,^ we have that

A(^(M(x)(m), 0)((G(^)-l(l0Dy2))d£o(M)n(eo,M))-l eT(x)

where ^ = sgn^—l)771) = ±.

6.2. CONJECTURE. — For each sign £Q = {^o,^} ^ Sgn^ there exists
a Cp-analytic function L'^on Xp with the properties:

(i) for all but a finite number of pairs (m, \) such that the motive
N = M(\)(m) is critical at s = 0 and for EQ^ = £a(x)i^ we have that

L^Wa-) - ̂ '0(M)/2 TTl ^A(^(M(x)(m), 0),^(p) (^^ ) - ̂ ^o(M) 11^^)——n(^M)———'
P/TP

(ii) the function L'^ is holomorphic on Xp ifM^ = 0; otherwise there
exists a finite set 5 C Xp of p-adic characters and positive integers n($)
(for $ € 5) such that for any QQ € Galp we have that the function

^(x(go)-^go)r^L^\x)
^€S

is holomorphic on Xp;

(iii) the holomorphic function in (ii) is bounded if

PNewton,^) = ^Hodge,^) tor all a € JF\

(iv) in the general case the holomorphic function in (ii) belongs to the
type

o(logp(-))

and it can be represented as the Mellin transform of an h-admissible
measure with h defined in the end of the previous section;

(v) iffa <; m* — m* + 1 then the function L ' 6 ' is uniquely determined
by the above conditions (i)-(ii)'

Note that the last statement follows from the properties of h-
admissible measures (see Section 4).
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6.3. Remark. — It would be interesting to rewrite the right hand side
of the equality in (i) in a more invariant form using the ^-factors of certain
complex representations of the Weil-Deligne groups W'^ which was done
by J. Coates for p-ordinary motives over Q [Co]. These representations
can probably occur in the complexification Y = M\ 0 C of the A-adic

7\,T

realization M\ of M, where for r € JT the same symbol T denotes an
embedding T\ —^ C extending r:T —^ C.

7. Hilbert modular forms and motives associated with them.

We use the notation of Shimura [Shi6], [ShilO] and we regard the
group GL^{F) as the group GQ of all Q-rational points of a certain Q-
subgroup G C GL^n- Then Hilbert modular forms will be regarded as
complex functions on the adelic group GA == G(A) which is apparently
identified with the product

GWA) = Goo x GQ
where

Goo = GL2(Foc) ̂  GL2(R)71, GQ = GL2(F),
A, FA denote the rings of finite adeles of Q and F respectively.

The subgroup
G^GL^Foo^GL^R)71

consists of all elements

a=(ai,...,^),a=(^)

such that det Oy > 0, v = 1,2, • • • , n. Every element a € G^ acts on the
product ^n of n copies of the upper half plane according to the formula

0^1, • • ' , ^n)=(^l(^l), • • • , an(^n)),

where
o^(^) = (o-v^ + b^}/(cvZy + dy} {y = 1, 2, ..., n).

For z= { z i , Z 2 , ' " , Z n ) e ̂ n we put ep(z) =e({z}),{z} = z^-\-...+Zn and
e(x) = exp(27rza;) and we use the notations Afz = z\ •... • Zn^ and i = (z,
..., i). For a € G^, an integer n-tuple k = (fci, • • • ,&n) and an arbitrary
function f:ff' —> C we use the notation

(/ Ifc ̂ ) = 11̂ ^ + ̂ )~fcl//(^(^)) de^a,)^/2.
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Let c C OF be an integral ideal, Cp = c0p its p-part, Z)p == Z)0p the
local different. We shall need the open compact subgroups W = We C GA
defined by ^c=G^xn^(p),

p
I y c ( p ) ={(^)e G L 2 ( F P ) l & G^~ l c e z ) t^ c^ ^d^ad-bceoA.

By a Hilbert automorphic form of the weight k = (fci, • • • , fcn), the level c,
and the Hecke character ^ we mean a function

f : GA. —> C satisfying the following conditions (7.1)-(7.3):

f(sax) = ̂ (s)f(x) for all x e GA,
s e FA (the center of GA), and a e GQ.

