
ANNALES DE L’INSTITUT FOURIER

DONALD I. CARTWRIGHT

WOJCIECH MŁOTKOWSKI

TIM STEGER
Property (T ) and Ã2 groups
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PROPERTY (T) AND Aa GROUPS

by D.I. CARTWRIGHT, W. MLOTKOWSKI (*)
and T. STEGER

1. Introduction and notation.

In two recent papers (see [2], [3]), an infinite family of finitely
generated groups F was introduced. These groups act simply-transitively
on the vertices of certain thick Aa Tits buildings, and we shall call
them As groups here. In this paper, for (most) As groups r, we :

(i) show that F has Kazhdan's property (T), and

(ii) calculate the exact Kazhdan constant ^(r, S) of r with respect to
its natural set S of generators.

Let us give a definition of property (T) which is convenient for our
purposes (see [8] and [9], Chap. 1, Prop. 15). Let F be a finitely generated
discrete group, and let S C V be a finite generating set. Let TT be a unitary
representation of T with no fixed vector, i.e., with no nonzero vector v in the
representation space for which 7r(g)v = v holds for each g € r. Let /<(TT, S)
denote the largest number K > 0 such that max ||7r(5)z»—^|| > i^\\v\\ holds for

s^S
each vector v in the representation space. Let /^(F, S) denote the infimum
of the numbers ^(TT, *?) over all unitary representations TT of r with no
fixed vector. We say that F has Kazhdan's property (T) if the Kazhdan
constant /^(F, S) is strictly positive. This does not depend on the particular
finite generating set 5', by Lemma 4 in [8].

Some As groups F can be embedded as co-compact lattices
in PGL(3, F) for a suitable non-archimedean local field F. For these groups,

(*) Research carried out while an ARC Research Associate at the University of New
South Wales.
Key words : Triangle buildings - Positive definite functions - Kazhdan's property (T).
A.M.S. Classification : 43A35 - 43A90 - 43A65 - 51E24 - 22E50.
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property (T) is well known ([9],^Chap. 2, Thm 8 and Chap. 3, Thm 4).
In [3], § 8, it was seen that many As groups do not embed (in a natural way)
as co-compact lattices in any PGL(3,P). Even when F can be embedded
in PGL(3,P), our proof that it has property (T) does not use this fact.
These groups therefore provide an answer to Question 2 on page 133
of [9], which sought groups which could be shown to have property (T)
without making essential use of the theory of representations of linear
groups. These groups are also the first infinite groups for which an exact
calculation of ^(F, S) has been possible, and therefore provide an answer to
Question 1 on page 133 in [9]. Estimates for some Kazhdan constants have
been found by M. Burger [1] for SL(3,Z). See also [10], p. 230 for estimates
of corresponding constants for SL(n, R).

Let us briefly describe A^ groups. Suppose that we have a finite
projective plane II, consisting of a set P of points, a set L of lines, and
an incidence relation between points and lines. For some integer q >_ 2,
each point (resp. line) is incident with exactly q + 1 lines (resp. points),
and q is called the order of II ([II], Thm 3.5) (q is a prime power in all
known examples). Also, | P | = | L | = ^ 2 + ( / + ! . The Desarguesian plane
PG(2, q) of order q is formed from a 3-dimensional vector space V over the
field ¥q of order g, letting P and L be the sets of 1- and 2-dimensional
subspaces of V, respectively, with incidence being inclusion. Given a (not
necessarily Desarguesian) plane 11 == (P,L), let A : P —> L be a bijection,
and suppose that we have a set T (called a triangle presentation compatible
with A) of triples (a;, y , z), where x, y , z e P, such that :

(A) given x, y € P, then (a;, y , z) € T for some z e P if and only if y and
\(x) are incident;

(B) (a*, y^ z) € T implies that (^/, z ^ x ) G T;

(C) given a;, y € P, then (rr, y , z) € T for at most one z C P.

For any prime power ^, triangle presentations are exhibited in [2], § 4,
and all possible triangle presentations (up to a natural equivalence) are
listed in Appendix B of [3], for the cases q = 2 and q = 3. An A^ group is a
group

r = {{ax}x(EP | cixdydz = e for all (x, y , z) € T)

associated with some triangle presentation T. Let S denote the set of
generators a^;, x G P, and their inverses, and let /^+ = |P|~1 Y,^p o-x (an
element of the group algebra C(F) of F). It is clear that there is a character
X : F -^ T such that \{dx) = e27"/3 for each x € P. Hence ̂ +) = e27"/3
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is in the spectrum Sp(/z+) of^4- in the G*-algebra (7*(r) ofF ([8], Prop. 1),
as are 1 and e"27^/3. Our main result is the following :

Figure 1

THEOREM. — Assume that II = (P, L) is isomorphic to the Desargue-
sian plane of order q. Then the spectrum Sp^) ofp^ in the C*-algebra
C*(r) ofr is the subset S* ofC consisting oil, e27"/3, e-2^/3 and the
region bounded by the curve (see Fig. 1)

(Ll) ^) = g2/^i ((v^ + V^) ̂  + e-210), 0 < e < 27T.

Let Cq = 1 - 7(0). Then F has property (T), and /t(r, 5) = ^/2€q.

Remarks

1) The spectrum S = Sp(A(^+)) of /^+ in the reduced (7* algebra
C^(F) of r was calculated in [4] and [14]. It is the region bounded by the
hypocycloid q(q2 + q + ̂ -^e^ + e-2^), 0 < 0 < 27T, (see Fig. 1).

2) The region S* is the set of z e C for which

(1.2) ( 9+ l ) 2 ( ^+^ ) - (9 2 +g+l )M 4 - (g 2 +4g+ l ) | ^ | 2 +g>0 .

This is explained after Corollary 3.4 below. The expression on the left is
the denominator in the density of the Plancherel measure found in [4].

3) Notice that Cq —> 1 as q —^ oo.

4) We do not know whether the restriction that II be Desarguesian
is necessary. We have no examples of triangle presentations for non-
Desarguesian IPs.
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While much of the paper is phrased in the language of affine buildings,
one can show that F has property (T), and obtain the correct lower bound
for ^(F,5'), using only combinatorial group theory. Let us briefly indicate
how this done. If g e F, there are integers m(g), n(g) > 0 such that for any
word

^ ̂•"^ (x^...,Xk €P,6i , . . . ,efc=lor- l )

equal to g^ with k minimal, then m(g) of the e^'s are +1 and n(g) of
the e^s are -1 ([2], Prop. 3.2 and [4], Lemma 6.2). Let Sm,n denote the
set of g € G for which m(g) = m and n(g) == n; in the notation below,
Sm,n = Sm,n{e), where e is the identity in F, thought of as a vertex of the
building associated with F ([2], Thm 3.4). A function / : F —^ C is called
biradial if it is constant on each set Sjn,n' Let p,m,n denote the function which
takes the value \Sm,n\~1 on Sm,n and 0 elsewhere on F. Then the finitely
supported biradial functions form a commutative convolution algebra A
generated by /^+ = /^o and fi~ = ̂ o,i? and spanned by the /^n,n. This was
proved in [4], Prop. 2.3, (and in [14], Prop. 3.5) using building terminology,
but can quite easily be proved using [2], Prop. 3.2 and [4], Lemma 6.2. For
each z, w € C, there is a multiplicative functional hz^w : A —> C such that
hz,w(^) = w and /^,w(/^~) = z. It is given by

hz,w(f) = ̂ f(x)(pz^(x)
xer

for a unique biradial function (pz,w on F ([4], Prop. 3.4, or [14], Prop. 4.5),
whose value on Sm,n is a certain polynomial pm,n(^^) m z and w.
Now (a special case of) Proposition 4.1 below shows that if z e C
and if the 2|P| x 2|P| matrix (^(^-l%)), where {2/1 , . . . ,2/2|p|} =
{a'x}x^.p U {a^^rreP? is positive definite, then z € S*. Then using
Proposition 4.3 and Lemma 4.4 below, the proofs of Corollary 4.5 and
Theorem 4.6 show that Sp^) C S*, and that F has property (T),
with /t(r, 5') > ^/2eg. A reader wanting only this can avoid almost all of
sections 2 and 3.

To obtain the exact value of n(T,S)^ we need to define some
representations, and it is most natural to do this for the group Auttr(A)
of «type-rotating» automorphisms of an arbitrary triangle building A
(i.e., thick building of type A^). In section 2, we describe a « boundary » Q.
for any triangle building A. This has been studied in [14], and our results
here are generalizations of those in [14]. We use this in section 3 to define the
principal and complementary series spherical representations of Auttr(A).
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These give us positive definite spherical functions <^z,z on Auttr(A) for
each z € S*. In fact, in Theorem 3.5 and Proposition 4.1, we show that a
certain kernel kz,z(x^y) is positive definite on VA if and only if z € S*. A
vertex o having been fixed, (pz,z and kz,z are related by <pz,z(9) = kz,z{o^ go).
Positive definiteness of the kernel kz,z implies positive definiteness of the
function (^z, of course, these ideas being equivalent if Auttr(A) acts
transitively on V^\. Finally, in section 4 we prove the above theorem.

