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SEPARATRICES FOR NON SOLVABLE DYNAMICS
ON C, 0

by Isao NAKAI

To the memory of Professor Jean Martinet

Introduction.

The topology of germs of holomorphic diffeomorphisms of C at the
origin is regarded from many different view points such as the moduli of
differential equations [5], the projective holonomy of singular 1-forms [6],
[19], the non isolated singularities of map germs [17], the groups generated
by involutions [22] and algebraic correspondences. Recently I’yashenko
and Shcherbakov [10], [20], [21] found that non-solvable groups acting
on C,0 possess special topological properties. Namely Shcherbakov [21]
proved the following theorem, which answers affirmatively to a conjecture
by II'yashenko [10] concerning the density theorem of solutions of algebraic
differential equations on the projective plane, the so-called Hudai-Verenov
theorem [24].

TueoreM 0. — For non-solvable pseudogroup of holomorphic diffeo-
morphisms of open neighbourhoods of 0 € C which fix 0, there exists an
open dense subset 2 of a neighbourhood of 0 consisting of finitely many
connected components §); such that the orbit of each z € §; is dense in
Q;.

The purpose of this paper is to extend and prove the above theorem
using the notion of separatrices (Theorem 1) and also to investigate some
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topological properties of orbits of pseudogroups using the holomorphic vec-
tor fields associated with pseudogroups (see §3-5). Let I" be a pseudogroup
consisting of diffeomorphisms f : Us,0 — f(Uy),0 of open neighbourhoods
Uy of the complex plane C which fix 0 € C. We call the group I of the
germs of those f € I' the germ of I'; and call I" a representative of I'y. I"
is non-solvable if its germ is non-solvable.

We say that a subset A C C is invariant under I' if f(ANUy) =
AN f(Uy) for all f € I'. We call a minimal invariant set an orbit (which
is not necessarily closed). The orbit containing an z is unique and denoted
O(z), which is the set of those f(z) with z € Uy, f € I'. Let By denote the
set of those z € Uy such that f(™(z) — 0 as n — oo, where f(® stands
for the n-iterated fo---o f. If f has the indifferent linear term z (in other
words parabolic or flat at the origin), BfUBj(-1) is an open neighbourhood
of 0 (Proposition 2.4). The basin Br is the set of points z for which the
closure of the orbit contains the origin. Proposition 2.5 asserts that the
basin is an open neighbourhood of the origin if an f € I' is flat.

Assume Br is an open neighbourhood of 0. The separatrix X(I") for
I' is a closed real semianalytic subset of B, which possesses the following
properties :

(1) X(I') is invariant under I" and smooth off 0.

(2) The germ of X'(I') at 0 is holomorphically diffeomorphic to a union
of 0 and some branches of the real analytic curve Im z*¥ = 0 for some k.

(3) Any orbit is dense or empty in each connected component of
Br — X(I).

(4) Any orbit is dense or empty in each connected component of
2(r)-o.

THEOREM 1 (The separatrix theorem). — If the germ I of a pseu-
dogroup I' is non-solvable, then the basin Br is a neighbourhood of 0 and
I' admits the separatrix X(I).

By definition, the separatrix X'(I") is unique. From this theorem we
obtain

COROLLARY 2. — If the germ I} is non-solvable and the subgroup
I{ of the germs of diffeomorphisms h € Iy with the indifferent linear term
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does not admit antiholomorphic involution, then X(I") — 0 and all orbits
different from 0 € C are dense or empty on a neighbourhood of 0.

Example. — Let f(z) = z/1-2,Uf = C—{1 < Rez,Imz =0}, ¢(z) =
log(l+2) = 2—-1/222+1/3 22~ --- and let U; (> 1) be a small
neighbourhood of 0, on which g restricts to a diffeomorphism onto the
image g(Uy,). Let I'" be the pseudogroup generated by f and g. Since on
the Z-plane, Z = 1/z, f induces the translation by —1, the basin By is the
whole plane C. By Theorem 1.8, the group Iy generated by the germs of
f,g at 0 is non solvable. The real line R is invariant under the group [Ig
and there is no other invariant curves. If Uy is small enough : U; N R is
contained in the half line {—1 < Re z,Im z = 0}, then g maps the real line
Uy NR into R hence R is invariant under I'. Clearly I" preserves the upper
(respectively lower) half plane. Therefore we obtain

() =R.

Next extend g so that the domain of definition U, intersects with the half
line R”; = {Re z < —1,Im = = 0}. Then g maps the intersection U, NRZ,
into the complement of the real line, where all orbits are locally dense. The
local density holds also at the intersection Uy NR”; and propergates to the
negative part of the real line R™. Therefore we obtain

>(I') =R*.

This example suggests the following refinement. A pseudo group I’ is
a restriction of I if for any g € I"” there exists an f € I" such that U, C Uy
and g is a restriction of f and conversely for any f € I there existsa g € I’
which is a restriction of f. Notice that the restriction I has the same germ
asI'at 0, By C Br and Z(F/) D E(F) N Bp:.

THEOREM 3. — Assume that the germ Iy is non solvable. Then
there exist a restriction I'" of I' and a germ of real analytic subset
XY’ C C holomorphically diffeomorphic to the germ defined by Im 2K =0
(independent of I'') such that, for any restriction I'" of I, the separatrix
X(I'") has the germ X at 0.

Theorem 1 is proved by a microscopic observation of the orbit
structure nearby the origin. More precisely, we observe the local dynamics
at a 2 € By — 0 defined by fGEmgm £(0) iy = 0,1,... with a sufficiently
large fixed n. When f, g are respectively i-flat, j-flat (f(z) = z + az*! +



572 ISAO NAKAI

co,9(2) = 2+ b2t +...) and i < j, the dynamics is convergent to the
identity as n — oo but a suitable real scalar multiple A, (f("™gf(™ —id)
is convergent to a holomorphic vector field denoted x(f,g) defined on
By — 0. By definition the trajectory passing through z is arbitrarily
closely approximated by the orbit of type f(=™g(™ (™) (2) m =0,1,2,...
with a sufficiently large n, so the vector field x(f,g) is a time-preserving
topological invariant. When the germ I} is non-solvable, I" admits many
dynamics of this type, which generate dense orbits nearby z. The separatrix
theorem is proved by this local density of orbits.

Let I'"” be a pseudogroup and I} the germ of I'. We say that I" and
I'" are topologically equivalent (respectively holomorphically equivalent)
if there exists a homeomorphism (resp. holomorphic diffeomorphism) A :
U,0 — h(U),0 of open neighbourhoods of the origin such that U; C
UU, C h(U) for f € Ig C I'" and a bijection ¢ : I' — I, which
induces a group isomorphism of Iy to Iy such that Uy = h(Us) and
ho f = @(f)oh hold for f € I'. We call h a linking homeomorphism ( resp.
linking diffeomorphism). We say that the germs Iy, Iy are topologically
(resp. holomorphically) equivalent if they admit representatives, which are
so.

When I' is topologically equivalent to a I, the linking homeomor-
phism h respects those holomorphic vector fields above defined as well as
the orbit structure. By the topological rigidity of generic pairs of holomor-
phic vector fields (Lemma 5.2), we obtain the following theorem, which is
attributed to Shcherbakov [20] (This theorem is restated (Theorem 5.1)
and proved in the final section in a generalized form. Similar results were
obtained by Cerveau and Sad [5] and II’yashenko [10]).

THEOREM 4 (Topological rigidity theorem). — Assume that pseu-
dogroups I', I"" are topologically equivalent and the germs Iy, [} are non-
solvable. Then the restriction of the linking homeomorphism h : B — B
is a holomorphic (respectively anti-holomorphic) diffeomorphism if h is ori-
entation preserving (resp. reversing).

On the other hand Cerveau and Moussu [5] proved

THEOREM 5. — Let G, G’ be non-commutative subgroups of the group
Diff*(C,0) of germs of diffeomorphism of C which fix 0 € C. Assume
that G,G’ are non-exceptional and formally equivalent. Then the formal
conjugacy is convergent to a germ of diffeomorphism linking G and G'.
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Here a subgroup is exceptional if it is formally equivalent to the
solvable subgroup G, ,,p € N,w € C, generated by

t—wzr and hy(z) =z(1—pzP) VP with w?=-1, (1)V/P=1.