We let ^'.((D/tY -^ Cx denote the c-part of the character ^ and
the extend the definition of ^ over the group We by the formula

^ ( ( ^ d ) ) ==^o(^modc)
then for all a: € GA

(7.2) f(rcw) = ^(w')f(a?) for w € TVc with Woo = 1,
where

Y a f c y ^ / d -b\
\cd) ~[-c a ) '

If
w = w(0) where w(0) = (wi(0i), . . . , w,(^)),

,/, >. (cos 6v -sin Oy \
^^'(sin^ cos^) '

then
f(xw(0)) = f(x) exp(-z(Ai0i + ... + Mn)).

An automorphic form f is called a cusp form if

^ /^/(GO9)'"'0'0"1"^^-
The vector space Mk(c, ^) of Hilbert automorphic forms of holomorphic
type is defined as the set functions satisfying (7.1)-(7.3) and the following
holomorphy condition (7.4): for any x e GA with x^ = 1 there exists a
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holomorphic function ̂  : ̂ n -^ C such that for all y = ( a b ) e (%
\ /we have that

(7-4) f(^) = (^ |fc w)(i)
(in the case F = Q we must also require that the function g^ is holomorphic
at the cusps). Let <?fc(c, -0) C Mk(c, -0) be the subspace of cusp forms.

Hecke operators which act on <Sfc(c, ^) and Mk(c, -0) are defined by
means of the double cosets of the type WyW for y in the semigroup

Vc^Ar^nW),
p

where

yc(p) = {{cd) eGL2^ I ̂ ^^Vp^^aOp+Cp = Op I.

The Hecke algebra H^ consists of all formal finite sums of the type
^ CyWyW, with the multiplication in T^c defined by a standard rule. By
y

definition Tc(m) is the element of 7<c obtained by taking the sum of all
different WwW with w € Vc such that div(det(z/)) = m. Let

Tc(my = ̂ (m)^0-2)/2^)

be the normalized Hecke operator, where A;o denotes the maximal com-
ponent of the weight k. Suppose that f e 5fc(c, ^) is an eigenform of all
Tc(mY with the eigenvalues C(m, f). Then there is the following Euler
product expansion:

W) =^C(n,{)Afn-8 = I](l - C(p,f)^p-5 + ̂ (p)^°-1-25)-1.
n p

All of the numbers C'(n, f) are known to be algebraic integers.

Let f e «Sfc(c, '?/?) be a primitive Hilbert cusp eigenform. In this case
the numbers (7(n, f) can be regarded as the normalized Fourier coefficients
of f. The important analytic property of the corresponding L-function L(f,
s) (see [Shi6], p. 655) is that it admits a holomorphic analytic continuation
onto the entire complex plane, and if we set

n

A(f, s) = ]][ Fc(s - (ko - fc,)/2)£(f, s)
i=l

then A(f, s) satisfies a functional equation, which expresses A(f, s) in terms
of the function A(f^, fco - s). According to a general conjecture on analytic
properties of the L-functions of motives we may suggest that f should
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correspond to a motive M = M(f) over F of rank 2, weight fco, with
coefficients in a field T containing all C'(n, f) such that

L(M,5)=L(s,f), A(M,5)=A(5,f)

and for fixed embeddings r € JT and a •== o-i € J p the Hodge decomposition
of MO-, is given by

M^ = M,. 0 C
r,r(7.5)

- MM^0-^1)/2'^^1)/2-1 © M^)^^)/2--1^"-^)/2— -—-a-i VL' -"-cTi

where ki is the component of the weight fc, attached to the fixed embedding
Oi (as was mentioned above this decomposition may depend on r and o^).
It is obvious from (7.5) that if such motive exists then the weight k must
satisfy the condition k\ = k^ = ... = kn mod 2.

