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CARLEMAN ESTIMATES
FOR A SUBELLIPTIC OPERATOR

AND UNIQUE CONTINUATION

by N. GAROFALO^*) and Z. SHEN^**)

Introduction.

In recent years there has been a large development in the study of
unique continuation for second order elliptic equations. We recall that in
his celebrated 1939 paper [C], T. Carleman established the strong unique
continuation property for the Schrodinger operator 1-i == —A + V in R2,
under the assumption that V C Zq°^(M2). This result was subsequently
extended by several mathematicians to any number of dimensions and to
equations with variable coefficients. More recently, the interest of workers in
partial differential equations and mathematical physics has been focusing
on equations with unbounded lower order terms. See [K] for reference. This
development has culminated with Jerison and Kenig's celebrated result
[JK] establishing the strong unique continuation property for H in R71,
n > 3, when V e L^(W1'). Their paper has inspired much progress in
the subject and nowadays the picture for second order uniformly elliptic
equations is almost complete. Not so well understood, instead, is the
situation concerning non-elliptic operators.

In this paper we study the unique continuation property for zero-order
perturbations of the so-called Grushin operator in R71"1"1 :

(0.1) C=^+\z\2^.
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Here, z e R71, ^ c R. /: is elliptic for ̂  0 and degenerates on the
manifold {0} x R. This operator was studied by Grushin [Grul], [Gru2],
who established its hypoellipticity.

The operator C in (0.1) possesses a natural family of dilations, namely,

(0-2) ^(^)=(A^), A > 0 .

One easily checks that

(0.3) Co^=\^oC

so that C is homogeneous of degree two with respect to {(^JAX). The change
of variable formula for Lebesgue measure gives

(°-4) do6x(z,t)=\^dzdt,

where

Q==n+2.

The number Q plays the role of the Euclidean dimension in the anal-
ysis of the Grushin operator. Henceforth, it will be called the homogeneous
dimension. A natural problem to consider is : Do couples (p, q) exist such
that for some constant C > 0 and all u e CyOR^1), one has

(0-5) IH|LP(R-+I) < C\\CU\\L^^

Using the group {(^JAX) one immediately sees from (0.3), (0.4) that
a necessary condition for (0.5) to hold is given by

(0.6) 1-1 -2-
Q P ~ Q '

It is a nontrivial fact that (0.6) is also sufficient for (0.5). These
considerations led in [G] to formulate the following :

CONJECTURE. — Suppose that V e /^(M7^1). Then, the differen-
tial inequality

(0-7) \Cu < \Vu\

has the strong unique continuation property at points of the degeneracy
manifold {(0,^) C R^^t e R}.
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In this paper we prove a Carleman type inequality for the operator
C that implies the strong unique continuation for (0.7), provided V e
^FocO^1^ where r > n = Q - 2, when n is even, and r > 2n2/(n + 1),
when n is odd. In particular, when n = 2, and hence Q = 4, we prove that
the above conjecture is true, since (Q/2) = Q — 2 = 2, except that we miss
the end-point case V € LJ^(M3). It should be emphasized that, in spite of
the apparent similarities with the Euclidean Laplacian, the analysis of the
Grushin operator presents several subtle novelties that have yet to be fully
understood. In this respect, already in the case V € L^R7^1), our result
is quite different from its Euclidean predecessor. To explain this point we
must bring in the special geometry of the Grushin operator and of its close
relative, the sub-Laplacian on the Heisenberg group. Suppose for a moment
that n =- 2k, with k e N, and for x,y e R^ let z = {x,y) C R71, t e R. In
the coordinates (2;, t) the sub-Laplacian on the Heisenberg group Iffl^ can
be written as follows :

(0.8) A^=A.+4|^+4^

where T is the transversal vector field

^/ 9 9 \T=Y.[y^-x^}•9x, ^y,

It is clear from (0.1) and (0.8) that there exists a close connection
between the Grushin operator and the sub-Laplacian on the group tf. In
fact, it turns out that, if A^n = 0, and moreover Tu = 0, then u solves
Cu = 0. We mention that Tu == 0 if and only if u is invariant under the
action of the torus T on H^ given by

^t}=(e^ez^\ eeT

(here, we have identified z = (x^ y) € M2^ with z = x-{-iy e C^). In spite of
this connection between C and A^fe, for the latter the unique continuation
fails, even for V G G00, as a consequence of a result ofBahouri [B]. Recently,
one of us [G] has proved the strong unique continuation for (0.7) under
suitable size restrictions on V.

For nonsingular potentials the assumption on V in [G] reads

(0.9) \V(z^)\<C^t),
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where

(0.10) '^h(z,t)=——w————l v / / {\z\^^t2)1/2

(here, everything is localized in a neighborhood of the origin). It is clear
that (0.9) does not allow for V merely in Lg^, but forces vanishing at z = 0.
The use of the function ^ in the right hand side of (0.9) was suggested by
its natural appearance in some representation formulas for the operator C
in (0.1). These are, in turn, related to the polar coordinate decomposition
of £, see §1.

Consider the natural pseudo-distance function for C

(0.11) P-P^t)=(\z\^^\

What also makes the operator C interesting is the fact that it does not map
functions of p into functions of p. In fact, if we let for / e C^R-^)

<^)=/(P(^)),

then one has

(0.12) Cu=^^f\p)+Q^lf(p)\

with ^ being given by (0.10). This feature of the Grushin operator (which
is shared by the sub-Laplacian on the Heisenberg group) makes the analysis
considerably harder than that of the Euclidean Laplacian.