The author should like to express his gratitude to M. Rees for giving
some fundamental knowledge on the dynamics of C,0, to the colleagues
in the university of Strasbourg for hospitality while he was visiting the
university, to S. Matsumoto for a comment on Theorem 2.9 and to D.
Cerveau, C. Camacho, P. Sad, Y. II’yashenko for valuable suggestions
and the referee for improving the proof of Lemma 3.2. Also gratitude is
expressed to the department of Pure Mathematics in Liverpool University
for giving a research position for a long period while this work was carried
out.

1. Residue and formal classification
of diffeomorphisms and groups.

Let f(2) = 2+ ag+12*" + -+ ag+1 # 0 be a k-flat germ of
diffeomorphism of C at 0. By a simple calculation we see that f is
equivalent to the normal form z + 2¥*1 + bz2**! 4 ... i.e. there is a germ
of diffeomorphism ¢ of C,0 such that

plofop=z+ 2" p b2t L.

and f is formally equivalent to z+2%+1 4+b22**! by a formal diffeomorphism
¢ (see e.g. [2]). The b € C is the unique formal invariant for germs of
diffeomorhpisms. Define the residue of f by

res(f) = —b

in other words

res(

1 1
Iy ff(z)—z"z

and define the normalized residue by

Res(f) =res(f) + ]—C;L—l =-b+ %

These invariants play the role to describe the asymptotic behavior of
the f at O (see §2). By the definition of the normalized residue and
straightforward calculation of (9 with the above normal form we obtain
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PROPOSITION 1.1. — For integers d, d - Res(f(¥) = Res(f).

It is known ([2]) that a holomorphic vector field x’ is holomorphically
equivalent to the following normal form

The m is called the residue of x’ and denoted res(x’) (= res(x)). By the
formula

kE+1
exp x(2) = z+ 2Ft1 + (—m—f- —;—)22“14— S

we obtain the relation Res(exp x) = res(x) = m. Let 2 = ¢(2) =
2% + m log z7%. Then d¢(x) = —k 8/0%' defined at co. On the #'-plane
the trajectory of —k 0/0%' along an anti-clockwise cycle O in the complex
time-plane C with the base point 0 is closed as O is contractible in the
domain of definition for exp — tkd/9%', while the trajectory of the induced
vector field ¥ on the Z-plane, # = z7%, along the () is not closed as the
logarithm has monodromy. Geometrically this phenomenon is interpreted
by the functional equation

exp OF x (2) = exp (2mv/~1 res(x))x(2),

where (% stands for the analytic continuation of the complex time along
the k times iteration of O such that exp tx(z) moves around the origin
clockwisely from z to exp 2my/—1 res(x)x (z). Replacing x with dx and
the cycle O in the time plane with a larger cycle homotopic to O if necessary,
we obtain

exp OF dx (z) = exp 2nv/—1 %res(x) dx(z),
k+1

from which (or directly by the normal form ———
1+m/dz

0/0z of dx) we

obtain
ProrosiTION 1.2. — For d € C, d - res(dx) = res(x).

The formal conjugacy class of a germ of a flat diffeomorphism f
is determined by the residue res(f) = —b. Therefore there is a formal
diffeomorhpism ¢ of C,0 such that f = ¢(~1) o exp x o ¢ with res(x) =
Res(f). The complex iteration f() t € C, is then defined by the formal
power series f(!) = ¢(~1) o exp tx o .
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Proposition 1.1 is generalized as

PROPOSITION 1.3. — Assume that an f(z) = z+az**t1+- .- commutes
with a g(z) = z + bzF*1 + ... and a,b # 0. Then a - Res(f) = b - Res(g)
holds. In general if f®) = g(®) and a,b # 0, then a - Res(f) = b- Res(g).

Proof. — If f,g commute, f,g embed to a complexified formal one
parameter family exp ¢x by Proposition 1.5. Since the residue is a formal
invariant, the statement follows from Proposition 1.2 and Res(exp tx) =

res(tx).

The following is a corollary to the above proposition. The proof is left
to the readers.

ProposiTioN 1.4. — Let fi,..., f; be k-flat diffeomorphisms and all
commutative each other. Then

(@ £1(0) + - - + d*F1 £,(0))? Res(fro--- o fi)
= d*1 £1(0)® Res(f1) + -+ + d**1£;(0)® Res(fi),

where d**1£;(0) denotes the k+1st derivative of f; at 0 for j =1,... 1.

The complexified formal 1-parameter group of f®) is clearly commu-
tative.

ProrosiTioN 1.5. — Let G be a commutative group consisting of
flat germs of diffeomorphisms. Then G embeds to a formal 1-parameter
group of f) t € C, of complex iterations of an f € G. And also G is

formally equivalent to a subgroup of a 1-parameter family of a vector field
k+1
z

Proof. — Let k be the smallest order of flatness for diffeomorphisms
inG, f(2) =z+azk*' +... Ja #0and fog = go f. Then the Taylor
expansion of g is uniquely determined by its k+ 1-st order term. Clearly the
complex iteration f®(z) = z + tazF*! 4 ... commutes with f. So g = f®
with a t € C by the uniqueness, and in particular, if g is k + 1-flat, then
g = id. The f is formally equivalent to an exp ay, x being of the normal
form, and g is then formally equivalent to exp tay.

Let f be a germ of a flat diffeomorphism and denote by C°(f) c C
the subgroup consisting of those t € C for which f® is convergent. The



576 ISAO NAKAI

following theorem was first stated and partially proved by Baker [1] and
later proved by many authors Ecalle, Volonin,... (see e.g.[7]).

THEOREM 1.6. — CO(f) is either C or a sequence cZ, c being a real
rational number. If C°(f) = C, there is a germ of holomorphic vector field x
such that f = exp x and Res(f) = res(x). In other words the centralizer of f
in the group of flat germs of diffeomorphisms is holomorphically equivalent
to a subgroup of a 1-parameter group exp tx.

Let G be a group consisting of germs of diffeomorphisms of C,0
and G° the subgroup of flat diffeomorphisms. The following proposition
is attributed to I’yashenko [10].

PROPOSITION 1.7. — G is solvable if and only if G® is commutative
if and only if G is meta-abelian, that is, [G,G] is commutative. And all
diffeomorphisms f in G° different from the identity have the same order of
flatness k and the projections L, A of G/G°, G° respectively to the linear
and the (k + 1)-st order terms are injective homomorphisms into C*, C.

Proof. — Assume that a commutator subgroup [G, G| of a group G
of germs of diffeomorphisms is commutative and consists of k-flat diffeo-
morphisms. By Proposition 1.5, the commutator subgroup is equivalent to
a subgroup of a one parameter group f®,t € C, of formal k-flat diffeo-
morphisms. For a k-flat f € [G,G] and an i-flat ¢ € G, i # 0, an easy
calculation shows that the commutator [f,g] = f(-Vg¢=Yfg € [G,G] is
j-flat, i,k < 7, and formally equivalent to f(®) = id, since the (k 4 1)-st
order term is absent. So it follows that fog = go f hence g = f(®) for
some s € C, and if ¢ # k, g is the identity. This observation tells that
if the commutar [G, G] is commutative, then the subgroup G° (D [G,G])
consisting of flat g € G is commutative, g are k-flat and embeds into the
one parameter group of f{. And the k-jets of those g € G are determined
by their linear terms. Assume G is solvable, and consider the commutator
sequence G D G D G? D --- D G" = 1,G**! =[G, G"]. Since the commu-
tators consist of flat diffeomorphisms, the commutativity of G™®~! implies
that the flat subgroup G° as well as the other commutators.

THEOREM 1.8 (Solvable Groups). — Assume G is solvable and non
commutative group of germs of diffeomorphisms of C, 0.

