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SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

by J. FARAUT, J. HILGERT and G. OLAFSSON

To Sigurd ur Helgason on his sixty-fifth birthday

0. Introduction.

A semisimple symmetric space M. = G/H is said to be ordered if
it carries a partial order which is invariant under the action of G and
infinitesimally generated, i.e. determined by the tangent cone of the set
of positive elements at the origin. If M. is irreducible and ordered then it
is never Riemannian, i.e., H is non compact. Examples are one sheeted
hyperboloids.

A spherical function (p on the ordered symmetric space M. is a
function defined on the positive part {x € M. \ x > 1H} of M. which
satisfies the functional equation

/ (p{xhy)dh = (p(x)ip(y),
JH

where (p is viewed as an 7:f-bi-invariant function on G. Such functions were
first studied for special cases in [FV86], where they were used to diagonalize
certain integral equations with symmetry and causality conditions.

In this paper we present a construction of spherical functions for
general semisimple ordered symmetric spaces, but in order to keep the
necessary background on the structure theory of those spaces at a minimum
we do not hesitate to restrict ourselves to certain representatives of locally
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isomorphic spaces even though more general results can be obtained. In the
first four sections we describe the geometry of ordered symmetric spaces
to the extend we need in the sequel. In Section 5 we construct a family of
spherical functions parametrized by an open subset £ -j- ia* C a^, where a
is a certain abelian subalgebra in q, the tangent space of M. at 1H. The
formula is similar to that for Riemannian symmetric spaces :

^(x) = ( e^-^^dh.
J HI H

As H is non-compact in this case, one needs to restrict both A and x. In
particular we have to assume that x > 1H. Section 6 is devoted to the study
of the asymptotic behavior of (p\. We introduce the c-function associated
to the ordered symmetric space M.. This function is a product of two
c-functions, one of them being the Harish-Chandra c-function associated
to a Riemannian sub-symmetric space contained in M. and the other a
function constructed by an integral over a bounded real symmetric domain.
In Section 7 we relate the spherical functions to H -spherical distributions
associated with principal series representations of G.

In Section 8 we introduce the spherical Laplace transform of invariant
causal kernels on M., and, what is the same, It-invariant functions on the
positive part. The Laplace transform is defined by

£(/)(A) = / f^e^-^^dx.
JMIM

This integral does not converge for all A. If / has compact support modulo
H^ then the integral converges for A € £ + id*. We also introduce the Abel
transform of an invariant causal kernel, and show that the spherical Laplace
and Abel transforms are related by a classical Laplace transform. In the last
two sections we present special cases for which we can actually invert the
spherical Laplace transform. For M. of the form GC/GR, by using a formula
of Delorme, we are able to invert both Laplace and Abel transforms. His
formula also shows, that c{\)~l^p\ has an analytic extension to %a*. Let S
be the semigroup

S = [g e G I gH ^ 1H}.

We prove

THEOREM 9.7. — Let M be an ordered symmetric space of type
GC/GR and let f be an H-invariant smooth function on S° ' Xo such that
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f\s°nA has compact support. Then there exists a constant c > 0 only
depending on normalization of measures such that, for a € 6'° H A,

/(a) = c [ C{f){iX)^(a) dx

Ja* c(%A)c(-%A)

In Section 10 we consider for n ^ 2 the symmetric space
.M = SOo(l,n)/SOo(l,n - 1). Here we first invert the Abel transform by
using the Riemann-Liouville transform and then by using that we invert
the spherical Laplace transform.

The paper is organized as follows :

1. Causal structures

2. Causal symmetric spaces

3. Symmetric spaces of Olshanskii type

4. Ordered symmetric spaces

5. Spherical functions

6. Convergence of integrals and asymptotics

7. Spherical functions and H -spherical distributions

8. Invariant causal kernels and the spherical Laplace transform

9. Inversion formula for spaces of Olshanskii type

10. Inversion formulas for spaces of rank 1

1. Causal structures.

Let M. be a differentiable manifold of dimension n. A causal structure
on M is a field of cones M 3 x ̂  Cx C T^M. The cone Cx is assumed to
be closed, convex, proper (Cx^-Cx = 0), and with non-empty interior (i.e.,
generating Cy, - Cx = T^M). Furthermore the cone Cx depends smoothly
on x. More precisely, for a family of open subsets U covering A^, there exist
smooth maps

^u'.Uxy -^T(M)
with (f)u(x^) C T^{M), and there is a cone C in R71 such that

Cx=(t>u{x,C)
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for x € U. A piecewise C^-curve 7: [a, f3] —^ M is said to be causal, if, for
all t^ the derivative 7^) belongs to the cone G^) (the right derivative if
^(t) has a discontinuity at ^). The causal structure is said to be global if
there exists no non trivial closed causal curve. In that case one defines a
partial ordering on M in the following way : one writes x ^ y if there exists
a causal curve from x to y . For re, y in .M, we define the interval D{x^ y) ,

D{x,y)={zeM { x ^ z ^ y } .

In general these order intervals are not closed, but in the case we will
consider they are even compact. The causal manifold is said to be globally
hyperbolic if the intervals are all compact.

Assume that M. is a homogeneous manifold, i.e., M. = G / H , where
G is a Lie group and H a closed subgroup. For g in G we denote by ig the
map

£g: aH \—> gaH.

The causal structure is said to be G-invariant if, for all g G G', and x € M.

C^=dW{C^).

Let Xo = 1H^ where 1 is the unit in G. Then a G-invariant causal structure
is determined by the cone G^ in T^(.M), which is invariant under Jf, i.e.,
under the linear transformations d^(xo)-> h e H.

To a global invariant causal structure on M.^ one associates the
semigroup

5' = {g € G | gxo ̂  Xo}.

One can easily see, that S D S'"1 = H. For more information on causal
structures on homogeneous spaces we refer to [La89].

2. Causal symmetric spaces.

The results of this section are taken from [6la90]. The earliest
reference to the objects studied is [0182]. Let {G^H) be a symmetric pair,
i.e., G is a connected Lie group, H is a closed subgroup, and there exists
an involutive automorphism r of G such that

(G^o C H C G\
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where Gr = {g € G | r(^) = ^}, and (G^o is the identity component
in GT. As in the introduction we let M. = G / H . Let Q and ^ be the Lie
algebras of G and H and denote the differential of r also by the same letter.
Then

I) = {X € S | r(X) = X}.

Let

q = {X e s | r(X) = -X}.

The tangent space at Xo of .M can be identified with q. In this identification
d£h(xo), h € H corresponds to Ad(h). Therefore an invariant causal
structure on M. is determined by a cone C in q with the properties

- C is closed, convex, proper, generating

- C is Ad(Jf)-invariant.

To see that the cone field gH ^ (d£g)(xo)(C) is smooth, we choose
a zero neighborhood U C q such that Exp : X i-» expX • Xo is a
diffeomorphism of U onto V :== Exp(£7). Let g € G. Then (f)gy is defined
by

(^(pExpX.V) = (c^exp(x))(^)(n X e ?7,y e q.

Assume that G is semisimple with finite center. Let 6 be a Cartan
involution of G commuting with r. Let K be the corresponding maximal
compact subgroup of G. Its Lie algebra is given by

t = [X e s I W = ̂ }.

