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1. Introduction.

We study the interaction of high frequency solutions to semilinear
systems of the form

(1.1) Lu^f^x^u)

where L(t, rr, c^, 9x) is a first order symmetric hyperbolic system of partial
differential operators on R1"^^.

The waves have amplitude 0(1) and wavelength e tending to zero.
For the semilinear problems (1.1) this critical size is called weakly nonlinear
geometric optics. As epsilon tends to zero, nonlinear effects are negligible
for times o(l) and important for times 0(1).

(1) The authors gratefully aknowledge the support of NATO grant CRG 890904, NSF
grant DMS 9003256, and ONR grant NO 014 92 J 1245.
Key words : Geometric optics - Nonlinear waves - Crystal optics - Wiener algebra.
A.M.S. Classification : 35C20 - 35L60 - 35Q60 - 35B30 - 35B40 - 35L45.
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We construct solutions on a fixed time interval [0,t] which have
asymptotic description

(L2) ^(t, x) = U(t, x, t / e , x / e ) + o(l)
where the profile U(t, x, T, X)is almost periodic in T, X and is determined
by a system of equations which is easier to analyse or compute numerically
than (1.1).

In the introduction, we limit the discussion to constant coefficient
operators L and phases which are linear function of t, x. Thus

L=9^^A,9/Ox,.
The general case of variable coefficients with phases satisfying a coherence
assumption is presented in §3.

The main advance in this paper compared to earlier works is that it
treats multidimensional problems with profiles that are almost periodic
in T,X. Previous work for d > 1 required either quasiperiodicity in
X ([JMR4], [JMR5], [S]), small divisor assumptions on the phases, null
conditions on the nonlinearity permitting high order asymptotics ([D],
[JMR6]), or an oscillating plane hypothesis which forces the solutions to
resemble the case of d = 1.

The main novelty in the analysis is the space of profiles. We take
(1.3) U^x^X) = ^ u^x)e^™^

T^eHl+d

where

(L4) i^ll^^^llc'do^^CRrf)) < oo.

Here s > d / 2 so that for t,x fixed U(t,x,T,X) is an almost periodic
function of T, X with absolutely convergent Fourier expansion. That is,
U is an element of the Wiener algebra as a function of the fast variables.
The possibility of using this algebra to describe profiles was suggested in
([JMR4], [JMR5] §11).

The nonlinear function / is assumed to be real analytic in its
dependence on n, u. This restriction is imposed because the Wiener algebra
is invariant under such maps but not under general smooth functions (see
[Kat] Th. 8.6).

Solutions of form 1.3 arise as solutions of naturally related oscillatory
initial value problems.

(1.5) Lu6 = /(t, x, < ̂ ), ^(0, x) = r(rc,, x / e )
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where

(i-6) r(^x)= ^ a^xy^
uje^

is an almost periodic function of the fast variables X such that
(1.7) ^||aJ|^s(Rd) < oo.

i j j
Then there is a t > 0 so that 1.4 is valid with error o(l) in L°°([0,t] x R^).

The profile U is uniquely determined by a system of equations which
involve an averaging operator E defined on almost periodic functions of
T,Xby

(1.8) E(a(^ x)ei^T^•x^ = (II^a(t, x^e1^^
where Hr^ is the spectral projection of C^ onto ker(Z/(T,o;)). In particular
Hr,^ = 0 if T^UJ does not belong to the characteristic variety of L. The
system of equations determining U is then

(1.9) EU=U^ (7(0^0,X)=r(^X),

(1.10) E[L(D^)U + /(t, a;, £/(^ a;, T, X), Z7(t, .r, T, X))] = 0.

An innovation in this paper is that it is not difficult for us to
allow systems with characteristics of variable multiplicity, for example the
equations describing conical refraction in crystal optics (see §4). For that
system nonlinear effects couple the conical points with others so incoming
waves with spectrum far from the optic axis can trigger conical refraction.

The analysis of 1.5 is by decomposition into modes. Interaction
generates Z-linear combinations of phases and the solution is expressed as
sum of terms a^e^^ where the phase (p belongs to a countable Z-module.
Decomposing f{u^u) into such terms then inverting L is our approach.
The analysis is mode by mode. The key steps are to derive e independent
bounds for the inversion of L and then to analyse the asymptotics relying
on linear geometric optics.

In §2 we present some preliminaries on the invariance of almost pe-
riodic functions under real analytic maps. The Cauchy problem (1.1) is
discussed in §3. In §4 we present three examples. Example 2 is homoge-
neous oscillations analogous to homogeneous turbulence where the profile
equations have an interpretation as an infinite particle dynamical system.
Example 3 is the semilinear crystal optics mentioned above.
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2. Preliminaries on A.

Let A denote the Wiener algebra

(2.1) A = {u G ^'(R771) : u is a bounded Borel measure on R^}.

Then A is contained in C^R/") H L^R771). The norm in A is the total
variation of n,

(2.2) MA= H^llTot.Var. == / d\U\.
JR"1

Of basic importance in all the analysis to follow is the derivation of sup
norm estimates. For that we use elaborations of the elementary estimate

(2.3) ML- < (27^)-m/2||u||A.

DEFINITION. — For a positive integer m and a Banach space B,
A^R^ is the set of almost periodic B-valued functions on R171 with
absolutely summable Fourier coefficients. That is a e A{B,'Rrn) if and
only if

(2.4) a(Y)=^^eia•Y

where the sum is over a G R^^ and the coefficients da € B satisfy

(2.5) |H|A(B,R-1) '== ̂  \\^a\\B < 00.

The formulas

(2.6) a^V) = B - lim (2J?)-m f e-^ a(Y) dY
J^R.R^

show that the coefficients are uniquely determined.

DEFINITION. — For a e A^R77') the spectrum of a denoted
Spec(a) is the (countable) set ofae W^ such that da ^ 0.

PROPOSITION 2.1. — Suppose that the Banach space B is a space
of C^ valued functions on an open set f^ of Euclidean space and that B is
a function algebra in the sense that

(2.7) B C L°°(n : C^) and 3c > 0, Vb G B, \\b\\B > c\\b\\^^

(2.8) 3c>0, V & i , b 2 ^ B , b^eB and \\b^\\B < C\MB\MB.
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Suppose that / : Q x C^ x C^ —> C^ is entire in the sense that

(2.9) f(x^u^)= ^ f^W^
a,/3^(0,0)

where for all a, f3, multiplication by fa,p maps B into itself and for all
r > 0, there is a constant c(r) > 0 such that

(2.10) \\fa^b\\B < c(r)r-^ \\b\\a for all b C B, a, /3.

(i) Then for u e B, the function

(2.11) /(^) := f{x^u{x\u{x)) =^f^(x)u(xru(xf

belongs to B and the mapping sending u to f(u) maps B to itself and is
uniformy Lipschitzean on bounded sets in B.