(1) G is formally equivalent to a subgroup of the semidirect product
C* x C acting on C. Here the multiplication in C* x C is defined by
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(a,b) * (c,d) = (ac,ad + bck*') and the action of (a,b) on C is defined
by a-exp b/a x(z) = az + bz*¥*! + ... where x = 2¥+19/0z.

(2) If G° # Z then G is holomorphically equivalent to a subgroup of
the above C* x C.

(3) Assume G° = Z. Then L(G) = Z,, x is k-flat, and k =
n,2n,..., or n/2,3n/2,.... If k = n,2n,---, then G is comutative. If
k =mn/2,3n/2,..., then G 1s generated by a k-flat f with Res(f) = 0,
a g with a Iinear term w, w?* = —1 and the relation ¢g-V fg = (-1,
which is formally equivalent to the exceptional group G, x in Theorem 5.

Proof of (1). — Assume that G is solvable. Then G° is commutative
and by Proposition 1.7 G is a central extension of G/G° by G°. By
Proposition 1.5 there exists a formal diffeomorphism ¢ and a normal
form x such that G° consists of convergent diffeomorphisms f(*)(z) =
¢~V oexp tx o ¢(z) with some ¢ € C. Since the statement in (1) is formal,
we may assume f = exp x and G° is a subgroup of C consisting of the
diffeomorphisms f(*) with ¢ in a subgroup A C C. Since g~V f()g € G°
and gV f®g(2) = 2+ c2*¥+1 + .- ¢ = dg(0)* for g € G by a calculation,
the adjoint action u of G/G° on G° is presented as

(x) p(g, fO) = gtV fWg = fl) ¢ = dg(0)*

for g € G/GP. Since G is non commutative, the action y is not trivial : ¢ =
dg(0)* # 1 for a g € G. By the invariance of the normalized residue under
coordinate transformations, the relation (x) implies res(f*)) = res(f(<?).

1
By the multiplicative formula in Proposition 1.3, res(f(¢!)) = p res(f®).

Therefore res(f(*)) = 0 and x = 2¥+19/0z. Let g, ¢’ satisfy the relation (x)
and dg’(0) = dg(0). Then u(g, f) = u(g’, f) and g(~Yg’ commutes with f,
and by Proposition 1.5 g(~Vg’ = () hence ¢’ = gf®) for an s. Clearly ¢’
of this form satisfy (x). It is easy to see the linear map g’ = az satifies (x).
Therefore all formal solutions of (x) are of the form af(®),a € C*,s € C.
The correspondence of af(®),af(*)(z) = az+as zF*14- - - to (a, as) gives the
isomorphism of the group of those diffeomorphisms af(®) onto a semidirect
product C* x C. The straightforword calculation

(az+b2Ft1 + .. ) o (cz +d2" +--.) = acz + (ad + bcF 1)1 4 ...

tells the multiplication * on C* x C is defined by (a,b) * (¢,d) = (ac,ad +
bck+1).
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Proof of (2). — In the case (2) the flat subgroup G? is holomorphically
embedded in a 1-parameter group exp tx. Therefore the above formal
conjugacy of G to a subgroup of C* x C is convergent. The convergence is
also seen by Theorem 5.

Proof of (3). — The adjoint action g of L(G) on A(G°) =X Z is
given by p(a,b) = a*b. Therefore a* = +1, and a € Z, C Zox. And G
is commutative if a* = 1 for all a € L(G), if and only if L(G) = Z,, C Zj.
Let f € G°% g € G/G° be the generators. If G is non commutative, then
f,g generate G with the relation g{~1 fg = f(-~1. This relation implies
Res(f) = 0.

THEOREM 1.9 (Commutative groups). — Let G be a commutative
group of germs of holomorphic diffeomorphisms of C, 0.

(1) If L(G) = Zx, then G is formally equivalent to a subgroup of the
Cartesian product Zy, x C acting on C. Here Z;, consists of those a,a* = 1

and the action of (a,b) on C is defined by a-exp b/a x(z) = az+bzF*1+. ..
k+1

z
where x = ———3/0z.
X 14 mz2* /

(2) If the linear term L(G) C C* contains either an a,|a| # 1
or an a = exp 2my/—1 a where « is Brjuno number o (see [3] for the
definition), then the projection L of G to the linear terms is injective and
G is holomorphically equivalent to the L(G) acting linearly on C.

(8) If L is not injective and G° # Z, then G is holomorphically
equivalent to a subgroup of Zj x C in (1).

Proof. — The proof follows the same argument as the non solvable

case. The adjoint action p is trivial, so the residue m can be arbitrary.
k+1

The 1-parameter group exp tx,x = l—i——ka/az has the Zg-symmetry
mz

by the linear rotation wz,w”* = 1. Therefore G is formally equivalent to a
subgroup of the group consisting of the diffeomorphisms w® exp ty, which
is isomorphic to Zy x C. In Case(2) the germ of diffeomorphism with the
linear term a can be made linear ([3]). Then the other diffeomorphisms
are all linear by the commutativity. In Case(3), the formal embedding of
G into exp tx is convergent by Theorem 1.6. Then the quotient G/G° is
generated by the linear rotation wz, w* = 1.
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2. The analytic structure of germs of diffeomorphisms
and the sectorial normalization theorem.

We begin by introducing the classification method of germs of holo-
morphic diffeomorphisms of C,0 due to Ecalle, Fatou, Kimura, Malgrange
and Voronin (8], [9], [13], [22] (for the various fundamental results on the
local holomorphic dynamics, see the book [2]). On the k-sheet covering
Ck of the punctured Z-plane C — 0, 2 = 27%, a k-flat diffeomorphism
f(z) = z+ agy12**tt + -+ lifts to a germ of diffeomorphism F defined
at infinity, which is written in the form with the coordinate Z = 27% as

F(3)=2—appk+az Ve o572k 4 ...

)

and if f is a normal form f(z) = z + ax4 12! + agry 1221 4 - -+, then

F(z) =%-appk+adz  +a"z7 7k 4.

where res(f) = —agk+1/a3,,,0" = aj, kRes(f). From these forms we
obtain
(%) IF(2) = (2 = ak41k)|| < cl| 2] 72/*

for sufficiently large ||Z|| with a positive real constant c. The estimate holds
replacing c||Z||~1/* with c||Z||~! for f of the normal form.

ProrposiTiON 2.1. — For any small € > 0, there is an r > 0 such that,

forn=0,1,2,...,
ar { B }’<sin_1 ———E—-}
& Ok+1 - lak+1llk J°

for 2 € St = |J S*T(3),5t = {r < ||z, -27/3 < arg {—%/ars1} <

zZeS+
27/3} and
w .1 €
ar <sinT — 7,
g{ak+1 }H . ||ak+1||k}

forze S~ = |J S (8,5 ={r <|2||l,n/3 < arg {—%/ars1} < 57/3}.
z€S-
In particular F(St) ¢ ST and FCY(S7) c §™.

FM(3) e §7(3) = {2+w € Cy |

FC™M(3) e 8§7(3) = {2+w € Cy |

Proof. — Choose the r large enough so that the estimate

IF(2) = (2 — ars1k)l| < cl|2] 75 < e
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holds on S*. Then, for Z € S*, we obtain F(z) € S*() c §*, and by
induction, F(™(2) € S*(2) for n = 1,2,.... The other statements follow
from a similar argument.

LEMMA 2.2. — Assume F(™ (%) — oo as n — oo. Then

O(log n) ifk =1 or f is a normal form

(M)(3) = 35—
(a) F'M(2) =2 nak+1k+{0(n1_ UKy ifk > 2

forn=1,2,....

Proof. — We prove only for a general form f. Since F(™)(2) — oo, we
may assume z € S, F(")(z) € §*(3),n = 0,1,... and also c||z||~/* < ¢
on St choosing r large enough. By (*) we obtain

IFCHD(2) = 2+ (n+ Daxgak|| < |[FOHD(2) = FO(3) + angak]
+[|F™(2) - 2 + nagpa k|
< e+ |[F™(2) - 2 + nags1kl|,
from which, by induction, we obtain

|F™(2) = 2 + naxy1k|| < en.