Remark (due to the referee). — Thick affine buildings of dimension 2
are the only ones for which one can hope to find an « exotic » (i.e., nonlinear)
group with property (T) acting properly with compact quotient. This is
clear for affine buildings of dimension 1, which are semihomogeneous
trees (and a Kazhdan group acting on a tree has to fix a vertex,
see [9, Chap. 6a, Prop. 4]). Now let F be a group acting properly and
cocompactly on some thick affine building A with dimension at least 3.
Then : F is a lattice in Aut A, and Aut A is a compact extension of an
adjoint simple algebraic group G(k) over a non-archimedean local field k of
k-rank > 2; in particular, Aut A and V have property (T).

Indeed, it follows from the main result in [20] that A is associated
with an adjoint simple algebraic group G(k) over a non-archimedean local
field k of A;-rank > 2. Now let A°° be the building at infinity of A.
Then Aut A embeds in AutA°° (they might actually be equal), and the
structure of Aut A°° is given in Cor. 5.9 of [19] : it is given as an extension
of {A\itG)(k) (itself a finite extension of G(k)) by the group Antck of
all automorphisms a oi k such that ctG is A;-isomorphic with G; as k is
a nonarchimedean local field, Autck is a closed subgroup of the compact
group Aut k.

2. The boundary 0 of a triangle building.

Let A be a triangle building. The set of vertices of A is denoted VA-
Let r{x) € Z/3Z denote the type of a vertex a; of A. Suppose a chamber c
in A has vertices .r, x ' and x " . If A is an apartment in A containing c,
then (see [17], p. 112) the sector in A with (base) vertex x and base
chamber c is that part S of A containing c and bounded by the wall w'
in A through x and x ' and the wall w" in A through x and x" (see Fig. 2).
If r { x ' ) = r(x} + 1 mod 3 and T{x") = r{x) — 1 mod 3, we shall call w"
and w/ the left and right walls of S\ respectively.
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A subcomplex S of A is called a sector in A if it is a sector in some
apartment of A. Two sectors S and S/ in A are called parallel if their
intersection contains a sector ([17], p. 121). Parallelism is an equivalence
relation, and we denote by Q the set of equivalence classes. Thus fl, is the
set of chambers of the building at infinity A°° associated to A ([17], p. 122).
For any uj € ^ and x G VA? there is a unique sector S^ = 5^ (a;) in the
class uj having base vertex x ([17], Lemma 9.7), and so we can think of Q as
the set of sectors in A with base vertex x.

If x, y € VA) then y belongs to some sector with base vertex x and we
write y € Sm,n(x) if y is at distance m and n, respectively, from the left
and right walls of this sector.

V € Sm,n(x)

^'x A / w /

Figure 2

The parallelogram with vertices a;, y^ y ' and y " (see Fig. 2) is called the
convex hull of x and 2/. This depends only on x and ^/. When m = 0 or n = 0,
the convex hull reduces to a segment, which we sometimes call the geodesic
between x and y.

The cardinalities Nm,n == |5'm,n(^)| are independent of a;, and given by

Nm,n = (g2 + q + 1)(<?2 + ̂ m+n-2) if m, n > 1,

Mn,0 == M),m = (<?2 + 9 + l)^-1) if m ̂  1,

M),O = l.
(See [4], Cor. 2.2.) We write d(x,y} = m + n if y C 5yn,n(^)- A function
/ : VA —^ C is called x-biradial if it is constant on each set Sm,n(x).

In [4] (see also [14]), an algebra A of «averaging operators))
was studied. It is spanned by the operators Am,n^ m,n G N, where
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(Am,n/)(^) = N^Y^y^^^f(y) for functions / : VA -^ C, is
commutative, and is generated by A+ = Ai,o and A- = Ao,i. For each
pair (z, w) e C2, there is a unique multiplicative functional h^^ on A such
that h^^(A^) = z and /^,w(A-) = w. These multiplicative functionals
can be conveniently indexed by triples s = (51,52,53) € C3 such that
515253 = 1, related to (z,w) by z = q(q2 + q + l)-^ + 52 + 53) and
w = q(q2 + q + l)"1^1 + 52-1 + 53-1), and we write hs in place of h,^.
Let p'm,n(z,w) = hz^(Am,n)' This is a polynomial in z and w, calculated
explicitly in terms of 5 = (51,52,53) in [4]. Let k^^(x,y) or ks(x,y) be
defined to be pm,n(^w) if y e Sm,n(x). For fixed x, F : y ^ k^^(x,y) is
the unique rr-biradial function on V^ satisfying F(x) = 1, A+F = zF and
A-F=wF([4],Prop. 3.4).

I f c j e^ , let 5^ or 5^^(o;) denote the unique vertex in SxnSm,n(x)
(see Fig. 2).

LEMMA 2.1. — Let ( j j € ^, and let x,y e VA. Write 5^ and 5^^
for ^,71^) alld ^n^)^ respectively. Then there are integers m(x,y',uj)
and n{x, y\ uj) such that

(2-1) <J = ̂ m^y^j^x^) for i^ > 0 sufficiently large.

Proof. — Now 5^ H ^^ contains a sector. Choose

^^-^e^n^.
Then ^+m,6+n = ^+m,d+n for all m, n > 0. For T = {s^^ : m, n > 0}
and T' = {s^^^ : m, n >: 0} are sectors with the same base vertex u
and having a sector in common. Thus T = T ' by [17], Lemma 9.7, and
so ^S+m^+n and ^+m,d+n are both in T H Sm,n{u), and thus are equal.
It follows that the pair (c - a, d - b) G Z2 does not depend on the point
chosen in S^ U 5^, and that (2.1) holds.

Remark. — Note that m(x,y'^) and n(x,y\uj) are two-dimensional
analogues of quantities studied for trees by many authors (see [16] for a
recent example).

We can easily calculate m(x, y; uj) and n(x, y\ uj) when d{x, y) = 1 :

LEMMA 2.2. — For uj e f2 and a- C VA, we have (see Fig-. 3 next pag-e) :

( (-1,0) for one y in <S'i,o(^),
(m{x,y^),n(x,y',u})) = (!,-!) for q y ' s in 5i,o (a0,

(0,1) forq^'sinS^x),
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(q such y^s) (q2 such y^s)

Figure 3

{ (0, -1) for one y in 5o,i(a;),
Also, (m{x,y\uj),n(x,y^)} = (-1,1) for q y ' s in So^(x),

(1,0) forq^y'sinSo^x).

Proof. — This is clear from Fig. 3 (see also the proof of Lemma 2.1
in [4]).

COROLLARY 2.3. — Let x, y e VA and let uj G fl.. Then

^(^e^^n^)
forij > d{x,y).

Proof. — Let y G Sm,n(a'), where m > 1, say. Let 2^ be the unique
point in Sm-i,nW H So^{y) ([4], Lemma 2.1). By induction, we have
s^^-i,m-{-n-i e ^ z ' Thus 5^_^^^^.^ is an interior point of S z . It follows
from the proof of Lemma 2.2 that s^_^ ̂ ^ e S'27 in all cases.

It is clear that for any uj G f^ and any x ^ y ^ z G VA we have the
« cocycle relations »

' m(x, y, uj) + m(y, z\ uj) == m(x, z\ cc;),

^ n(x, y\ uj) + n(y, z\ uj) = n(x, z\ a;).
(2.2)

It follows from Lemma 2.2 that \m(x^ y, cc;)|, \n(x, y'^)\ <, d(x, y). Note also
that

( m(x, y, uj) = -m(y, x\ a;),

\n(x,y\uj) = -n(y,x',uj)

and that m(x, x\ uS) = n(x, x\ a;) == 0.

(2.3)
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Recall that an automorphism g of A is called type-rotating if there
is an integer c such that r(gx) = r(x) + c mod 3 for each x € VA- Let
Auttr(A) denote the group of type-rotating automorphisms of A. If g is
any automorphism of A, and if S and S/ are two parallel sectors, then
gS and g S / are parallel. If ci; is the equivalence class of S we may thus
define guj to be the class of g S . Suppose that S has base vertex a;, and
let Sm,n be the unique point in S D Sm,n (x). If g C Autfr(A), then ^Srn,n
is the unique point in gS D Sm,n(gx). It readily follows that for any u; e fl.
and any vertices x^ y of A

(2.4)
m(gx, gy; gu) = m(a*, y; a;),

^{gx,gy;g^) =n{x,y\uj).

If we fix a vertex o in A, and set m{g^) = m(o,go'^) and n{g^) =
n(o, po; a;), then it is immediate from (2.2) and (2.4) that m(p, uo) and n(p, uj)
satisfy a « cocycle identity » :

J m{g^(j) = m(g^uj) + m^pf1^),
(^Z.Oj ^

tn(plp2^)=n(^l^)+^(ft2^^1a;)
for ^1,^2 ^ Auttr(A) and c^ e .̂

There is a natural topology on ^, making it a totally disconnected
compact Hausdorff space. Indeed, if we fix any x € VA) there is a natural
map of f^ into the product of the finite sets Sm 71(^)5 ?n, n > 0 (each endowed
with the discrete topology) : one maps uj to (s^^(uj))m,n>_o' I f m ' < m and
n' < n, there is a natural map Sm,n(x) —^ Sm',n'(x) (mapping y e Sm,n{^}
to the unique vertex in Sm'.n'^) and in the convex hull of x and y). The
above map is a bijection of fl, onto the inverse limit of this system of maps,
which thus induces a compact Hausdorff topology on f^. For x^v € VA?
let ^x(v) denote the set of uj € ^ for which the sector 5^ (a/) contains v.
Thus cj G ^a;(^) if and only if v € 5^(0;). The sets ^lx(v) form a basis of
open and closed sets for the topology on f^.