(ii) If a e A(B,R771) then the function Y -^ f{a(Y)) belongs to
A(B,'Rm) and the map from A^R771) to itself so defined is uniformly
Lipschitzean on bounded sets.

Proof.

(i) That f(u) belongs to B is an immediate consequence of (2.8) and
(2.10).

To prove Lipschitz continuity consider the difference u^u^ — v^v^ for
a\ + |/?| ^ 0. Write

u^u0 - v^ = [v + (u - v)]^ + (u - v)f - v^.

The binomial theorem expresses the difference as a sum of terms

(u - v)^(u - vYW-^^Y-11 (a>} f^
V7/ W

with |7| + \f^\ ̂  0. There is a factor of u — v or u — v in each term. Thus,
that there is a constant C independent of a, f3 so that

K^ - V^\\B ̂  \\U - V\\BC^^(\ + \\U\\B + MB)^^.

The Lipschitz continuity follows. In the same way one shows that the
derivative of / at u in the direction h is equal to fu{u^u}h + f^{u^u)h.

(ii) The fact that / preserves A(JB, R771) and is bounded on bounded
sets follows from the fact that u —>• u is an isometry of A(B, R771) and the
map a, b —> ab maps A(B, R^to itself with

(2-!2) ll^llA^R771) < c||^||A(B,Rm)l|^||A(B,Rm)•
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To prove this consider the Fourier series

^El E ̂ ^y-
7 a+/3=7

The triangle inequality and PubinPs inequality yield

M|A(B,R") ^ E [ E ^MAIIs] <C^|MB]^|MB
7 a+/3=7

which is the desired estimate (2.12). D

Remark. — The proof of invariance is particularly simple for entire
real analytic functions. However, the Weiner-Levy Theorem shows that it
suffices for f{x^ C, 77) to be holomorphic in (^, r] on a neighborhood of the
values taken by u{x)^u(x}. We describe only the case of entire real analytic
/ leaving the modifications needed in the more general case to the interested
reader.

3. Highly oscillatory Cauchy problem.

The goal of this section is to study the oscillatory initial value problem

(3.1) L^x.Dt^ +/(t,^£,u£)=^, u£(0,x)=g£

where

(3.2) g£(x)=^(x^^x)/e)

(3.3) h£(t,x)=H^x^^x)/e)

with phases (p = ((/?o? • • • ? ^m) satisfying a restrictive coherence hypothesis.

The function f(t^ re, u, v) with f(t^ re, 0,0) = 0 is assumed to be smooth
in t, x and entire in ZA, v. Precisely

(3.4) f(t^ x, n, v) == ^ /^(t, x)u^
H+|/?|>o

where for all r > 0 and all 7 there is a constant c = 0(7, r) such that

(3.5) \D^f^(t,x)\ ̂  cr~^ for all \t\ ^ r, x C R^, a,/?.

Symmetric hyperbolicity assumption.

(3.6) L(t,x,Dt^) =Ao9t+^Aj{t,x)9j
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where the Aj are smooth k x k hermitian symmetric matrix valued functions
on a connected open neighborhood 0 of the origin in R1'^^ and Ao is strictly
positive.

Coherence assumption.

The phases belong to a real finite dimensional vector space ^ C
(7°°(0). The phases are assumed to be coherent in the sense that

(i) For each (p € <1> ^ 0, d^p is nowhere zero on 0, and, del L(t^ rr, dip)
is either everywhere zero or nowhere zero on 0.

(ii) There is a function (po e <1> \ 0 such that (^o|t=o = 0.

The reader is referred to [JMR3], [JMR4], [JMR5], [HMR] for a
discussion of this hypothesis. The function y?o is determined uniquely up to
a scalar multiple. Thus (?Q is a natural timelike function near (0,0). Making
a smooth change of independent variable we may suppose that

(3.7) ^o = t.

This done we make a change of dependent variable replacing u by (Ao)1/2^
which converts the equation

(3.8) Lu + f(t, x, u, u) == 0

to an equation of the same form with

(3.9) Ao = I .

The reason for working locally is that a coherent set of phases defined
locally need not have a global coherent extension.

Example. — The standard example of coherence is when L has con-
stant coefficients and ^ is the d+1 dimensional space of linear functions
of t, x. When d > 1 there are interesting examples which cannot be trans-
formed to such constant coefficient linear phase problems (see [JMR5] §3).

Denote by <I>° the set of restrictions of elements of <1> to (t = 0).

PROPOSITION 3.1 (Consequences of coherence).

(i) (̂  —> <^|t=o defines linear map of<I> onto ^° with nullspace equal
to Ry?o-

(ii) For any (p C <1>, the eigenvalues of the symmetric matrix
L(t,x^d(p(t^x)) do not depend on t ^ x . In addition their multiplicity is in-
dependent oft^x.
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(iii) For \ e ̂  \ 0, let A i , . . . , AM(^) denote the eigenvalues of L{d\).
The functions ̂  € ^ such that

(3.10) det(L(t, a;, d^(t, a;)) == 0 and ̂ =o = x|t=o

are precisely the functions ̂  = \ — \j(po. For each j, ker(L(t, a;, d^j(t^ x))
is a smoothly varying subspace ofCk and one has the orthogonal decom-
position

(3.11) C^ = Q)keT(L^x,d^^x)).

Proof.

(i) It suffices to show that if ^ 6 ̂  and ^(0, a*) ^ 0 then ^ € c<^o for
some c € R. Fix (O^x) € 0. Since ^ vanishes at t = 0, there is a constant
c such that d^(0^x) = cdy?o(0,^). Then '0 — cy?o ^ ^ o-^ has vanishing
differential at one point. Coherence implies that '0 — C(?Q = 0.

(ii) Coherence implies that the roots A of the polynomial det(L(t,.r,
—\d(p°+d(p) do not depend on t, x. However, with the normalizations (3.7)
and (3.9), these are precisely the eigenvalues of L{dip).

For an eigenvalue A the multiplicity is equal to

trace[(l/27r%) (f){z - L(d^))-1^]

where the contour is a small circle about A. This continuous integer valued
function must be constant.

(iii) Suppose that ^ € <I> satisfies (3.10). Fix (0,^) e 0. Then there is
a a € R such that d^(0,^) = d^fft^x) — o'd^po(0,x). Then ^ — \ + a(pQ is
an element of ^ whose differential vanishes at a point. Coherence implies
that ^ — \ + o~(po = 0.

In addition at t = 0 one has L(d(\ — aipo)) = L(d\) — al. By (3.10)
this is a singular matrix so at t = 0 there is a j so that a = Xj. As both
sides are constant, a = \j throughout 0, so ip == \ — Xj^po ^ V^-.

Finally, ker(L(d^j)) is the Aj eigenspace of L(d\) and the smooth
orthogonal decomposition follows. D

Remarks.