Choosing € small enough, we obtain
1
(%) [F™(2) - 2 + nax k| < en < 5 12 = na1k]

for € St,n=1,2,.... From this and the estimate

IFCHD(2) = 2+ (n+ Dagsakl| < [FOHD(E) ~ FO(2) + arsik]
(x * %) + |F™(2) = 2 + nags k||
< el FM ()| 75+ |F™(2) ~ 2 + nagsakl),

it follows

IFC)(2) = 2+ nagsakll < e(2) 775 + |[FO )7/
o [FOD(E) )
n—1
<c Y (IZ 4 mars k)" VE.
m=0
The statement follows from this and the next estimate (the proof is
elementary).
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LEMMA 2.3. — For 7 € ST,

n 5 —l/ko( 1—1/k) if
- K[|~k = { I1Z] n i
Tnzz:ollz mak+1 II HZH_lO(lOg n) lf

This turns out to give

ProposiTiON 2.4. — If f : Uy — f(Uy) has linear term az at 0 such
that |la|| # 1 or a* = 1 for an integer i, then Bj U Bj(-1) is an open
neighbourhood of 0. In other words, for any z sufficiently close to 0, the
forward or backward orbit of z by f tends to 0.

Proof. — If a = 1, the statement follows from the above argument,
and if @' = 1, it reduces to the case i = 1, since By« = By and Bj-y =
Bg-y. If |la|| # 1, the statement follows from Poincaré linearization
theorem.

From this we obtain

ProrosiTiON 2.5. — If a pseudogroup I' contains a diffeomorphism
f which satisfies the condition in Proposition 2.4, then the basin Br is an
open neighboourhood of 0.

Proof. — For a z € By there is a g € I" such that g(2) is in the union
B;UB -1 Then g sends also 2’ sufficiently close to z to the union, and
either the forward or backward orbit of g(2’) by f tends to 0. Therefore 2/
is contained in the basin.

LEMMA 2.6. — The sequence dF(™ is uniformly convergent (on
compact subsets of St) to a function dF(*®) as n — oo. Furthermore
log dF(®) = O(||z]|~/*) and ||d"*'F©)| = O(||z||~™ ~/*) forn > 1 on
S+, where d"t1F(®) = dndF(®) for n > 0. If f is a normal form, these
estimates hold with k = 1.

Proof. — We prove only for a general form f. We begin with
(b) log dF™=log dF(F"~Y) 4+ log dF(F("2) ... + log dF

A _ 24’ _
=3 log (1 - Apoy-wrore L 2 poy-wi _>
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By Lemma 2.2, Z |(FW)||=*+1)/k is locally uniformly convergent. There-
fore dF(™ is convergent to the dF () and

o0
log dFC || <~

=1

log (1_ %(Fa))—(un/k 24 py-er2)/k _ )H

o]
SZ H (FO)=(+1)/k

and by Lemma 2.3 and (**) in the proof of Lemma 2.2

<K'z 7R,

oo A —(k+1)/k
llog dF || < ZK “ ﬁ-(i — nag41k) ’
1=1

for 2 such that F(")(z) — oo as n — oo with constants K, K’. The other

estimate is obtained inductively by derivating the exponential series of both
sides of (b).

From now on in this section we assume that f is of the form

f2) =2~ @zk-ﬂ TS N
and
F(2)=2+27r\/—_1+%/+...,
where res(f) = —:L:z and o’ = —4n2/k Res(f). By Proposition 2.1

F(S§) ¢ S and F(-1(8;7) c S; hold for i = 1,...,k, where S}, S,
denote the sectors S, 5~ on the i-th sheet of the covering Cg. Since F
is asymptotic to the translation by 27/—1 at oo, the quotient space Pi+
(respectively P;”) of 5'l+ (resp. S'i— ) by F (resp. F(=Y) is quasi-conformally
homeomorphic hence conformally isomorphic to the punctured 2-sphere
P — 0 U oo endowed with a coordinate ¢t unique up to scalar multiplication
(Voronin [2], [22]). We call PE the cylinder for F (or f), and say a
fundamental domain D;t in a half plane S'f is rectangular if the boundary
projects to a real line in Pft joining 0 to oo. Here 0 (resp. 0o) corresponds to
the left (resp. right) end of the fundamental domain DF. The isomorphism
from P—{0, oo} to the quotient space Pf, e = =+, defines the isomorphism q~§§
of the band B, = {0 < e Im z < 2m/~1} C C to a rectangular fundamental
domain in S’f for F(¢), which extends to the isomorphism of the upper (if
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€=+, and lower~if € = — respectively) half plane into S'f by the relation
¢ + 2my/—1 = ¢¢(F(9)). The extension of ¢ gives the normalization of
F(© restricted to Hf to the translation by 2m/—TIe.

The conjugacy q3§ is unique up to translation by constant. The inverse

is explicitly given by

Y = lim F™ — <27T\/—1n+

n— €00

al
log 2mv/—1n |,
g1 e ")

which is defined on the sector 5’§ in Proposition 2.1 with a sufficiently large
r. The local uniform convergence of qu-(_l) is seen in [2]. The calculation

¢e( 1)(F) — nl—lgloo F(n) (27rw/ In+ ——— \/_1 log 27wV — n)
= lim F{+D _ (277,/ 1(n+1) + log 27V -1(n + 1))
n—eoo V
1
+ 27V -1+ nt

27r\/ n
= &Z(_l) + 27y —1

tells that dgf(_l) links the restriction of F to the sector S¢ N F(=1(S¢) to
the translation by 2w+/—1.

The following theorem is attributed to Malgrange and Voronin [22].
Here we recall the idea briefly.

THEOREM 2.7 (Sectorial Normalisation Theorem). — Let f(z) =
242814+ ... be a k-flat germ of diffeomorphism and let ¢ be a flat formal
conjugacy of f to the normal form g(z) = exp x(z) = z+2*t!1 +--- | where

k+1 -
X = liwa/az, and res(f) = m. Then there exist a representative f

of f defined on a neighbourhood U of 0 € C, diffeomorphisms ¢5 : S; —
Ts,Sf C U, fori=1,...,k,e =% with the following properties :

1™
2m(2i — 1 2
(1) (i) S;t contains the open sector {I|z|| <, @izl 2 <

2k 3k
2w(2t -1 2
L;k—) _71;} C C, f maps S into S; and f™(z) — 0 as

n — oo uniformly on Sj,

arg z <

2m 2w
2t 27 K 3k
- —+ ﬁ} C C, and f(- maps S; into S;” and f™(z) — 0 asn — —oo
uniformly on S;”,

(i) S; contains the open sector {”z“ <r <arg z <
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(2) (i) T contains the open sector {Hz“ <, @i-1)  2r

2k 3k
2r(26—-1) 27 4 " n)
%% + 3k} C C, g maps T;" into T;" and ¢'™(z) — 0 as

n — oo uniformly on T},

arg z <

2 2
(ii) T;” contains the open sector {||z|| <r, —; - g%
2m, 27

& + ﬁ} C, ¢V maps T, into T, and g(™(z) — 0 as n — —oco

uniformly on T},

<arg z <

(3) gogt =¢tofonS}t andgod; =¢; of onS; fori=1,...,k,

(4) the Taylor series of ¢S are asymptotic to ¢ at 0.

