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PROPERTY (T) AND 4, GROUPS

by D.I. CARTWRIGHT, W. MLOTKOWSKI (*)
and T. STEGER

1. Introduction and notation.

In two recent papers (see [2], [3]), an infinite family of finitely
generated groups I' was introduced. These groups act simply-transitively
on the vertices of certain thick gz Tits buildings, and we shall call
them Zg groups here. In this paper, for (most) 22 groups I'; we :

(i) show that I" has Kazhdan’s property (T), and

(ii) calculate the exact Kazhdan constant «(T',.S) of I" with respect to
its natural set S of generators.

Let us give a definition of property (T) which is convenient for our
purposes (see [8] and [9], Chap. 1, Prop. 15). Let I be a finitely generated
discrete group, and let S C I be a finite generating set. Let 7 be a unitary
representation of I' with no fixed vector, i.e., with no nonzero vector v in the
representation space for which m(g)v = v holds for each g € I'. Let x(m, 5)
denote the largest number x > 0 such that max | (8)v—v|| 2 &||v|| holds for

each vector v in the representation space. Let x(T', S) denote the infimum
of the numbers x(r,S) over all unitary representations = of I' with no
fixed vector. We say that T' has Kazhdan’s property (T) if the Kazhdan
constant £(T', S) is strictly positive. This does not depend on the particular
finite generating set S, by Lemma 4 in [8].

Some A, groups I' can be embedded as co-compact lattices
in PGL(3, F) for a suitable non-archimedean local field F'. For these groups,

(*) Research carried out while an ARC Research Associate at the University of New
South Wales.

Key words : Triangle buildings — Positive definite functions — Kazhdan’s property (T).
A.M.S. Classification : 43A35 — 43A90 — 43A65 — 51E24 — 22E50.
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property (T) is well known ([9], Chap. 2, Thm 8 and Chap. 3, Thm 4).
In [3], § 8, it was seen that many A, groups do not embed (in a natural way)
as co-compact lattices in any PGL(3, F'). Even when I' can be embedded
in PGL(3, F'), our proof that it has property (T) does not use this fact.
These groups therefore provide an answer to Question 2 on page 133
of [9], which sought groups which could be shown to have property (T)
without making essential use of the theory of representations of linear
groups. These groups are also the first infinite groups for which an exact
calculation of (T, S) has been possible, and therefore provide an answer to
Question 1 on page 133 in [9]. Estimates for some Kazhdan constants have
been found by M. Burger [1] for SL(3, Z). See also [10], p. 230 for estimates
of corresponding constants for SL(n, R).

Let us briefly describe Zg groups. Suppose that we have a finite
projective plane II, consisting of a set P of points, a set L of lines, and
an incidence relation between points and lines. For some integer ¢ > 2,
each point (resp. line) is incident with exactly ¢ + 1 lines (resp. points),
and q is called the order of II ([11], Thm 3.5) (g is a prime power in all
known examples). Also, |P| = |L| = ¢*> + q + 1. The Desarguesian plane
PG(2,q) of order g is formed from a 3-dimensional vector space V over the
field F, of order g, letting P and L be the sets of 1- and 2-dimensional
subspaces of V, respectively, with incidence being inclusion. Given a (not
necessarily Desarguesian) plane II = (P, L), let A : P — L be a bijection,
and suppose that we have a set T (called a triangle presentation compatible
with \) of triples (z,y, z), where z,y, z € P, such that :

(A) given z,y € P, then (z,y, z) € T for some z € P if and only if y and
A(z) are incident;
(B) (z,y,2) € T implies that (y,2,z) € T ;
(C) given z,y € P, then (z,y,2) € T for at most one z € P.
For any prime power g, triangle presentations are exhibited in [2], § 4,

and all possible triangle presentations (up to a natural equivalence) are
listed in Appendix B of [3], for the cases ¢ =2 and ¢ = 3. An A, group is a

group
I = ({az}sep | azaya, =e forall (z,y,2) € T)

associated with some triangle presentation 7. Let S denote the set of
generators ag, ¢ € P, and their inverses, and let u* = |P|7' " _pa; (an
element of the group algebra C(I") of I'). It is clear that there is a character
x : T — T such that x(a;) = €?™*/3 for each z € P. Hence x(puT) = ¢>"¢/3
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is in the spectrum Sp(u™*) of u+ in the C*-algebra C*(T") of T ([8], Prop. 1),
as are 1 and e~2""/3, Qur main result is the following :

o e22'7r/3

s

. 3_27:7"/3 (q =5 here)

Figure 1

THEOREM. — Assume that II = (P, L) is isomorphic to the Desargue-
sian plane of order q. Then the spectrum Sp(u*) of ut in the C*-algebra
C*(T) of T is the subset ©* of C consisting of 1, €2™*/3 e=27i/3 and the
region bounded by the curve (see Fig. 1)

__ 9 1)\ .0 —2i0
(1.1) 7(0)—q2+q+1((\/§+\/q e +e),  0<o<om

Let ¢ = 1 —+(0). Then I has property (T), and (T, S) = /2¢,.

Remarks

1) The spectrum ¥ = Sp(A(u*)) of put in the reduced C* algebra
C3(T) of T was calculated in [4] and [14]. It is the region bounded by the
hypocycloid q(q® + g+ 1)71(2€* + e72), 0 < < 2, (see Fig. 1).

2) The region ¥* is the set of z € C for which

(12) (q+1)*P+2) - (@ +q+ D' — (P +4g+1)|2P+g>0.

This is explained after Corollary 3.4 below. The expression on the left is
the denominator in the density of the Plancherel measure found in [4].

3) Notice that ¢, — 1 as ¢ — oo.

4) We do not know whether the restriction that II be Desarguesian
is necessary. We have no examples of triangle presentations for non-
Desarguesian II's.
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While much of the paper is phrased in the language of affine buildings,
one can show that I' has property (T), and obtain the correct lower bound
for x(T', S), using only combinatorial group theory. Let us briefly indicate
how this done. If g € ', there are integers m(g),n(g) > 0 such that for any
word

agl ---agk (r1,...,0% € P,€1,...,ep = Lor —1)

equal to g, with k£ minimal, then m(g) of the ¢;’s are +1 and n(g) of
the ¢;’s are —1 ([2], Prop. 3.2 and [4], Lemma 6.2). Let S,,, denote the
set of g € G for which m(g) = m and n(g) = n; in the notation below,
Sm.n = Sm,n(€e), where e is the identity in I', thought of as a vertex of the
building associated with T ([2], Thm 3.4). A function f : T' — C is called
biradial if it is constant on each set Sy, ,,. Let i, » denote the function which
takes the value |Sy n|~! on Sy, and 0 elsewhere on T'. Then the finitely
supported biradial functions form a commutative convolution algebra A
generated by u* = pq 0 and p~ = po,1, and spanned by the g, ». This was
proved in [4], Prop. 2.3, (and in [14], Prop. 3.5) using building terminology,
but can quite easily be proved using [2], Prop. 3.2 and [4], Lemma 6.2. For
each z,w € C, there is a multiplicative functional h, ,, : A — C such that
hew(pt) =wand h, (™) = 2. It is given by

hZ,w(f) = Z f(x)soz,w(x)

zel

for a unique biradial function ¢, ., on I" ([4], Prop. 3.4, or [14], Prop. 4.5),
whose value on S, , is a certain polynomial pp, ,(z,w) in z and w.
Now (a special case of) Proposition 4.1 below shows that if z € C
and if the 2|P| x 2|P| matrix (¢, :(y; 'y;)), where {y1,...,y2p|} =
{az}zep U {a;'}sep, is positive definite, then z € X*. Then using
Proposition 4.3 and Lemma 4.4 below, the proofs of Corollary 4.5 and
Theorem 4.6 show that Sp(u*t) C X*, and that T' has property (T),
with (T, S) > \/2_e; . A reader wanting only this can avoid almost all of
sections 2 and 3.

To obtain the exact value of k(I',S), we need to define some
representations, and it is most natural to do this for the group Auty(A)
of «type-rotating» automorphisms of an arbitrary triangle building A
(i.e., thick building of type 22) In section 2, we describe a « boundary » 2
for any triangle building A. This has been studied in [14], and our results
here are generalizations of those in [14]. We use this in section 3 to define the
principal and complementary series spherical representations of Aut(A).
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These give us positive definite spherical functions ¢, ; on Aut(A) for
each z € ¥*. In fact, in Theorem 3.5 and Proposition 4.1, we show that a
certain kernel k, ;(z,y) is positive definite on Va if and only if z € £*. A
vertex o having been fixed, ¢, > and k, ; are related by ¢, z(9) = k. z(o, go).
Positive definiteness of the kernel k, ; implies positive definiteness of the
function ¢, z, of course, these ideas being equivalent if Aut (A) acts
transitively on V. Finally, in section 4 we prove the above theorem.