1. Hermitian symmetry implies that the eigenvalues of L(t^ a;, d(p(t^ x))
are real and their algebraic and geometric multiplicities are equal. The
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proposition shows that the eigenvalues and multiplicities are independent
of t,x.

2. It is important to note that this proposition does not say that the
multiplicity of the roots of det(-L(t, x^ r, ̂ ) =0 are independent of r, ̂ . For
example, consider the case of constant coefficients and linear phases. The
proposition then asserts that for r, ̂  fixed the multiplicity of the roots of
L(r, ̂ ) is independent of t, x which is obvious. A striking application in §4
is to the phenomenon of conical refraction which depends exactly on roots
of variable multiplicity with respect to T, ̂ .

3. Since the eigenvalues of L(t,.r,r,^) need not have multiplicity
independent of T,^ and need not be smooth functions of r,^, the eikonal
equation det(L(d'0)) = 0 may be singular. We do not know if it is possible
for there to be solutions other than those which belong to <I>. In case the
multiplicities are independent of$, part (iii) describes all solutions of (3.10).

4. The direct sum decomposition in (iii) shows that the solutions in
<!> suffice to solve the oscillatory initial value problems we encounter.

We work in a compact truncated conical neighborhood
^ = f^ == {(t, x) : \x\ < r - t/f3, 0 < t<, t^ == r/3}

where r and f3 are so small that f2 CC 0 and the boundaries are all spacelike
for L. The radius r will be decreased a finite number of times during the
proof.

DEFINITION. — For t e]0,^[ and s e N, B{s,t) is the set of
restrictions to Q of continuous functions oft with values in ̂ (R^). B{s^t)
is a Banach space with norm

\\u\\s,t= sup \\u{t,')\\H^{x:{t^e^})'
0<t<t

C^Q) is dense in B(s,t).

Choose a basis y?o = ^ ^i? ^25 • • • ? ̂ m of <I>. Then dim(^) = m + 1
and the last m basis elements restricted to t = 0 form a basis for <I>°.

Denote by Qo the initial section, that is {\x\ < r}.

Next we decompose initial oscillations
r^(;r)expz[(/^i(0,a1) + • • • + /^^n(0,a-))/£]

corresponding to the way these oscillations will be propagated by the
system. To understand the recipe, recall the explicit formula for the
constant coefficient initial value problem

L(A,,)n=0, u(^x)=ge^^ g e C^
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u(t,x) = ][^(E(,^)exp(z(T,,0 • (t,x))

where Tj are the roots of detL(r,^) = 0 and E denotes the projection on
ker(L(r,,0) along Rg(L(r,,0).

In our situation there is an analogous construction. For each ^ € R771,
Proposition 3.1, (iii) shows that there is a finite set of Q^(^) = (o^,^) G
p^i+m gQ ^g^ ^g solutions of the eikonal equation in <I> with initial data
<^i + • • • + ^m^m are equal to a^ • (p, u, = 1,. . . , M(^).

For <^ fixed and t,x in f^, Ck is a direct sum of the smoothly varying
eigenspaces of ^ Aj(t^x)9(^j(pj)/9xj which in turn are equal to the

j>i
nullspaces, ker(L(o;^ • dip)).

DEFINITION. — For a C Z14'771 let Ea(t,x) be the spectral projec-
tion on ker(L(^, x^ a ' d(p(t^ x)).

For F € A^H8^),^), let

r{x^)=^g^x)e^
be the Fourier decomposition of I\ The above remarks show that Id =
E^Ca7)^^ so

p-

^x) = ̂ E^(^(0,a-)^(a;),
^

a decomposition of g^ which appears in the next result.

THEOREM 3.2 (Uniform nonlinear existence). — Suppose that t\ €
]0,^[, N 3 s > d/2, H e A^^^R^), F € A^^o)^), and /
is as in (3.4). For e > 0 let
(3.12) h^t, x) = H{t, x, ̂  X ) I E , ̂ (t, x ) / e , . . . , ̂ m(t, x ) / e )

(3.13) g^x) = r(x, (^i(0, x ) / e , ̂ (0, .r)/£,... , (^n(0, .r)/£).

(i) Then, there is a t €]0, ^i] so that for aii 0 < e < 1, the initial value
problem
(3.14) Lu£+f(t,x,u£,u£)=h£, u£\t=o=g£

has a unique solution in C{fl. H {0 <: t <^ t}).

(ii) The solution u8 is given by ^(t^x^^x)/^) where U6^^^) e
A^s^R^)) satisfies

L^x^Dt^+e-1 Y^ Aj^x^k/Qx^Q^/QOk+f^^H^x^).
J,k>0
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(3.15) ^(O^oA,..., 0^)= ^ ̂ ^^x)g^x)}e^^^•e

^^m /-t

with notation as in the paragraph before the theorem. This symmetric
hyperbolic initial value problem uniquely determines U6, and the family
{^}^]o,i] is bounded in A(B(s,•h),Rl^rn)).

Remark. — The equations in part (ii) are sufficient but not necessary
for U E ( t ^ x ^ / e ) to satisfy (3.14). Similarly the initial condition for U is
sufficient but not necessary for (3.14).

Proof. — The proof is by Picard iteration, u5 = limzA6'^. The first
iterate U 6 ' 1 solves the linear problem which one gets by setting / = 0 in
(3.14). For y > 2 one solves the linear problems

(3.16) Lu^ = -/(^^-l,^^-l)+/l^ u^\t=o =^.

The key step is to obtain uniform bounds for ll'u^H^00. This is done
by writing u^" as ^a(3(t,x)ei(3•(p/£ and estimating the A^s^R^))
norm ofU6 := ̂ a^-0.

This in turn is done in two steps. The crucial step is to prove a uniform
estimate for high frequency monochromatic linear initial value problems
(Proposition 3.3). Superposition then yields A-estimates for linear initial
value problems (Corollary 3.4). Then the Picard iterated can be controlled.

PROPOSITION 3.3. — For each s € N there is a constant 7 > 0 so
that Vt e]0,t2[, ^ € ^, b € H8^), c C B(s,t) the solution of the linear
initial value problem

Lu = c(t,x)ei(p, u(0,x) = b(x)ei(p{o-x)

is given by u = a(t, x)e^ where a € B{s^t) satisfies

(3.17) \\a\\B^t)<^{\b\\H^w+t\c\\B^}'

Proof. — The case (p = 0 is the standard I? energy estimate for
symmetric hyperbolic systems. To treat (p -^ 0, write the equation for a as

La + zL(t, x, dt,a;^)a = c(t, a;), a(0, x) = b(x).