Define

p = [X e Q | TO = -X}.
Let qo be the space of Ad{H D J^-invariant vectors in q. There exists in q
a cone C with the properties

- G is closed, convex, proper

- G is Ad(^)-invariant

if and only if qo 7^ {0}.

Assume further that (5, ()) is irreducible^ i.e., there is no non-trivial
ideal in Q which is invariant under r. If qo 7^ {0}, then one of the following
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cases occurs :

Case (1) dimqo =1, qo C q n t.
Case (2) dim qo = 1, qo S q H p.
Case (3) dimqo = 2.

In Case (1) let C be a cone in q which is closed, convex, proper, and
Ad^-invariant, then C is generating and C° H (q D 6) ^ 0, where C°
denotes the interior of C, or equivalently C D ̂  {0}. This defines on M
an invariant causal structure which is not global. In fact, if Xo is a non-zero
element of qo, then the curve t ̂  Exp(tXo) is causal and closed.

In Case (2) let G be a cone in q which is closed, convex, proper, and
Ad (Jf ̂ invariant, then C is generating, and C° D (q H p) -^ 0. We will see
below that in this case the associated causal structure is global and globally
hyperbolic.

In Case (3) we have qo = qo H ^ + qo H p and each of these subspaces
of qo has dimension 1. There are four invariant causal structures on .M,
two of which are global and globally hyperbolic whereas the others are not
global.

We consider a few examples, for a complete classification see [6la90].
Case (1)

(i) Let G be a connected simple group, then G can be considered as a
symmetric space, the group G x G acting on G by (a, b) • x = axb~1. The
corresponding involution is r(a, b) = (&, a). There exists a biinvariant causal
structure on G if and only if the Lie algebra Q of G is Hermitean, i.e., t
has a non-trivial center. If G has finite center, this causal structure is not
global.

(ii) The symmetric spaces SU(p, q)/SOo(p, q) for p > 1, q ̂  2. Let as usual

SU(p,9) = {a e SL(n,C) | a^lp^a = lp,J,

with n = p 4- q, and where

i -(^ ° }^-[o -ij-
Let su(p,q) be the Lie algebra of SU{p,q). Define r by r(a) = a =
Wa-^lp.g, a € SU(p,g). Then H = G^ = S0^(p,q), f) = so(p,g)
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and

q={XesM(p,q)\X=-X}.

Let 0{X) = —X* be the usual Cartan involution on su(p,g). Then

qH^= ̂ (A o)\A~v=A,DT=D,TrA+TrD=0, A.Dreall.

Let Ck be the cone in q D t such that A ^ 0 and D < 0. Then the closure
of the convex hull of Ad(H)Ck is a closed, convex, proper and generating
H -invariant cone in q such that C° H ^ = C^ ̂  0.

(iii) The symmetric space S0o(2, n — l)/SOo(l, n — 1) for n ̂  3. Define the
involution r as conjugation by l^n. Then H = G^ ^ S0o(l,7z — 1). The
bilinear form —13|q, B the Killing form on so(2, n— 1), defines a Lorentzian
form on q. Each component of the light cone {X € q | —B(X,X) ^ 0}
defines an S0o(2,n — l)-invariant causal structure on the Lorentzian
manifold S0o(2,n — l)/SOo(l,n — 1) which is not global.

Case (2)

(iv) Let 1) be a simple Hermitean Lie algebra, G a connected complex Lie
group with Lie algebra Q = t)c and assume that the conjugation r of Q with
respect to () can be lifted to G. Then q = i\} and, if H = (Gr)o, then HnK
is a maximal compact subgroup of H. We have qo == %3, where 3 is the
center of ^o =^r\t. These symmetric spaces M. = G / H were first studied
by Olshanskii, and we will call them symmetric spaces of Olshanskii type.

(v) The symmetric spaces SL(n,M)/SOo(p,9) for p + q = n,p ^ 1,^ ^ 2.
Here the involution r is given as for SU(p, q) by

r(a) = l^a-1)^,,

and the invariant cone in q is given by Ad(SOo(p, q))Cp where Cp is the cone

in q D p consisting of matrices of the form ( j , A and D symmetric,

A ^ 0, D ^ 0 and TrA + TrD = 0.

(vi) The Lorentzian space SOo(l,n)/SOo(l,n - 1) for n ^ 3. This space is
treated in Section 9 of this paper.
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(vii) The symmetric space SL(2,M)/SO(1,1) ^ SOo(l,2)/SO<,(l, 1). Here
A4 is a hyperboloid with one sheet in M3.

(viii) The symmetric spaces Sp(n,R)/GL(n,M).

(ix) The symmetric spaces U(n,n)/GL(n,C).

A semisimple symmetric space equipped with a global causal structure
will be said to be ordered.

Assume that there exists in p D q a non-zero vector Xo which is
invariant under Ad(HnK) and such that the projection on every irreducible
component is non-zero. Then it can be shown, see [6la90], that the
centralizer of Xo in Q equals C H \) C p H q. Thus if a is maximal abelian
in p H q, then Xo C a and a is maximal abelian in p. Furthermore we may
assume that the eigenvalues of ad(Xo) are 1,0, -1. Let

0 = 0 i + S o + S - i

be the corresponding eigenspace decomposition. Then S o = ^ H ( } e p n q .
As [Qi.Qj] C Qi^.j, i,j = 0,1, -1, it follows, that ^±1 are abelian algebras
and [so,0±i] C s±i.

Let b be an abelian Lie algebra and V a finite dimensional semisimple
b-module. We use the notation

Va := {v € V | VX € b : X . v = a{X)v}, a e b*,
A(V,b) :={a€b* a^O.V^O},

v(r):=(3)v,, rcA(v.b), v^Vo'0,
aer
1^r):= 2E(dimv-)a•

aer

Let A = A(^, a) and Ao = A(flo, a). Let

A±i = { a e A ( g , a ) | Q^ C ̂ i}.

In the root system A we choose a positive system A4' such that

A+ = A^- U Ai



SPHERICAL FUNCTIONS ON ORDERED SYMMETRIC SPACES 935

with A^" a set of positive roots in Ao. One obtains in a the two cones

Cmax = [X e a | Va € Ai : a(X) ^ 0},
r • — r*^min — ^max?

and in q the closed convex T^-invariant cones Cmax and Cmin such that

Cmax H d = Cmax)

^min I I ^ — ^min*

Set n = ^(A-^), n±i = s(A±i) = ^±1, no = S(A(J-), p = ^(A-^),
pi = p(^i) ^d po = p(^^)' Moreover we let No = exp(no) and
7v±i == exp(n±i). Finally we set Go = JCoexp(p D q) with KQ = K D H.
Then Go is a group, Zc(Xo)o C Go C Zc{Xo) and the Lie algebra of Go is
QO- Moreover, n = no ©HI is a semidirect product of Lie algebras with HI an
ideal and N = NoN-^ a semidirect product of groups with N]_ abelian and
normal. We note that r(N) = 0(N) = ~N and r(M) == 6>(7vi) = TV-i = TVi
since a C p n q.

3. Symmetric spaces of Olshanskii type.

In this section we specify our notation from the last section to the
symmetric spaces of Olshanskii type. The notation is the same as in
Example (iv).