Remark (due to the referee). — Thick affine buildings of dimension 2
are the only ones for which one can hope to find an «exotic» (i.e., nonlinear)
group with property (T) acting properly with compact quotient. This is
clear for affine buildings of dimension 1, which are semihomogeneous
trees (and a Kazhdan group acting on a tree has to fix a vertex,
see [9, Chap. 6a, Prop. 4]). Now let I" be a group acting properly and
cocompactly on some thick affine building A with dimension at least 3.
Then : T' is a lattice in Aut A, and Aut A is a compact extension of an
adjoint simple algebraic group G(k) over a non-archimedean local field k of
k-rank > 2; in particular, Aut A and I have property (T).

Indeed, it follows from the main result in [20] that A is associated
with an adjoint simple algebraic group G(k) over a non-archimedean local
field £ of k-rank > 2. Now let A* be the building at infinity of A.
Then Aut A embeds in Aut A (they might actually be equal), and the
structure of Aut A is given in Cor. 5.9 of [19] : it is given as an extension
of (Aut G)(k) (itself a finite extension of G(k)) by the group Autgk of
all automorphisms « of k such that *G is k-isomorphic with G; as k is
a nonarchimedean local field, Autgk is a closed subgroup of the compact
group Aut k.

2. The boundary 2 of a triangle building.

Let A be a triangle building. The set of vertices of A is denoted Va.
Let 7(z) € Z/3Z denote the type of a vertex z of A. Suppose a chamber ¢
in A has vertices =, ’ and z”. If A is an apartment in A containing c,
then (see [17], p. 112) the sector in A with (base) vertex z and base
chamber c is that part S of A containing ¢ and bounded by the wall w’
in A through = and 2’ and the wall w” in A through z and z” (see Fig. 2).
If 7(z') = 7(z) + 1 mod 3 and 7(2"”) = 7(z) — 1 mod 3, we shall call w”
and w’ the left and right walls of S, respectively.
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A subcomplex S of A is called a sector in A if it is a sector in some
apartment of A. Two sectors S and S’ in A are called parallel if their
intersection contains a sector ([17], p. 121). Parallelism is an equivalence
relation, and we denote by 2 the set of equivalence classes. Thus 2 is the
set of chambers of the building at infinity A> associated to A ([17], p. 122).
For any w € Q and z € Va, there is a unique sector S* = S*(w) in the
class w having base vertex z ([17], Lemma 9.7), and so we can think of 2 as
the set of sectors in A with base vertex x.

If z,y € Va, then y belongs to some sector with base vertex x and we
write y € Sy, () if y is at distance m and n, respectively, from the left
and right walls of this sector.

Y € S n(x)

57

Figure 2

x

The parallelogram with vertices z, y, ¥’ and y” (see Fig. 2) is called the
convex hull of x and y. This depends only on x and y. When m = 0 orn = 0,
the convex hull reduces to a segment, which we sometimes call the geodesic
between x and y.

The cardinalities Ny, n, = |Sm n(z)| are independent of z, and given by

Nen = (¢ +q+1)(@ + 9™ ifm,n>1,
Npmo=Nom = (¢ + ¢+ 1P ifm>1,
Noo =1.
(See [4], Cor. 2.2.) We write d(z,y) = m+n if y € Sy n(z). A function
f :Va — Cis called z-biradial if it is constant on each set Sy, »(z).

In [4] (see also [14]), an algebra A of «averaging operatorsy
was studied. It is spanned by the operators A, n, m,n € N, where
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(Amnf)(@) = Nph¥oes, @ f(y) for functions f : Va — C, is
commutative, and is generated by At = A;9 and A~ = Ag ;. For each
pair (z,w) € C?, there is a unique multiplicative functional A, ,, on .A such
that h, ., (A%) = 2 and h, (A7) = w. These multiplicative functionals
can be conveniently indexed by triples s = (s1,52,83) € C3 such that
818283 = 1, related to (2,w) by z = q(¢? + ¢ + 1)71(s1 + s2 + s3) and
w=q(¢®+q+1)"(s7" + 55" +53'), and we write hy in place of h, .
Let pmn(2,w) = hyw(Am ). This is a polynomial in z and w, calculated
explicitly in terms of s = (s1,52,53) in [4]. Let k, ., (z,y) or ks(z,y) be
defined to be pp (2, w) if y € Sy (). For fixed z, F : y — k, ,(z,y) is
the unique z-biradial function on Va satisfying F(z) = 1, ATF = zF and
A™F = wF ([4], Prop. 3.4).

Ifw € Q,let sz, , or s7, ,(w) denote the unique vertex in S* NSy, 5 (z)
(see Fig. 2).

LEmMA 2.1. — Let w € Q, and let z,y € Va. Write sy, ,, and s}, ,,
for sy, ,(w) and s}, ,(w), respectively. Then there are integers m(z,y;w)
and n(z,y;w) such that

(2.1) si;= for i,j > 0 sufficiently large.

sY
i+m(z,y;w),j+n(z,y;w)

Proof. — Now S* N SY contains a sector. Choose

u=s;,=s,€5°NSY.

Then 8%, 41 = Soymayn forallm,n>0.For T = {s7, .. :m,n>0}
and T' = {s¥,,, 4., : Myn > 0} are sectors with the same base vertex u
and having a sector in common. Thus T' = 7" by [17], Lemma 9.7, and
S0 87, npin and sY, . are both in T'N Sy n(u), and thus are equal.
It follows that the pair (¢ — a,d — b) € Z? does not depend on the point

chosen in S% N SY, and that (2.1) holds.

Remark. — Note that m(z,y;w) and n(z,y;w) are two-dimensional
analogues of quantities studied for trees by many authors (see [16] for a
recent example).

We can easily calculate m(z, y;w) and n(z,y;w) when d(z,y) =1 :

LEMMA 2.2. — For w € Q and x € Va, we have (see Fig. 3 next page) :
(=1,0) foroney in S o(z),
(m(z,y;w),n(z,y;w)) =4 (1,—-1)  forqy’sin Sy o(z),
(0,1) for g% y’s in S o(z),
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S%(w) S%(w) ,
Y
z y oz
(g such y’s) (g2 such y’s)
Figure 3

(0,—1)  for oney in Sp1(x),
Also,  (m(z,y;w),n(z,y;w)) = (=1,1) forgy’sin Sp.(z),
(1,0) for g% y’s in Sp 1(z).

Proof. — This is clear from Fig. 3 (see also the proof of Lemma 2.1
in [4]).

CoOROLLARY 2.3. — Let z,y € Va and let w € Q2. Then
57 j(w) € §%(w) N S¥(w)
fori,j > d(z,y).

Proof. — Let y € Sp,,n(x), where m > 1, say. Let z be the unique
point in Spy—1.(z) N So1(y) ([4], Lemma 2.1). By induction, we have
Smtn—1,m+n—1 € S%. Thus sy ., ..., is an interior point of 5. It follows

from the proof of Lemma 2.2 that s7, ., 4, € SY in all cases.

It is clear that for any w € Q and any z,y,z € Vo we have the
«cocycle relations »

{ m(z,y;w) + m(y, z;w) = m(z, z;w),
(2.2)

n(z,y;w) + n(y, z;w) = n(z, z;w).

It follows from Lemma 2.2 that |m(z, y;w)|, |n(z, y;w)| < d(z,y). Note also

that
m(.’L‘, Y5 UJ) = —m(ya 3 LU),
(2.3) {

n(w, Y5 (U) = —n(y’ Z; LU)

and that m(z, z;w) = n(z, z;w) = 0.



PROPERTY (T) AND Az GROUPS 221

Recall that an automorphism g of A is called type-rotating if there
is an integer ¢ such that 7(9z) = 7(z) + ¢ mod 3 for each € Va. Let
Auty(A) denote the group of type-rotating automorphisms of A. If g is
any automorphism of A, and if S and S’ are two parallel sectors, then
gS and ¢S’ are parallel. If w is the equivalence class of S we may thus
define gw to be the class of ¢gS. Suppose that S has base vertex z, and
let s;,n be the unique point in S N Sy (). If g € Aute(A), then gsm
is the unique point in gS N Sy, »(gz). It readily follows that for any w €
and any vertices z,y of A

(2.4) { m(gz, gy; gw) = m(z, y; w),

n(gz, gy; gw) = n(z, y; w).

If we fix a vertex o in A, and set m(g,w) = m(o,go;w) and n(g,w) =
n(o, go;w), then it is immediate from (2.2) and (2.4) that m(g,w) and n(g, w)
satisfy a «cocycle identity » :

(2.5) { m(919,w) = m(gy,w) +m(gy, 97 'w),

n(glg2aw) = n(glaw) + n(g2agl_1w)
for g1, g2 € Aut(A) and w € Q.

There is a natural topology on (2, making it a totally disconnected
compact Hausdorff space. Indeed, if we fix any © € VA, there is a natural
map of 2 into the product of the finite sets Sy, »(z), m,n > 0 (each endowed
with the discrete topology) : one maps w to (s}, ,(w))mn>0- If m" < m and
n’ < n, there is a natural map Sy, n(z) — Sm/ n/(z) (mapping y € Sp n(z)
to the unique vertex in Sy s (z) and in the convex hull of z and y). The
above map is a bijection of €2 onto the inverse limit of this system of maps,
which thus induces a compact Hausdorff topology on 2. For z,v € Va,
let Q;(v) denote the set of w € Q for which the sector S*(w) contains v.
Thus w € Q;(v) if and only if v € S*(w). The sets Q,(v) form a basis of
open and closed sets for the topology on (2.