This is a symmetric hyperbolic initial value problem which determines a in
Q. When d(p is large there is a large variable coefficient lower order term
iL{d(p)a.
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The first indication that this is ok is that iL(d(p) is antisymmetric so
the standard energy method, multiply by u and integrate by parts in f^)
yields

IK^f^hWf+GfHa)!! \\c(a)\\da
Jo

where ||^(a)|| is the L2 norm of u on the crossection ^2 D {t = a}. Let
M(t) =. max ||'u(t)||2. Then the inequality yields

0<cr<t

M(t)<M(0)+GM(t)1/2 / llc^llda^MW+^M^^IIcll^o^)
Jo

and the case s = 0 of (3.17) follows.

Choose a norm in <I>, whose unit sphere is smooth. For \\ip\\ <, 1, the
coefficient iL{d(p) and its derivatives are bounded so a direct energy method
attack by differentiating the equation works to prove (3.17) for all s.

It is for derivative estimates when y? is large that the coherence
hypothesis is crucial.

Proposition 3.1 shows that for each t, x € f^ and (^ € <^, there is a
unitary matrix valued function U(t^x^) such that UL{t^x,d^(t,x))U* is
a real diagonal matrix independent of t, x.

Next we show that, as in the more general context of ([JMR4] §4), the
function U can be chosen to be homogeneous of degree zero in (p -^ 0 and
smooth in t, x near (t, x) = (0,0) uniformly in (p. That is, there is an open
neighborhood jV of (0,0) so that t, x —> U(t^x^) is a smooth function of
^, x for each (/?, and for each 7, there is a constant 0(7) so that

V^, \\D^ £/(.,. ,^) H^oo^) <c.

Note that no smoothness in (p is asserted.

The columns of £/* must be a smoothly varying (with respect to t, x,
not y?) orthogonal eigenbasis. For an eigenvalue of multiplicity ^ we must
choose an orthonormal basis for the eigenspace E^(t, x) of L(t^ x^ d^p(t^ x)).
To do this first fix t, ̂ , y? and choose an eigenbasis ^ i , . . . , ̂ M for the
eigenspace E^(t,x) of L(d(p(t,x)). Let 7r(t^x) be the orthogonal projector
on E^(t,x). Then a smooth eigenbasis for E^(t^x) for ^,a* near ^,^ and
phases in an open neighborhood uj of (/? is constructed by applying the
Gram-Schmidt algorithm to {n{t,x)vj}. Cover \\(p\\ = 1 by a finite number
ofc^- of such neighborhoods. Express ||(^|| = 1 as a disjoint union of subsets
(jj CC ujj. The ^-smooth eigenbasis is then given for ^/||^|| in (TJ as the
basis constructed above for phases in ujj.
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For 11 (p\\ > 1, make the change of dependent variable a = Ua, then
the equation for a = Ua is

9td + ̂  UAjU^Qja + z diag(A)a + ̂  UA^QjU^a =. 0.
The key observation is that the diagonal matrix, which is the only pos-
sibly large coefficient has constant coefficients. The other coefficients are
bounded together with each of their derivatives uniformly for ||y?|| ^ 1. Thus
the equation can be differentiated with respect to x and the standard energy
applied. The large coefficient is no problem since Re(<9^a, i diag(A)(9^a) = 0.

Note that the initial values 9^a{0,x) = 9^(Ub) are ^-bounded for
|a| < s. This yields L2 estimates for 9^a(t, •) uniformly in y? and i. These
estimates carry over to a = U*a thanks to the uniform smoothness of
U(t^ x, (p) with respect to t^ x. D

Remark. — The initial values of the time derivatives of a are not
necessarily bounded independent of (p.

Each of the steps in the Picard iteration involves the solution of a
linear initial value problem with source terms which have profiles in a
suitable B(s, t) valued space A. Proposition 3.3 allows us to solve such
initial value problems by superposition.

COROLLARY 3.4. — Suppose that F e A^^o^R^) and H e
A(B(s, t), R^771) and that g6, h6 are defined as in Theorem 3.2. For e e]0,1]
let z^ be the solution of the linear initial value problem

Lu6 =h£, u^O.x) =g6.
Then u^t.x) = Ue(t,x^(t,x)/£) where U^t^x.O) belongs to A{B(s,t),
R^"1"771)) and is determined by the symmetric hyperbolic initial value
problem
(3.18) L^x^Dt^+e-1 ̂  A.^x^k/Qx^/d0k = H^x^O).

J,k>0

(3.19) ^(0,.r,0o^i,...,^)= r.h.s. of (3.15).
The linear maps B^ from A^^o),!^) x A(B{s,t), R^) to
A^^^R^771) defined by Bs(r,H) = U6 are uniformly bounded for
e =]0,1], that is there isac>0 so that VF, H, e e]0,1], t e]0, t]

||^£||A(B(s,t),Rl+^)) < cdlrllA^^o),!^1) +^II J^IlA(B(s, t) ,R l+m)).

Proof. — Denote by A the set of a e R14"771 such that either
a e Spec(fa), or, a is equal to one of the a^(^) corresponding to ^ in
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Spec(^). Define LC^ = ^ U^(t^x)e^oi'e where the Fourier coefficient with
ac-4

index ao, o;i , . . . , o^m is determined by the initial value problem

[L-{-^e~lL(t,x,d{a^))}U^t,x)=ha, U^^x) = E^^g^x),
(3.20)

^(0, x) = 0 is a C .4 is not equal to a^) for some /^, ̂ .

Proposition 3.3 shows that U6 e A^^^R^^) and that the maps B^
are uniformly bounded.

The equations (3.20) are equivalent to (3.18)-(3.19). D

Return to the Picard iteration in the proof of Theorem 3.2. Ap-
ply the Corollary to analyse (3.16) with right hand side H(t^x,6) —
/(t.x^^-^t.x.e)^^'1^^^)) which belongs to A(B(5,tl),R l+m)
thanks to Proposition 2.1. We find that u6^ = ̂ '^(^rc, ( p / e ) with

U^=^ay^x)e^ ^-^a^^x)eiQ•e

where the sum is over the Z-module generated by A and

||^HA(B(^I),RI+-) == ̂  ll̂ lla î) < oo.
a

Let R = H^^HA- The estimates of Proposition 2.1 and Corollary 3.4
imply that there is a t e]0, t^} so that for all v > 1, e e]0,1], and t € [0, ti]
the Picard iterates in the proof of Theorem 3.1 satisfy

EK'^^2^
a

E \\^e.y -£,^—1|| ^ (/^4\v—\
11^ - ̂  HB(^) < [Ct)

a

Choose t so that Ct < 1. Then as v tends to infinity, the profiles l^^
converge in A^^t^R14"771) uniformly in e to a solution U6 to (3.18)-
(3.19). The corresponding function u6 solves our problem.

Uniqueness of the solution u6 is proved by a simple L2 energy
argument. This completes the proof of Theorem 3.2. D

Next consider the high frequency limit e tends to zero. The key here
is a linear result which plays a role for asymptotics analogous to the role
of Proposition 3.2 for local existence.