Let 1) be a simple Hermitean Lie algebra and Q = ()c its complexifi-
cation. Let G be a connected complex Lie group with Lie algebra Q such
that the conjugation r of g with respect to () can be lifted to G, and let H
be a subgroup of G with Lie algebra (),

(G^ C H C G\

Let C be a cone in H) with the properties

- C is closed, convex, proper, generating,

- C is Ad (^-invariant.

The cone C defines an invariant causal structure on M. = G/H which is
global. The associated semigroup S is given by

S = exp(C)7:f
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and S is homeomorphic to C x H (cf. [0181], Theorem 3.5). Moreover M
with this causal structure is globally hyperbolic (cf. [Fa91], Theoreme 4).
We can choose an element Zo € 3^ H I}) defining a complex structure on
H / H n K , where 3(tn()) is the center oHn() which is one dimensional since ()
is Hermitean and simple. Let Xo = -iZo, then adXo has eigenvalues 0, =L1.
Thus our notation is related to the classical one, see [He78] or [Wo72], by

Go=Kc, 11^1=?^ N^=P±.

Now G/(Go^i) ^ -^7(^ n H) is a compact Hermitean symmetric space
V. Let yo = l(GoM). The orbit D = H ' y^ C Y is the Borel realization of
the non-compact Hermitean symmetric space H / ( K r \ H ) . We assume now
that C = Gmax.

THEOREM 3.1 [0181]. — Define F := 6'-1 = exp(-Cmax)^. Then

F = {^ € G | ̂ (D) C D}.
r° = {^ e G | ̂ (D) c D}.

COROLLARY 3.2.

S C A^AT^.

Proof. — Let g C F, then ^/o € j9^o, or g e HGoN^. We write the
Iwasawa decomposition of Go,

Go=KoANo,

and since KQ C H and M)M = N we have ^ e ffATV and g~1 e NAH.

D

4. Ordered symmetric spaces.

We now describe the ordered symmetric spaces which we will use and
fix the notation. For the proofs of the structure theoretic results we refer
to the forthcoming book [OH92].

Let (fl, t)) be a symmetric pair, with Q semisimple, associated with
the involution r. Let GC be a linear connected complex Lie group with Lie
algebra gc- We assume that r can be lifted as a holomorphic involution of
Gc, and that the conjugation a of Qc with respect to Q can be lifted to an
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antiholomorphic involution of Gc- Let G = (Gc)^. Define the c-dual Lie
algebra

^=^+^-w
and the c-dual Lie group

r^c ^rcrGr = U-(Q .

We let H = G H G°. Then (G^ C H c Gr. Let as before .M = G/7:f.
The subspace {c = () D t + i(c{ H p) is a maximal compact subalgebra of g^
Let K° be the maximal compact subgroup of G° with Lie algebra ^c, then
Gc J K ^ is a Hermitean symmetric space of non-compact type.

We assume that there exists in p D q a non-zero vector Xo which is
Ad{H D J<T)-invariant and such that the projection onto each irreducible
factor is non-zero. Thus the space qo of K D H -invariant vectors is non-zero
for each irreducible factor. By Section 1 there exists an -^-invariant regular
cone C C q defining a causal structure on M. such that C° D (p H q) 7^ 0.
Furthermore Xo belongs to the center of^. In fact, let ( • | • ) = — - £ ? ( • , 0 ( ' ) )
be the usual inner product on Q coming from the Killing form. Then, for
X e p n q ,

([X,,X] I [X,,X]) = (X I [Xo, [X^X]]) = 0

since [X^ X] <E t H (). Thus we have [Xo, X] = 0.

If (fl, 1)) is irreducible then there are two possible cases :

Case (1) Q° is not simple, then M. is a symmetric space of Olshanskii
type.

Case (2) Q° is simple, then Gc/G0 is a symmetric space of Olshanskii
type. The orbit of G in GC/G° is isomorphic to M..

From this, Theorem 3.1 and Corollary 3.2, we have (see [OlaQO], Theorem
6.3.2)

THEOREM 4.1. — M. is an ordered symmetric space which is globally-
hyperbolic. Let S be the associated semigroup, then S = exp(C)H.

We have H C ^V-iGo^i, and we define D as the H-orbit of the
basepoint in G/GQN\. Then D is the "Borel realization" of H / K Q ^ where
KQ = Go U H = Go H K. Define

^ = [n € A^-i | n ' GoM C D},
^=expP, PCn-i ,
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then P is the "Harish Chandra realization" of H / K Q . Let PC be the Harish-
Chandra realization in (n-i)c of the Hermitean symmetric space G0/!^0.
Then V = Vc H n-i. Therefore P and Q are bounded domains. We have
(see [6la90], Section 6.4)

THEOREM 4.2. — Define Y := S-1 = exp(-Cmax)^, then

r = {g e G | ̂ ) c D}.

For g € r°, ^(D) C D and g(D) is relatively compact in D. Furthermore
S C NAH and S = Hexp(c^)H.

On the Lie algebra level g decomposes as

Q = n + a + ( ) ,

and the map

N x A x H 3 (n, a, /i) ̂  na/i e G

is a diffeomorphism onto an open subset of G. From this it follows that the
map

NX a-^M,
(n, X) ^-> n exp X - Xo,

is a diffeomorphism of N x a onto the open set NAxo. For x in this set,
x == nexpX • Xo-, we let

A(.r) = X.

Sometimes we will use the notation an{x) := expA(rr). As A and a^ are
right Jf-invariant we can view them as functions on NAxo C M. Note
that the map A is essentially the same as the Poisson kernel for the open
H -orbit of IPmm defined in [6la87] (see Section 4).

The following theorem due to Neeb (see [Ne91], Proposition IV. 17 and
Corollary IV. 18) will be crucial in the proof of the convergence of various
integrals over H.

THEOREM 4.3. — If a € exp(cmax), n € 'N H NAH, then

A(a- lna)-A(n) e Cnun

and

A(n) C -Cnun.
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The following fact will be used later on. Let WQ be the Weyl group
associated with the root system Ao. It can be identified with A^(a)/Z^(a)
and the cone Cmax can be reconstructed from the Weyl chamber

a- = [X e a | Va C A^ a(X) < 0}

using WQ,

(4.1) cwx = Woa-

5. Spherical functions.

We come to the proper subject of the paper. Let M. = G / H be an
ordered symmetric space as in the last section. We assume that the ordering
is associated with the cone Cmax?

S = eXp(C^ax)^.

A spherical function is a function (p defined on the interior 5'° of 5' such
that for alia;,?/ € S°,

H 3 h\-> (^(xhy) C C

is integrable, and

/ (p(xhy)dh = ip{x)ip(y),
JH

where dh is a Haar-measure on H. We remark here that we will use the same
normalization of measures as in [He84], p.449, and [Ola87]. By Theorem
4.2. hx C S C NAH for h C H and x e S. Thus an(hx) is defined. For
A € a^, let (p\ be the function defined on S'0 by

(5.1) ^\{x)= ( e<p-A5A^d/l= / an^hxY-^dh,
J H J H

provided the integral converges. Here a^ = e^'^ for a = expX € A and
A € a^. Let £ be the set of A in a* such that, for all x in 5'°, h i—^ aH{hx)p~x

is integrable over H. For the proof of Theorem 5.2 below we need a lemma :

LEMMA 5.1. — Let M = Zfi(A) then M = ZK^A) and M is compact.
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Proof. — As a is maximal abelian in p it follows that Zn(A) =
ZKHH^A) C ZK^A). Furthermore Zn(A)o = Zj<(A)o as a is maximal
abelian in q. Let

F := K D expc^ ia.