LEMMA 2.4. — Let y € S n(x). Suppose that z € S; j(x) N Ske(y),
where i,j > d(z,y) = m + n. Then Q,(z) C Qy(z), and m(z,y;w) =k — ¢
and n(z,y;w) = £ — j for all w € Qy(2). Also, |S; j(x) N Sk(y)| does not
depend on the particular y € Sy, n(z).

Proof. — Let w € §24(2). Then z = s{ ;(w), and thus z is an element
of §%(w) N S¥(w), by Corollary 2.3. Thus w € ,(z), and m(z,y;w) =k —1
and n(z,y;w) = £ — j by the proof of Lemma 2.1.
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To see the last statement, let A,;, 7,5 > 0, denote the averaging
operators of [4], described above. Their linear span is an algebra, and we
can thus write Ay A;; = ZT,S Cr sArs for suitable numbers Cr,. If we
apply both sides to 8, (where §,(y) = 1 if y = z, and 0 otherwise) and
evaluate at y € Sy, n(z), the right hand side is Cp m/Nm n, while the left
hand side is lSi,j(z) N Sk,l(y)‘/(Ni,ij,E)-

For each vertex x, there is also a natural Borel probability measure v,
on 2, which, for each m,n > 0, assigns equal measure to each of the Ny, »,
disjoint sets Qg (v), v € Spma(z). If g € Auty(A), then vy, = gvy,
ie., vgz(A) = vy(g~'A) for any Borel set A C Q, and so v, is invariant
under each g € K, = {g € Auty;(A) : gz = z}.

LemMA 2.5. — The topology on €2 does not depend on the vertex x
chosen in the definition above. For any x,y € Va, the measures v, and v,
are mutually absolutely continuous, and the Radon Nikodym derivative
of vy with respect to v, is given by

(2.6) ‘_‘(w) = q2(m(z,y;w)+n(x,y;w)) ’

Proof. — Let z,y € Va, and let wg € 2,(v), a basic open set for the
topology defined using y, where v € S, 5(y), say. By Corollary 2.3,

s; j(wo) € §%(wo) N S¥(wo)

once i,5 > d(z,y). Choose i, j so large that also k = i+m(zx, y;wo) > d(z,y)
and £ = j + n(z,y;wo) > d(z,y), and also k > r and ¢ > s. Let
z = s7;(wo) = 8} 4(wo). Then z € S;;(x) N Ske(y), and Qu(2) = Qy(2)
by Lemma 2.4. Since v = s ;(wo), we have wo € Qz(2) = Qy(2) C Qy(v).
This shows that each «y-open» set is «x-open». The first statement of
the lemma follows. Also, m(z,y;w) = k — 4 and n(z,y;w) = £ — j for all
w € Qg(2) = Qy(2), and

1 1 1
Uy (Qw(z)) = Ni.t = @2k—i+E=3) N, ; = q2(k—i+t=j) Ve (Qw(z))'

The remaining statements in the lemma follow easily.

We remark that the action of Auty(A) on Q is continuous, with

the above topology on 2 and the topology of pointwise convergence
on Auty(A).
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3. The spherical representations of Autg,(A).

Let C*°(£2) denote the space of locally constant functions Q — C. For
each vertex x, C*°(Q) is the linear span of the indicator functions 1g, (.,
of the sets Q;(v). For any vertices z,y of A, m(z,y;w) and n(z,y;w)
are locally constant functions of w. For given wo € €, let 2 = s ;(wo),
where ¢, j > d(z,y). If 2 € S ¢(y), Lemma 2.4 shows that m(z, y;w) = k—1
and n(z, y;w) = £ — j for all w in the neighbourhood Q;(2) of wy.

For s = (s1, 82,83) € C3 with 515253 = 1 and for g € Aut.(A), define
ms(g) : C°() — C*°(Q) by

m(g,w)+n(g,w) sg(y,w)

(3.1) (75(9)F) (w) = F(g™'w)

7@ (g.0)
with the notation defined before (2.5). The cocycle identity (2.5) shows that

ms(g192) = ms(g1) o ws(g2) for g1,92 € Aut(A). Note that the expression
on the right in (3.1) can be put into a more symmetric form

87111(9,4‘1)3;12(9,@8;3(9,«1) F(g_lw)

g™ (9,w)—na(g,w)

if nj(g,w) are any integers such that m(g,w) = ni(g,w) — n2(g,w) and
Tl(g,W) = n2(ga OJ) - n3(g,w).

For the next result, compare Prop. 5.4 in [14].

ProposiTioN 3.1. — Let s = (s1, 82,83), where s1,82,83 € C and

s18283 = 1, and let k; denote the kernel defined before Lemma 2.1. Then
for z,y € Va, we have

) (a) ()
(3.2) /Q 1 2 " 4, (w) = ke(2,9).

gm(@yiw)+n(z,y;w)

Proof. — Fix z, and denote the integral in (3.2) by F(y). The integrand
is a™(@¥w) gr(@.¥iw) for o = 1/(s1q) and B = 1/(s182q) = s3/q. We claim
that F is the unique z-biradial function on Va satisfying F(z) = 1,
AYF = 2F and A™F = wF for z = q(¢* + ¢+ 1)"*(s1 + s2 + s3) and
w=q(¢®+q+1)"1(s7! + 553! +s3') ([4], Prop. 3.4). Now F(z) = 1
because v, is a probability measure. To see that F is z-biradial, let
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Y € Sm,n(x), and let i, j > m + n. Then as the sets Q,(2), z € S; j(z), form
a partition of 2, we have

F(y) = Z / a™@y) g(@ve) 4y (W)
2€8; ;(x) Qz(2)

Y Y [ e
k£20 z€8; ;(z)NSk.e(y) ¥ =)

The last integrand takes the constant value o*~*3¢~7 on Q,(z) for any
z € 8; i(x) N Ske(y), and v;(Qz(2)) = 1/N; ; for each such z. Thus

F(y) = Z |Si,j(z) N Sk,l(y)lak_iﬂe-j/Ni,j
k,£>0
which, by Lemma 2.4, does not depend on the particular y € Sy, ,(z).
Finally, using (2.2), we see that if z € Va, then (A1 F)(z) equals

1 . . . .
/Q{ q2 n . n T Z a'm(z,y,w)ﬂn(z,y,w) }am(maz7w)ﬂn(m7zrw) de(CU)
Y€S1,0(2)

By Lemma 2.2, the expression in braces is

1 q

Frerl Frarl

for all w € . Thus AT F = zF, and similarly, A~F = wF. This completes
the proof.

Recall that o denotes a fixed vertex of A. For Fy,F; € C*(Q), let

(F1, F3) = [o F1(w)F2(w) dve(w). This defines an inner product on C*°(Q),
because any nonzero F' € C*(2) can be expressed as

F = Z czlﬂo(z)
2€8m n(0)

for m, n big enough. Then (F, F) = N1, Zzesm,n(o) e, |2 > 0.

(' +qaB™' +¢%B8) = (s1+ 82+ s3)

COROLLARY 3.2. — For any s = (s1, 82, 83) € C3 such that s1s283 = 1,
let s* = (37',5;%,55"). Let 1 denote the function on 2 with constant
value 1. Then for any g € Aut,(A) and Fy, Fp € C* () we have

3.3) (1,m(g)1) = s+ (9) and (ms(9)F1, F2) = (F1,ms (g7 ) F2).

In particular, if |s;| = 1 for j = 1, 2, 3, so that s* = s; ms extends
to a continuous unitary representation of Auti(A) on L?*(Q,v,), and
ws(9) = ks(o0,90) = (1,m5(g)1) is a positive definite function on Aut,(A).
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Proof. — The first identity in (3.3) is immediate from Proposition 3.1.
The second identity follows from Lemma 2.5 and the fact that vg, = gv,.

Remark. — As noted in [4], ks is determined by s; + sy + s3 and
s7' 4551 + 531, and so equals k,, where s’ = (s}, s},55), if and only if
(s}, 8h,8%) is a permutation of (s1, sz, s3). Notice that s* = (577,355,553 %)
is a permutation of (s, s2,s3) if and only if either (a) |s;| = 1 for each j,
or (b) s is a permutation of (re®®,r~1 ¥, e=2) for some r > 1 and 6 € R.

We now want to describe explicitly the intertwining operators
between 75 and g, when s’ = (s, sb, s5) is a permutation of s = (s1, s2, 83).

Recall that o € Va is fixed. Let Q¢ denote the set of left walls w of the
sectors with base vertex o. There is a natural map Q — Qf, and we denote
by v¢ the probability on Q¢ induced from v, by this map (this measure was
studied in [14]). For y € S, 0(0), let

Qu,y = {w € Q: §°(w) has left wall w, and s, o(w) = y}.