LEMMA 2.4. — Let y e Sm,n(x)' Suppose that z € Sij(x) D Sk,e(y),
where i,j > d(x^y) = m + n. Then fl,x(^) C ^-y(z), and m(x^y\u) = k — i
and n(x, y\ UJ) = £ — j for all uj € ^-x(^)- Also, \Sij(x) D Sk,e(y)\ does not
depend on the particular y € Sm,n(x).

Proof. — Let uj C ^tx{z). Then z = 5^(0;), and thus z is an element
of 5^(0;) n Sv{uj), by Corollary 2.3. Thus uj € ^y(z), and m(a;, y',uj)=k-i
and n(.r, i/; a;) = £ — j by the proof of Lemma 2.1.



222 D.I. CARTWRIGHT, W. MLOTKOWSKI AND T. STEGER

To see the last statement, let A^s, r,s > 0, denote the averaging
operators of [4], described above. Their linear span is an algebra, and we
can thus write Aj^A^, = ^^ Cr,sAr,s for suitable numbers Cr,s' If we
apply both sides to <^ (where 6^{y) = 1 if y = x, and 0 otherwise) and
evaluate at y e Syn,n(aQ, the right hand side is Cn,m/Wm,n, while the left
hand side is \S^(x) H ̂ (2/)|/(MjA^).

For each vertex x, there is also a natural Borel probability measure Vy,
on Q, which, for each m, n > 0, assigns equal measure to each of the Nm n
disjoint sets ^(v), v € Sm^n (x). If g e Auttr(A), then ^ = g^,
i.e., Vgx{A) = y^g-^A) for any Borel set A C ^, and so ^ is invariant
under each g e K^ = [g e Auttr(A) : gx = x}.

LEMMA 2.5. — The topology on fl, does not depend on the vertex x
chosen in the definition above. For any x, y e VA, the measures ̂  and Vy
are mutually absolutely continuous, and the Radon Nikodym derivative
ofvy with respect to v^ is given by

(2.6) d^) = 1

d^ g2(m(rc,2/;o;)+n(a;,2/;a/))

Proof. — Let x,y e VA, and let 0:0 e ^y(v), a basic open set for the
topology denned using y , where v e Sr,s{y), say. By Corollary 2.3,

<j(^o)e 5^0)0^0)

onceij ^ d{x,y). Choose ij so large that also k = i-\-m{x,y;ujo) ^ d{x,y)
and ^ = j + n(x,y',u;o) ^ d(x,y), and also A; > r and ^ ^ 5. Let
^ = ^-(^o) = 4,M' Th^ ^ ^ S^(x) n Sk^y), and ^(^) = fly(z)
by Lemma 2.4. Since v = s^ (0:0), we have 0:0 C ^(z) = ^ly(z) C ^y{v).
This shows that each «^/-open» set is «a*-open)). The first statement of
the lemma follows. Also, m(x, y^) = k - i and n(x, y'.uj) = £- j for all
uj € ^x(^) = ̂ (^), and

^(^M) = ̂  = ̂ (fc-.+l,)^ .̂ = ̂ T^^("^)).

The remaining statements in the lemma follow easily.

We remark that the action of Autfr(A) on ^ is continuous, with
the above topology on fl, and the topology of pointwise convergence
on Auttr(A).
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3. The spherical representations ofAutfr(A).

Let C°°{fl.) denote the space of locally constant functions Q —> C. For
each vertex x, C°°(fl,) is the linear span of the indicator functions l^(v)
of the sets ^(v). For any vertices x,y of A, m(x,y',uj) and n{x, y, uS)
are locally constant functions of u. For given 0:0 ^ ^? let z = s^ (d;o),
where i, j > d(x, y ) . If z € Sk,e(y), Lemma 2.4 shows that m(x, y, uj) = k - i
and n(x^ y\ uj) = £ — j for all uj in the neighbourhood ^lx(z} of UJQ.

For s = (si, S2,53) € C3 with SI^B = 1 and for g e Auttr(A), define
Tr^C^^C^by

m(p,o;)+n(^,a/) n(^,o/)

(3.1) (^(,)F)^) = sl ̂ (,,̂ J;) ^(^^)

with the notation defined before (2.5). The cocycle identity (2.5) shows that
^s(9i92) = ^s(9i) ° ̂ 5(92) for 91,92 e Auttr(A). Note that the expression
on the right in (3.1) can be put into a more symmetric form

ni(^,0/) 712(^,0;) 713^,^)
s! ^2 ^3 ^fo-1^;)

g7ii(^,a/)-n3(^,^) ^ /

if nj(g^) are any integers such that m(g,uj) = n\(g^) — n'z(g^) and
n(^,o;) = n^{g^) - n^(g,uj).

For the next result, compare Prop. 5.4 in [14].

PROPOSITION 3.1. — Let s = (51,52,53), where 51,52,53 € C and
siS2S3 = 1, and let ks denote the kernel denned before Lemma 2.1. Then
for x, y € VA? we have

/• ^(2/^;^)+n(2/,a;;o/) nQ/,a;;o/)

(3.2) / -1———^——, . 2 — — d ^ ) = k s ( x , y ) .v / y^ qm{x,y\w)-\-n{x,y\uj) x\ / s\ i y }

Proof. — Fix a;, and denote the integral in (3.2) by F(y). The integrand
is ^m(x,y^pn(x^^ ̂  ^ ^ l/(s^q) and (3 = l/(5iS2<?) = s^ /q . We claim
that F is the unique ^-biradial function on VA satisfying F(x) = 1,
A+F = ^F and A-F = wF for ^ = q(q2 + g + l)"1^! + ^2 + 53) and
w == g(g2 + q + l)"1^]'1 + ̂ 1 + ^1) ([4], Prop. 3.4). Now F(x) = 1
because ^ is a probability measure. To see that F is rr-biradial, let
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V ^ Sm,n(x), and let ij > m + n. Then as the sets ̂ (^), z e Sij(x), form
a partition of ^, we have

F(<y)= Y^ t a^y'^^y'^d^)
z(ESi,,{x) 7"^)

= Y, ^ ! a^y^^y^d^).
k^O z€Si,j(x)nSk,e{y) 7aE(2:)

The last integrand takes the constant value a^^-3 on ^(z) for any
z e Sij(x) n 5^Q/), and ^(^(2;)) = 1/^j for each such z. Thus

^O/) = E \siA^^S^{y)\^~i^~j/N^
k,£>0

which, by Lemma 2.4, does not depend on the particular y e Sm,n(x).

Finally, using (2.2), we see that if z e VA, then (A+F)(^) equals

f \ 2 . 1 ^ a^^)^^)!^^^^)^^^)^^^
^ 1 9 +9+ ^5i,o(^) J

By Lemma 2.2, the expression in braces is

^TT (a-l + ̂ -1 + g2/?) = ̂ Ti(sl + s2 + s3)
for all uj e f^. Thus A^'F == 2;F, and similarly, A~F = wF. This completes
the proof.

Recall that o denotes a fixed vertex of A. For F^,F^ e C°°(^), let
(Fi,F^) == f^ F^UJ)F^) d^o(o;). This defines an inner product on C°°(^),
because any nonzero F C C°°(Q) can be expressed as

F= ^ c,l^
z^S^o)

for m, n big enough. Then (F, F} = N^\ E.e ,̂.(o) l^l2 > 0.

COROLLARY 3.2. — For any s = (^i, 52, ss) € C3 such that s^s^ = 1,
Jet s* = (^f1,^1,^1). Let 1 denote the function on ^ with constant
value 1. Then for any g e Auttr(A) and Fi, F2 € C°°(^) we have

(3.3) (l,7r^)l) = ̂ .(p) and {^{g)F^F^ = (Fi,^-^).

Jn particular, if \Sj\ = 1 for j = 1, 2, 3, so that 5* = 5; TT^ extends
to a continuous unitary representation of Auttr(A) on L2^,^), and
^Ps(g) = ks(o,go) = (l,7Ts(^)l) is a positive definite function on Autfr(A).
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Proof. — The first identity in (3.3) is immediate from Proposition 3.1.
The second identity follows from Lemma 2.5 and the fact that Vgo = gvo'

Remark. — As noted in [4], ks is determined by 5i + s-z -j- 53 and
5]~1 + s^1 + 53"1, and so equals k s ' , where s ' = (s[,s^s^), if and only if
(s'l, 53,53) is a permutation of (51,52,53). Notice that 5* = (5]~l,52'l,53-l)
is a permutation of (5i, 52,53) if and only if either (a) \Sj\ = 1 for each j,
or (b) 5 is a permutation of (r e^, r~1 e10, e"210) for some r > 1 and 6 € M.

We now want to describe explicitly the intertwining operators
between 7Ts and T V s ' , when 5' = (s^, 52,53) is a permutation of 5 = (5i, 52,53).