Then every element of F has order 2 and thus F C GT. Furthermore
F C G^. It follows that F C H. As in [KnZu82], p. 400, it follows, that
ZK(A) = F(ZK(A))o C H and the claim follows. D

THEOREM 5.2. — For SRA G £, the function (p\ is spherical.

Proof. — For g e NAH one writes

g=naH(g)h(g),

with n G N and h(g) € H. We prove first

(5.2) an{xy) = aH{x}aH(h(x)y),

for a-, y 6 NAH such that a;?/ e NAH. Notice that in this case /i(.z')^ is
also in NAH. Let a: = n\dH(x)h(x) then :

^ = n^dH{x'}h{x}y
= n^aH(x)n^aH(h{x)y)h{h(x}y)
= ri3aH(x)aH(h(x)y)h(h(x)y),

with 77,3 = nl(aJf(a;)n2^Jf(^)-l) ^ ^- Therefore

^(^)P-A = anW^aHWhyY^

for .r,^/ € 6'°. By integrating with respect to h one obtains

{ a^xhyV-^h = ̂ (^"VO/).
J H

Now by replacing x by /I'a;, integrating with respect to h' and using Fubini's
theorem to change the order of the integrations we see that ip\ is spheri-
cal. D

PROPOSITION 5.3. — Let ^ € a*. Then ^ e £ if and only if

I aH(kY^dk < oo,
JKHNAH
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and, for 5RA € <?,

y^) = / a^kxY-^nW^dk.
J K H N A H

For SKA G S, the spherical function (p\ is continuous on S°.

This shows that the convergence of the integral denning ^p\(x) only
depends on A and not on a:, a remark which will be used in Section 8.

Proof. — We use the following fact which follows from Lemma 5.1
above and Lemma 1.3 in [6la87]. A function / on H is integrable if and
only if f(h(k))aH(k)2p is integrable over K D NAH^ and

(5.3) { f{h)dh= f f^k^anW^dk.
J H JKHNAH

Therefore, for SRA € 8,

^(x) = / a^kxY^anW^dk.
J K H N A H

Let x € 5°, g = x-1 C F0. By Theorem 4.2, g{D) C D. Let L = K H NAH.
Since L~l/GoN-i is contained in D, then gL~l/GoN-i is contained in D, or
gL~1 C HGoN^ = HAN^ and Lx is a compact set contained in HAN. For
a compact set B C 5'°, fi € a*, there are constants a, b > 0 such that

V/c € L, a ^ a^fcr)^ ^ &.

Therefore /x e f if and only if

I anW^dk < oo.
JKHNAH

By the dominated convergence theorem of Lebesgue, this shows that, for
SKA G f, the spherical function ip\ is continuous on 5°. D

COROLLARY 5.4.

{/-A € a* | Va G A+, (p + AA, a) < 0} C f.

Proof. — Assume that, for all a € A+, (p + /^,a) < 0. Then, by
Lemma 4.1 in [6la87], the function g ^ an^g)^^ is continuous on G.
Therefore it is bounded on the compact set KHNAH^ hence integrable over
K n N A H . D
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By considering the orbit MQ = Go'Xo in M one obtains an imbedding
of the Riemannian symmetric space MQ = GQ/KQ in M. Every element a*
in N A ' Xo can be written x = n^y with ni e TVi and ^/ G A^o in a unique
way. We write

x =.n^y(x).

For g e Go, aj^(^) coincides with the Iwasawa projection relative to the
Iwasawa decomposition Go = NoAKo of the reductive group Go. Thus
y C M.Q can be written in a unique way as

Then, for x in NAxo,

Furthermore, for k in KQ,

V = noaH(y)xo.

aH{x) = an(y{x)).

y(kx) = ky(x),

since A/i is normalized by KQ. By integrating first with respect to KQ in
the integral defining the spherical function (p\, we obtain

^)=/1 f / aH{ky(hx)y-xdk\ dh,
JKo\H \JKo )

where dh is a suitably normalized If-invariant measure on KQ\H. The
spherical functions for the Riemannian symmetric space Mo are given by

<^Q/) = ! anW^dk.
J K o

Therefore we have proved

THEOREM 5.5.

^)= / ^-x(y{hx))dh.
J Kr\\H'KQ\H

The Weyl group WQ associated with the root system Ao is the Weyl
group for the Riemannian symmetric space GQ/KQ. As wpi = pi for all
w € WQ, the Weyl group invariance of the spherical functions in the
Riemannian case yields
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COROLLARY 5.6. — For w € WQ we have (pw\ == <-P\'

6. Convergence of integrals and asymptotics.

To study the convergence set £ and the asymptotic behaviour of the
spherical function (p\ we will carry the integral defining (p\ to an integral
over 'N D NAH.

PROPOSITION 6.1. — Let fl, C A^-i be as in Theorem 4.1. Then
'N H NAH = 'NQ ' Q.

Proof. — By definition of Q and Go = KoANo we get

^GoM = HGoN^ == HAN.

Therefore 0/Vo = ̂  H ^AA^. Thus TV n NAH = A^"1. As (9TX = -X
for all X e n_i and HGoN^ is 0r-stable it follows that Q~1 = Q.. D

We consider the following integral for A e a^,

(6.1) c^(A) = / a^ni^dni.
JQ

Let

^nin = {A € a* | VX C Cn,in, A(X) ^ 0}

be the dual cone of Cmin in a*. We also define

c ^ = { A e a * |VaeA^ <a,A)>0}.

PROPOSITION 6.2. — The integral defining CQ, (A) converges ifSRA+p C
^min*

Proof. — Since ^ is bounded, it is enough to prove that

n^ an^nY^

is bounded on 0. By Theorem 4.3 A(n) G —Cmin? therefore

sft(p+A,A(7^)) ^0,
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and

|g(p+A,A(n))j ^ ^ Q

THEOREM 6.3. — The domain of convergence £ of the integral defining
the spherical function y\ is given by

S = [\ e a* | c^(A) < oo}.

Proof. — By Proposition 5.3 we know that A e £ if and only if
k i-> aH(k)p+x is integrable over K D NAH. For x e G we use the
Iwasawa decomposition G = NAK for defining a{x) e A and k{x) € K
by x e Na{x}k{x). By Lemma 1.3 in [6la87] this is the case if and only if
n i-> an (fc(n))p+A 0(71)^ is integrable on ~N H NAH and in that case

/ aH{k)p^xdk = t aH(k(n))p+xa(n)2pdn.
JKHNAH JNnNAH

By Proposition 6.1 NnNAH = 'NQ^I. It is also obvious that dn = dno^i.
Thus since

and

anWn)) = aH{n)a(n) 1

_ a^o^RdriQ = 1,a{
^ N oJNn

we obtain

I aH{k)p+xdk= f aH(k{n))p+xa(n)2pdn
J K H N A H JNDNAH

= 1 aH^nY^a^nY^dn
JNo^l

= f aH^R^dn
J^J^

=^(A)

as an^x) = a(x), for x C Go. D

COROLLARY 6.4.