We write €, in place of Q,, = {w € Q : S°(w) has left wall w}. For
each w € Qf, if m > 1, then Q,, # 0 for exactly (g + 1)g™ ! vertices
Y € Sm,0(0). Indeed, with the notation of Fig. 4, there are g + 1 choices
for s1,0. This, with w, determines the vertices s;1, $1,2,.... Then there
are q choices for s3 9, etc.

Figure 4

Let € Sp.n(0) and y € Sy 0(0), where n > m > 1. Assuming that = and y
belong to some sector S with base vertex o, a similar counting argument
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shows that there are ¢™ vertices z € Sy, »(0) such that z, y and z all belong
to such a sector. Hence

Vo{w € Q: §°(w) contains z and y}

=q"/Npmn=1/((q+ 1)qm_1N0,n)
1

O

It follows that if F' € C*°(f2), and F(w) = F,,  for all w € §,, ,, then

(3.4) /Q F) o) = 7 1)qm i Z(o) / Foy dv(w

YES.

vi{w € Qf : w contains z}.

(writing F,y = 0if Qo = 0).

Suppose that F' € C*®(f2). Then for m,n > 0 large enough, F is
constant on each set Q,(z), 2 € Sy n(0), and so F' is constant on each
set Qyy, W € N, y € Sy 0(0). Let HO denote the space of all F' € C*(Q2)
constant on each set 2, and for each m > 1, let H™ denote the space of
all F' € C*(R2) constant on each set Q,,y, y € Sm,0(0), and such that for
each w € f and each y' € Spm—1,0(0) such that Qy,ys # 0, the sum Y, Fy g
is zero, the sum being over the q y’s in Sp0(0) (¢ + 1 if m = 1) such
that Q, , # 0 and y € S1,0(y’). It follows from (3.4) that fQ FFdy, =0
if 4 € H™, F; € H™, and m # n. To summarize, we have an orthogonal
decomposition

*(Q) =P H"
n=0

Moreover, it is easy to see that any F' € C°°(f2) which is constant on each
set Quyyy ¥ € Smo(0), can be written (uniquely) as F = H® +--- + H™,
with H € HY for j =0,...,m

PrROPOSITION 3.3. — Let s = (s1,82,83) € C3, where s1s283 = 1
and s1 # gsg. Define Js : C*°(Q2) — C°(Q) by setting JsF = j, F for all
F € H™, where jo = 1 and j, = (s1/82)" '(gs1 — s2)/(gs2 — s1) forn > 1.
Assume that Aut,(A) acts transitively on Va. Then Jsoms(g) = msr(g) 0 Js
for all g € Aut, (A), where s’ = (sz, 1, 83).

Proof. — For each x € S1(0), there is a g, € Auty(A) such that
920 = z. A simple induction on d(o, go) shows that each g € Aut,(A) can be
expressed as a product of the g, ’s and their inverses and a k € Aut,(A) such
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that ko = o. Thus all we must do is verify that Js(7s(g)F) = ms(g)(JsF)
if F € H", for n > 0 and for each g € Auty(A) such that go = o
or go € S1,0(0).

If go = o, then (7,(9)F)(w) = F(g7'w) = (15 (9)F)(w). If w € Dy,
then g7 'w € Qg-144-1,. So if F € H", then 7,(g)F € H", and
Js(ms(9)F) = jums(9)F = jums (9)F = e (g)(Js F).

Suppose now that go = z € S; 0(0), and that F' € H"™. We shall see
that ms(9)F = H° + H! if n = 0, and ns(g)F = H" ! + H™ + H"*}
if n > 1, where H/ € HJ for each j in either case. We shall also use
subscripts w and w, y to denote constant values taken by various functions
on the sets Q,, and Q,,,. Also, we write a = s1/q, 8 = 1/(s3q), & = s2/q
and B’ = 1/(s3q) = B. If w € Qf is the left wall of a sector S with base
vertex o, let w; denote the vertex in Sp1(0) NS, i.e., the vertex on w at
distance 1 from o, and let g~ 1w € Q¢ denote the left wall of the sector with
base vertex o parallel to g~1S.

Now let F' € H°. Then on €, 4, y € S1,0(0), ms(g)F takes the constant
value (75(9)F)w,y, equal to @~ Fy-1,, af 1 Fy-1,, or BF;-1,, according
as go =y, d(wy, go) = 1 but go # y, or d(wi, go) # 1 (see Lemma 2.2). So
7s(g)F = H°+ H', where H?, is the average of the g+ 1 values (m5(9) F)w .y,
where y € S10(0) and d(y, w;) = 1. Thus

H® =

w

((a_l + qaﬁ_l)/(q + 1))Fy—1w if d(wlago) =1,
BFg-14 if d(wy, go) = 2.

We then find that
(g™t —aB 1) /(q+1))Fy-r,, ifd(wy,go) =1and go =y,

Hi)’y =14 (a7t —a™)/(g+ 1)) Fy-1, if d(w1, g0) = 1 and go # y,
0 if d(w1, go) = 2.

Ifne(9)F =H 0’ + H' is the corresponding decomposition of 7/ (9)F, then
Jo(mo(9)F) = joH® + i H' = jo(H” + H'') = my (9)(JF)

because (= + gaf1)/(q+1) = (@' + o' )/(g+1), B/ = B and
because ji(a~! —af) = jo(a’ "t —a/B7Y).

If now F € HY, w € Q) t € Sy0(0) and Qs # 0, then,
on ¢, ms(g) F' takes a constant value (75(g)F)w,: equal to a‘ng-l,U’g_lt,
B Fy-14 g-14p, OF BFy-14, g-1,, according as d(go,w;) =1 and go =y
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w

wy y=go

Figure 5

(the point on the geodesic from o to t), d(go,w;) = 1 and go # vy,
or d(go,w;) = 2, where in the last case z € Sp 1(0) is the unique vertex at
distance 1 from o, go and y (see Fig. 5). Thus 7,(g)F = H® + H' + H?,
where
(i) if d(go,w1) =1, then
H’B) = ((q2aﬂ—1 - a-—l)/(q(q + 1)))Fg_1'w,g—1’un
and (see Fig. 5)
H&),y = _((a_l + qaﬂ_l)/(q + 1))Fg‘1w,g“1ww
H?2, = a—l(Fg——lw’g~1t + q—ng—lw‘g—lwl)

w,t —
or

Hyy = ((@7' +qaf7)/(a(a+ 1)) Fg-1u,g-1wr)
HZ,=0,
according as go = y or not.
(i) if d(go,w1) # 1, then HY =0, H, ,, = BFy-1, g-1, and H2 , = 0.

If my(g9)F = H” + H' + H? is the corresponding decomposition
of msr(g)F, then
Jo(mo(9)F) = joH® + jiH' + joH = ju(H* + HY + H”') = my (9)(J, F)
because ja/j1 = a/a’ = si/ss (which one needs in comparing j2H1%,t
with jIHEJ’t' in the case d(go,w1) =1 and go = y).

Finally, suppose that F € H™, where n > 2, and let w € Q¢ and
t € Snt1,0(0), where Q1 # 0. Then, on Q¢+, 75(g)F takes a constant
value (75(g)F)w,: equal to @™ Fy-1,, g-1¢, 0B~ Fy-1,, g-1, OF BFy-14, g1,
according as d(go,w;) = 1 and go lies on the geodesic from o to t,
d(go, w1) = 1 and go lies off this geodesic, or d(go,w;) = 2 (see Fig. 6).
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’
P y—

o go o

Figure 6

Then ns(9)F = H" ! + H™ + H™"!, where if we evaluate at w € Q, ¢, we
see that if (a) d(go,w1) =1 and go lies on the geodesic from o to ¢, then
HJE = a 'Fymry g-1q, HE, = Hy b =0, if (b) d(go,w;) =1 and go

lies off this geodesic, then Hj ;' = aBf ' Fy-1, g-1,, Hot' = HL, =0,
and if (c) d(go,w:) # 1, then HZ, = BFy-1y,4-1,, Hit = H2L =0.

If my(g)F = H™ ' 4+ H™ 4+ H™' is the corresponding decomposition
of ms/(g)F, then

Js(5(9)F) = jn—1 H" * + jnH" + jpni1 H™H!
:jn(Hn—1’+Hnl +Hn+l/)
=y (g)(JsF)

because jni1/jn = /o’ = s1/s3, B = B and jn_1a8~! = jna’/B " (one
needs the first of these in comparing jn+1H3’t1 with jnHﬁ,:’;l' in the
case d(go,w;) = 1 and go lies on the geodesic from o to t, for example).
This completes the proof.

If K™ denotes the subspace of C°(Q) defined like H™, but
with left walls replaced by right walls, and if Js; is replaced by an
operator J, on C*(Q), where J.F = j/F for all F € K", jj, =1
and ji, = (s2/83)" " 1(gs2 —s3)/(gss—s2) for n > 1, then, provided gs3 # s2,
Ji oms(g) = msn(g) o J,, where s” = (s1,83,52). Thus, combining the
intertwining operators Js and J., we get intertwining operators between 7
and 73 for any permutation § of s (provided that gs; # s; for each i # j).