Recall that o € VA is fixed. Let f^ denote the set of left walls w of the
sectors with base vertex o. There is a natural map ^ —> ^Y, and we denote
by ̂  the probability on f^ induced from ̂  by this map (this measure was
studied in [14]). For y G Sm,o(o), let

f^y^ = {cc; G f^ : S'°(ci;) has left wall w, and 5^ o^) = v } '

We write ^ic in place of ^w,o = {^ € f^ : 'S'°(^) has left wall w}. For
each w € SY, if m > 1, then f^-u,^ ^ 0 for exactly (^ + l)^771"1 vertices
^/ ^ Sm,o(o). Indeed, with the notation of Fig. 4, there are 9+1 choices
for 5i^o. This, with w, determines the vertices 5i^i, 5:^2? • • •• Then there
are q choices for 52,0? e^c'

Figure 4

Let x € *So,n(o) and ^/ G *Sy^o(o), where n > m >_ 1. Assuming that a; and y
belong to some sector S with base vertex o, a similar counting argument
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shows that there are ({n vertices z € Sm,n(o) such that x, y and z all belong
to such a sector. Hence

z/o{cj 6 ̂  : S°(uj) contains x and y}

= <fVMn,n = !/((<? + l̂ -^O.n)

= (g+l)gm-l ̂ {w e "' : w contains ^}-

It follows that if F e C°°(^), and F(o;) == F^^y for all a; € ^w,y, then

(3.4) ^M^)»^^^^^0^)

(writing Fw,y = 0 if ^lw,y = 0)-

Suppose that F € C°°(^). Then for m,n > 0 large enough, F is
constant on each set ^0(^)5 2; ^ 5m,n(o)? and so F is constant on each
set ?2^, w € ^, 2/ € 6,n,o(o). Let 7^° denote the space of all F e C°°(^)
constant on each set f^, and for each m >, 1, let 'K771 denote the space of
all F e C°°(^) constant on each set ^lw,y, V ^ 5m,o(o), and such that for
each w € ̂  and each y1 6 Sm-i,o{o) such that ̂ ^/ -^ 0, the sum ̂ ^ F^,y
is zero, the sum being over the q y ' s in Sm,o{o) (g + 1 if m = 1) such
that f^,y ^ 0 and ^/ e ^^(i/Q. It follows from (3.4) that J^ FiF2 d^o = 0
if FI € T^771, J^ ^ '^n? and m ̂  n. To summarize, we have an orthogonal
decomposition

00c00^)^^)^71.
n=0

Moreover, it is easy to see that any F € C°°(^) which is constant on each
set ^w,^ V € ^m,o(o), can be written (uniquely) as F = H° + • • • + ̂ m,
with H3 e W for j = 0 , . . . , m.

PROPOSITION 3.3. — Let s = (51,52,53) € C3, where 51^253 = 1
and 5i ^ <752. Define Js : Coo(^) -^ C°°(^) by setting- J^F = JnF for all
F € 7f\ where jo = 1 andjn = (^i/^)71"1^5! - ̂ )/(^2 - 5i) forn > 1.
Assume that Autfr (A) acts transitively on VA • Then Js o 71-5 (^) = TTg/ (^) o Js
for all g € Autfr(A), where s ' •= (^2, 5i, 53).

Proof. — For each re € <Si,o(o), there is a gx e Auttr(A) such that
g^o == x. A simple induction on d(o, go) shows that each g G Auttr(A) can be
expressed as a product of the <^s and their inverses and a A: G Auttr(A) such
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that ko = o. Thus all we must do is verify that Js(7Ts(g)F) = 7Ts'(g){JsF)
if F € H71, for n > 0 and for each ^ e Auttr(A) such that go = o
orpoe 61,0(0).

If go = o, then (TT^)F)(^) = F^-^) = (^(g)F)(u;). If a; € ̂ ,
then ^-1^ € ^-i^-iy. So if F € W, then 7Ts(g)F € ^n, and
Js(7r,(g)F) = j^s{g)F = jn^(g)F = 7r^(g)(JsF).

Suppose now that go = x e 61,0(0), and that F € H71. We shall see
that 7Ts(g)F = H° + H1 if n = 0, and TT^)F = JT1-1 + ̂ n + Tr^,
if n > 1, where H3 e W for each j in either case. We shall also use
subscripts w and w, ^/ to denote constant values taken by various functions
on the sets f^ and ^w,y- Also, we write a = s\/q, /3 = l/(s^q), a' = s ^ / q
and /?' = l/(s3q) = (3. If w C f^ is the left wall of a sector S with base
vertex o, let Wi denote the vertex in 60,1(0) H 6, i.e., the vertex on w at
distance 1 from o, and let (^w € ̂  denote the left wall of the sector with
base vertex o parallel to g~lS.

Now let F C H0. Then on fl,w,y^ V ^ 61,0(0), 7Ts(g)F takes the constant
value (7i-s(^)F)^, equal to a^Fg-i^, a^Fg-i^ or l3Fg-i^, according
as go = y , d(w\^g6) = 1 but go -^ y , or d{w\,g6) -^ 1 (see Lemma 2.2). So
7Ts{g)F = H° +Jy1, where ̂  is the average of the g+1 values (TTs(^)F)^,^,
where ?/ e 61,0(0) and d(y^w\) = 1. Thus

^o ^f^-'+^^-^/^+l))^-^ i fd(wi ,^o)=l ,
w t^-iw ifd(wi ,^o)=2.

We then find that

{ [q(a-1 - a^-1)/^ + l))Fg-^ if d(wi, po) = 1 and go = y ,
H^y = (a{3-1 - a-1)/^ + l))Fg-^ if d{w^go) = 1 and go + y ,

0 ifd(wi.^o) =2.

If TTs/ (^)I71 == H0 -\-H1 is the corresponding decomposition of TTg/ (^)I71, then

Js{^(g)F) = joH°+^H1 = j^H01 + H 1 ' ) = ̂ (g)(JsF)

because (a-1 + qap-1)/^ + 1) = (a'"1 + ga^'"1)/^ 4- 1), ff = (3 and
because ji(a~1 - aft-1) = jo^'1 - a'/?'"1).

If now F <E H\ w G ^, t G 62,0(0) and ^^,t 7^ 0, then,
on ^w,t, 7Ts(g)F takes a constant value (7Ts(g)F)w,t equal to a"1^-!^^-!^,
aft-iFg-i^^g-i^ or l3Fg-i^^g-i^, according as d(go,w^ == 1 and go = y
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y= go

g 90

Figure 5

(the point on the geodesic from o to t), d(go,w^) = 1 and go ^ y ,
or d(^o,wi) = 2, where in the last case z e 5b,i(o) is the unique vertex at
distance 1 from o, go and ?/ (see Fig. 5). Thus 7Ts(g)F = H° + JFf1 4- jFf2

where

(i) ifc?(^o,wi) = 1, then

^ = ((^a/?-1 - a-1)/^^ 1)))F,-^-^
and (see Fig. 5)

-((a-^ga/^-^/^+l))^-^-^,rrl
w,y

or
[ ^w,t = 0- '(^-iw^-it + q^Fg-^g-^)

' H^y = ((a-1 + qaO-1)/^ + l)))F,-i,,,-^,,

. ^w,t == O?

according as go == y or not.

(ii) if^o,wi) / 1, then ̂  = 0, J^ = /3^-i^,^-i, and H^, = 0.

If ^s'(g)F = H0 -^ H^ + A?'2' is the corresponding decomposition
of7Ts/(^)F, then

Js(^s{g)F) = joH°^j,H1 +j2^2 = J ^ H 0 ' + ̂ 1' + H21) = 7r^(^)(J,F)
because j2/Ji = a/a' = 51/52 (which one needs in comparing j^H^ ^
with jiH^^ m the case d(go, wi) = 1 and go = ^/).

Finally, suppose that F € ^n, where n > 2, and let w e ̂  and
t C 5fn+l,o(o), where 0^^ ^ 0. Then, on Q^^, 7r^)F takes a constant
value (^(g)F)^ equal to a-1^-!,^-,,, a/?-1^-^^-., or /^-i^-i,,
according as c?(^o,wi) = 1 and ^o lies on the geodesic from o to t,
^o, wi) = 1 and ^o lies off this geodesic, or d(go, Wi) = 2 (see Fig. 6).
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go o

Figure 6

Then 7Ts(g)F = H"-1 + H71 + ̂ n+l, where if we evaluate at u e f^, we
see that if (a) d(go^w^) = 1 and go lies on the geodesic from o to t, then
H^t1 = a-^-i^-i,, J^ = ̂ Li = °' if (b) d{go,w^ = 1 and ^o
lies off this geodesic, then H^ = a^Fg-^g-^ H^1 = H^^ = 0,
and if (c) d(go^) + 1, then H^ = /?^-i^-i., H^1 = H^_, = 0.
If 7Ts'(g)F == If71"1' + ^rrl/ 4- T^1' is the corresponding decomposition
of 7Ts/(^)jF, then

J,(7r,(^)F) = jr.-iH^1 +^^n +^+l^7l+l

= Jn(-H^n~l/ + ̂ n/ + ̂ n+l/)

=7r,/(^)(J,F)

because jn-^-i/Jn = oi./a' = si/S2, /? '=/? and jn-ia/?"1 = j'^a'/?'"1 (one
needs the first of these in comparing jn-^-iH1^1 with jnH1^1 in the
case d(po,wi) = 1 and ^o lies on the geodesic from o to t, for example).
This completes the proof.