There are several confirmation of the conjecture [BIRo]. First of
all it is known in the elliptic modular case F = Q due to U. Jannsen
and A.J. Scholl [Ja], [Scho]; the existence of the Galois representations
of Gal(F/F) corresponding to A-adic realizations of these motives was
discovered earlier by Deligne [Del]. If we restrict such a representation
to the subgroup Gp' corresponding to a totally real extension F/ / F we
obtain the L-function of a certain Hilbert modular form of the same weight
which is the Doi-Naganuma lift (or "base change") of the original elliptic
cusp form. In the general case the existence of Galois representations
attached to Hilbert modular forms was established by Rogawski-Tunnell
[RoTu] and Ohta [Oh] (n odd) (under a local hypothesis) and by R. Taylor
[Ta] in the general case. Also a number of results on special values of
the function L(s^t) is known, which math the above conjectures on the
critical values and on the p-adic L-functions [Shil], [Man], [Kal]. As
in the elliptic modular case there is a conjectural link between motives
of the type M(f) and the cohomology of certain Kuga-Shimura variety
(fiber product of several copies of the universal Hilbert-Blumenthal abelian
variety with a fixed level structure and and endomorphisms): namely,

n n
for the decomposition Rp/QM = 0 M i the tensor product 0 M<Ti

is a motive over Q of rank 271 which conjecturally lies in the above
cohomology, see the interesting discussion of this link in [Ha2], [Oda]. In
case k\ = ... = kn = 2 the motives have the Hodge type ff°'1 ©ft1'0. In
some cases (e.g. when n is odd) the motives Mai can be realized as factors
of Jacobians of Shimura curves corresponding to quaternion algebras, which
split at one fixed infinite place ai and ramified at all other infinite places
aj(j ^ i) ([Shi7]; see also recent work of M. Harris [Ha3]).
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8. Examples.

8.1. Periods ofHilbert cusp forms.

Let f e <?fc(c, ^) be a primitive Hilbert cusp eigenform which is
supposed to be "motivic" in the sense of the previous section, and let

W(x)) = ̂ x(n)G(n,f)A/n-5

n

= II (i - X(P)C'(P, W + ̂ (pWp).^0-1-2') -1.
p

p+c=0p

Then the critical strip of L(s, f(^)) is given by m» < m < m*,

m, = max{(fco - ̂ )/2} +1, m* = min{(fco + ̂ )/2} - 1.

Using the Rankin-Selberg method G. Shimura proved [Sh6] that there
exist constants

u(e, f ^eCT^C)" for e € Sgn F

defined modulo Tx such that if we put e = ̂ (-l)771 for m € Z and for a
Hecke character \ of finite order and then define

c£(x.f)=D^/2G(x)u(e^
then for all m e Z, m^ < m <, m* we have that=IM ,̂

This statement perfectly matches the modified period conjecture 3.2,
if we take for c^a, M(f)) the quantities c^a, f).

In order to formulate the results on p-adic L-functions, put

1 - C(p, f)X + ̂ W^X2 = (1 - a(p)X)(l - a'(p)X) e Cp[X]

where a(p), a'(p) are the inverse roots of the Hecke polynomial assuming
that

ordpa(p) ^ordpQ/Cp).

Note that in the p-ordinary case we should have

ordp a(p) = (ko - ̂ )/2, ordp a^p) = (ko + ̂ )/2 - 1
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for the prime p = p, = p(cr,) attached to an embedding cr, (see Section 5).

8.2. THEOREM. — Put h = [max(ordp(a(p((7,)) - (fco - ̂ )/2)] + 1.
Then for each sign eo = {eo^} € Sgn^ there exists a Cp-analytic function
L^on Xp of the type o(log^(-)) with the properties:

(i) for all m € Z, m* < m < m", and for aiJ Jfedce characters of finite
order \ e ̂ ors with ̂ a(x) = ^0,0- (o- C Jp) the following equably holds

L^W^-^^TTAffMr^ A(f^)-m)^(p) W^P ) - -GO^-ll^^^5^ • n(^o, f) 5

p|p
where

f (1 - ̂ P^WA/P—XI - ̂ -'(^^(P)-1^771-1),
^P I c(x)yt /' S*/ \ \ ' 1 ' I \ /V/

A,(ffe),m)=< .,y«.ord,(M

[(^) • mcM

and the constant n(eo, f) is given by

0(£0, f) = (27TZ)-""1* • D^2 • ric^^f),
(7

(ii) If/i ^ m* - m^ -j- 1 then the function L^ on Xp is uniquely
determined by (i).

(iii) If
max(ordp(Q;(p(a,)) - (fco - ̂ )/2) = 0

then the function L^ is bounded on Xp.