COROLLARY 3.4. — Let s = (re®,r~1e® ¢=2) where § € R and
1/,/q < r < /q. Then, with the notation and assumptions of Propo-
sition 3.3, (F1, F2)s = (F1, JsF2) defines an inner product on C*(f2), and
ms extends to a unitary representation on the corresponding completion
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of C*°(Q). Moreover, ps(g) = (1,75(g)1)s, and so s is a positive definite
function on Aut;(A). This last assertion also holds if 1/,/g < r < \/q.

Proof. — If F1,F, € C*(Q), we can write each F; as a finite
sum ) H?, where H}' € H". Then (Fi,Fy), = ). jn(HT, H),
and j, = r?»~D(gr2 —1)/(q — r?) > 0 for each n > 1. Since (-, -) is
an inner product on C*°(2), the first statement is proved. Also,

(ms(g)F1, Fa)s = (F1, s« (g—l)JsF2>
= (F1, Jsms (97 ) Fo) = (F1,m5(97 1) F2)s

because of (3.3) and the fact that s* is, in the present case, obtained
from s by interchanging the first two terms of s. Finally, ¢y is still positive
definite if r = /g or 1/,/q, being a pointwise limit of a sequence of ¢,’s
corresponding to 1/,/q <1 < ,/q.

f1<r<./q,let

Y (0) = q(@® + g+ 1) ((r +7r71) e + )

for 0 < 0 < 27. Consider the representations 7, defined above or, via the
Gelfand, Naimark, Segal construction, from a positive definite 5. (One can
show that if gs; # s; for 1 <4 < j < 3, then C*°(Q) is the linear span of
the functions g — m(g)1 as g varies over any subgroup of Auty(A) acting
transitively on Va. Thus 1 is a cyclic vector for 7, as defined above.) The v,
define simple closed curves in the plane. If z = q(g? + ¢+ 1)~} (s1 + s2 + 53)
lies on or inside the hypocycloid v, 75 is called a principal series spherical
representation of Auty(A). If z lies between v, and v = v, 4, or on 7, 7 is
called a complementary series spherical representation of Auty(A).

The z inside and on « may be described as the z € C other than 1,
and e~27%/3 satisfying condition (1.2) of § 1. For given z € C, there
exist s1, S, s3 € C such that

e21ri/3

818283 = 1,
q(@®+q+1)" sy + 52+ 83) =2,
9@ +a+1) s+ s 83 h) =2,

namely the three roots of

X2 — (@ +q+1)g X2+ (P +q+1)g ZX —1=0.
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Then (see the Remark after Corollary 3.2), either (a) |s;| = 1 for each j
(in which case z lies within the hypocycloid), or (b) after permuting the s;
if necessary, (s1,s2,53) = (re®,r~1e®®, e=2%) for some r > 1 and 6 € R.
Using the identity

a(@®+q+1)73 ] (gsi — 55)
it
=(g+1)%(2+vw) — (@ +q+1)2%w? — (¢ +4g+ 1)zw +gq,

if 518283 =1, (¢ + ¢+ 1)7*(s1 + 52 + 53) = z and
q@+a+ 1) (si 453 +550) = w,

we see that (1.2) holds in case (b) if and only if 1 < r < /g (so that z lies

on 71, on v, or between these curves) or 7 = ¢ and e’ =1 (so that z =1,
e2‘lri/3 or e—27ri/3).

THEOREM 3.5. — Let A be an arbitrary triangle building. Then for any
z € ¥*, the kernel k, 3 is positive definite on Va. Thus ¢, :(g) = k. z(0, go)
is positive definite on Aut,(A).

Proof. — If z = 1, then k, z(z,y) = 1 for any z,y € Va. For if we
fix x € Va, then F(y) = k1,1(z,y) defines an z-biradial function F on Va
satisfying ATF = F, AF = F and F(z) = 1. The function taking the
constant value 1 on Va has the same properties, and so F(y) = 1 for
all y € Va by the uniqueness mentioned in the proof of Proposition 3.1.
Thus k4,1 is positive definite.

If z = p, where p3 = 1, then k, ;(z,y) = p™ " whenever y € Sy, »(z).
For then k. :(2,y) = Pmn(pp™1) = pP™ "Pm,n(1,1) = p™ ™ by the last
paragraph and the property pmn(pz,p " w) = pP™ "prn(2,w) of Pmn
mentioned after Proposition 3.1 of [4]. Fix o € Va. If z € S, (o),
y € Ske(o) and y € Sy n(z), then m —n = (k- £) — (¢ — j) mod 3.
This follows from Lemma 2.1 of [4] by induction on m + n. It follows
that k, ,-1(z,y) = k,,-1(0,%)k,p-1(0,y). So if z1,...,2, € Va and
ai,...,ar € C, we have

T T
Z ko p-1(zi, Tj) a; @ = Z kpp-1(0,2i) kp p-1(0, ;) i &
i,j=1 1,5=1

T 2
= ‘ka,p—l(oawj)CTj >0
=1
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and so k,,-1 is positive definite. Thus k., is positive definite if
z € {1, e*"/3 ¢=27/3} In fact, the above calculation shows that ¢, »
is a character of Aut,(A) in this case.

Again fix 0 € Va. For any ¢ € VA and for any s = (sg, 82,53) € C3
with s1s283 = 1, we define fs(z) € C>(2) by

m(o,z;w)+n(o,z;w) sn(o,z;w)
2

(3.5)

_ S5
fs(x)(w) = qm(o,x;w)+n(0,$§w)

Notice that fs(z) = m5(g)1 if z = go, g € Aut, (A).
Now suppose that z lies on or inside the hypocycloid «;. Then

z=q(¢® +q+1)""(s1+ 52 + s3),

where s1s283 = 1 and |s;| = 1 for j = 1,2,3 ([4], Prop. 4.5). It is easy to see
using (2.2), (2.3), (2.6) and 5; = sj—1 that (fs(z), fs(y)) equals the integral
in Proposition 3.1. (Recall that we write (Fy, Fo) = [, Fi(w)Fz(w) dvo(w)
for F1,F, € C*(Q).) Hence k,:(z,y) = ks(z,y) = (fs(z), fs(y)), and
so k, z is positive definite ([9], Chap. 5, Exemples 2). This case was proved
in [4], Prop. 4.7, by other methods.

Now suppose that z lies between the curves v; and v. We can write

z2=q(q® +q+ 1) (s1 + 52 + s3),

where s; = e, 5o =r~1e® and s3 = €72, and where 1 <r < /g and
6 € R. Let s’ = (s2,51,53). Using 51 = 851, 53 = 57", (2.2), (2.3) and (2.6),
we now find that (fs(z), fs(y)) equals the integral in Proposition 3.1.
In Lemma 3.6 below, we show that Js(fs(y)) = fs (y). Thus

kzz(2,y) = ks(@,y) = (fs(2), Ts(fs())) = (fs(2), s (¥)),

and again k, ; is positive definite.

Finally, if z lies on the curve v, then k, ; is positive definite, being the
pointwise limit of kernels &, z,, where z; — z and z; lies between ; and .

LEMMA 3.6. — Let x € Va, let s = (s1, 82,53) € C with s;s283 = 1,
and define fs(z) € C>®(Q) as in (3.5). Assume that gs; # s;. Then
Js(fs(z)) = fs (), where s’ = (s, 51, $3)-



PROPERTY (T) AND Ay GROUPS 233

Proof. — We can write
fol@)=H°+H +- .-,

fo(z) = (HN" +(H) +--,
where H”, (H')Y € H" for each v > 0. We must show that j, HY = (H')¥
for each v > 0. This means that for each w € Qf and each y € S,(0)
such that €, # 0, we must show that j, H,, , = (H'),, . We do this by
verifying that HD is a symmetric rational function of s; and sy, and that
for v > 1, Hy, , has the form 57" (gs — 51)f(s1,82), where f(s1,s2) is a
symmetric rational function (depending on w and y).

Suppose that * € Sy n(0) and that w € Q. For 0 < i <m
and 0 < j < n, let z; ; denote the vertex of S; ;(0) in the convex hull
of o and . We shall see that there exist £ > 0 and v € VA with the
following properties :

(i) v € Sgo(0) and Q4 # 0. We denote by vg = o,...,v, = v the
vertices on the geodesic from o to v.

(i) Suppose that ¢ > 0 and y € S; o(0) with Q,, , # 0. Then m(o, z;w)
and n(o, z;w) are constant on €, ,, unless 0 < i < £ and y = v;.

Using (i) and (ii), it will be easy to calculate any H,, ,. For let
Yo = 0,...,Yy = y denote the vertices on the geodesic from o to y. Then
if j is the largest integer i < v, such that y; = v;, then m(o,z;w) and
n(o,z;w) are constant on .., if j < v, and on Q4 if j =€ < v
Thus Hy, , = 0if v > j+ 2, or if j = ¢ and v = £ + 1. In particular,
Hy , = 0 whenever v > £.