If /C" denotes the subspace of C°°(^) defined like 7^, but
with left walls replaced by right walls, and if Js is replaced by an
operator J^ on C°°(^), where J^F = j^F for all F e /C71, Jo = 1

andj^ = (52/53)n-l(952-S3)/(^3-S2) for n > 1, then, provided 953 ̂  52,
J's ° 7^s(g) = ^s"{g) ° J's^ where s" = (51,53,52). Thus, combining the
intertwining operators Js and J^ we get intertwining operators between 71-5
and 7Ts for any permutation 5 of 5 (provided that qsi ^ Sj for each i ̂  j).

COROLLARY 3.4. — Let s = (reie,r~leie, e"210), where 0 e R and
1/\/9 < r < V^' r^^leIl1 with the notation and assumptions of Propo-
sition 3.3, (F-t,F'z)s == {F\,JsF^} defines an inner product on C°°(^), and
TVs extends to a unitary representation on the corresponding completion
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of C00^). Moreover, (p,{g) = (1,7^)1)5, and so ^5 is a positive definite
function on Auttr(A). This last assertion also holds ifl/^/q < r <, ./q.

Proof. — If Fi,F2 € C°°(^), we can write each Fj as a finite
sum En11?, where ^n e nn. Then (Fi,^). = En^W^),
and ̂  = ^2(n-i)^,2 _ ^/^ _ y.2) ^ o for each n ^ 1. Since { . , • ) is
an inner product on C00^), the first statement is proved. Also,

(7rs(g)F^F^), = (Fl.TT^Qr1)^)

= (F^JsTr^g-1)?^ = (Fl.TT^-1)^).

because of (3.3) and the fact that 5* is, in the present case, obtained
from s by interchanging the first two terms of 5. Finally, (^ is still positive
definite if r == ^q or 1/^/q, being a pointwise limit of a sequence of (y^s
corresponding to 1/^/q < r < ̂ /q.

If 1 < r < ̂ q, let

7rW = q(q2 + q + 1)-1 ((r + r-1) e^ + e-2^)

for 0 ^ 0 < 27T. Consider the representations 71-5 defined above or, via the
Gelfand, Naimark, Segal construction, from a positive definite ( p s - (One can
show that if qsj ^ Si for 1 <, i < j < 3, then Coo(^) is the linear span of
the functions g i-̂  7Ts(g)l as g varies over any subgroup of Auttr(A) acting
transitively on V^. Thus 1 is a cyclic vector for TT^, as defined above.) The 7^
define simple closed curves in the plane. If z = q(q2 + q + l)"^! + s^ + 6-3)
lies on or inside the hypocycloid 71, 71-5 is called a principal series spherical
representation of Auttr(A). If z lies between 71 and 7 = 7^, or on 7, 71-5 is
called a complementary series spherical representation ofAuttr(A).

The z inside and on 7 may be described as the z C C other than 1,
g27rz/3 ̂  ^-27rz/3 satisfying condition (1.2) of § 1. For given z C C, there
exist «i, 52,53 C C such that

5l<?253 = 1,

<7(<72 + 9 + l)"1^! + 52 + 53) = Z,

q(q2 + q + l)-1^1 + 5^1 + 5^) = ^,

namely the three roots of

X3 - (q2 + q + l)g-^X2 + (g2 + g + l)g-^X -1=0.
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Then (see the Remark after Corollary 3.2), either (a) \sj\ = 1 for each j
(in which case z lies within the hypocycloid), or (b) after permuting the Sj
if necessary, (si, s^^s^) = (re^.r"^^, e"2^) for some r >: 1 and 0 e R.
Using the identity

g^+^+ir'n^-^)
W

= (q + l)2^3 + w3) - (q2 + q + l)z2w2 - (q2 + 4g + l)zw + g,

if «iS253 = 1, g(g2 + q + l)"1^! + 52 + s^) = z and

q{q2 + g + l)-1^1 + ̂  + s^) = w,

we see that (1.2) holds in case (b) if and only if 1 < r <, ^/q (so that z lies
on 71, on 7, or between these curves) or r == q and e310 = 1 (so that ^ = 1,
e2^/3 or e-2^/3).

THEOREM 3.5. — Let A be an arbitrary triangle building. Then for any
z € S*, the kernel kz,z is positive definite on V^. Thus ^>z,z(.9) = ̂ ,^(0, go)
is positive definite on Autfr(A).

Proof. — If z = 1, then kz,z(x,y) = 1 for any x,y € VA- For if we
fix x € VA 5 then F(y) = fc^i (a;,^) defines an rc-biradial function F on VA
satisfying A-^-F = F, A~F == F and F(a;) = 1. The function taking the
constant value 1 on V^ has the same properties, and so F{y) = 1 for
all y € VA by the uniqueness mentioned in the proof of Proposition 3.1.
Thus k\^\ is positive definite.

If z = p, where p3 = 1, then A;^(rr, y) = p771-71 whenever y € 5y^n(«^)-
For then k^{x,y) = pm,n(p,P~1) = ̂ ^pm^l, 1) = P771"71 by the last
paragraph and the property pm^/^P"1'^) = pm~npm,n{^^) of p^,^
mentioned after Proposition 3.1 of [4]. Fix o e V^. If x e 6^j(o),
y ^ Sk,(.{o) and y e fi"^^^), then m - n = {k - £) - (i - j) mod 3.
This follows from Lemma 2.1 of [4] by induction on m + n. It follows
that k^p-i(x,y) = kp^-i(p,x)kp^-i(o,y). So if a;i, . . . ,a^ € VA and
ai , . . . , Or € C, we have

r r

^ kp,p-i(xi,Xj)aiO~j = ̂  kp^p-i(o,Xi)kp^p-i{o,Xj)aia~j
ij=l z,j==l

r 2
= li^^P-1^^-)^ >0

J=l
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and so kp^p-i is positive definite. Thus kz,z is positive definite if
z € {1, e27"/3, e"27"/3}. In fact, the above calculation shows that (pz,z
is a character of Autfr(A) in this case.

Again fix o G VA- For any x G VA a-^d for any 5 = (5i, 52,53) G C3

with 515253 = 1, we define fs(x) € C°°(n) by

m(o,a;;a;)+n(o,a;;a;) n(o,a;;a;)

(3.5) /.(̂ ) = 1 ^(o,^)+»(o^)——•

Notice that fs(x) = 7Ts(g)l if x = go, g e. Auttr(A).

Now suppose that z lies on or inside the hypocycloid 71. Then

z = q(q2 +94-1)"1^! + 52 + 53),

where 515253 == 1 and \sj\ = 1 for j = 1,2,3 ([4], Prop. 4.5). It is easy to see
using (2.2), (2.3), (2.6) and Sj = s - 1 that {fs(x), fs(y)) equals the integral
in Proposition 3.1. (Recall that we write (F-^.F^} = f^ F\(ijj>)F'z(<jj) (\.Vo(<^)
for Fi,F2 € C°°(^).) Hence k^(x,y) = k s ( x ^ y ) = {fs(x),fs(y)), and
so kz,z is positive definite ([9], Chap. 5, Exemples 2). This case was proved
in [4], Prop. 4.7, by other methods.

Now suppose that z lies between the curves 71 and 7. We can write

z = q(q2 + q + l)"^ + 52 4- 53),

where 5i = re^, 52 = r~1 e10 and 53 = e~2^, and where 1 < r < ^/q and
0 G M. Let 5' = (52,5i, 53). Using 5i = 52'1, 52 = 5]~1, (2.2), (2.3) and (2.6),
we now find that (fs(x)^ fs'(y)) equals the integral in Proposition 3.1.
In Lemma 3.6 below, we show that Js(fs(y)) = f s ' ( y ) - Thus

k^y) =k^y) = </^), Ufs(y))} = {fs(x)J,{y)}^

and again kz^z is positive definite.

Finally, if z lies on the curve 7, then kz,z is positive definite, being the
pointwise limit of kernels kz - , z - 1 where zj —> z and Zj lies between 71 and 7.

LEMMA 3.6. — Let x € VA^ ̂  s == (5l?52?53) € C3 with 515253 = 1,
and define fs(x) C C°°(Q,) as in {3.5). Assume that qs^ 7^ 5i. Then
Js{fs(x)) = fs^x), where s ' = (52,51,53).



PROPERTY (T) AND A-2 GROUPS 233

Proof. — We can write
/^)=^0+^1+...,

^(a;)=(^)o+(^) l+.•. ,
where H " , {H'Y € U^ for each y > 0. We must show that j^H" = (H'Y
for each v > 0. This means that for each w e ̂  and each ^/ C 5^o(o)
such that f2^ ^ 0, we must show that JyH^^y = (I^')^. We do this by
verifying that H^ is a symmetric rational function of «i and s^, and that
for v > 1, ff^ has the form s^^^^s^ - s^f(s-t,s'z), where /(si,;^) is a
symmetric rational function (depending on w and y ) .

Suppose that x G Sm,n(o) and that w € ^. For 0 < i < m
and 0 < j < n, let Xij denote the vertex of Sij(o) in the convex hull
of o and x. We shall see that there exist £ >_ 0 and v e VA with the
following properties :

(i) v € 5^o(o) and f^ 7^ 0. We denote by VQ = o , . . . ,^ = 2; the
vertices on the geodesic from o to v.

(ii) Suppose that i > 0 and y C 5^o(o) with f2^^ 7^ 0. Then m(o,a*;Li;)
and n(o, rr; c<;) are constant on ^w,y^ unless 0 < i < £ and y = Vi.