In the p-ordinary case this theorem was established by Yu.I. Manin
[Man6] (in a less explicit form) using the theory of generalized modular
symbols on Hilbert-Blumenthal modular varieties. The non-p-ordinary case
was treated only for F = Q by Visik [VI] and Amice-Velu [AmVe]. For
an arbitrary totally real field F one can use the Rankin method and the
techniques of Shimura's work [Shi6], see more details in [Da].

8.3. The Rankin convolution and the tensor product of motives.

Let us consider the Rankin convolution

(8.1) L(5, f ,g)=^ C(n, f) C(n, g^n)-8

n

attached to two Hilbert modular forms f, g over a totally real field F
of degree n = [F : Q], where C(n,f), C'(n,g) are normalized "Fourier
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coefficients" of f and g, indexed by integral ideals n of the maximal
order Op C F (see §7). We suppose that f is a primitive cusp form of
vector weight k = (fei, • • • ,A;n), and g a primitive cusp form of weight
I = (h, • ' ' ,1-n}' We assume that for a decomposition of J p into a disjoint
union J p = J U J ' the following condition is satisfied

(8.2) ki > I, ( for en € J), and I, > k, (for a, G J').

Also, assume that

(8.3) f c i = A ; 2 = - " = ^ m o d 2 ,

and

(8.4) /i = /a = • • • = In mod 2.

Let c(f) C OF denote the conductor and '0 the character of f and c(g), uj
denote the conductor and the character of g {^),w : AX./FX —^ Cx being
Hecke characters of finite order).

The essential property of the convolution

L(5, f, g(^)) = ̂  x(n)G(n, f) C(n, g)M(n)-8

n

(twisted with a Hecke character \ of finite order) is the following Euler
product decomposition

L,(2s + 2-fco-/o, ̂ X2)^, f, g(x))

(8.5) = II ((l-^((1)a(q)^(q)^(q)-s)(l-x(q)a(q)/3/(q)^(q)-8)
q

x(l-x(q)^(q)/3(q)^(q)-s)(l-x(q)a/(q)/3/(q)^(q)-s))-l,

where the numbers a(q), o^q), /3(q), and /3'(q) are roots of the Hecke
polynomials

X2 - C(q, f)X + ̂ (q^W0-1 = (X - a(q))(X - a'(q)),

and

X2 - C(q, g)X + ̂ (q^q)^-1 = (X - /5(q))(X - /?'(q)).

The decomposition (8.5) is not difficult to deduce from the following
elementary lemma on rational functions, applied to each of the Euler q-
factors: if

00 -, 00

^ A •X1 = ———————~________ V^ D yi _ ________1________
^ ' (l-aX)(l-a'XY ^ix ~ (l-f3X)(l-^xy
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then

(S6) VA5JT=_________\-aa lWX t l_________
v / ^ l l (l-a/3X)(l-a^X)(l-a'/?X)(l-a //3'X)•

Assume that there exist motives M(f) and M(g) associated with f
and g. Then

L, (2s + 2 - k - ;, ̂ ^)L(5, f, g0<)) = L(M(^), s)

where M = M(f) 0 M(g) is the tensor product of motives over F with
F

coefficients in some common number field T. Using the Hodge decomposi-
tions for M(f) and M(g) and the Kiinneth formula for M = M(f) (g)M(g)

F
we see that under our assumption the motive M has d = 4, w = ko + lo — 2,
and the following Hodge type:

M^.(g)C^ C (M^10'^'1^^^10^^^2'^
orl T€JT v

a. A.f(fco+^o+fctT+^)/2-2'(fco+^o-fc^T-ztT)/2
W •^O't

^ ^(fco+fo-l^-z.TD^-i^fco+^+l^-^D^-itb •lylai
^^lo^-l^)/2-l,(ko-^-lo-\^-l^)/2-l\

Moreover,

A(M(x-l),5)=A(5,f,g(x))
n

= 11 (^c(5-(fco+^o-fc,-^)/2)^c(5-(fco+<o-|fc^-^^|)/2+l))
z=l

x L,(2s+2-ko-lo, ̂ x2)^ f, g(x)),
and this function satisfies a functional equation of the type 5 t—^ fco+^o—2—s.

8.4. The critical values of the Rankin convolution.

Let us now set

m^ = max((fco + lo - \ki - ̂ |)/2 - 1) 4-1, m* = ko + lo - 2 - m^.