Sketch of the proof. — In order to adjust the various notations to the
2my/—1
m - o A

and F(%) = 2+ 2my/—1+a'z7! + - - after linear change of the coordinate
z. (Then the sectors S, Tf in the theorem are rotated the angle —m/2k.)
Let 15" be the conjugacy of the lift G of g to the translation by 2m/—1.
Then 1/7:('1)&5 links F' to G and extends to a diffeomorphism of certain
neighbourhoods of the sector 5'§ on the i-th sheet of C; with a sufficiently
large r. The diffeomorphism ¢$ in the theorem is defined by 1&5 (—1)455 using
the coordinate z = 2~1/k. The other properties can be shown by analyzing
the asymptotic property of the Taylor expansion of ¢§ with the estimates
in Lemma 2.2, 2.3 and (**).

previous part we assume f is in the form f(z) = z —

3. Construction of vector fields by commutators.

Let I" be a pseudogroup of diffeomorphisms f : Us,0 — f(Us),0 of
open neighbourhoods of the origin in C. Assume that the germ Ip of I is
non-solvable. Then I" contains diffeomorphisms f, g with Taylor expansions

fR)=z+az 4. g2)=z+bT 4+ ab#0,i<
and

[fgl(z) =z 4+ 4o, c#£0,j <k

Let z € By, in other words, f(™(2) — 0 as n — co. We will show that the
dynamics f(~™) gf(™ is convergent to the identity but a suitable real scalar
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multiple A\, (f(~™gf(™ — id) is convergent to a holomorphic vector field
x = x(f,g) on Bf—0. This vector field may not extend to a neighbourhood
of the origin since By is not a neighbourhood of the origin in general. On
Bjg-1) — 0 we define x( f1, g) replacing f with its inverse. Using g and
[f, g], define another dynamics ¢ = ¢(f, g) = x(g,[f,9]) on By — 0. We will
show that x and ¢ are R-linearly independent at generic points and satisfy
the condition of Lemma 5.2 (Lemmas 3.3, 3.4).

Using the coordinate 2 = 2~* on the i-sheet covering Ciatazy = Zo ¢
the lift F' of f is written as

F(z) :f(z—l/i)—i =2—ai+A2_1/i+A,2_2/i+"-,

where 271/% takes the branch of zy. On the covering the diffeomorphism g

lifts to the slow dynamics
G(2) = gz i)™ = 5 — biz(—D/i 4 BaG—i-D/i 4 ...

Our vector field x is defined on the set of those zZ € C; for which
F(™ (%) = 0o as n — oo by

%(2) = lim A\ (FC™GF™ —id) 8/8z

with a suitable sequence of real positive numbers A, — oo as follows. From
Lemma 2.6 we obtain

LEMMA 3.1. — dF(®) is holomorphic and dF(®) (%) — 1 as # — oo
in St ={r <|2||, -2n/3 < arg {—Z/ax+1} < 27/3}.

Let A, = nU~9/% and define ¥ by
x=lim X, {FCWGF™ — id}d/oz
= lim A {dF=™ (G —id) o F™ 8/03)
+ 0.(((G —id) o F(™)?) §/8z}.

Since the second derivative d2F(™ is locally uniformly convergent to
d?F(®) as n — oo (see the proof of Lemma 2.6), the remainder term
O,, is independent of n, then

% = lim dF (™ {—pj nli=D/i / (FM)G=9/i §/9z)
= (dF) Y (<bi (—a5)"0/02),
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where the branch of (—ai)U~9/¢ depends on the sheet of the covering C;.
Let x be the holomorphic vector field on By — 0 induced from X. Define
the vector field ¢ on By — 0 similarly with the vector field defined on the
Jj-sheet covering C;,
¢ = lim n*=9/{a'" [F,G] '™ —id}8/dz
n—0o0

= (dG" )V (—ej(=bi) TR/ 9/83),

where [f, g](2) = z+ czF*! + ... and G’ denotes the diffeomorphism of C;
induced from g.

LemMA 3.2. — The vector field x is invariant under dF' and induces
a linear vector field on each quotient space (cylinder) Pli,l =1,...,1, for
F asin §2.

Proof. — We may assume that F(Z) = Z + 2my/—1+a//Z + ---.
By the sectorial normalization theorem (Theorem 2.7), there exists a
biholomorphism (5 of St onto an open subset of C which conjugates F
to the translation t — t 4 2mv/—1 : ¢ o F(Z) = $(Z) + 2ry/—1 for z € ST,
||| being sufficintly large. In the proof of Theorem 2.7 @ is given by

!
5 — lim F™ — (2rv=1 e V=1
¢ = nh_)n;oF (271' In+ /1 log 27 1n>.
From this d¢ = dF(°®). Then ¢,x = —bi (—ai)*~9)/:9/dt by the definition
of x.

Similarly, the vector field { induces a linear vector field on each
cylinder for g. By Lemma 2.2, arg g(™)(z),arg f(")(z) are convergent to
constants when ¢(™(z), f(™(z2) — 0o as n — oo.

LeEMMA 3.3. — Assume zy € By — 0, g™ (2) € By forn = 0,1,...
and

Jlim  arg (¢(2)/ 1) (2)) < /2

Then ¥, are nowhere zero holomorphic vector fields and C-linearly inde-
pendent on a neighbourhood of zp.

Proof. — Assume that { = ax with a real constant a on a neigh-
bourhood of 2 and let Zp = z; ‘e ((fi. Since f is invariant under
dG, it follows X is also invariant and dG™(x(%)) = %(G™ (%)) =
(dF ) (G™ (5)))D (=bi(—ai)U~9/* §/8%) is convergent to a non zero
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constant vector by Lemma 3.1. On the other hand dG(™(%;) tends to 0 as
n tends to infinity since g lifts on C; to the diffeomorphism G’ asymptotic
to a translation at Z = 277 = 0o and i < j. This completes the proof.

LEMMA 3.4. — [x, (] is not a constant vector on a neighbourhood of
the Zy as in Lemma 3.3.

Proof. — Assume that [§,(] = a 8/8% with real constants a. Since
(dF)(GM™ (5))D = 1, dG™ (%) — 0 and X,( are respectively
invariant under dF,dG , we see that ((G(™ (%)) — 0 and R(G™ (%))
tends to a constant vector hence [¥,{](G(™ (%)) — 0 as n tends to oco.
This implies that [x,¢] = 0 hence x and ¢ are R-linearly dependent on a
neighbourhood of Zy. This contradicts Lemma 3.3, and completes the proof.

PROPOSITION 3.5. — Any point exp tx(2o),t € R can be approximated
by orbits of T of type f(=™ gl) f(V)(24) : if 1,n(=9/* — ¢ ast — oo, then
FEm gl £(7) (24) converges to exp tx(zo0)-

Proof. — We prove F(—MGUr)F(")(25) converges to exp tx(Z),
% = 25 *. Approximate ¥ by ¥n(2) = nU=/{(F(-VGF® —id)/8z with
n = 1,2,.... Since X, and Xo = X are holomorphic and ¥, is locally
uniformly convergent to ¥ as n — oo, the real trajectories exp tXn(Zp),0 <
t < a with an a passing through a Z, are arbitrarily closely approximated
by sequences Zp+1 = Zni + - Xn(Zn1), 0 =0,1,...,m — 1,2, 0 = Z with
sufficiently small 0 < tl,mzl t; = t. Then the difference |lexp $;Xn(Z0) —
Znall,si=t1 4+ +ti-1, }llag a uniform upper bound C'(6) depending only
on § = max{t;} such that C(6) — 0 as § — 0. Let t; = 1/\, = n(i=9)/% and
s; = | n(=9/% with a sufficiently large n. Then by definition we obtain

2n,l+1 = En’l + ]-/)\n )2"(12"’[)
= FCYGF™ (5,))
= FEIGEHIEM) (5)
for [ =0,1,..., and the above argument tells
lexpsi Xn(%0) — FCMGF™ (5| < C(1/M)

for 0 < s; < a. On the other hand exp txn(2o) is uniformly convergent to
exp tx(%p) for 0 < t < a. Any 0 < t < a is approximated by an s;, = l,/A",
for which

FEMGUD FM (55) — exp s, Xn(Z0) — exp tx(Zo)
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asn tends to infinity. The statement for ¢ is proved similarly using the lift
¢’ defined on the j-sheet covering C;.

ProposITioN 3.6. — The closure of I'-orbits are invariant under the
flows of the vector fields x, (.

Proof. — Let z; € O(w) N By N By be a sequence convergent to a z €
B;NB,. By Proposition 3.5 (=™ g(n) £(7)(2) is convergent to an exp tx(z)
as m — oo with a suitable sequence I,,. Then f(=™)g{n) f(") (2, ) € O(w) is
convergent to exp tx(z) for a sequence i, — co.