Using (i) and (ii), it will be easy to calculate any H^ . For let
7/0 = o , . . . , Vv = y denote the vertices on the geodesic from o to y . Then
if j is the largest integer i < v,i such that yi = z^, then m(o,x'^) and
n{o,x\uj) are constant on ^w,^-n if J < ̂  and on ^w,^ if J = i < v.
Thus H^^y = 0 if v > j -h 2, or if j = £ and ;/ = £ + 1. In particular,
^,i/ = 0 whenever v > £.

Let r denote the largest integer i < m such that ^w,a;i o ¥- 0-
For 0 < z < r and j > 0, let Wij denote the vertex s^ Auj) (the same
for any uj € ^w,a^,o)- Thus w^o = ^,o for 0 < z < r. The vertices wij lie in
a convex planar « strip » 5' with left wall w and « bottom edge » the segment
from o to rCy.,0- When r < m, note that z + j < r holds for any (z,j) such
that Wij = Xij. For if Wij = Xij and i + J > r + 1, then it is easy to see
that Xr,i is in the convex hull of Xij and .Ty.,0? and thus w^i == .r^i. But
then d(w^i,;r^+i^o) = 1, which implies that ^w,xr+i,o ¥" ^^ contradicting
the definition of r. Now let k denote the largest integer j <, r, n such that
Xr-jj = Wr-jj. Notice that w^fc = Xi^ for i = 0 , . . . , r — k by convexity of
the intersection of S with the convex hull of o and x (see Fig. 7 (a)).

When r = m, let h denote the largest integer j <_ n such that
wmJ = Xm,j' Then let k be the largest integer % such that h<i<m+h,n
and Wm-^h-i,i = Xm-^h-i,i (see Fig. 7 (b) next page).
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Figure 7 (a) Figure 7 (b)

Let us consider the case when r < m first. We claim that Wr-k,k+i
and Xr-k+i,k are nonadjacent, and (if k < r,7i) that Wy—fc-i^+i and
Xr-k,k-{-i are nonadjacent. It will follow that the strip parallel to w having
as base the segment [wo,r, Xr-k,k} from wo,r to Xr-k,k and the parallelogram
with corners Xr-k,k Xr-k,-m x-m,k and x lie in a single apartment, and in
fact in a strip 5" of width £ = r 4- n — 2k parallel to w with base [a, x} for
some vertex a (see Fig. 8).

To see that (when k < r, n) Wr-k-i,k+i and Xr-k,k-^-i are nonadjacent,
note that Wr-k-i,k-^-i is already adjacent to Wr-k-i,k = Xr-k-i,k and
to Xr-k,k (see Fig. 7 (a)). If it were also adjacent to Xr-k^i^ it would have
to equal Xr-k-i,k-{-i^ contradicting the definition ofk. Also, Xr-k-^-i,k cannot
be adjacent to Wr-k,k-\-i' This was noted above when k == 0, and if k >, 1,
Xr-k+i,k is already adjacent to Xr-k,k and Xr-k+i,k-i- If it were also
adjacent to Wr-k,k+i^ then it would have to equal Wr-fc+i,fc (see Fig. 7 (a)),
which is impossible, as the sum of the subscripts exceeds r.

Let v ' denote the vertex on the right wall of the above strip 6" which
is at distance i -j- rn + k — r from re, and thus at distance i from Xr-k,n'
Let VQ == wo,r5 • • • 1^1 = vf denote the geodesic from wo,r to v ' . Consider
the part S" of S ' obtained by deleting the vertices «below » this geodesic,
i.e., by deleting the convex hull of a;, a, Wo,r and v ' . As Wi r 7^ ^Or-i
(if r > 1), we can enlarge S"7 to a strip whose left wall is all of w, and
whose «lower edge)) is a segment from o to a vertex v (see Fig. 9 (a)). The
vertices VQ = o , . . . , vn = v of this segment form the geodesic from o to v,

'm,0
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X-m,k

Figure 8

which runs parallel to and at distance r from the geodesic from wo,r to v ' ' .
Clearly v € 5^o(o) and fl,w,v 7^ 0-

We can now calculate m(o^x\uj) and n(o,rr;ci;) for any uj € ^w- The
calculation involves reducing the problem to that of calculating m(o, x\ d/)
and n(o,a;;ci/) in the case d(s^ i(a/),a;i,o) = 2 and d(s^ o^') 5^0,1) = 2.
For then it is easy to see (using Lemma 2.2 and induction, for example)
that (m(o,;r;a/),n(o,a*;a/)) = (n,m).

Let y € S^o(°) with ^w,y 7^ 0- Let uj G ^w,i/- Let '̂ be the largest
integer i < v^i such that yi = Vz. Suppose first that j < £, v. Then using
the above remark and the fact that x G Sm-^k-^j-r.n-^r-ik-jW)^ we have

(m(z^,a;;a;),n(^,:r;ci;)) = (n + r — 2k — j^m + k +J — r)

(see Fig. 9 (a) and (b)). Also, v^ = s^y.(o;), and so

(m(o,^;o;),n(o,^;ci;)) = (-j,-r).

Hence (2.2) implies that

(m(o, x\ a;), n(o, x\ ci;)) = (n + r — 2A; — 2j, m + A: + j — 2r).

A similar calculation shows that if j = ̂ , then

(m(o, x\ ci;), n(o, a:; a;)) = (—n — r + 2fc, m + n — fc — r),

although the picture is slightly different.
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Figure 9 (a) Figure 9 (b)

For v = 1,.. . ,^, consider the distinct vertices y^ e S^o(o),
a = 1,.. . , q (a = 1,..., q + 1 if v = 1) such that y^ = ̂ , and for a > 2,
i^-i is the vertex in 5^-i,o(o) on the geodesic from o to ̂ . By the remark
after (ii) above, for the given w e ^, the only nonzero H^^s are H^
and H^^, for i/ = 1,..., ̂ , and a as above.

Now let /c = -n - r + 2A; and A = m + 7 z - A ; - r . Thus ^ = -^ < 0,
and (m(o, a:; a;), n(o, a;; a;)) = (/^, A) for any uj e ̂ ,^. We first calculate the
H^ ̂ a. Pick ci;0' € ^w,yy- Then our calculation above shows that

(m^^a/^n^a;;^)) = (/t,A)

if a = 1, and (/^ + 2, A - 1) if a ^ 2. Thus (assuming £ > 2)

(^)^2A=/.(^1)=^+...+^^+^
^l^-^

^

^i , /t+A+1
^A-1 = /.M(^) = ̂  + • • • + <^ + ̂ ,̂

if a = 2 , . . . , g . Summing, and using ;̂ H^yc. = 0, as required by the
Q=l ' ^

definition of 7^, we find that

K+A A-l
"i "o

^ + • • • + <^, = -^^ (^2 + (9 - l).l).
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Substituting this back into the above equations, we get

' rrC _ (g-lX^-^l)^^"1

w.y} ^+A+2 '

^ _ (g52-5i)5^-1 fora-1 a. ̂ w,^ - -———^+A+2——— tor a - l,.... g.

Notice that both these expressions are of the form s~[w(qs^ — 5i) times
a symmetric rational expression in si and 53. Now a simple (backwards)
induction shows that for i = 2 , . . . , £

in iV^c c ^e^+^+^+^-l / Q-^-^+I Q ^ - ^ + I K
rr% ^ W ~ ^V?^ - ̂ l^l ^2______ ( s^____~ •S2_____\

w^ ~ q\-W \ 51-52 )
(the last part of this expression is replaced by its limiting value if 5i = 52)
and that H^^yc. equals -H^ i / ( q - 1) for a = 2,...,q. For once the
H^c. 's have been calculated, choose ^OL e ^w,y^ for a = 1,... ,<?, with
a;1 € ^ /3 for some /3 > 2, say /? = 2. Then, using the above calculation
of (m(o, a;; a;0), n(o, x; c^)), we get equations

(f)'"5^ = /s^^^ = ̂  + • • • + ̂ -i + <^ + ̂ ^^

(f)'"^1^^"1 = ̂ ^ = ̂  + • • • + ̂ .-i + <.?
if a = 2 , . . . , q. Adding, and using the known value of H1^1^ , we obtain
the above formula for the H^^s.

Having the above formula for H^^yc. (or if £ = 1), we find in a similar
way that

„! ^ {qS2 - S^S^S^ (S^-S^\
w^ (^+1)9A-1 V 51-52 )

and H^^ = -H^y^/q for a = 2 , . . . . q + 1, and
K+A^K+A ,<,-/t+l -K+I /t+A+l K+A+I -/t-1 _ -K-l

J-rO = ^1 S2 ( ^ l ~ "2 ^ ^l "2 ^1______"2 ^

^^"(g+l^- 1 ^ 5i-52 ^ (9+1)^ '< 5i-52 V

This formula is also valid i f ^ = 0 . We see that, as desired, H^ is symmetric,
and that H^^yc. has the form 5]-^+l(g52 - 5i)/(5i,52), where /(5i,52) is
symmetric.

In the case r = m illustrated in Fig. 7 (b), an integer £ ^ 0 and a
vertex v are found satisfying (i) and (ii) above in almost exactly the same
way, with the roles of r and Xr-k,k replaced by m -j- h and Xm^-h-k.k^
respectively. This time i=m-\-n-\-h— 2k. The formulas for the H^^s
are exactly as above. In this case, K = —{. and A = n — h — k.
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4. Property (T).