The periods c^c^M) can be easily computed in terms of c^cr.M) (as
in the elliptic modular case; see a more general calculation in [B12]). The
validity of the conjecture on factorizaton of Deligne's periods in this case
was proved recently by H. Yoshida [Yo], 4.6, see also [Ha3]. As a result one
gets that the quantity

c^AO^a.A^^c^M)^ € (T^C^



MOTIVES OVER TOTALLY REAL FIELDS 1015

does not depend on the sign ±, and is given by

^(a AUM - <f ̂ M^c-M^^g)^, if ̂  6 J
v > / """Ic+^g^c-^g)^,^), if^reJ'.

Moreover,
c^MOT1)) = WC^M).

Let us apply the modified conjecture on special values to the Lr-
function

A(M0^1)^)=A(5,I,g(x)),

and set c(f, g) == fl ̂ (^ ̂ 0»
a

c(J,f) = n C^CT,!)^,!), c(J',g) = I] c-^g^-^g),
o-eJ ^e^7

and ^j,f) = n ̂ f), ^(j',g) = n ^g).
(reJ ^eJ'

Then we see that
c(J,f)c(J',f) = (f,f), 6{W(J^f) == GW-l(27^z)n(fco-l),
c^g^J^g) = (g,g}, ^J,f)^(J',g) = G(a;)-l(27^^)n<^o-l),

and

c(M(x-1)) = c±(M(x-l)) = G^WW^W^J'^f).

With this notation the modified conjecture on the critical values
takes the following form: for all Hecke characters \ of finite order and
r € Z, m* < r < m* we have that

A(^f,g(x)) ^ A(M(x-l),r)
G(x)2c(J, f)^(J, gW, g)^(J', f) G(^)2c(M) " ̂ '6) AJ-

8.5. Let us consider the special case when J ' = 0, i.e. ki > k for all
ai e J F ' Then

c(J,f) = c(J^,f) = <f,f) , <?(J,g) = 6(J^g) = G^)-\2m)n(lo~l\

and the above property transforms to the following:

^^(X)) g Q.f - ..)

G'(x)2(f,f),G(^)-l(27r^)n((°-l) ^I'8'^'

where Q(f,g,^) denotes the subfield of C generated by the Fourier
coefficients of f and g, and the values of ;̂. This algebraicity property
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was established by G. Shimura [Shi] by means of a version of the Rankin-
Selberg method.

In the general case the above algebraicity property was also studies
by G. Shimura [Sh2], [Sh3] (for some special Hilbert modular forms, coming
from quaternion algebras) and by M. Harris [Ha3] using the theory of
arithmetical vector bundles on Shimura varieties. The idea of the proof
was to replace the original automorphic cusp form f : G(A) —^ C of
holomorphic type by another cusp form f'7 : G(A) —^ C such that

^{9^ ' ' • ̂ n) = f(pljl, • • • ,9nJn),

where ̂  € GL2(R),

G O -
(;-?)•

f t 1 (r

7 -I vo 1/

ifieJ

'•- n o- if i e J'.
t \0-1,

Then f17 can be described by functions f$7 on ̂ n, which are holomorphic in
Zi (i € J ) and antiholomorphic in zi (i e J'). Then the differential forms

fj7 Azej dzi
define a certain class c<(f'7) of the degree |J| in the coherent cohomology
of the Hilbert-Blumenthal modular variety, or rather its toroidal compac-
tification ([Hal], [Ha2]). This space of coherent cohomology has a natu-
ral rational structure over a certain number field F17, defined in terms
of canonical models. From the theory of new forms it follows that there
exist a constant ^(<7,f) € Cx such that the differential form attached to
^(^f)"1^ is rational over the extension of FJ obtained by adjoining the
Hecke eigenvalues of f. Then the critical values of the type A(r, f, g) can
be expressed in terms of a cup product of the form

cl^Ucl^^UE,

where E is a (nearly) holomorphic Eisenstein series. Then the above
algebraicity property can be deduced from the fact that the cup product
preserves the rational structure in the coherent cohomology. However, the
technical details of the proof are quite difficult.

8.6. p-adic convolutions of Hilbert cusp forms.