-P+c^C£.



SPHERICAL FUNCTIONS ON ORDERED SYMMETRIC SPACES 945

PROPOSITION 6.5. — For SRA e a^ n £,

f_ a^(n)^\M=co(A)^(A),
J N H N A H

where

co (A) = I an W0^ (trio
J N nfNo

is the c-function of the Riemannian symmetric space GQ/KQ.

Proof. — One uses once more a^(no^i) = Q'H^o)o'H (^(^0)^1)5 and
notices that h(no) € KQ. For ko G Ko, a^(A;oni) = ^^(^o^i^o"1), and the
measure dn\ is J<'o-invariant. This proves the claim since (^(no)^ = 1-

D

PROPOSITION 6.6. — For a in A D 5°,

^(a) = a^ /_ a^(a-lna)p-Aa^(^)p+A^.
J7Vn^A^

Proof. — First we notice that for all / C L^ff) right M-invariant we
have

[ f{h)dh= ( f(h(n)) aH^n^dn
J H JNnNAH

by Theorem 4.5 in [6la85] or by [Ola87]. The proposition now follows since

A(h(n)a) = A(na) - A(n)

= log a + A{a~lna) - A(n). D

LEMMA 6.7. — Let Q be a compact set in f2, and let A G O * . There
exist positive constants Mi(Q, A) and M^(Q^ A) such that

M^Q^e^^ ^ e^^^o^i)) ^ M2(0,A)e<A'A(T^O)>

for n\ G Q, no G NQ.

Proof. — Using the Iwasawa decomposition Go = NoAKo^ one writes
no = noexpA(no)ko^ where ko = h(no) € Ko^ and we have

A(nom) = A(no) + A(/coni)
= A(no) + A(kon^kQ1).
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Notice that k^k^ e Ad{Ko)Q =: Q, which is a compact set in 0 Let

Mi(Q,A)=_inf e^^^i))
niCQi '

M2(Q,A)=_sup e^^)). n
nieQi

Let A_ = exp(a-) (cf. Section 4) and introduce the notation a -^ oo
to mean that a e A- and for all a 6 A+ we have lima0 = 0.

THEOREM 6.8. — Assume 5RA G a^ H f. Then

Jn^aA-^(a)=co(A)^(A).

Proof. — For n € TV,

lim A(a-lna) = 0,
a-^oo v / '

thus by Proposition 6.3 and Proposition 6.6 it suffices to show that one can
apply the dominated convergence theorem of Lebesgue. For 0 < 6 < 1 we
set

A(6) = {a e A- | Va e A+, a0 < 6},

^ = (J a'^a.
aeA(<$)

By Theorem 4.2 a-^a is relatively compact since a~1 e r°. If a0 ^ ^a

for all a e A+, then ba-1 e r and a-^a C fc-^^. It follows that ^
is relatively compact in ^2. From Lemma 6.7 it follows that, for ^ = SRA,
n=no^ i? ^ e A(^),

[g^-A^a-1^))! ^ M2(cJ,p-/,)e<p-^A(a-17^oa)).

There exists e, 0 < e < 1, such that

po -e^i e a'j_.

Using the properties

A(no) € -"^a

A(ano^~1) - A(no) e "^a

for a e A+ (cf. [He84], p. 439), one shows that

(^-po^A^noa)) ̂  (1 - eX/^a-^oa)) ^ (1 - e)(^,A(no)).
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It follows that

^(p-A^a-^a^^+^A^ ^ M^,p - ^)e<^+p,A(no)) g^+p,A(^(no)^i)>

and the function on the right handside is integrable over 'NQ x f^. In fact,
for ko e KQ,

A(kon-i) = A(kon^kQ1)

and

[ e</^A(fconifco-1)) ̂  ̂  /* g^+p,A(ni))^

./̂  7^

Furthermore, for /^ € a^,

t e^^^dno = co(^) < oo. D
J N o

In a completely analogous way we obtain

(6.1) ^e^^^aexptX^) = ̂ _p,(^(A),

for a € A and A € S.

From (6.1) and Corollary 5.6 we deduce the following corollary using
the Wo-i^variance of the c-function CQ for GQ/KQ.

COROLLARY 6.9.

c^{s\) =c^(A)

for all s e WQ.

7. Spherical functions and spherical distributions.

The spherical functions (p\ are related to I^-spherical distributions
associated with principal series representations of G. More precisely we
will show that (p\ is the restriction to S° of a H -spherical distribution Q\.

We start by giving some definitions and results (cf [Ba88], [6la87]).
Recall that M denotes the centralizer of A in H which is also the centralizer
of A in K (Lemma 5.1). For A e a^ let (TT\,I\) be the representation of
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the principal series induced by the character man ̂  ax of the minimal
parabolic subgroup MAN,

Ix = {/ C C°°(G) | f(xman) = a^f^x)}^
^{g)fW = /(g^x).

The formula

</i, /2)= / fi(k)f^k)dk
J K

defines an invariant pairing on ̂  x J_^. Let ̂  be the function defined on
Gby

$A^)=O, l i g i H A N ,
^(^y^a^.

LEMMA 7.1. — For SRA e f, the fujictjon k ̂  ^{k) is integrable
over K . I f f e Ix then h ̂  f(K) is integrable over H and

I f(k)^(k)dk = { f{h)dh.
J K J n

Proof. — For g e HAN,

6<Q7)=a^-V-\

Therefore the first statement follows from Proposition 5.3. For k e K D
HAN, by writing

A;-1 ^^(fc-1)/^-1),

we obtain

fW^k) = aH(k-^Pf(h{k-1)-1}.

By formula (5.3) the second statement follows. D

For ?ft\ e £ the linear form

f^(f^-x)= I f(k)^(k)dk
J K

defines an element of F_^ the dual of ^. This element still denoted by
^-A is ^-invariant. The function A ^ ^_^ G /L^ has a meromorphic
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continuation for A € a^. For / € C^°(G), TT^(/)^ C JA; where TT^ denotes
the contragredient representation of TT-\. One defines, for / e C^°(C?),

©A(/) = (^(/)^^-A).

Then GA is an .H-spherical distribution on G : it is an .H-biinvariant
distribution and there exists a character \\ of the algebra D(.M) of
invariant differential operators on M. such that

DQ^xx(D)Q^ DeB(M).

THEOREM 7.2. — If StA e £, and if supp(jf) C 6'°, then

QA(/) = /' /(^^M^.
JG

Proof. — If ^((A — p,a)) > 0, for a € A+, then ^\ is a continuous
function on G (cf Lemma 4.1 in [6la87]), and for / e G^°(G), 7r^(/)^ is
the continuous function given by

^(/)^) = / WUy-^dy.
JG

Assume that supp(/) C 5°. For x e T = S~1, x~1 - supp(/) C S C NAH
(Theorem 4.2), and

^(/)^(^) = t fWaH^yr-^y.
JG

This integral is defined and analytic for A € a^. Therefore, by Lemma 7.1,
if %A € f,

Qx{f) = 1 ( 1 fWanW^dyVh.
JH J G

If [i = SRA,

/ / \f{y)\aH{hyr-^dydh= ( \f{y)\^(y)dy < oo,
J H J G JG

since y?^ is continuous on 5'° (Theorem 5.3). By Fubini's theorem, it follows
that

W) = I f(y)^x(y)dy. n
JG
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8. Invariant Volterra kernels and the spherical
Laplace transform.