PROPOSITION 3.5 (Linear asymptotics). — Suppose s € N, ip €
<E> and E(t^x) C C°°(Q, : Hon^C^)) is the orthogonal projector on
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keT{L(t,x,dy{t,x)). For c G B(s,t) and b € IP(^o) satisfying Eb = b,
let u8 be the solution of

(3.21) L^ = c(t, x)e^(ft/£, ^(0, x) = b^e^0^^.

(i) There is one and only one solution a e B(s,t) of

(3.22) Ea = a, E(La - c) = 0, a(0, .r) = b(x).

There is a constant C = C(s) independent of(p and t such that

(3.23) |K^)||B(^) < W(X)\\H^ +^||C(<7)||B(^)).

(ii) There is an R^t, x, 0) € A(B(s,t), R772"^1) such that as £ tends to
zero, H^ HA = o(l) and

(3.24) ^ = ae^^ + R^t.x^o^x^/e,... ̂ m{t,x)/e).

Proof. — The analysis depends on whether (p satisfies or does not
satisfy the eikonal equation.

If it does not satisfy then E = 0 and Ea == a implies a = 0 so the
existence and uniqueness in part (i) is trivial. In addition b = Eb = 0.
Thanks to Proposition 3.3 it suffices to show that u == o(l) for c(t^x)
smooth on a neighborhood of Q.

In that case standard elliptic linear geometric optics (a convenient
reference is [Hor], p. 272) constructs an asymptotic series

00

v£ ^eei^£Y^ak{t,x)ek

j=0

with the property that Lv8 — ce^/8 ~ 0.

Denote by ^i,...,^ ^ ^ the solutions (see Proposition 3.1, (iii))
of the eikonal equation which at t = 0 are equal to (^(0,:r). Hyperbolic
geometric optics [L] constructs an asymptotic series

w^e^^/^f^a^t^)]
j k=0

with the property that Lw5 ~ 0 and 1^(0, •) — t^(0, •) ~ 0.

Fix N > 5+1 and let vj^ and w^ be the sums of the terms with
j < N. Then L(v^ - w^) - ce^/6 is a sum

L(v^ - w^) - ce^^ = o(l) in B(s,t),
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^(0, •) - w^(0, •) - b = o(l) in H8^).

Therefore uE = v% - w%-^ Vs with r6 = o(l) in B(s,t). This suffices to
prove (3.24).

In case (p satisfies the eikonal equation there are three independent
ingredients. The first is Proposition 3.3 which shows that u6 = a^e^^
with maps b,c —^ a8 uniformly bounded from -ZP(^o) x B{s,t) to B(s,t).
The second ingredient is assertion (i) of the present proposition whose
proof is postponed. Given these two things a straightforward approximation
argument shows that it suffices to prove assertion (ii) for b^ c smooth on
the closed sets ^o and fl, respectively.

Renumbering if necessary we may suppose that (p = '0i where the
phases '0j are the solutions of the eikonal equation which are equal to
y?(0, •) at t = 0. In that case we follow Lax [L] to construct an asymptotic
solution i^ + w6 where

Vs ^e^^£^ak{t,x)ek

k=0
oo

(3.25) ^ -^ [eiyj/£(^b^x)ek)'\.
j k=0

Each of the sums on k satisfies Lu ~ 0.

The series v6 is determined uniquely by
L^-ce^-O, ao(0 , - )=6, ^-(0, •) = 0 for j > 0.

To derive the equations for the aj compute
Lv6 - ce^ ~ e^/^-^d^ao + e°(Lao - c + L(d^)ai) + • • • ] .

With the goal of forcing Lv8 - ce^^ ~ 0, choose ao with L(d(p)ao = 0
which is equivalent at ECLQ = OQ. The e° term is projected onto its E and
I — E parts. The E part yields the equation E(LCLQ — c) = 0. In part (i) we
show that this together with initial data for CLQ determine OLQ. Then a\ is
constrained to satisfy (1 - E)L(dy?)ai = (1 - E)(Lao - c) in order that the
e° term vanish. Note that this prohibits one from taking ai(0, •) = 0. The
closest one can come is to prescribe Ea\ = 0. Projecting the e1 term yields
E(La-t) = 0. Part (i) shows that this equation together with the knowledge
of (J — E)a-i and the initial value Eai(0^x) == 0 determine ai. Continuing
in this manner the dj satisfying Ea^(0, •) = 0 are uniquely determined.

Now W ~ ce^/6 and
^(0, x) ~ ̂ (0^)/£ ̂  ̂ -^(O, x).

k>l
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As in the elliptic case, construct w6 as in (3.25) such that LwE ~ 0 and
^(0, •) — ^(0, -) ~ 0. Truncating as in the elliptic case yields (3.24).

To complete the proof it remains to prove (i). Here the argument
resembles the model provided in [JR5] so we present only a few important
features. Let G(t^x,Dx) '=• L — 9f denote the spatial part of L. Then, the
differential equation for a is

(3.26) 9td + EG(t, x, D^)a = 0.

To derive the L2 estimate which is (3.23) with 5 = 0 , use the standard
energy method, multiplying the equation by a and taking real part. The
crux is to notice that

(3.27) (a, EGa) = (Ea, Ga) == (a, Ga}

the first equality because E is self adjoint thanks to the symmetric
hyperbolicity assumption. Thus the derivation of the energy estimate
reduces to the same calculations as for the standard hyperbolic operator
9t + G. To prove derivative estimates one does not have E9a = 9a to make
this same trick as simple. However, E9a = 9a + (9E)a and the second
term is estimated using the I/2 bounds. In this way one proves estimate
(3.23) for smooth solutions of (3.22). Given such a priori estimates it is not
difficult to prove the corresponding existence theorem stated in (i). D

DEFINITION. — The operator E from A^^^R1"^71) to itself is
defined on monomials by

E{a(t,x)e^afe) = {Ea(t,x)a(t,x))e^Q'e

and is then extended by linearity.

COROLLARY 3.6.

(i) For F, H as in Corollary 3.4, there is a unique UeA^B^s.-Q.'R1^)
such that

(3.28) EU=U, [ / (0,a- ,6>o,6>i, . . . ,^)= r.h.s. of (3.15)

(3.29) E[L(^, x^ Dt^U{t^ x, 0) - H(t, x, 0)] = 0.

(ii) The linear map Bo from r, H to U so denned is continuous from
A^^o)^) x A(B(s,t),Rl^m) toA^s.^R1-1-771).