From which we obtain

ProprosiTiON 3.7. — If x,( are R-linearly independent at a z €
By N By — 0, any orbit is dense or empty on a neighbourhood of z.

4. The existence of the separatrix :
proof of Theorem 1 and Theorem 3.

Let x, ¢ be the vector fields on By N By — 0 constructed in §3. By
Proposition 3.7 the property

(*) Any orbit is dense or empty on a neighbourhood of z,

holds at z € By N By — 0 if x(2),{(z) are R-linearly independent. By
Proposition 3.6 this property propagates along the trajectories of x, (. In
this section we study the set of those z € B where this property does not
hold, and we prove that this set possesses the various properties to be a
separatrix.

Define the holomorphic vector fields x¢ = x(£(9,9),¢" = ¢(f,g™)
respectively on By, Bym similarly to x, ¢ replacing f,g by O g in
the previous section for €,7 = £1. Let

Bj, ={z € By| ¢ (2) € Bf forn=0,1,...
and lim arg g™ (2)/f™(2) < n/2}.
By Lemma 2.2 By, — 0 is open and B = |J By 4w is an open
e,n==%1

neighbourhood of 0, on which those x¢,(" are defined everywhere either
for e, =1or — 1.
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First define X to be the set of those 2z € Bf(¢>,g(7,> -0, e, = %1, with
the following properties :

(i) x¢,¢" have a common trajectory C passing through z in B (o) gem —0

(ii) x~¢, ¢ are tangent to C as long as they are defined.

4.1. — X is real analytic, smooth and closed in B — 0, and Property
(*) holds on B—0— X.

Proof. — By Lemma 3.3, x¢,(" are C-linearly independent on
B F©) g(m — 0, so the X' is locally a finite union of real analytic curves.
Assume x¢, (" are R-dependent at a z € B gn — 0 and let C, D be re-
spectively their trajectories passing through 2z in B g — 0. If C' # D,
¢" is R-independent of x¢ and Property (*) holds at a generic point on C.
Since the closures of I'-orbits are invariant under x¢ by Proposition 3.6,
the property propagates to z along C. Next assume C = D and either
X~ ¢ or (77" is not tangent to C at a z’. Then the property holds at 2’ and
propagates to z along C. This completes the proof.

Next let X2’ be the union of connected components C of X, on which
Property (*) holds nowhere. Then

4.2. — X' is closed in B — 0 and Property (*) holds on B — 0 — X".

Proof. — The closedness is clear. To show Property (*) on B—0— X’
let z be in a connected component C of X' and assume that the property
holds at a 2z’ on C. Since the arc of C joining 2z’ to z is a union of
some common trajectories of x¢, (", €,7 = %1, and the closure of orbits
are invariant under the vector fields (Proposition 3.6), the property at z’
propagates along C to z.

Define the separatrix X(I") as union of {0} with the set of those z in
Br such that O(2) N B —0 C X’. Then

43. — X¥(I"'NB —-0= X', ¥(I') is closed in Br, invariant under I"
and Property (*) holds on By — X(I") by the I'-invariance of X(I).

Proof. — The invariance and Property (*) on Br — X(I") follow from
the construction. Property (*) holds on B — 0 — X’ and does not hold
on X' and 0. So by the invariance of the property under I we obtain
X(IYN B -0 = X" To show the closedness let z € X(I') — X(I"). Then
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f(z) e B-0—-2X"foran f € I. By 4.2, X' is closed in B — 0, so X' is
empty at f(z), from which it follows X(I") is empty at z.

4.4. — Any I'-orbit is dense or empty in each connected component
of Br — X(I').

Proof. — Since Property (*) holds on Bp — X(I"), an orbit O(z)
is locally dense at the points in O(z). Assume O(z) is not empty in a
connected component D of By — X(I") and O(z) # D. Let P = D — O(z).
Then P is a non empty open subset of D. If P — P C D — D, then
P = D hence D = O(z). So it suffices to show P — P C D — D. Let
2/ € (P - P) — (D — D). Then 2’ € O(2) and O(z) is not empty at z’. On
the other hand, on a neighbourhood of 2/, the orbit is dense by Property
(*) therefore 2’ is not in the closure of P. This completes the proof.

4.5. — Any I'-orbit is dense or empty in each connected component
of ¥(I') - 0.

Proof. — By Proposition 3.6, the closures of I'-orbits are invariant
under the flows of x¢,¢" for e,n = +1. Since X(I') is invariant under I’
and the connected components of X' — 0 in 4.2 are union of trajectories of
these vector fields, we see that the following property holds at each point
z€eX(I')—-0:

(**) Any I'-orbit is dense or empty on a neighbourhood of z in
() -o.

The density we claim follows from this property with a similar
argument to the proof of 4.4.

Next we prove

4.6. — The induced vector field on the cylinder P — {0, 00} associated
to a fundamental domain which has non empty intersection with X(I") is
a pure imaginary linear flow, and the intersection of ¥(I") — 0 with By as
well as By(-1) is a preimage of a union of closed cycles by the projection
onto the quotient space P — {0, 00}.

Proof. — Let C be a connected component of X'(I") — 0. By definition
X(I') is invariant under I', and the trajectory of the vector field x passing
through a 29 € C'N By — 0 is contained in C. Let C, X, ( be the lifts of
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C,x,( to (f:i respectively and Zy = 2 ‘e Ci. The vector field x induces
a linear vector field on the quotient space (cylinder) P — {0,00} in the
connected component containing Zy of the set of those z € C;, F™(2) — oo
(Lemma 3.2). The end of the lift C is invariant under F if and only if
C projects to a closed curve in the cylinder. So if the end of C is not
invariant under F', the linear coefficient of the induced vector field on the
cylinder is not pure imaginary, and the projection of C accumulates at 0
and oo. This with the invariance of X(I") under the flow of x as well as
I (Proposition 3.6) tells that the intersections of the iterated images of C
under F, F(-1) with a rectangular fundamental domain of F' accumulate at
both ends corresponding to 0 and co. The diffeomorphism F' is asymptotic
to a translation at infinity, so there is a fundamental domain which is not
contained in an arbitrary narrow sector with the vertex 0 in C; and does
not intersect with any large compact subset of C;. Choosing appropriately
the fundamental domain we may assume that either E or E ~1 is defined
on each of its end. Now recall that the lift of { to the j-sheet covering
(flj converges to a constant vector at infinity. So, on the C;, the ends of
those common trajectories of x¥ and C~ have to be contained in arbitrary
narrow vertical sectors with vertices at the origin, which contradicts the
noncompactness of the intersection of the iterated images of C' with the
fundamental domain. Therefore the end of C is invariant under F.

Let I'° C I' be the pseudogroup of flat diffeomorphisms at 0 (the
linear term at 0 € C is z). It follows from 4.6 that

4.7. — All connected components of X(I')—0 containing 0 in their clo-
sures are invariant under the sub-pseudogroup I'° of I' of diffeomorphisms
flat at O (with the linear term z at 0). And there is no other components
of X(I') — 0 on a neighbourhood of 0.

Both 4.6 and 4.7 lead to the following picture : given f(z) =
2+ az*¥*t! 4 ... as before, let T(f) be the union of the real lines consisting
of those 2’ such that 2z’ and az’**! are R-linearly dependent. Then any
connected component of X'(I") — 0 containing 0 in its closure has in fact a
tangent line at 0 which is contained in T'(f).

4.8. — All branches of the germ of X(I") at 0 have distinct tangent
directions at the origin.