We recall some definitions and results from [Fa91]. Let M. == G / H be
an ordered semisimple symmetric space. A causal kernel or Volterra kernel
on M. is a function on M. x M. which is continuous on {(x^y) \ x ^ y}
and zero outside this set. We compose two such kernels -Fi and F^ via the
formula

F^oF^x,y)= [ F^x,z)F^z,y)dz,
JM.

where dz is an invariant measure on M.. This definition makes sense because
M. is globally hyperbolic. With respect to this multiplication the set V{M)
becomes an algebra, called the Volterra, algebra of M.. A Volterra kernel is
said to be invariant if

F ( g x , g y ) = F ( x , y ) , \/g € G.

The space V{M)^ of all invariant Volterra kernels is a commutative subal-
gebra of V(A4) by [Fa91], Theoreme 1. An invariant kernel is determined
by the function

f(x) =F(x,Xo), xeM.
The function / is continuous on S ' X o i jff-invariant and supported on S -Xo^

S • Xo = {x G M. | x ^ Xo}'

Conversely if / is an H -invariant continuous function on S ' Xo, we can
define an invariant Volterra kernel F by, for a, b € G,

F(a • Xo, b • Xo) = /(^a • Xo), if b^a <E 5,
= 0, otherwise.

With this identification the product o corresponds to the 'convolution5

fi o f2{x) = \ f^g^x)/^ ' Xo)dg.
JG/H

So the algebra V{M)^ becomes the algebra of continuous TJ-invariant
functions on S • Xo with the above 'convolution' product.

The spherical Laplace transform of an invariant Volterra kernel F is
defined by

£F{\)= ( F(x,Xo)e{p-XJA{x)}dx= ( F^x^x^anW^dx,
JM JM
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whenever the integral converges. Note here that F(x,Xo) -^ 0 only for
x ^ Xo, i.e., for x C S / H . The corresponding formula for the Tf-invariant
function on S • Xo that we will use in the following is

W) = / f(x)e^-^A^dx = { f(x)aH(xy-xdx.
JM JM

Let V{f) be the set of A for which the integral converges absolutely.

PROPOSITION 8.1. — Let /i, /2 <= V(M)^ be invariant causal kernels.
Then P(/i) H^) C P(/i 0/2). For \ e P(/i) nV(^) we have

£(/i^/2)(A)=£/i(A)A/2(A).

Proof. — We will only prove the second statement as the first one
follows in the same way noticing that

/ \flOf2(x)aH(xV-x\dx^ f \h\o\h\{x)aH{xY~^dx.
JM JM

Let g e S then a change of variables x ' = g~^x together with (5.2) yields

/ f(g~lx)aH(xy-xdx = ̂ ((^-^/(A).
JM

Now we calculate using Fubini's Theorem

^{fiof2)W=[ I fl(9~lx)f2(g'xo)d(gH)aH{xy-xdx
JM JM

=W\) I h{9'XQ)aH{gY-xd{gH)
JM

£/i(A)/:/2(A). D

Next we want to compute the spherical Laplace transform using
"polar coordinates", i.e., the decomposition HAH. For that we use the
fact that the map

H / M x A~ 9 (hM, a ) ^ h a ' X o € S° ' Xo

is a diffeomorphism onto a dense open subset and S ' Xo \ HA~ • Xo has
measure zero. In what follows we may also replace A~ by expc^x ^d



952 J. FARAUT, J. HILGERT AND G. OLAFSSON

notice that the map is now a Wo-covering, where Wo is the order of the
Weyl group WQ. Define

6(X)= Y[ (sh^X))^, X e a -
aC-A+

and

6(a) =^(loga), a C A~

where m^ is the multiplicity of the root a. Replacing the Cartan involution
by r in the proof of [He84], Theorem 1.5.8, one can prove the following
integration formula :

(8•la) / f ( x ) d x = c [ [ f(hexpXH)6(X)dXdh
J S / H J n J a -

(8.1^) = c [ f f{haH)6{d)dadh,
J H JA-

where c is some positive constant depending only on the normalization
of the measures. Since the above map is a diffeomorphism onto a dense
open subset, whose complement has measure zero, this does hold for every
integrable function / on S • Xo.

PROPOSITION 8.2. — Let c > 0 be the constant defined above. Let
f: S ' XQ —^ C be continuous and H -invariant. If X e V(f) then ip\ exists
and

^fW=c[ f(a)^(a)6(a)da.
JA-

Proof. — By the above it follows that

/ \f(a)aH{ha)p-x\6(a)d(hM)da < oo.
J H / M x A -

By FubinFs theorem h ̂  aH{ha)p~x has to be integrable for almost all
a e A~. By our remark after Proposition 5.3 this shows that ^p\ exists.
The Proposition now follows from (8.1). D

We now calculate the spherical Laplace transform in "horospherical
coordinates" and relate it to the Abel transfom. For that we need the
following integration formula (see Theorem 1.2 in [6la87]) :
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LEMMA 8.3. — Let f e l}{M) such that f is zero outside N A ' Xo.
Then

\ f(m)dm = f{na • Xo)a~2pdadn.
JM JN J A

We now define the Abel transform Af'.A —> C of an -H'-invariant
function / on S ' Xo by

A(f)(a)=a^ { f(na)dn,
JN

whenever the integral exists.

LEMMA 8.4. — Let f be a continous H -invariant function on S ' Xo
(extended by zero outside S ' Xo) such that n \—> f{nd) is integrable on N
for all a C A. Let L C Cmax be the convex hull oflog(Supp(/|.snA)). Then

log (Supp(A/)) C L + Cmin.

Proof. — Let X e Cmax? X ^ 0 and let conv (WoX) be the convex
hull of WQ'X. Then the convexity theorem ofNeeb ([Ne91], Theorem IV. 14)
states that

A(ATexpX) = conv (WoX) + Cmin.

Let now a e A be such that Af{o) -^ 0. Then we can find n € N , h € H
and b € Supp(/|5-nA) such that

na' Xo = hb' Xo.

This follows from the fact that Supp(/) = HSupp(f\sr\A)- But from this
we get a = OH {hb) or

log a C A(Supp(/)) C L + c în. D

By Lemma 8.3, Lemma 8.4 and the left TV-invariance of aH(x)p~x we
get :

PROPOSITION 8.5. — Let f be an H-invariant function on S ' XQ and
X € V(f). Then

C{f)(\) = [ a^AfWda = /:A(A/)(A),
Jexp Cmax



954 J. FARAUT, J. HILGERT AND G. OLAFSSON

where CA is the Euclidean Laplace transform on A with respect to the cone
Cmax-

The Abel transform can be split up further according to the semidirect
product decomposition N = N-[NQ. Set

^if(9o) = a^o)"^ / f{riigo)dn^
JA/I

for go 6 Go. Then obviously A\f is T^o-biinvariant and

Af{a)=a~po f Ai(f){noa)dno.
J N o

Denote by Ao the Abel transform with respect to the Riemannian sym-
metric space GQ/KQ. Then

Af(a) = Ao(A,f){a)

for all continuous, H -invariant functions /: S ' X Q —>• C, whenever the above
integrals converge, and all a € A. Since it is well known how to invert
the transform Ao^ at least for "good" functions, the inversion of the Abel
transform associated to the ordered space reduces to invert the transform
Ai.