(iii) In the strong topology in the space of such mappings, s— lim Be =B
where B^ is denned in Corollary 3.4.
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Proof. — The profile U = ̂ Ua(t,x)e^oi"p is constructed mode by
mode. If a - (p does not satisfy the eikonal equation the condition E£7 = U
implies that Ua = 0. If a • (p is eikonal, equations (3.28)-(3.29) show that
Ua must satisfy EaUa = Ua and 'Ea(LUa - Ha) = 0. In addition with
a' =. (ai , . . . , am) one must have

^Ua{^x)=ga^x)

where the sum is over all a = (o^, a') such that (o^, a ' ) • (p is eikonal. Thus
Ua(0^x) = 'Ea{0,x)ga'(x) and there is a constant c = c(s) independent of
a' and a such that

||^a(0,-)|^(^o) ^ ̂ I^Hl^o)-

The equations for Ua are uniquely solvable by part (i) of Proposition 3.5.
The estimates in that proposition show that U € A(B{s,t),'Rl^m). This
proves the existence and boundedness part of parts (i)-(ii) of the corollary.

Uniqueness is proved by the energy method with multiplier U — V
again following the proof of part (i) of Proposition 3.5.

Part (ii) of Proposition 3.5 shows that B^(F, H) -^ B(F, H) for F, H
in the dense set of finite trigonometric polynomials. The convergence (iii)
in the general case follows from uniform boundedness. D

THEOREM 3.7 (Nonlinear asymptotics). — Suppose that u6, UE, F,
H, cf and hE are as in Theorem 3.2.

(i) There is a t^ e]0,t] and a unique U € A^s^i),!^^ such
that

(3.30) EU=U^ E[L(D^)U+f^x^U))-H}=0^

(3.31) (7(0, ̂ OA,.. . ,M=^^.. .^m).

(ii) One has the asymptotic relation as e tends to zero

(3.32) ^=(7+0(1) inA{B(s,t^),Til^m).

In particular,

u^t, x) = U(t, x, <po(t, x ) / e , . . . , ^prn{t, x) / e) + o(l)

with o(l) measured in C(^t D {0 <, t ^ t-^}).
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Proof.

(i) The profile U is constructed as the limit of Picard iterates

EU^ = U^ + E[L{D^)U^1 + f(t, x, U^U^) - H] = 0,

U^^x, 0,0i,. . . ,^) =^(;r,0i,... ,^).

For the first iterate, v = 0, the / term is dropped.

Corollary 3.6 proves the existence of the first iterate U1 == B(F, H)
in A^^^R1-^). Given L^-1 in A^s.^.R^771), Proposition 2.2
shows that f{t,x,U{t,x,0),U{t,x,0)) belongs to A^.^jQ.R14-771) and
then L^ = B(F, AT - /(^, x, L^-1,^"1) continues the induction.

For convergence note that Proposition 2.1 implies that the map
W -> f(t,x,W,W) is locally Lipschitzean from A(B(s,t),Rl^m) to itself
and that the map H —> B(0, H) maps the same space to itself with norm
0(t\). Thus choosing t\ <, t sufficiently small, convergence follows from the
contraction mapping principle.

Uniqueness follows from this contraction argument or by a direct L2

energy estimate multiplying the difference of the equations satisfied by two
solutions U\ and U'z by U\ —U'z.

(ii) The proof is by simultaneous Picard iteration, a technique intro-
duced in [J]. Let z^'^, U6^', and U^ denote the iterates converging to u6,
U6 and U respectively. Write

u - w = (u - u^ + (^ - u^) + (u5^ - u).
In the space A^^.^i^R1'^771), we have just shown that the first term
tends to zero as v tends to infinity. Similarly, Corollary 3.6 showed that
the last term tends to zero as v tends to infinity and the convergence is
uniform for e c]0,1]. Finally Corollary 3.6 implies, by induction on ^, that
for v fixed the middle term tends to zero as e tends to zero.

For any challenge number 77 > 0 choose ^ so large that the first and
last terms are smaller than rj/3 for v >_ ^ and e c]0,1]. Then choose EQ so
that for 0 < e ^ CQ, \\U^ - U6^^ < rf/3. It follows that for 0 < e < £Q,
\\U — Z^H < rj and the proof is complete. D

Once this framework has been established one cas follow [JMR1] to
study the lifetime of solutions, the spectrum of solutions, and a sum law
for regularity of the profile 0. In particular on any interval of existence for
the profile U, the u6 and U5 exist are uniformly bounded and (3.32) holds.
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One could also use this A framework to analyse the example of dense
oscillations produced from Cauchy data oscillating with only three phases
([JR4], [JMR4], [JMR5]).

4. Examples.

Example 1. Constant coefficients and linear phases.

For constant coefficients and linear phases, the symmetric hyperbol-
icity assumption is easily relaxed and one can work globally in x. Suppose
that L has constant coefficients

(4.1) L = 9t + G(P), G(D) = ̂ A,Dj + B, Dj =E (l/i)9/9xj.

Let <I> be the space of linear functions of t, x.

In this case one can work globally in x setting

^) :=](), ̂ [xR^.

All the results hold under the mild hyperbolicity assumption that e-^W
is a strongly continuous group of bounded operators on L^R^). That is

(4.2) sup{|| exp(tG(0)|| : $ C R^} ̂  ̂ 1 < oo.

There are only two substantial changes that must be made in the analysis
to cover this case. The first is to take advantage of the fact that this
hyperbolicity assumption has many equivalent aliases. Precisely (4.2) is
equivalent to each of the following three conditions (see Kreiss [Kr]).

(i) For all ^ G R^ ^ 0, the principal symbol

(4.3) Gi(0=^A^.

is similar to an imaginary diagonal matrix K{^)G^{^)K~1^) =imag.diag
and the similarity matrix can be chosen so that K and K~1 are bounded
uniformly in ^.

(ii) GI is uniformly symmetrizable, that is, there is a selfadjoint
matrix valued function R(^) such that for all ^ € R^ 0 < cl $ R(^) < CI
and jR(^)C?i(^) is anti-selfadjoint.

(iii) For all ^ e R^ ^ 0, the symbol has spectral decomposition

(4.4) Gi (0=^^(0^(0
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where Ai < Aa < • • • < ^M(^) are distinct and real and valued, ̂  TTyn =
Jfcxfe and the norms of the eigenprojections TT^(^) are bounded independent
ofm and ^.

The relations useful in passing from one of these to the other are

R-Y^^mY^m and K=(R)1/2.

Note that we do not suppose that the matrix functions J?, K, TT are smooth
as functions of $.

Part (iii) is crucial in showing that the averaging operators E are
bounded. Part (ii) can be used in deriving energy estimates where the
natural multiplier is R(D)u. However, direct estimates using the Fourier
transform suffice as in the following analogue Proposition 3.3.

PROPOSITION 4.1. — Consider the linear initial value problem

(4.5) Lu = c(t,x)e^{Tt^•x\ u{0,x) = b^e^

where b C H8 (R^), and c € IPGO^xR^)) for all t > 0. Then the solution
u = a(t,x)e^^t^•^ satisfies Vt € R, |a| ^ s

(4.6) ||D^a(̂ )||̂ n.) < 7^' ̂ D^bhw

+fe-/31t-al||%c(a,.)||^^)da].
-'0

Proof. — Duhamel's principle reduces the general case to the case
c=0.