Proof. — Assume that two branches C,C’ of the germ of X(I") — 0
have a common tangent direction (which are possibly germs of a common
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connected component of X'(I") —0). By 4.7, these germs are invariant under
f and g. We say that C,C’ are k-separable if the inequality

cl|z||¥+? < dist(C, 2) + dist(C”, 2) < | z||F+?

holds for z € CUC’ on a neighbourhood of 0 with positive constants ¢, ¢’. To
prove the statement it suffices to show that branches C, C’ are k-separable
if and only if f is k-flat, assuming their lifts C,C’ C Cj are contained in
the sector S; C Cj, in §2. On a sheet of Cy,

% ||§n—(k+1)/k”u‘; -z < ||ﬁ;—1/k _ z—l/k“ < %ngll—(k+l)/k”w — 3,

holds for @, 3 € Cj, sufficiently large and at bounded distance each other.
By this estimate, it suffices to show the estimate

/

- . k
(i) 2ke < dist (C, 2) + dist (C', 3) < 7”

for sufficiently large z € CUC'. To show this recall that the lifts C,C’ are
trajectories of the linear vector field x and invariant under F by 4.7. Assume

2V -1 !
F(2) = 2 — TV Tkt L g2k L R(3) =5+27r,/_1+%+...

and let &:(_1) be the diffeomorphism which normalizes F' to the translation
by 27/—1 in §2. By 4.6 we may assume that C,C’ are contained in the
sector S; on which (;5;*(‘1) is defined. And q;j(_l) maps C, C’ respectively
to parallel lines L, L', for which the following estimate holds

/
(ii) 4ke < dist (L, 2) +dist (L/,2) < ﬁ:—

with positive constants ¢, ¢’. By definition and Lemma 2.6 we obtain
log dq;j(—l) =log dF(®™ = O(z71),
on S, from which
dgF P =1+ 01
on ({):-(—1)(5,:_) and
o — 2l < 1650 ) — 6D @) < 20 - 2

for @, Z at bounded distance from each other. The estimate (i) follows from
(if) with the above estimate. Similar argument shows that C,C’ are not
[-separable if | # k.
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The following is a corollary to the above results.

4.9. — Let T(f), f(z) = z+ az**! + ---, be the union of real lines
consisting of those 2z’ for which 2z’ and az’' k1 are R-linearly dependent.
Then to each half line in T(f) is associated at most one branch of X(I").

4.10. — The branches of the germ of X(I") at 0 are C*°-smooth at 0.

Proof. — First we show that a real trajectory exp tx(z) of the

k+1

z

————0/0z is convergent to 0 as t tends to oo or
1+ mzk

—o0, and the image is C*~!-smooth at 0. On the coordinate plane of
2 = (z7% + m log 27%)~1/%  the vector field induces 2/*t19/9z'. A
trajectory of 2’¥+19/82' is parametrized as (c+t)~/*,c € C with the real
parameter t € R and the image is real analytic at 0. Since the (k — 1)-jet of
the transformation 2z — 2’ is asymptotic to the identity at 0, the trajectory
of x is C*l-smooth at 0. Next let f € I' be a k-flat diffeomorphism.
Assume that f(z) = z + 2F*! 4 ... is formally equivalent to exp x and
the branch C is contained in the sector S§ on a neighbourhood of 0, and
let ¢5 : S — Tf the diffeomorphism which normalizes f to an exp x in
Theorem 2.7. By 4.6, the image ¢¢(C) is a trajectory of x and C*~1-smooth
at 0. Since the Taylor series of the diffeomorphism ¢ is asymptotic to a
formal series at 0, C is also C*¥~!-smooth at 0. In a nonsolvable group
G, there is an f with an arbitrary large order of flatness k£ because the
commutator sequence of the germ Iy of I' is infinite and a commutator
[f,9] is k-flat, 4,5 < k if f is i-flat and g is j-flat. Therefore the branch C
is C*°-smooth at 0.

vector field x =

4.11. — C extends to a real analytic smooth curve at 0.

Proof. — Let t — P(t) = r(t) + v/—1s(t) € C,t € R*,P(0) =
0, P'(0) # 0, be a C°°-smooth parametrization of the curve C with real
valued functions r, s, and P(t) the formal power series of P at 0. Let I C
I'y denote the subgroup of flat diffeomorphisms in the germ I§. Since the
germ C is invariant under flat diffeomorphisms by 4.7, I'{ induces a group
P71} of germs of C*°-diffeomorphisms acting on R* at 0 with indifferent
linear term. The group P-1r; O of the formal power series of the germs in
P71y is real : all coefficients are real. So it commutes with the complex
conjugation I, and PIP1 s an anti-holomorphic formal involution which
commutes with I'y. Let I'{ be the group of germs of the holomorphic
diffeomorphisms § = Igl,g € I'J. Then IPIP(-Y is a formal conjugacy
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linking I'{ to I). By Theorem 5, IPIP(~1) is convergent to a holomorphic
conjugacy h linking I' to I : IPIP¢V o g = (Igl) o IPIP(-Y, and then
PIP(-1) = [h is an anti-holomorphic involution commutative with I} .
Clearly the fixed point set C” of Ih is invariant under I'{ and has the same
tangent line as the original C at 0. By the uniqueness of the branches for
each tangent direction (4.8), C = C’ on a neighbourhood of 0.

4.12. — The germ of X(I") at 0 is holomorphically diffeomorphic to
a subset of the set Im z*F = 0 for a positive integer k.

Proof. — By 4.11, the branches C; of the germ of X(I') extend to
real analytic smooth curves C/. Let H be the group generated by the anti-
holomorphic involutions respecting those C!, and H C H the orientation
preserving subgroup. Since H commutes with IY by Schwarz reflection
principle, if an h € H,h # id, has the indifferent linear term, then I
imbeds to the complexified one parameter family h(?),t € C by Proposition
1.5 and, in particular, Iy is commutative hence I} is solvable by the
argument in the begining of §2. By assumption, I is nonsolvable. So if
h € H,k'(0) = 1, then h = id and the diffeomorphisms in H are determined
by their linear terms. Since H commutes with I') and C; are invariant
under I, the image of those C; under H is also invariant under I'{. The
argument in 4.6 - 9 applies to any curve invariant under I, and tells
the image is a finite union of curves with all distinct tangent directions.
Since all germs in H have linear coefficients with absolute value 1, we see
that H is holomorphically equivalent to a cyclic group of a finite order k
generated by a linear rotation wyz,wf = 1. Since Iy commutes with the
rotation, it induces a group I} O of germs of holomorphic diffeomorphisms of
the quotient space C = C/{z — z*} at 0, which is semi conjugate to Iy via
the invariant function 2*. It is easy to see that the smooth curves C! project
to an irreducible real analytic curve R under 2* and the group H induces an
anti-holomorphic involution respecting R. Therefore the curve R is smooth
and the group I ¥ commutes with the anti-holomorphic involution.

We may assume that R C C is the real line by a suitable coordinate
change. Then we obtain

4.13. — The flat subgroup I'{ is induced from a group of germs of
real holomorphic diffeomorphisms acting on C,0 via a finitely branched
map at 0.

Corollary 2 follows from the above 4.12 and 4.13.
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4.14. Proof of Theorem 3.

Proof. — Let X' be the largest germ of real analytic subset of C at
0 which is invariant under the germ Iy and holomorphically diffeomorphic
to the set {Im z* = 0}, k¥’ being an integer, and let £ C U be a closed
real analytic subset of an open neighbourhood U of 0 with the germ X at
0. For each f € I' let f’ be a restriction of f to an open neighbourhood
Us C U such that f/(Up) C U and f/(ENUp) = f/(Up)N 5 and let I
be the pseudogroup generated by those restrictions. Then X is I"-invariant
hence Z(I") D X. On the other hand the germ of X(I") is contained in ¥
by the definition of X'. Therefore X'(I"') = X at 0. This argument applies
to any restriction I of I'" and implies that X(I"’) = X' at 0.

5. Topological rigidity theorem.

Let I', I’ be pseudogroups of diffeomorphisms of open neighbourhoods
of 0 € C. Assume that there exists a linking homeomorphism h : U — h(U)
of I' to I'" (for the various definitions, see the introduction and §2). The
part (1).(i) of the following theorem is attributed to Shcherbakov [20].