PROPOSITION 8.6. — Let f: S ' X Q —> C be continuous, H-invariant and
such that the Abel transform exists. Then its Abel transform is invariant
under WQ,

Af(sa) = Af(a) Va e A, s e Wo.

Proof. — This follows from Aif{sa) = Ai/(a), since WQ is the Weyl
group of GO/KQ. D

COROLLARY 8.7.

(i) Cf(s\) = Cf(\) for all H-invariant functions f: S ' XQ —> C and
s^Wo.

(ii) (ps\ = ̂ x tor all s € Wo.

Proof.

(i) This is an immediate consequence of Propositions 8.5 and 8.6.

(ii) As (p\ is continuous and H -invariant, we only have to show that
ip\(a) == (^sA(a) for all a G A~. Let / € C^°(A~). Then we can extend
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/ to a H -invariant function on 5'° • Xo by F{ha ' Xo) = f(a • Xo). Apply
Proposition 8.2 to F and notice that F\A- = f. The claim follows now
from the fact that 6 vanishes nowhere in a~. D

Thus the Laplace transform yields another proof of Corollary 5.6.

9. Inversion formulas for symmetric spaces
of Olshanskii type.

In this section we assume that M. = G/H is a symmetric space of
Olshanskii type, G is a complex group, H a real form of G (cf. Section 3).
We will prove an inversion formula for the spherical Laplace transform and
for the Abel transform. By Theorem 7.2 (p\ is the restriction to 5'° of an
H -spherical distribution Q\ . In the present case Delorme gave an explicit
formula for Q\ ([De90], Theoreme 3), which can be stated in the following
way :

THEOREM 9.1. — Define A : A —^ R by

A(a)= II ^(^og^)-
QG-A+

For w e W let e(w) be the determinant of w as a linear transformation on
a. Then, for X e £ + ia*, a G S° H A

(9.1) ^(.)=^,S^_(«0«___^
(]~LeA+(A,a))A(a)

with a constant 7 depending only on M.

In the special case G = GL(n, C), H = U(p, q), the preceding formula
has been proved by direct computation of the integral defining (p\ ([Fa87],
Theoreme 7).

As Go/Kr\H = K c / K , the Harish-Chandra c-function for this space
is well known to be

coW = ̂  70 ,
FLeA^^)

cf. [He84], p. 432. This, Theorem 6.8 and the theorem of Delorme gives us
the c-functions related to M. :
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LEMMA 9.2. — Let 71 = 7/70 and c(A) = c^(A)co(A). Then

7 7l
^ = TT———7\—^ ^W = FT———7\—^*

^aeA+(^Q;) rLeA^^)

We also get

COROLLARY 9.3. — The function

(A, a) i-̂  (-(A)"1^^)

extends to a function on a^ x 5'° D A, holomorphic in A and analytic in a.

Denote by C^°(H\S°/H) the space of ^f-biinvariant smooth functions
/ on 5'°, such that f\s°nA has compact support. We view these functions
also as H -invariant functions on M. that are left H -invariant. Let c\ =
2^ c, c being the constant in the integral formula (8. la).

THEOREM 9.4. — Let f € C^{H\S°/H) be such that Supp(/|^nA)
is contained in a ball of radius R > 0. Then

A^Ar^/KA)

extends to a holomorphic function on a^ given by

(9.2) cW-^WW = ci I /(^(^a-^a.
JSDA

Furthermore for all N G N there exists a constant CN > 0 such that, for
A e a £ ,

(9.3) KAr^CfKA)! ^ CN{I + lAD-^e^l^l.

Proof. — Obviously the last statement follows from the formula for
('(A)'"1/^/^) by using classical estimates. It is clear that in the notation
of Section 8 we have

A(a)2 = 8(a)

since in this case all the multiplicities are two. Furthermore

A(w • a) = e(w)A(a), w G Wo.
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By Proposition 8.2 and Theorem 9.1, for A € £ + za*,

-^rf(\\—^ \~^ I f(^\\f^\^(^\^-w\,^X)~l£fW=c, ̂  f fW^e^a-^da
w(EWo VA~

=ci ^ /* f^^w^a-^da
weWoVA-

= ci j A(a)/(a)a~Ada.
«^exp Cmax

The theorem now follows since the last integral is holomorphic in A. D

THEOREM 9.5. — Let f be an H-invariant smooth function on S° ' Xo
such that f s°nA has compact support. Then there exists a constant
C2 > 0 only depending on the normalization of the measures such that
for a € 5° H A

/(«)=^/_W)(.^_.(»)^^.

Proof. — By viewing / as a smooth function on A that vanishes
outside S° H A we can write (9.2) as

^A)-1/;./^) = ci / f(a)^(a)a-xda.
J A

By the Fourier inversion formula for the abelian group A we get

(9.4) c/(a)A(a) = { c(^\)-lCf(^\)a^xd\.
Ja*

Now c(wA) = e(w)c(A) for all w e WQ, as follows easily from the formula
for the c-function. As £(f)(w\) = £(/)(A), we now get :

A(a) / £(/)(zA)^_a(a) dx

Ja- c(zA)c(-zA)

=C3 ̂  e(w) f c{^\}-lC{f){i\)a^wxd\
weWo ua*

=C3\Wo\ f cW^C^i^a^dX
Ja*

= C4/(a)A(a).

Now the theorem follows with 02 = — . D
C4
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As c(A)~1 is a polynomial function on a^ it determines a differential
operator A on A given by

Aa^ = ̂ A)-1^,

i.e., A = 7~1 ] ' [ Ha^ where Ha is the coroot corresponding to a,
a€A+

{X^Ha} = (A, a), interpreted as a differential operator on A.

THEOREM 9.6. — Let f e C^(H\S°/H). Then

c^(a)f(a)=AAf(a).

Proof. — By Proposition 8.5 we have £(/)(A) = f^a~XAf{a)da.
Thus

Af(a)= ( rCf^+^a^dA
^a*

for all IJL C £. Now (9.3) shows that we are allowed to move the integration
path in (9.4) to get

c/(a)A(a) = / c^A)-1/^/)^)^^
Ja*

= I c^+^-^^^+^a^^dA.
^a*

Take ^ e 6* such that < a,/^ >^ 0 for all a. Then, as c{fi + zA)~1 is a
non-zero polynomial, we get by (9.3)

V7V, 3G(7v), V A G a * , |/:(/)(/2+zA)|^G(7V)(l+|/,+^A|)-NeR^.

This shows that we are allowed to exchange the order of differentiation
with respect to a and integration. From this we get

AAf{a)= f C^^+iX^Aa^^dX
Ja*

= ( c^+^X)-lJC(f)^+^X)a^^xdX
Ja*

=c/(a)A(a). D
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10. Inversion formulas for spaces of rank 1.

In this section we consider the symmetric space

M = SOo(l,n)/SOo(l,n - 1) = SO(l,n)/SO(l,n - 1), n ̂  2.