When c = 0, a is determined by the initial value problem

(^+(G(D+o;)+zr) )a=0, a(0) = b.

The proposition follows upon noting that
|i tG(D+^) |i _ IÎ G'(̂ ) ||_, < ̂ 0\t\ n
I I 6 llHom(L2) - su? II 6 llHomcc^) -^ ' e ' u

Starting with this proposition it is not hard to retrace the steps of
the analysis in §3.

Example 2. Homogeneous oscillations.

Within the context of constant coefficients and linear phases an
interesting case is that of profiles U which are independent of x. This
is analogous to the theory of homogeneous turbulence. The profiles will
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be independent of a; as soon as r, H and the nonlinear function / are
independent of x. Then

U = U(t,T,X) =^U^t)e^a•^

is a function of t with values in the classical Wiener algebra of almost
periodic functions corresponding to the choice B = C^ in the definition of
A(B^'Rl^m). The function / has Taylor expansion with infinite radius of
convergence

f^u^v)= ^ f^(t)uV^ f^eC^
At^ez'6

Plugging in U yields an absolutely convergent expansion

f(WU) = ̂ ^^(^^(^(^e^l^-l^)-^^.

The profile equation takes the form of an infinite system of ordinary
differential equations

(4.7) E^=U^ £/(0,0,X)=r(X),

(4.8) dU^/dt = ^ K^{t)U^Ul + E^(t)
^|/3|-i/|7l=a

where the interaction matrices K are defined by

(4.9) K^= ^ ^F^(t)
^|/3|-^H==Q

and
E^ = spectral projection on ker (ao^ + V^ AjOjY

j'^i

The elusive closure property in the theory of turbulence is supplied
here by the fact that U(t) belongs to the Wiener algebra of almost periodic
functions and / is entire. Thus though the system is infinite it is absolutely
convergent. On the other hand, there are no finite closures. The value of
Ua(t) for a single a and t ̂  0 generically depends on the values of Up(0)
for all f3.

It is an interesting question whether the theory of infinite systems of
interacting particles has anything to say about the time evolution of U in
special cases.

Example 3. Conical refraction.

We have consciously allowed operators with characteristics of vari-
able multiplicity, for example the constant coefficient operator describing
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the propagation of electromagnetic radiation in a biaxial crystal. This lin-
ear symmetric hyperbolic system describes, among other things the phe-
nomenon of conical refraction. For the linear (p corresponding to propaga-
tion along the optic axis, ker(L(d</?)) is two dimensional. Thus the ampli-
tude a in the linear geometric optics (3.22) is a 2-vector valued function
and the system (3.22) in this case is a nontrivial 2 x 2 hyperbolic system
(see [L], 116-117). This is in sharp constrast to the constant multiplicity
case where (3.22) reduces to transport equations, that is, scalar hyperbolic
equations. For (p corresponding to the optic axis, the fundamental solution,
that is the solution of

(4.10) EA = A, ELA = 0, A(0, x) = E6(x)

has support a set which is the injective linear image of the cone z2 >_ x2 -\-y2

in R3. Thus it fills a three dimensional cone in R14'3. The singular support
is equal to the boundary of the cone [Lu]. Thus oscillations initially confined
to a small ball about the origin will have leading amplitude nonzero on such
a three dimensional cone. This is the phenomenon of conical refraction.
For strongly localized excitations, the energy is localized near the edge of
the cone which corresponds to the thin annulus of light displayed in texts
([BW], 688 bis). The fine structure within the annulus is a more subtle
issue (see [MU]). In the presence of nonlinear lower order terms a new
phenomenon is possible. The cone of refracted oscillations can be triggered
by resonant interaction of oscillations with spectra far from the optic axis.
We present an example illustrating this possibility.

The strategy is simple. Merely choose a nonlinear interaction such
that for a phase a ' (T, X) corresponding to conical refraction, there are
/?, 7, ̂ , v so that the interaction coefficient K^ is nonzero with f3 and 7
not parallel to a.

Maxwell ̂ s equations in a translation invariant medium without free
charges are

QtD = ccnr\(H), QfB = -ccurl(£1),

D = £E, B = p,H, div(B) = div(D) = 0

where £ and ^ are constant positive definite 3 x 3 matrices and c is the
speed of light. The divergence free conditions follow from the others if the
divergences vanish at t = 0. For the case of a biaxial crystal ^ is a scalar
and £ has three distinct real eigenvalues. We choose units so that c = 1.
The dynamic equations then take the form

{£/p)QtE = curl(B), Q^B = - curl(£1).
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This system is symmetrized by setting

u=(£/^Y^E, v=B.

Then with A denned to be the positive square root A = (f//^)"1/2 and
r 0 -% 921

fl(9) = curl = % 0 -<9i
<9i 0

(4.11) W.,9.)[:j'^-[.^ Tj^j

This is a symmetric hyperbolic system. An orthogonal change of coordi-
nates in C^ yields

(4.12) A = diag(Q/l,a2,Q;3), ai > 02 > 03 > 0.

For geometric optics we need the characteristic variety and the
associated (orthogonal) spectral projections. Equivalently we must find all
plane wave solutions

(4.13) (u,v) = e^^^a.b)

with (r,$) € R1'^3 and constant vectors a,b. Then (4.11) holds iff

(4.14) ra = A($ A b) = A^)b and rb = -$ A (Aa) = -^($)Aa.

For any ^ ^ 0 , p = 0 i s a double eigenvalue with eigenspace

ker L(0,0 = Span[(A-1^ 0,0,0), (0,0,0, Q].

For r 7^ 0, use a = AQ,b/r to eliminate a to find

(4.15) r2b=-^A2^b

where the matrix on the right satisfies
" -02$j - 03$j 03^1 ̂ 2 o;2^i$3

^A2^^ a2$i$2 -^i^j-o-3^ Q-1^6
^1^3 -Oil6^3 -^l^j-^2^.

tr(-^A2^) = ̂ (0 = (a2 + ai)^j + (03 + ai)^ + (03 + a^i ̂  0.

(4.16) det(r2 + ̂ A2^) = r^r4 - ̂ (Qr2 + l^l2^))

(4.17) ^(0 = aia2$J + 0-301^ + a^a^.

Setting (4.16) equal to zero yields a quadratic equation for r2 / 0 whose
discriminant is given by

discriminant = ^2 - 4|^|2^ = P2 + Q2 > 0
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where
P = (ai - 02)$! + (03 - 02)$i2 + (03 - ai)^2

Q = 2 \/(ai-a2)(ai- 03)^36 > 0.
There is a double root iff $ satisfies P = Q = 0, that is
(4.18) $2 = 0 = (ai - 02)$! - (02 - 03)^, r2 = ^($)/2.