Let r denote the largest integer ¢ < m such that Q. , # 0.
For 0 < i <rand j > 0, let w;; denote the vertex sfd-(w) (the same
for any w € Qu ¢, ). Thus w; g = ;0 for 0 < i < r. The vertices w; ; lie in
a convex planar «strip» S with left wall w and «bottom edge » the segment
from o to z,o. When r < m, note that ¢ + j < r holds for any (3, 5) such
that w; j = z; ;. For if w; ; = x; ; and ¢ + j > r + 1, then it is easy to see
that z,1 is in the convex hull of z; ; and z, o, and thus w,; = z,;. But
then d(wr,1,Zr41,0) = 1, which implies that Qy 4., , # @, contradicting
the definition of . Now let k& denote the largest integer j < r,n such that
Tr_j; = Wr—j ;- Notice that w; x = x; for i =0,...,7 — k by convexity of
the intersection of S with the convex hull of 0 and z (see Fig. 7 (a)).

When r = m, let h denote the largest integer j < n such that
Wm,j = Tm,;j- Then let k be the largest integer i such that h <i <m+h,n
and Wmh—i,i = Tm+h—s,; (see Fig. 7 (b) next page).
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Wr—k—1,k+1

Figure 7 (a) Figure 7 (b)

Let us consider the case when r < m first. We claim that wy_g k41
and Z,_g+1,5 are nonadjacent, and (if ¥ < r,n) that wy_g_1x+1 and
Zr—k k+1 are nonadjacent. It will follow that the strip parallel to w having
as base the segment [wo ,, Zr—k,k] from wo . to z,_k x and the parallelogram
with corners «,_kx Tr—k,n, Tmk and  lie in a single apartment, and in
fact in a strip S’ of width £ = r + n — 2k parallel to w with base [a, ] for
some vertex a (see Fig. 8).

To see that (when k < 7,1) Wr_k—1,k+1 and T, kx+1 are nonadjacent,
note that w,_x_1 k41 is already adjacent to wr_x—1x = Tr—g—1,, and
to Z,—k k (see Fig. 7 (a)). If it were also adjacent to Z,_k k+1, it would have
to equal Zr_k_1 k+1, contradicting the definition of k. Also, T _k+1,x cannot
be adjacent to wy_g k+1. This was noted above when k = 0, and if k¥ > 1,
ZTr_g+1,k i already adjacent to z,_kx and zy_g41k—1. If it were also
adjacent to wr_k k+1, then it would have to equal wy—k+1,x (see Fig. 7 (a)),
which is impossible, as the sum of the subscripts exceeds r.

Let v’ denote the vertex on the right wall of the above strip S’ which
is at distance £ + m + k — r from z, and thus at distance ¢ from z,_g n.
Let vy = wo,r,...,v, = v’ denote the geodesic from wp, to v'. Consider
the part S” of S’ obtained by deleting the vertices « below » this geodesic,
i.e., by deleting the convex hull of z, a, wo, and v'. As wy, # wor_1
(if r > 1), we can enlarge S” to a strip whose left wall is all of w, and
whose «lower edge» is a segment from o to a vertex v (see Fig. 9 (a)). The
vertices vg = 0,...,vp = v of this segment form the geodesic from o to v,
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r—k n—k
Wr—k,k+1 |
w \
Or+1 Tr—k,n \
wr—k—l,k+1 \A‘\
Wo,r Tr—k,k+1
\ Tr—k,k Tr—k+1,k
m+k—r
‘\. 777777777777777777777 v
a Tm,k T = Tm,n —
Figure 8

which runs parallel to and at distance r from the geodesic from wyp , to v'.
Clearly v € S;0(0) and §y, # 0.

We can now calculate m(o,z;w) and n(o,z;w) for any w € ,,. The
calculation involves reducing the problem to that of calculating m(o, z;w’)
and n(o,r;w’) in the case d(s§;(w'),z1,0) = 2 and d(s{y(w’), zo,1) = 2.
For then it is easy to see (using Lemma 2.2 and induction, for example)
that (m(o,z;w’),n(o, z;w’)) = (n,m).

Let y € Sy 0(0) with Q4 # 0. Let w € Q. Let j be the largest
integer i < v, £ such that y; = v;. Suppose first that j < ¢,v. Then using
the above remark and the fact that © € Sy k+j—rntr—2k—j (’U;), we have

/
YE

/

(m(v x;w),n(vj,x;w)) =(n+r—2k—jm+k+j—r)

(see Fig. 9 (a) and (b)). Also, v} = 9 ,.(w), and so
(m(o, vj;w), n(o,vj;w)) = (=34, —7).
Hence (2.2) implies that
(m(o, z;w), (0, z;w)) = (n+71 — 2k — 2j,m+ k +j — 2r).
A similar calculation shows that if j = ¢, then
(m(o, z;w), n(o, ;w)) =(-n—r+2km+n—k—r),

although the picture is slightly different.
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Figure 9 (a) Figure 9 (b)

For v = 1,...,¢, consider the distinct vertices y% € S, 0(0),
a=1,...,q (a=1,...,¢+1if v = 1) such that y} = v,, and for a > 2,
vy—1 is the vertex in S,_1 0(0) on the geodesic from o to y%. By the remark
after (ii) above, for the given w € Q¥ the only nonzero HY ’s are HJ,
and H{f,’y;,, forv=1,...,¢, and « as above.

Nowlet k =—n—r+2kandX=m+n—k—r. Thusk = —£ <0,
and (m(o, z;w), n(o, z;w)) = (k, A) for any w € Q,, . We first calculate the
Hﬁ,,y?. Pick w® € Qyy,yo. Then our calculation above shows that

(m(o, z;0%),n(0, z;w%)) = (K, A)

ifa=1,and (k+2,A —1)if a > 2. Thus (assuming £ > 2)

s1 K+ _
(2)78 = f@ = B+ + B, + By

81\ K+HA+1
(3) 7 = @) = Hy o HIZ o+ H

q

if « = 2,...,¢. Summing, and using ) Hﬁ,‘y? = 0, as required by the
a=1

definition of H*, we find that

Hg} +oot H5:01241 = grtA+2 (QSQ +(a- 1)81)'
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Substituting this back into the above equations, we get

+A A1
e - (@=1)(gs2—s1)s1" ")
wy; grtI+2
K+ _A—1
H: o= _(q32—31)31 52 fora=1
wyy — g2 =L q

Notice that both these expressions are of the form s7¢*!(gs; — s;) times

a symmetric rational expression in s; and s2. Now a simple (backwards)
induction shows that for i =2,...,¢

Hi _ (q _ 1)((182 _ Sl)s'f+)\s§+n+z\—1 (sl—n—i-H _ 32—n—i+1)
1 — -
w,y; q)\—1.+2 81— So

(the last part of this expression is replaced by its limiting value if s; = s2)
and that Hfuyyg equals —Hfu y;/(q — 1) for « = 2,...,q. For once the

Hf;f;ﬁr’ls have been calculated, choose w® € Uy yo for a = 1,...,¢, with

wteN w,yf for some 3 > 2, say 8 = 2. Then, using the above calculation
Yiga
of (m(o, z;w*),n(o, z;w™)), we get equations

A—i X . . .
(2) s = fo(@)Wh) = H + -+ Hil |+ HY, o+ H

q w,V5—1 w,yZ, )’

A—it1 . . .
(f_l_) Sg+z\+z—1 — fs(x)(wa) — HS) 4. +H'L—1 +H:u,yf‘

q W,Vi—1

if @ = 2,...,q. Adding, and using the known value of Hf:yl? , we obtain
the above formula for the H, ,o’s. s

Having the above formula for Hﬁ,’yg (or if £ = 1), we find in a similar
way that

1 _ (gsa —s1)stHs5 (S'” - Sz_")
W (¢ +1)g*t 51— 82

and Hy, o = —H;,yi/q fora=2,...,¢+1, and

K+ K+ —k+1 —k+1 k+A+1 _k+A+1 1 1
S1 82 1 — 52 51 S2

o s ST — 85 T )
"’~(q+1)q*“( 51— 82 ) (a+1)¢* ( 81— 82 '
This formula is also valid if £ = 0. We see that, as desired, HY, is symmetric,
and that H, o has the form 57" (gs2 — s1)f(s1,52), where f(s1,82) is
symmetric.

In the case r = m illustrated in Fig. 7 (b), an integer £ > 0 and a
vertex v are found satisfying (i) and (ii) above in almost exactly the same
way, with the roles of r and z,_} replaced by m + h and Tyyn_k k,
respectively. This time £ = m + n + h — 2k. The formulas for the Hfuyyg’s
are exactly as above. In this case, k = —fand A=n —h — k.
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4. Property (T).