THEOREM 5.1 (Topological rigidity theorem). — (1) The restriction
of the linking h : Br — Bp/ is holomorphic or anti-holomorphic
diffeomorphism if one of the following conditions holds :

(i) The germs Iy, I} are non-solvable, in other words, the commutator
subgroups are non-commutative,

(if) I is non-commutative but solvable, A(Iy) C C is dense and the
action of the linear term L(I;) C C* on A(Ip) contains a non-real
multiplication,

(iii) I is non-commutative but solvable and the action of L(Iy) on A(Ip)
contains an action of Z,,n # 2, 3,4, or a non-real and non-periodic action.

(2) There exists a germ of holomorphic linking diffeomorphism of I
to I'} if Iy is non-solvable but solvable and the action of L(I) on A(Ip) is
not antipodal.

Proof of 1 (i). — Recall that on the neighbourhood B = |J By 4
en==%1
of the origin the vector fields x¢, (" are defined everywhere either for

e, = 1 or — 1 (see the begining of §4). Let f' = ho f o (-1 and
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g =hogoh(-1) and define x'¢,¢’” similarly to x¢, (" replacing f, g with
f',g'. By Lemma 5.3 h sends the flows of x¢, (" to those of x'¢, (" respecting
real time, and by Lemmas 3.4 and 5.2, h is holomorphic (anti-holomorphic)
on the B respectively if it is orientation preserving (resp. orientation re-
versing). For z € Br there exists an e € I' such that e(z) € B. Since h
sends z, e(z) respectively to h(z),e’(h(z)) with e/ = hoeoh(~1, h is also
holomorphic or anti-holomorphic at z.

Proof of 1 (ii). — We use the notations in §1. By Theorems 1.6 and
1.8, we may assume the subgroup I C I} consists of k-flat diffeomor-
phisms exp tx, t € A(I}) with x(z) = 2¥*! §/0z, which lift to the trans-
lations by —kt on the k-sheet covering Ci. The order of flatness for flat
diffeomorphisms is invariant under topological conjugacy. So we apply a
similar argument to I". The lift A’ of the topological conjugacy h to Cx
links the translation by —kA(Ip) to the translation by —kA(I) hence it
is a real affine isomorphism because —kA (), —kA(I}) C C are dense by
assumption. The A’ induces the isomorphism ¢ of A(Ip) to A(Ig). As-
sume g € I'g' = hogoh(-1) e I have linear terms b, b’ respectively,
and assume b* is non-real. The actions of L(Ip), L(I}) on A(Ip), A(Iy) are
also equivalent by the isomorphisms ¢ : L(I5) — L(I) induced from h,
and in particular, ¢ links the non-real linear multiplication of b* to that
of * hence ¢ is homothety. Therefore h as well as h’ is holomorphic or
anti-holomorphic diffeomorphisms.

Proof of 1 (iii). — Assume that I is non-commutative but solvable.
Then Iy is isomorphic to A(Ip) C C, which is invariant under the action
of L(Ip). If the action contains either a periodic action by Z,,n # 2,3,4
or a non-real and non-periodic action, then A(Ip) is dense and the proof
reduces to Case (ii).

Proof of 2. — Assume that I consists of exp tx,t € A(lp) C
C,x(z) = 2¥+19/02. If A(Ip) is dense in C, the rigidity holds by 1.(ii). Since
the action of L(I}) is not antipodal, if A(Ip) is not discrete, it is dense. So
assume that A(Ip) is discrete, that is, a non-degenerate lattice AZ + pZ.
By Theorem 1.8, the quotient /Iy is generated by a g = w, exp by,
which is equivalent to w,z by exp dx : (exp — dx) o (wp - exp dx) =
Wy -exp ¢x ,d = w;*/(w7*¥ —1). And then I') remains with the same form.
Assume that I, I’ are topologically equivalent. Then I/ 8 is also k-flat and
the translations by —kA(Ip), —kA(I}) on Cy, are topologically equivalent.
So A(I}) is also non-degenerate and I") embeds to a one parameter family
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exp tx’. The conjugacy induces also that the linear terms of I, I'j coincide
and their conjugate actions on A(Ip), A(Iy) are equivalent. Therefore the
germs of I, I'"” at the origin are holomorphically equivalent.

LeEMMA 5.2. — Let X;,Y;,7 = 1,2 be holomorphic germs of nonsingu-
lar vector fields on C, 0. Assume that there exists a germ of homeomorphism
h: C,0 — C,h(0) such that hoexp tX; = exp tY; o h for small t € R. If
[X1, X2], [Y1,Y2] are not real constant vectors, then h is holomorphic or
anti-holomorphic with respect to z.

Proof. — First we assume that X;(0), X2(0) and Y;(0),Y2(0) are
independent over R. Let z € C be a point nearby 0. Since the mappings
A,(s,t) = exp sX; o exp tX3 (z) and A/(s,t) = exp sY; o exp tYs (2) from
R? to C are C*™-diffeomorphic at (0,0) € R? and h(A,(s,t)) = ;l(z)(s, t)
by assumption, h is a germ of C°°-diffeomorphism. So we have only
to show the analyticity. Define B,(s,t) = exp tX2 o exp sX; (2)
and B.(s,t) similarly replacing X;, X2 with Y7,Y>. Since the mappings
A,, B, have the same non singular 1-jet at (0,0), there exists a function
(8'(syt,2),t'(8,t,2)) = (s,t) + O(s% + t2) such that

A,(s,t) = B,(¢,t).
Consider the map
DEI(y) = [exp (='X1) o exp (—t'Xa) o exp (sX1) o exp (tX2) ] (y).

Define D’ (*) similarly with Y7, Y>. Since h(Dﬁf") (v) = D;(ls(:)) (h(y)) and
D$(2) = z (due to the choice of (s',#)), we obtain

(%) dh(z) o dD&*Y(z) =dD’§:(’3(h(z)) o dh(z).

Here dD{™"(2) = id + st[Xa, X1)(2) + o(s? + ) and dD'{5)(h(2)) =
id + st[Y2, Y1](h(2)) + o' (s% + t2), which are non real homotheties for small
s, t, if [ X2, X1](2), [Y2, Y1](h(2)) are non real. And then it follows that dh(z)

is a homothety from the relation (x).

The set A of those z such that [X;, X5] is non-real at z, [Y7,Y?] is
non-real at h(z), X1(z), X2(z) are R-independent and Yi(h(2)),Y2(h(2))
are R-independent is open dense nearby the origin. On A, h is holomorphic
or anti-holomorphic by the above argument. The relation exp tY; o h =
hoexp tX; implies that if h is holomorphic or anti-holomorphic at a point,
h is also holomorphic or anti-holomorphic, uniformly, along its trajectories
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of X;. Therefore the t-holomorphicity of h extends to the set B of those
w joined to a z € A by piecewise-trajectories of X1, X2. The complement
of the set B is contained in the set C of those z, where X, Xy are R-
dependent. The set C is a union of common trajectories of X, X5. The
+-holomorphicity extends to the smooth part of C' by Painlevé’s theorem,
and the extends to the discrete singular point set by Riemann’s extension
theorem.

LeEMwMmA 5.3. — The real vector fields x, ¢ defined in §3 are real-time-
preservingly invariant under topological equivalence.

Proof. — We prove the statement only for x. Let I',I"” be non-
solvable pseudogroups and h a topological equivalence from I" to I''. Let
f,g € I'beasin §3 and let f/ = ho foh("1) and ¢’ = hogohl-D.
Then f’ and ¢’ are also i-flat and j-flat respectively. Define the vector
field x’ similarly replacing f,g with f’,¢' and let ¥’ be its lift to C;. By
Proposition 3.5 (=™ g(tn) £(M) (29) — exp tx(2o) as n — 0o if L,n(=9/i - ¢,
Since h sends the orbits f(~™ g(™) f(™)(24) of 2o to those of h(zg) defined
with f',g’, f/(=™)g'(n) £'(") (h(z)) is convergent to h(exp tx(z,)). On the
other hand f/(=™)¢/(n) /(™) (h(2)) — exp tx(h(2,)) by Proposition 3.5.
Therefore h o exp txy = exp tx’ o h for real t.
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