The involution r is given by

r(g) = ln,î ln,i,

where

(^n 0 ^
1 ( l n ° ^
^l^O -I/

The manifold M. can be identified with the hyperboloid with one sheet
defined by the equation

-^+^+. . .+^=1,

with the base point 1H identified with (0 , . . . , 0,1).

Let C be the cone in q

, f / 0 v' Girlq = v € IT,v' 0

defined by

^-^-. . .-^_i ^0, ^ o ^ O .

This cone defines on M a global invariant causal structure, and, for the
corresponding ordering, x ^ y if and only if

-Xoyo + rCi^/i + . . . + XnVn ^ 1 , 3;0 ^ 2/0-

The Cartan involution 6 defined by

6{g) = (^1)T

commutes with r, and

r /o o t\
a = p n q = . j X ( = 0 0 O t e

I V o o/
f /ch* 0 sht\\

A= {dt= ( 0 l»_i 0 }\te
,sht 0 cht
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We choose the positive root

a(Xi) = -t.

Then
^0 vT 0'

n = So = ^ ( v 0 z> ) | ^ e BF"1

,0 -^T 0 ^

'i+IIHI2 ^T jIHI2
^ ln-1 V

41H12 -^ i-^IHI2
N = <{ n(^) = -n-lV ^ eR

2 1 1 ^ 1 1 —^ j. — j||

We identify a£ with C by C 3 z ̂  -za e a^ and then p = -(n - 1)/2.

We will give an explicit formula for the spherical function

^PM == / aH(hat)p~xdh.
J H

If g = n(v)dth then

^ = A(^) = log(^ + a-o), ^(^^-A = (^ + ̂ o)"^-^

if gH = (a;o,..., .Tn). Note that

r / i o o\
^o=^n i : f ==< j [ o fc o ] f c e S0(n - i)

<0 0 1

hence we have A(hkodt) = A(hdt) for all ko e I^o. The space

b =
^0 (9 0'

(9 0 0 | | ( 9e
<0 0 0

is a maximal abelian subspace in I) Up and induces a Cartan decomposition
ofJf,

H=KoB^K^
where

( /ch(9 sh0 0
B== {be= { sh0 chC 0

0 0 l,_i
^+ = {^ | 6 > 0}.
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Now it follows from [He84], Theorem 1.5.8 that

y^dt)= f e^-^^^^she^dO
JB+(10.1)

= f {cht-}-shtche)-I^l-x(sh0)n~2d0.
Jo

From [Er53a] p. 155, we now get :

7 1 — 3PROPOSITION 10.1. — The integral converges for t > 0, SRA > ——— ==
—p — 1 and

^ ^«.)= -"r^Sl^ ̂ ^

(10.21,) , 2"-W^) n——^ (acto)-*-^
\ •" / i \A ' L)

_ /A+"-1 A+2-1 i \
•2F1(^^'^^'A+1•^)•

where r is the usual r-function, Q^ is the usual Legendre function of
the second kind, 2^1 the hypergeometric function and 7^ is a constant
depending only on n.

In particular, for n = 2,

^x(at)=Q),_^(cht),

and, for n = 3,

^°1)=^••-A••
In this case Co = 1- (10.20) then gives

n - l \ r (A-1^)
(10.3) ^A)» ̂ r^-J-^

The c-function can also be computed by using the integral formula (6.1).
The subgroup N can be described as

f /i+jlHI2 ^ 4M2 \ |
N = {n(v) = | v l^_i --y | | v € R'1"1

-||^||2 ^ 1-1^|[2
^ " 11 ^ 1 1 11 i
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The domain f2 is the unit ball ^ = {n(v) \ \\v\\ < 1}. According to the
normalization of Proposition 6.6 we get

(io.4) c^(A) = 2n^ / (i - miY-^^
^n-l J||v||<l

where u^n-i denotes the volume of the unit sphere in R71"1. The integral
n — 3converges for StA > —.— = —p — 1, and

^X^^Bfx-'-3^)
\ z z /

_gn-2p^-lV(A-2^3)

-2 i ^ 2 ; r ( A + i ) •
The above formula for (p\ in terms of the hypergeometric function

gives

COROLLARY 10.2. — The function Cf^A)"1^^) extends to a func-
tion on a^ x expCmax? holomorphic in A for KA > —1 and analytic in t.

An Jf-invariant function on {x 6 M. \ x ^ 17?} can be written

f(x)=f\Xn)^

where f^ is a function defined on [l,oo[, and the corresponding invariant
causal kernel F on A4 can be written, for x ^ y ,

F{x, y) = f^(-xoyo + ^1^/1 + . . . + XnVn)'

Then the spherical Laplace transform of / takes the following form

(10.5) cfw = un-i r Aw^ww'1^'
Jo

For computing the Abel transform of / we note that

f(n(v)atH)=^(cht-^\\v\\2et\

and hence

Af(ai) = e^ [ /» fcht - ̂ vfe^ dv
./IHI^l-e-* \ z /
/•2shi / -, \

=^-i / f^dlt--r2)rn-2dr
Jo \ L )

/.t
=^_i / / t f(chT)(2cht-2chT) l l2-shTdT.

Jo
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For inverting the Abel transform, we consider the Riemann-Liouville
transform

Iaf(r)=^^f(s)(r-s)a-lds

for a > 0. It satisfies the following properties (cf. [Er53b], Chapter XIII) :

(10.6a) la o Ip = ̂ a+/3, Va, /3 > 0,

(10.66) ( d } {Im(t>)=<f> Vm=0,l,2,....
\drj

Note that for t^ 0

CnAf(^)=^^(ch^-l),

where ^(r) = /^(r + 1), and c^1 = 2siJ'^n-l. Now (10.6b) implies, for
n = 2m + 1,

/ 1 /7 \ m

(10.7a) ^^(sh^) ^(ot)-

and for n = 2m

1 / 1 ^7 \m /**
(10.76) /"(cht) = c,̂  ^-7- / ^l/(a.)(ch^ - chr)-^ shrdr.

VTT \sht at/ Jo

n — 3I f ^ = S R A > ——— then e~p'tAf(at) is a Schwartz function. By Proposition
8.5

£/(^ + i\) = F e-ixte-^Af{at)dt.
Jo

Thus

Af{at)=— r £(/)(/. +zA)e^dA.
^ Jo

Combined with (10.7) this gives the following theorem :

n — 3
THEOREM 10.3. —Letfe C^(H\S°/H). Let p, > ——. Then

Zi

1 f00

f{at) =/tt(ch^) = — / C(f){^+i^n(t^+iv)d^
27r 7-00



^4 J. FARAUT, J. HILGERT AND G. OLAFSSON

where

( 1 rl \ 1

^2m+l (t, A) = Cam+l -—— — )
sht at)

e^

and

( 1 d \m /**
^2m(U)=C72^1^^j / e^ch^-chTl-ishTdr

for suitable constants Cn.

Earlier versions of this theorem can be found in the literature. A
Laplace transform associated with the Legendre functions of the second
kind has been introduced in [CK72]. In [Vi80] this transform is related
to the harmonic analysis of the unit disc. A more general Laplace-Jacobi
transform associated with the Jacobi functions of the second kind is studied
in [Mi83].
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