Proposition 4.1 below, the converse of Theorem 3.5, is stated in terms
of a general triangle building A. Recall that if v € Va, the set of vertices
at distance 1 from v has the structure of a projective plane, which we
denote II,, : the points and lines are the vertices z such that 7(z) = 7(v) +1
mod 3, respectively 7(z) = 7(v) — 1 mod 3, with a point z incident with a
line y if x, y and v lie in a common chamber.

For the remainder of the paper, we shall be concerned with Zz
groups I' (see §1). The Cayley graph of I' with respect to its natural
generators and their inverses is (the 1-skeleton of) a triangle building A
([2], Thm 3.4), and T" acts simply transitively by left multiplication (which
is type-rotating) on YA = I'. The projective plane II. of neighbours of e
consists of «points» ay, y € P, and «lines» a;!, x € P, and is isomorphic
to the plane (P, L) used to define I : a point a, is incident with a line a;*
if and only if azaya, = e for some 2 € P. The set Sy, ,(e) equals the
set of g € I" for which, in any minimal word in the generators and their
inverses, there are m generators and n inverse generators, as noted in § 1,
and the type of g € S n(e) is (m —n) mod 3. Conversely, if A is any
triangle building admitting a I' < Aut,(A) which acts simply transitively
on Va, then T is isomorphic to an Ay group, and A is isomorphic to the
associated building ([2], Thms 3.1 and 3.5). The algebra A of averaging
operators described in §2 can be identified with the convolution algebra
of e-biradial functions on T', as ATf = f*u~ and A= f = f x u+ in the
notation of § 1.

ProprosiTION 4.1. — Suppose that the kernel k, ; defined before
Lemma 2.1 is positive definite. Then z belongs to the set ¥*. In fact,
to show that z € X*, we need only fix o € Vao and assume that
M = (k; z(u,v))uvem, is a positive definite matrix.

Proof. — Write py, », in place of pm n(2,Z), and Sy, 5 for Sp, »(0). We
calculate the eigenvalues of M. Let m = %|Ho| =¢q?+q+ 1, and write

A B
)\Igm—M—<C D)’

where A, B, C' and D are m x m matrices indexed by 51,9 X 51,0, S1,0 X So,1,
So,1 X S1,0 and Sp,1 x Sp,1, respectively. Both A and D are m X m matrices
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of the form

™™

4.1) .
B8 B - «a

where « = A —1 and 8 = —p;,1. Now C = B*, and the (u,v) entry
of B is either —p; o or —pp2 according as u € Si1o and v € Sy are
incident in II, or not. The values of the p,, , we need can be read off from
equations (3.1)—(3.7) in [4] :

P10 =%,

P11 = ((¢* + g+ DI21* - 1)/(¢* + 9),

po2 = ((¢*+ 9+ 1)2* - (¢ +1)2)/¢*.

Now for any m x m matrices A, B, C and D, with A assumed
invertible,

dor (A BY—awf(A O\ (I O (In A1B
“\c p)~ o I,)\Cc I, 0 D—CA'B
= det(AD — ACA™'B)

= det(AD — CB) if A and C commute.

(Our thanks to R.B. Howlett for pointing this out to us.) The hypothesis
that A is invertible can easily seen to be unnecessary for the conclusion
to hold.

In the case at hand, A and C commute because C has g+1 entries —p1 9
and g2 entries —pp 3 in each row and in each column.

Now AD is an m x m matrix of the form (4.1), where
a=0A-1)"+(m-1)pi,,
B=-2A-1)p11+(m— 2)P?,1~

Also, CB = B*B has form (4.1). Indeed, if u,v € Sp; with u # v, the
(u,v) entry >, cs , Bwu Buww of B*B equals

Ip1,0|% + q(Pr0 Po,2 + P10 P02) + (¢% — 9)|po 2|
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For there is a unique w = wg € S1 ¢ incident with both v and v. This gives
the |p1,0|? term. Each of the ¢ w’s in S incident with u (resp., with v)
but not equal to wg gives a P19 po,2 (resp., p1,0Po,2) term, and each of the
(¢® — q) w’s in S o incident with neither v nor v yields a |pg 2|? term.

Similarly, the diagonal entries of B* B are all (¢ + 1)|p1,0|2 + ¢*|po.2|?.

Thus det(Al2m — M) is the determinant of an m x m matrix (4.1),
where

a=A-12+(+ Q)Pi1 — ((¢+ Dlp1ol® + ¢*po2/?),
B=-=2A=1)p11+ (@+q- 1)1)%,1
- (]P1,0|2 + q(P10 Po,2 + P10 Poz) + (¢ — Q)|P0,2|2)-

The determinant of a matrix (4.1) is (a — 8)™ !(a + (m — 1)3). Here,

a—B=MA-1+p1,1)*—qlp10 - pozl’
2 2
at+(m-1)8=A-1-(®+qp11) — |(a+ Dp1,o + ¢*po|
Setting o + (m — 1) = 0 and solving for )\, we have :
A=0 or 2(¢*+q+1)z*>>0 forallz.
Setting @ — 8 = 0 and solving, we get A = 1 —p11 £ /q|p1,0 — Po,2|
These values are both nonnegative if and only if p1; < 1 and
(1 =p1,1)? > glp1,0 — po,2l?, ie.,
(@+ 1% +2°) ~ (@ + g+ 1)zl — (@ +4g + D|2[* + g > 0.

That is, if and only if z € ¥*.

Remark. — In fact, to show that z € ¥*, we need only assume that
M = (k; z(u,v))u,vea is a positive definite matrix, where

A ={o,u} U {u € S1,0(0) | uand vy are incident in IL, },

where vy € Sp1(0) (see Fig. 10). Note that |A| = ¢ + 3. One can calculate
det(Alg4+3 — M) as in the last proof.
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Ug+1

Vo ‘ U

Uy o
Figure 10

Let A be a triangle building. Let I' < Aut,(A) act simply transitively
on the set of vertices of A. Fix a vertex o of A, and for f : T' —» C
define £f : T' — C by

ENM =Nl D f() if 70 € Smnlo).
~'er:
’7,0€Sm,n(a)
If we identify v € T with yo € Va, £ is a projection of the space of functions
on I' onto the space of e-biradial functions on I" (see [4], § 2).

ProposiTION 4.2. — Let K = {g € Auty(A) : go = o}. Assume
that K acts transitively on each set Sp, n(0). With notation as in the
preceding paragraph, let ¢ : I' — C be positive definite. Then Ep : T — C
is positive definite.

Proof. — Write G = Auty(A). Since T' acts simply-transitively,
we have G = TK and ' " K = {id}. There is a unitary representation
m: ' — U(H) and there is a vg € H such that p(y) = (vo, 7(7)vo) for
all v € I'. Let n/ = Ind&(7) be the unitary representation of G obtained
by inducing 7 from I' to G. Thus the representation space H’' of 7’ is the
completion of the space Hj, of continuous functions f : G — H such that
flgy) = (v~ f(g) for all g € G and v € T' with respect to the norm
given by

17112 = /G 5@ anton)

Here u is the unique G-invariant probability on G/T" (see, e.g., [13], p. 37;
note that G/T is compact here). Notice that for f € HJ, ||f(9)| depends
only on ¢T'. By [13], p. 38, we have

/ F(gT) du(gl) :/ F(kT') dk
G/T

K
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for continuous functions F' on G/I', where dk is normalized Haar mea-
sure on K.

Let fo be the unique element of Hj such that fo(k) = v for
all k € K; thus fo(ky) = m(y })vg for k € K and v € I'. The statement
of the Proposition is immediate from the fact that (E¢)(y) = (fo, 7' (7)fo)
for v € I, as we now verify. Indeed,

{(on' (M fo) = /G (9o0), (') 0)(0)) )
- / (v, fo(y~1k)) dk.
K

Let ¢’ be the right K-invariant function on G which agrees with ¢ on T :
&' (vk) = p(y) for v € T and k € K. Let ¢” be the corresponding function
on G/K. If we write v~k = k'+’, where k,k’ € K and 7,7’ € T, then

(vo, fo(y™1k)) = (wo, fo(k'Y)) = (UO,W(’YI—I)Uo)
=/ ) =gy KT
=¢'(k71y) = ¢ (k"17K).

Thus

[t sotrtoyds = [ ikt = [ o vk ak
K K K

/ ¢"(v'K) dk (if yo € Sm,n(0))
{keK:kyey'K}

v'er,
Y'0€Sm,n(0)
=1Sm ()71 Y @) = (Ep)(7)
vy'er,
'Y,OESm,n(O)

because the sets {k € K : ky € 4K} have equal Haar measure for
each 4" € I such that v'o0 € Sy, »(0), by our hypothesis on K.

Remarks

1) The hypothesis on K in the Proposition is satisfied if A is the
building A associated with SL(3, F'), where F is a local field with residual
field of order ¢ (see [17], for example). For then PGL(3, F) < Aut, (A),
and Sp, n(0) is the K orbit of g, ,0, where g, ,, is the image in PGL(3, F)
of the diagonal matrix with entries (1,w™,w™%") (where w € F has
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valuation 1). It may be that any triangle building A for which K is
transitive on each set Sy, ,(0) must be a building Ar for some F. We do
not know whether ¢ is positive definite implies that £y is positive definite
if we do not assume this transitivity property of K.