Proposition 4.1 below, the converse of Theorem 3.5, is stated in terms
of a general triangle building A. Recall that if v C VA? th^ set of vertices
at distance 1 from v has the structure of a projective plane, which we
denote Hy : the points and lines are the vertices x such that r(x) = r(v) +1
mod 3, respectively r(x) = r{v) — 1 mod 3, with a point x incident with a
line y if x, y and v lie in a common chamber.

For the remainder of the paper, we shall be concerned with A^
groups r (see §1). The Cayley graph of F with respect to its natural
generators and their inverses is (the 1-skeleton of) a triangle building A
([2], Thm 3.4), and r acts simply transitively by left multiplication (which
is type-rotating) on VA = r. The projective plane IIg of neighbours of e
consists of «points)) a^, y G P, and «lines)) a^1, x C P, and is isomorphic
to the plane (P, L) used to define F : a point dy is incident with a line a^1

if and only if a^dyOz = e for some z € P. The set Sm,n(e) equals the
set of g € r for which, in any minimal word in the generators and their
inverses, there are m generators and n inverse generators, as noted in § 1,
and the type of g € Sm,n(e) is {m — n) mod 3. Conversely, if A is any
triangle building admitting a F < Auttr(A) which acts simply transitively
on VA) then r is isomorphic to an A^ group, and A is isomorphic to the
associated building ([2], Thms 3.1 and 3.5). The algebra A of averaging
operators described in § 2 can be identified with the convolution algebra
of e-biradial functions on F, as A^~ f = f * p~ and A~~ f = f * fi^ in the
notation of § 1.

PROPOSITION 4.1. — Suppose that the kernel kz,z defined before
Lemma 2.1 is positive definite. Then z belongs to the set S*. In fact,
to show that z 6 S*, we need only fix o € VA ^d assume that
M = (A^(zA, v))u,veHo ls a positive definite matrix.

Proof. — Write pm,n in place o!pm,n^, z), and Sm,n for Sm,n(o). We
calculate the eigenvalues of M. Let m== j l I Io^Q^+g+l , and write

\hm -M = [ ) ,
\G U )

where A, B, C and D are mxm matrices indexed by 5i,o x 5'i,05 Si,o x So,i;
5o,i x S'i,o and 5o,i x 60,15 respectively. Both A and D are mxm matrices
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of the form

(4.1)

( a (3
f3 a

/?\
f3

where a = X - 1 and (3 = -pi,i. Now C = B*, and the (u,v) entry
of B is either —pi,o or —po,2 according as n € 5i,o and v € 5o,i are
incident in IIo or not. The values of the pm,n we need can be read off from
equations (3.1)-(3.7) in [4] :

' Pi,o = ^5

Pi^a^+g+l)^2-!)/^^

. Po,2 = ((<?2 + q + l)^2 - (q + 1)^)/<72.

Now for any m x m matrices A, B, C and .D, with A assumed
invertible,

. / A B\ . . { { A Q \ ( I m 0 \ ( I m A-^B \\
^[C D)=det[[o I ^ ) [ c J.AO D-CA^B)}

= det{AD - ACA-^B)

= det(AD — CB) if A and (7 commute.

(Our thanks to R.B. Hewlett for pointing this out to us.) The hypothesis
that A is invertible can easily seen to be unnecessary for the conclusion
to hold.

In the case at hand, A and C commute because C has g+1 entries —pTft
and q2 entries —po~2 m each row and in each column.

Now AD is an m x m matrix of the form (4.1), where

^(A-^+^-I)^!,

/?=-2(A-l)pi , i+(m-2)p^i .

Also, CB = B^B has form (4.1). Indeed, if u,v C 60,1 with u -^ v, the
(u, v) entry Ewe^i.o Bw^ Bw^ of yB e(luals

bi,o|2 + q(pTftPo,2 +Pi,o^2) + (92 - 9)ho,2|2.
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For there is a unique w = WQ € 5i,o incident with both u and v. This gives
the |pi o|2 term. Each of the q w's in 5^o incident with u (resp., with v)
but not equal to WQ gives a pi^opo,2 (resp., pi,oPo^) term, and each of the
(q2 — q) w's in Si^o incident with neither u nor v yields a |jpo,2|2 term.

Similarly, the diagonal entries of B*B are all (q + l)|pi,o|2 + ̂ bo^l2-

Thus det(A72m ~~ M) ls the determinant of an m x m matrix (4.1),
where

a = (A - I)2 + (q2 + 9)P2,! - {(q + l)bi,o|2 + ^bo,2|2),

(3 = -2(A - l)pi,i + (<72 + q - l)^i

- (bl,o|2+9(p^^Po,2+pl,oPo^)4-(92 -9)bo,2|2).

The determinant of a matrix (4.1) is (a - /^"^(a + (m - !)/?). Here,

a- /3= (A- l+pi,i)2 -q\pi,o -Po,2|2,

a + (m - I)/? = (A - 1 - (92 + g)pi,i)2 - |(9 + l)pi,o + ^Po,2|2.

Setting a + (m — I)/? == 0 and solving for A, we have :

A = 0 or 2(g2+g+l) |^ |2 ^0 for all z.

Setting a - (3 = 0 and solving, we get A = 1 - pi,i ± y^b^o - Po,2|.
These values are both nonnegative if and only if pi,i < 1 and
(1 -pi,i)2 > q\pi,o -Po,2|2, i.e.,

(q + l)2^3 + z3) - (q2 + q + 1)M4 - (g2 + 4^ + l)|/z|2 + ̂  0.

That is, if and only if z C S*.

Remark. — In fact, to show that z € S*, we need only assume that
M = (kz,z{u^v))u,veA is a positive definite matrix, where

A = {o, vo} U {n G 5i,o(o) | ̂  and VQ are incident in IIo},

where VQ G S'o,i(o) (see Fig. 10). Note that |A| = q 4- 3. One can calculate
det(AJ^+3 — M) as in the last proof.
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^9+1

U\ 0

Figure 10

Let A be a triangle building. Let F < Autfr(A) act simply transitively
on the set of vertices of A. Fix a vertex o of A, and for f : T —> C
define f / : r - > C b y

(£/)(7)=^ ^ /(V) if 7oe5^(o).
7'er:

7/oe6'^,n(o)

If we identify 7 € F with 70 € VA? ^ is a projection of the space of functions
on r onto the space of e-biradial functions on r (see [4], § 2).

PROPOSITION 4.2. — Let K = {g e Auttr(A) : go = o}. Assume
that K acts transitively on each set Sm,n(o}- With notation as in the
preceding paragraph, let ^ : Y —> C be positive definite. Then S(p : F —^ C
is positive definite.

Proof. — Write G = Auttr(A). Since F acts simply-transitively,
we have G = FK and F D K = {id}. There is a unitary representation
TT : r —> U(H) and there is a VQ € H such that (^(7) = (VQ^{^)VQ) for
all 7 € r. Let TT' = Ind^(7r) be the unitary representation of G obtained
by inducing TT from r to G. Thus the representation space Ji! of TT' is the
completion of the space T^o of continuous functions f : G —^ 7i such that
f(g^) == Ti^"1)/^) for all g C G and 7 G r with respect to the norm
given by

l l/ll2-/1 ll/^II'dAW.
JG/F

Here fi is the unique G-invariant probability on G/T (see, e.g., [13], p. 37;
note that G/F is compact here). Notice that for / e H^ \\f{g)\\ depends
only on gF. By [13], p. 38, we have

/ F(gT)d^gr)= f F{kF)dk
JG/Y JKI G / Y J K
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for continuous functions F on G/F, where dA; is normalized Haar mea-
sure on K.

Let /o be the unique element of T^o such that fo(k) = VQ for
all k € K ' , thus fo(k^f) = /7^(/y~l)yo for k € K and 7 € F. The statement
of the Proposition is immediate from the fact that (£(p)(^) = {fo^'^fo}
for 7 € r, as we now verify. Indeed,

(/o, 7r'(7Vo> = / (/o(^), (^(7)/o)(^)> d/^r)
JG/r

= />^o,/o(7-l^>d^.
./x

Let <// be the right .^-invariant function on G which agrees with (p on F :
( p ' ^ k ) = y?(7) for 7 € r and k E K. Let y?" be the corresponding function
on G / K . If we write 7~1A; = k ' Y , where k, k ' € K and 7,7' G F, then

(^.A^-^)) = ̂ oJo^V)) = (^^(y"1)^)
^^-^^^(y-1^-1)
=:^(A:-17)=^/(fe-17^).

Thus

/(Wo^AOdA^ / ^(fc-^^dfc^ /* ^{k^K)dk
J K J K J K

= Y, I ^(YK)dk (if 70 € 5^(o))
^^r, ^{k(EK:k-YeVK}

yo€Sm,'n{o)

=\Sm,n(o)\-1^ ^)=(W7)
^er.

7/oe5'^,n(o)

because the sets {k ^ K : k^ € VK} have equal Haar measure for
each 7' € r such that YO € Sm,n(o)? by our hypothesis on K.

Remarks

1) The hypothesis on K in the Proposition is satisfied if A is the
building Ap associated with SL(3, F1), where F is a local field with residual
field of order q (see [17], for example). For then PGL(3,F) < Auttr(A),
and Sm,n(o) is the K orbit of gm,n0, where gm,n is the image in PGL(3, F)
of the diagonal matrix with entries (l,^71,^7714'71) (where w G F has
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valuation 1). It may be that any triangle building A for which K is
transitive on each set Sm,n(0) must be a building A^ for some F. We do
not know whether ^p is positive definite implies that Sip is positive definite
if we do not assume this transitivity property of K.