Now we give a precise description of the p-adic convolution of f and
g assuming that both f and g are p-ordinary, i.e. for pi = p(o^) one has

ordp a(pi) = (fco - ki)/2, ordp a'(pi) = (ko + fc,)/2 - 1,
ordp/?(p,) = (Zo - ̂ )/2, ordp/?'(p,) = (Zo + h)/2 - 1,
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or equivalently, ordp <7(pi, f) = (fco - ̂ )/2, and ordp C(fi, g) = (IQ - k)/2.
We assume also that the conductors of f and g are coprime to p and we set

Ap(s,f,g(x))

== II (l-x(Pi)^(p^)/?(p^)^-s)(l-x(P^)^(P^)/3/(p.)Xp,-s)
<7,€J\5(X)

x(l-x(pi)-la(p,)-l/3(^)-Wp^l)(l-x(P^)-l^(P^)-l/3/(P^)-l^prl)

x n (l-x(p^)^(pi)^(p^)^p^s)(l-x(pi)^(p^)^(pi)^p^s)
^e^oo

x(l-x(P^)-l^(P^)-l/3(Pi)-l^p^l)(l-x(P^)-l^(Pi)-l/5(P^)-l^P^l).
Then we introduce the following constant:

n(f,g) = ̂ ^f)^^)^^^)^'^)
= n^^'M^g) n ̂ ^"(^g)^)-

<T€J o-eJ'

8.7. CONJECTURAL DESCRIPTION OF THE p-ADIC CONVOLUTION. —
Under the conventions and notation as above there exists a bounded Cp-
valued measure p, = /Af,g on Galp, which is uniquely determined by the
following condition: for all Hecke characters \ € ^ors and all r € Z
satisfying m^ < r < m* the following equality holds:

f x~^d^
./Galp

_ /^(-irA^f^g^))^ , / .~~^~w^ "(f,g) IH^1-^)
, n ( ^~1 ^cw n ( ^prl Y^c(x) ^."A^)2^7^7^) ^ ,nA^^)2a(p^)a/(p^)) /

and the measure /^f,g defines a bounded Cp-analytic function

Lf,g : Xp —> Cp, <Yp 3 a; ̂  / ^d^f,g
*/Galp

fthe p-adic Mellin transform of fif^), which is uniquely determined by its
values on the characters x = x"1-^3^ G ^p.

(Note that the above expression could be written in a slightly simplier
form if we take into account the equalities:

c^p)2^)/^?) = a(p)MpW°-1,
W2aW(p)=(3^(v)^fpko-l.)
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8.8. Concluding remarks.

The existence of the p-adic measure in 8.7 is known in the special case,
and J = 0 (see [Pa2]), where f and g are assumed to be automorphic forms
of scalar weights k and ?, k > I. One verifies easily that the description 8.7
perfectly matches with the modified period conjecture and with the general
conjecture on the p-adic L-functions of Section 6. Also, this construction
was recently extended by My Vinh Quang [My] to Hilbert automorphic
forms f and g of arbitrary vector weights k = (fci, • • • ,fcn), and I =
(^i? • • • ? In) such that ki > k for all i = 1, • • • , n, and to the non-p-ordinary
case. In this situation the p-adic convolution of Lf^g is also uniquely
determined by the above condition provided that it has the prescribed
logarithmic growth on Xp (see [VI]). More general classes of p-adic L-
functions in the p-ordinary case were constructed by H. Hida [Hi3] using
powerful techniques of nearly p-ordinary Hecke algebras, duality theorems,
and p-adic families Hilbert modular forms and of Galois representations.

In the mixte case the proof of the algebraic properties of the Rankin
convolution in [Ha3] can be used also in order to carry out a p-adic
construction. First of all, one obtains an expression for complex valued
distributions attached to A(r, f, g(^)) in terms of the cup product of certain
coherent cohomology classes, and one verifies that these distributions
take algebraic values. Then, integrality properties of the arithmetic vector
bundles can be used for proving some generalized Kummer congruences for
the values of these distributions, which is equivalent to the existence of p-
adic L-functions in 8.7. However, some essential technical difficulties remain
in the general case, and 8.7 can not be regarded yet as a theorem proven
in full generality, although it holds in important special cases described
above.
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