2) The method of proof of the last Proposition is applicable also
when I' is a free group, for example, acting simply transitively on a
homogeneous tree. The proofs of the corresponding fact for this case
appearing in [5], [7] and [12] are not correct. Another proof, due to
Haagerup, appears in a related context in [15].

Let T be an A, group. When the projective plane II, & (P,L) of
nearest neighbours of e in the associated building is the usual Desarguesian
plane PG(2,q), we can prove a weak version of Proposition 4.2. All
we actually need are certain transitivity properties of the collineation
group of Il,. That these hold for PG(2,q) follows from the fact
that PGL(3,F,) < Aut(PG(2, q)) acts transitively on the set of quadrangles
in PG(2,q) ([11], Thm 2.12) (recall that a quadrangle in a projective
plane is an ordered set of four distinct points, no three of which are
collinear). Actually, these properties characterize PG(2,q) amongst the
finite projective planes of order ¢ ([11], Thm 14.13). As each g € Aut(A)
which fixes e induces a collineation of Il., the hypothesis of these properties
is just a weak form of the hypothesis in Proposition 4.2.

ProprosiTioN 4.3. — Assume that the projective plane Il of nearest
neighbours of e is the usual Desarguesian plane PG(2,q). Let ¢ : T' — C be
positive definite. Then ((E¢)(z™'y))z,yen, is a positive definite matrix.

Proof. — Let n = |II| = 2(¢* + ¢+ 1), and let M be the n x n
matrix (¢(z7'y))z yen,. Let A = Aut(IL;) be the group of collineations 7
of Il., i.e., bijections of Il mapping points to points, lines to lines and
preserving incidence. For each w € A, let P™ be the corresponding n x n
permutation matrix : (P™)g, = 1 if x = 7(y) and 0 otherwise. Now M is a
positive definite matrix, and so
’_ ﬁ Z(Pw)—lMPw

TEA

M

is positive definite, and the (z,y) entry of M’ is

ﬁ 3 p(n(@) " n(y)-
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But this is (£¢)(z7'y). For let z € Il be a point (i.e., z € S1,0 = S1,0(€))
and let y = 27! be a line in Il (i.e., y € So,1 = So.1(€)) incident with z.
As A is transitive on the set of quadrangles in II, because of the hypothesis
II. = PG(2,q), it is also transitive on the set of incident point-line pairs.
As there are (¢ + 1)(¢? + g + 1) such pairs, the above entry is

1

-1 _,-1 n
p(a’27) = p(z")
(@+1(?+g+1) I,EZSIO 2+(1+1)x,,>;&0
incident ’with
2/ 71€8S0,1

the last equality because each point z” € S;o may be expressed
2" = /"'y, where 2,2 € S1,0, in precisely g + 1 ways. So the entry
is (E¢)(z~'y), because -y = 271271 € ) o. Similarly, using transitivity
of A on nonincident point-line pairs, and on pairs of distinct points, and on

pairs of distinct lines, we find that (£p)(z~1y) = M, , for all z,y € I..

LEMMA 4.4. — Let T' be a countable discrete group. Let h : T' — C
have finite support and satisfy h * h* = h* x h, and let z € C. Then the
following assertions are equivalent :

(i) z € Sp(h), the spectrum of h in the full C* algebra C*(T') of T';
(ii) 2z € Sp(w(h)) for some unitary representation 7 : I' — U(H,) of T';

(iii) z is an eigenvalue of w(h) for some unitary representation
m: T —U(H,) of T;

(iv) h* ¢ = zyp, or, equivalently, ¢ * h = zp, for some nonzero positive
definite function ¢ onT.

Proof. — If ¢ : ' — C is positive definite, with p(e) = 1, there is a
unitary representation 7 : I' — U(H,) of I" and a cyclic unit vector v € H,
such that ¢(z) = (v, w(z)v) for all z € T". Then

(4.2) (zv — w(h)v, m(z)v) = zp(x) — (h * ¢)(z)

for all z € T. Hence h *x ¢ = zp if and only if w(h)v = 2v, as v is
cyclic. Equivalently, 7(h*)v = zv, because w(h) is normal (and because
IT*v|| = ||Tv|| for normal operators T), so that h* x ¢ = Zp, and
p*xh = (h**p)* = (Zp)* = zp, as * = . This shows that (iii) and
the two forms of (iv) are equivalent.

We next show that (ii) implies (iv). If z € Sp(w(h)), then as = (h)
is normal, there is for each ¢ > 0 a unit vector ve € H, such that
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||zve — w(h)ve|| < €. Then for each z € T', (4.2) implies that

|ze(x) — (B * 0e) ()| = |[(2ve — T(h)ve, m(z)ve)| < €

where @.(y) = (ve,m(y)ve) for y € T. We have |pe(y)] < 1 for all
y € T and € > 0, and so for a suitable sequence ¢; > €2 > --- > 0,
o(y) = limj_ @, (y) exists for each y € I'. Then ¢ is positive definite,
and h * ¢ = zp because h has finite support. Thus (iv) holds.

As for the remaining implications, that (i) implies (ii) is immediate,
because Sp(h) = Sp(mun(h)), where 7y, is the universal representation of I'.
Obviously, (iii) implies (ii), and it is easy to see that (ii) implies (i).

Remark. — The referee pointed out to us that the equivalence
of (ii) and (iii) in the last lemma is valid in a more general context
(see Thm V.14 in [18]).

COROLLARY 4.5. — Let T be an A, group. Assume that I1, = PG(2, q).
Then Sp(ut) = X*.

Proof. — Let z € Sp(ut). Then as y* and ut* = p~ commute,
Lemma 4.4 shows that pt x ¢ = ¢ * u = 2 for some positive definite
function ¢ satisfying ¢(e) = 1. Thus pu~™ *x ¢ = @ * u~ = Zp too.
Now £ commutes with any operator f — f % g, where g is biradial ([4], § 2),
and so

{2550 =E(p*pt) = (Ep) * put,
ZEp=E(pxp~) = (Ep)*xp~.

As &y is e-biradial, this implies that £¢ is the spherical function ¢; .
([4], Prop. 3.4). But Proposition 4.3 shows that ((£p)(z7'y))zyemn, is
positive definite, so that, by Proposition 4.1, Z € ¥*, and therefore z € ¥*.

Conversely, if z € ¥* then ¢ = ¢z, is positive definite by
Theorem 3.5, and @(e) = 1 and ¢ * u* = 2¢. Thus 2z € Sp(ut) by
Lemma 4.4. Note that we don’t really need to use Theorem 3.5 here.
For if z € ©* \ {1, e®™/3 e=2"/3} then ¢;, is positive definite by
Corollary 3.4, while if z € {1, €2™/3 e~2™/3}  then ¢; , is a character
of T' (see the beginning of the proof of Theorem 3.5), and hence positive
definite.
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THEOREM 4.6. — Let ' be an A, group. Assume that IT, PG(2,q).
Let ¢4 be as in the introduction. Then I' has property (T), and if S is the
set of natural generators of I' and their inverses, then

(T, S) = \/2¢,.

Proof. — Let 7 be a unitary representation of I' without fixed vectors.
Then if u = %(,u*—i—;r), then Sp(mw(p)) C {Rz: 2z € ¥*} C [—1,1—¢,]JU{1}.
Now 1 ¢ Sp(m(u)), for if it were, then 1 would be eigenvalue of ().
But w(p)v = v implies that n(z)v = v for each z € S, and thus for
each z € T, by strict convexity of H, (or [8], Lemma 3), and this would
contradict our hypothesis. Thus k(m,S) > /2¢, ([8], Proposition I(6)).
Thus I has property (T), and (I, S) > |/2¢,.

To see that (T, S) < /2¢, holds, let z € £*, so that ¢, ; is positive
definite (Corollary 3.4). Let 7, : I' — H, be a unitary representation of I’
with cyclic unit vector v satisfying (v, 7, (z)v) = ¢, :(z) for z € T'. Now 7,
has no nonzero fixed vector unless z = 1. For if it did, then for some € > 0,
@z @, z(x) — € would be positive definite on I'. Thus

0< Y 0@ (f* * )e™) = 1"+ (F* )(e)

zel

would hold for every finitely supported f : ' — C. Applying this to
f=p" —2z6.,and using p~ *p, 7 = 2z, > and pt*@, z = Zp, 5, we obtain
0 < —€|1 — 2z|?, which can only happen if z = 1.

Now let z =1 — ¢;. Then
||z (z)v — v||2 =2(1—-Re(v,m.(z)v)) =2(1 —2) =2¢
for each z € S. Hence (T, S) < k(7,, S) < /2¢,.

Remark. — The first half of the last proof can be slightly
simplified if we appeal to the following generalization of Proposition I (6)
in [8] (which has exactly the same proof) : if w(h) is normal and

Spm(h) C {z€ C:Rez<1— ¢}, then k(m, S) > V/2¢.
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