Our construction turns on resonant interaction of waves all of which
satisfy $2 = 0. When $2=0 the roots are r2 = (^ ± P)/2 which yields

2 ^ f^i$J + 03^ for the - sign
L ̂ j + $?) for the + sign'

In T = 1 this is a circle of radius 1/^/02 and an ellipse with axes l/^/al and
1/^/03. We will use three points. Point I is defined to be the intersection
of the ellipse with $3=0 and point I I is the intersection of the circle with
$1=0,

point 1= (l,l/v^3, 0,0), point I I = (1, ,0,0,1/y^).
The third point is the sum of these two

point I I I = (2, l/v/^3,0,1/y^).
Point I I I is a double point iff (4.18) holds, that is iff
(ai - o^/o^ = (02 - 03)703 and 4 = [(ai + a2)/a2 4- (a^ + a3)/03]/2.
These hold iff
(4.19) 02 = 3a3 and ai = 903.
In this case
(4.20) y^/?7^/?777

is a resonance relation for -L.

The vector b in (4.13) is determined from {r2! + ^A^)b = 0. One
finds

point I : r^+^^diag^.O,-^), b1 = [0,1,0]
point I I : r2! + ̂ A2^ = diag(0, -8,1), b11 = [1,0,0].

Equation (4.14) shows that a = A($ A b)/r so
a7 =[0,0,1], a77 =[0,1/^,0].

For the third point, ker(r2 + f^A2^) has dimension equal to two.
Denote by ei = (V'3,0,1)/2 = V^771^, the unit vector in the direction
of^111. Then

[ " 3 0 ^ / 3 "
T2^ + OA2^ = | 0 0 0 = 4 x (orth. proj. on Cei).

,\/3 0 1 _
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The kernel is the set of vectors b orthogonal to e\. An oriented orthonormal
basis for R3 is

ei^es-^O.nA (0,1,0), (-1,0, v/3,)/2.

The last two are a basis for the set of 6's. The vector a corresponding to
b = 63 is given by

A^111 A e3)/T = A(2/V/3)el A e^/2 = A(-e2/^3) = (0, -1/\/3,0).
For b = 62 one finds

A((2/v/3)ei A e2)/2 = A(e3/v/3) = A(-l/\/3,0,1)/2 = (-3\/3,0,1)/2.

Thus the two dimensional space of plane waves associated to point I I I is
given by

(U,V) == ^(2^i/v/Q3+a:3/v^2)(a,6),

(a, 6) € SpanK-3^/3/2,0,1/2,0,1,0), (0, -1/\/3,0, -1/2,0, v/3/2)].

This span together with (a7,67), (a77,677) generate a four dimensional
subspace. Therefore it contains a vector W which is orthogonal to (a7, b1)
and (a77,^77). Introduce the semilinear equation

(4.21) L(8t^)(u,v)^U2U3W.
First consider homogeneous oscillations with profile

(U(t, T,X),V((t,T,X)) = ̂ {U^W}^-^.

Let /3(j), j = 1,11,111 be the (r,^) corresponding to points J, JJ and
JJJ respectively. The initial oscillations have phases corresponding to the
points I and I I , that is Up(Q), V^ff) = 0 unless /3 = /3{j) for j = I or JJ.
Precisely,

(4.22) (^(0),^(0))={(aJ^') ^-W)' ^= J ^ J .
L 0 otherwise

Since E^mW = 0 = E^(H\W^ it follows that E^(m\{u^u^W) = 0 and
therefore that d(L^o-), Vp^)/dt = 0 for j = J, JJ. Thus

(4.23) (U^(t), V^{t)) = (aJ, y') for j = J, JJ and all t.

It is easy to see, for example by considering the Picard iterates U1^
converging to ?7, that the spectrum of U is contained in (n/?7 + mf311 G
char(L) : (n,m) G N2 ^ 0}. There are only nonnegative n,m because the
nonlinearity has no complex conjugate terms.

LEMME 4.2. — Ifn and m are real numbers and n/31-}-m{311 belongs
to the characteristic variety of L, then either n == 0, m = 0, or n = d=m.
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Proof. — Det L(nf31 + mf311) = -4mn(n + m)2(n - m)2. D

The only relation f 3 { I I I ) = 0+7 with a, 7 € Spec(£7, V) is (4.20). This
yields the equation d(U^m^ V^m^/dt = a^a^W with exact solution

(U^m^t\ V^in^t)) = tW/V3.

Thus oscillations along the optic axis are triggered in mode III.

For homogeneous oscillations, the oscillations fill space time so that
this example does not show the spread of oscillations typical of conical
refraction. Consider next the nonhomogeneous case with initial data which
are narrow ray bundles with phases corresponding to (3{I) and /3(JJ).

Since E^W = 0 for j = I , I I , the equations for the f3(I) and f3(II)
components of the profile are the linear systems

^W^W^^^W}^^) = Ww^^^U^^
E^L(9t^){U^^x)^^x)) = 0.

Standard geometric optics analysis shows that the general solution is of the
form

(4.24) (U^(t,x)^V^(t,x)) = (a^V)x(x-s,t).

The group velocities s3 are computed as follows. Near the point (3 represent
the characteristic variety as r = r(^) so r(^) is homogeneous of degree one.
Then s = V^r. For example at point I symmetry shows that the derivatives
of T with respect to $2,3 vanish. Homogeneity shows r($i,0,0) = $1^/03.
Thus

(4.25) ^=(1,0,0).

Similarly,

(4.26) ^=(0,0,^).

Consider the initial data

(4.27) (U^x)^(^x))=!^^^^ ^f^=W). 3=1.11
10 otherwise

where \ e C^R3) has support near the origin. Then (4.24) holds for all
t, x and all other modes vanish at t = 0.

Again thanks to the lemma the profile equation is explicitely solvable
with

(4.28) {U^Vp) = 0 for (3 i {/?(J),/?(JJ),N/3(m)}
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and for /? = l 3 ( I I I )

(4.29) E^,l^)=(^,^), (^(0^)^(0^)) =0,

(4.30) E^L(cU^ ̂ ) = x{x - S^MX - s11^/^.

The solution is given by A * {\{x — s^^^x — s I I t ) W / ^ / S ) where the
fundamental solution A is defined in (4.10). Typically, the resulting fS{III)
Fourier coefficients will have support filling a solid three dimensional convex
cone in R14"4. Thus the interaction of off-axis oscillations has triggered a
cone of nonlinear conical refraction.

Critique. — The semilinear equation (4.21) has no relation as far as
we know to any realistic physical model. However it is our belief that the
phenomenon described here is robust, and is likely to be present in models
of conical refraction which embrace nonlinear phenomena.
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