2) The method of proof of the last Proposition is applicable also
when r is a free group, for example, acting simply transitively on a
homogeneous tree. The proofs of the corresponding fact for this case
appearing in [5], [7] and [12] are not correct. Another proof, due to
Haagerup, appears in a related context in [15].

Let r be an Aa group. When the projective plane lie ^ (P, L) of
nearest neighbours of e in the associated building is the usual Desarguesian
plane PG(2,g), we can prove a weak version of Proposition 4.2. All
we actually need are certain transitivity properties of the collineation
group of IIg. That these hold for PG(2,^) follows from the fact
that PGL(3, Fg) <, Aut(PG(2, q)) acts transitively on the set of quadrangles
in PG(2,g) ([II], Thm 2.12) (recall that a quadrangle in a projective
plane is an ordered set of four distinct points, no three of which are
collinear). Actually, these properties characterize PG(2,^) amongst the
finite projective planes of order q ([II], Thm 14.13). As each g € Autfr(A)
which fixes e induces a collineation of lie, the hypothesis of these properties
is just a weak form of the hypothesis in Proposition 4.2.

PROPOSITION 4.3. — Assume that the projective plane He of nearest
neighbours ofe is the usual Desarguesian plane PG(2, q). Let (p :T —> C be
positive definite. Then {{^^{x'^y))^^^.^ ls a positive definite matrix.

Proof. — Let n = |IIe| = 2(q2 + q + 1), and let M be the n x n
matrix (^(^"^^yene- Let A = Aut(IIe) be the group of collineations TT
of lie, i.e., bijections of lie mapping points to points, lines to lines and
preserving incidence. For each TT e A, let P71' be the corresponding n x n
permutation matrix : (P7^)x,y = 1 if ^ = 7r(y) and 0 otherwise. Now M is a
positive definite matrix, and so

M'^—^P^MP-
' ) Ti-GA

is positive definite, and the (rr, y) entry of M' is

^.^^(Tr^)-1^)).
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But this is ̂ ^(x^y). For let x G IIg be a point (i.e., x € S'i,o = S'i^o(e))
and let y = z~1 be a line in IIg (i.e., y C So,i = 5o,i(e)) incident with re.
As A is transitive on the set of quadrangles in Tig because of the hypothesis
Tig ^ PG(2,<7), it is also transitive on the set of incident point-line pairs.
As there are (q + 1)(<?2 + q + 1) such pairs, the above entry is

(^W+.+i) E ̂ '" '̂(^I).1? ^")
3? €01,0 x ^'^iiO

incident with
^"^SQ,!

the last equality because each point x" € 6'i,o may be expressed
x" = a/""1^/"1, where x ' ^ z 1 € 61,05 in precisely g+ 1 ways. So the entry
is (£(^)(a;~1^), because x~1^ = a;"1^"1 G 5i,o. Similarly, using transitivity
of A on nonincident point-line pairs, and on pairs of distinct points, and on
pairs of distinct lines, we find that (£ip)(x~ly) = M^y for all a*, y € lie.

LEMMA 4.4. — Let r be a countable discrete group. Let h : Y —> C
have finite support and satisfy h * /i* = /i* * /i, and Jet ^ C C. Then the
following assertions are equivalent:

(i) z € Sp(/i), the spectrum ofh in the full C* algebra G*(r) ofT;

(ii) z e Sp(7r(/i)) for some unitary representation TT :T —> U^H^) ofY ;

(iii) z is an eigenvalue of 7r(h) for some unitary representation
7r:r-^(7^) ofr;

(iv) h * (p = z(p, or, equivalently, (p * h = Z(p, for some nonzero positive
definite function (p on F.

Proof. — If ip : r —)• C is positive definite, with ^p{e) = 1, there is a
unitary representation TT : r —> U{T~i^) of r and a cyclic unit vector v € 7i^
such that ^(rc) = (i^, 7r(.r)^) for all x G F. Then

(4.2) {zv - 7T(h)v, 7r(x)v) = z(p(x) - {h * (^)(a;)

for all x € r. Hence /i * y? = Z(R if and only if 7r(/i)z? = ^z», as v is
cyclic. Equivalently, 7r{h*)v = ^, because 7r(/i) is normal (and because
||r*^|| = 11 TV 11 for normal operators T), so that h* * ^ = ^, and
(R ^ h = (h* * (^)* = (^^)* = ^5 as ^* = ^. This shows that (iii) and
the two forms of (iv) are equivalent.

We next show that (ii) implies (iv). If z € Sp(7r(/i)), then as 7r(/i)
is normal, there is for each e > 0 a unit vector v^ € H^ such that
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\\zve - TrW^ell < e. Then for each x e F, (4.2) implies that

\z^Pe(x)-(h^^)(x)\ = \{zv,-7r(h)v^7r(x)v^\ <e

where (p^(y) = (ve,7r{y)ve) for 2/ € P. We have |(^Q/)| < 1 for all
y C r and e > 0, and so for a suitable sequence ei > €2 > • • • > 0,
(p{y) = lim^oo ̂ ,{y) exists for each 2 / 6 r. Then (p is positive definite,
and h * y? = zip because h has finite support. Thus (iv) holds.

As for the remaining implications, that (i) implies (ii) is immediate,
because Sp(h) = Sp(7Tun(^)), where Ti-un is the universal representation of P.
Obviously, (iii) implies (ii), and it is easy to see that (ii) implies (i).

Remark. — The referee pointed out to us that the equivalence
of (ii) and (iii) in the last lemma is valid in a more general context
(see Thm V.I.4 in [18]).

COROLLARY 4.5. — Let T be an A^ group. Assume that IIg ^ PG(2, q).
ThenSp(^) = S*.

Proof. — Let z e Sp^). Then as /^+ and /^+* = /z~ commute,
Lemma 4.4 shows that ^+ * (p = (p * /^+ = zy for some positive definite
function y? satisfying (/?(e) == 1. Thus ^~ * (p = (p * [L~ = zip too.
Now £ commutes with any operator / i-» / * ̂ , where g is biradial ([4], § 2),
and so

{ z8(p = 8(ip * /^+) = (Sip) * ̂ +,

^ = E((p * /^-) = (£(p) * ̂ -.

As fy? is e-biradial, this implies that £<p is the spherical function (pz,z
([4], Prop. 3.4). But Proposition 4.3 shows that ((f^)^"1?/))^^ ^
positive definite, so that, by Proposition 4.1, z € S*, and therefore z € S*.

Conversely, if 2; € E* then (/? = y?^ is positive definite by
Theorem 3.5, and (p(e) = 1 and (p * ̂  == ^y?. Thus z € Sp^"*") by
Lemma 4.4. Note that we don't really need to use Theorem 3.5 here.
For if z € S* \ {1, e27"/3, e-27"/3}, then (^ is positive definite by
Corollary 3.4, while if z € {1, e27"/3, e-27"/3}, then (^ is a character
of r (see the beginning of the proof of Theorem 3.5), and hence positive
definite.
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THEOREM 4.6. — Let r be an A^ group. Assume that Tie ^ PG(2, q).
Let Eq be as in the introduction. Then F has property (T), and ifS is the
set of natural generators ofF and their inverses, then

/<r,5)=v/2^.

Proof. — Let TT be a unitary representation of F without fixed vectors.
Then if/, = j (/,+ +/,-), then Sp(7r(^)) C {^z : z € S*} C [-1, l-e<,]U{l}.
Now 1 ^ Sp(7r(/x)), for if it were, then 1 would be eigenvalue of 7r(/A).
But 7r(^)-y = v implies that 7r(x)v = v for each x e 5, and thus for
each a* C r, by strict convexity of U^ (or [8], Lemma 3), and this would
contradict our hypothesis. Thus ^TT.S) > ^/2eq ([8], Proposition 1(6)).
Thus r has property (T), and /^(F, S) > ^/2eq.

To see that ^(F, S) < ̂ /2eq holds, let z e S*, so that ^>^^ is positive
definite (Corollary 3.4). Let TT^ : F -> Uz be a unitary representation of r
with cyclic unit vector v satisfying {v,7r^x)v) = (p^s{x) for x € F. Now TT^
has no nonzero fixed vector unless z = 1. For if it did, then for some e > 0,
ip : x ̂  ^Pz,z{x) — e would be positive definite on r. Thus

0 ^ ̂  ̂ (x)(r * f)(x-1) = / * * ( / * ^)(e)
a;er

would hold for every finitely supported / : F -> C. Applying this to
f = ̂ ~ -^e, and using u~ * (p^^ = z^^.z and ̂ + * y?^ = ^^,f, we obtain
0 <. —e|l — 2:|2, which can only happen if z = 1.

Now let z == 1 - Cq. Then

UTT^)?; - ?;||2 = 2(1 - Re {v, 7r^x)v}) = 2(1 - z) = 2 e^

for each a; e S'. Hence ^(F, S) < ^(TT^, 5) < ^/2eg.

Remark. — The first half of the last proof can be slightly
simplified if we appeal to the following generalization of Proposition I (6)
in [8] (which has exactly the same proof) : if 7r{h) is normal and
Sp 7r(h) C {z € C : Rez < 1 - e}, then ^(TT, S) > V2e.
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