Concerning the approach in this paper, it is based on a suitable
Carleman estimate (Theorem 5.1 below), which involves the weight p~8,
0 < s < oo, as well as positive and negative powers of the function '0 in
(0.10).

The structure of the paper is as follows. In §1 we introduce some suit-
able polar coordinates to obtain a decomposition of C. These coordinates
were first introduced by Greiner [Gr] for the Heisenberg group. In §2 we
compute the spherical harmonics of the Grushin operator. §§3 and 4 con-
stitute the main technical part of the paper. There, we prove the L1 - L°°
and weighted L2 - L2 estimates for the projection operator onto spheri-
cal harmonics of a given degree. The main Carleman estimate (Theorem
5.1) is proved in §5 by using the estimates of the projection operator as a
building block. This is the idea of D. Jerison in [J] where a simple proof for
the Jerison-Kenig's Carleman-type inequality was discovered. Finally, in
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§6 we deduce from the Carleman estimate the strong unique continuation
property.

1. Polar coordinates.

In this section we introduce suitable polar coordinates to obtain a
decomposition of the operator C in (0.1).

Let

(1.1) p=(\z\^^\ ^eBT, teR

and

z\ = p sin1/2 (p sin 6\ ... sin 0n-2 sin 0n-i
Z2 = p sin1/2 y? sin 0 i . . . sin 6n-2 cos 0n-i

(1.2)
Zn = p sin1/2 y? cos 0i

p2
t = — cos y?.

Here, 0 < y? < TT, 0 < 0, < TT, z = 1,2,. . . , n - 2 and 0 < 0n-i < 27T.
We plan to compute the Grushin operator in (0.1) in the above coordinates
(p,^,0i, . . . ,^_i).

Let r = \z\. From (1.2) we obtain

(1.3) r = |2;| = psin1/2 (p.

By the usual spherical coordinates in R71, we have

(1.4) dz=rn~ldrd^,
/, ,, . 92 n -1 9 1 ,
1-5 A^ = —3 + ———— + ̂ A^-i.

<9r2 r (9r r2

Here, duj and A^n-i, respectively, denote Lebesgue measure and the
Laplace-Beltrami operator on ^S'71"1. From (1.2) and (1.3) we have

9^t) ^ (sml/2^ jsin-i/^cos^
9(p^) ~ \ p2 .v^-r/ i pcosy? -—sm^ y

' z /
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(1^) drdt=p-sm-l/\dpdy.

Substituting (1.6) in (1.4) yields

(L7) dzdt = .^(sin^^pd^.
2i

We also have

(1.8) 9^^ _ ( sin3/2^ p-^cos^ \
9(r, t) \ 2p~1 sin172 ̂  cos (p -2p-2 sin (^ /

Note that

n Q^ /, 92 n - 1 9 . 92 1
( 9) r = ̂ ^ + ————-T + r ^2 + -2^-1.or- r or Ot- r2

A straightforward computation based on (1.8) gives

92 n -1 9 . 3 92 g2

9r2+~^~9r=sm^+^ sm ^ cos ̂ Q^
Q2

+ 4/)'~2 sin (/? cos2 (/?—.
9(p2

r\

(1.10) + (3p-1 sin y) cos2 y> + (n - l)^-1 siny?)—
Op

r\

+ (-8p~2 sin2 (p cos (^ + 2np~2 cos (p) —,
9(^

and
92 -2 2 92 , 3 . 92
^ = P cos ^o^-4? sm^cos^^9p2 ^ ^^^9p9^

(1.11) + 4^-4 sin2 ̂ ^ + (2p-3 - 3p-3 cos2 ̂ )^-(7(^ 9p
r\

+ Sp"4 sin (p cos (/?—.
9(p

Substituting (1.10) and (1.11) in (1.9), we obtain

n 19^ /, . r 92 n + 1 9 4 1(L12) ^ = sin^^ —^ + ———— + r, ^
l9p2 P 9p p2 )
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where a = (y?,o;), uj € Sn~l, and

_ 92 n cos<^ 9 1
•13) ca = W + 2^n^ + (2sin^)2A5n-l•(1

From (1.3) we see that

r2

sin^== -2- ==^,

with -0 defined by (0.10). Recalling the homogeneous dimension Q = n + 2
introduced in (0.4), we can rewrite (1.12) in the more suggestive way :

f 92 0-1 9 4 I
(1.14) C = ̂ {—^ + '——— + ̂  ^.

f(9p2 p <9p p2 J

From (1.14) it is clear that if a function u depends solely on the
pseudo-distance p, i.e., u(z^t) = f(p(z,t)), then Cu is given by (0.12).

The most interesting feature of formula (1.12) is that the variables
p and (y?,^) separate. We mention that for the Heisenberg group in R3,
H1, the coordinates (1.2) were first introduced by Greiner [Gr]. For the
Heisenberg sub-Laplacian, however, the variables p and (y?,o;) do not
separate.

2. Spherical harmonics for the Grushin operator.

This section is devoted to computing the surface spherical harmonics
of the Grushin operator, i.e., the eigenfunctions of Ca m (1.13).

For k = 0,1,.. . , we form the function pkg((p^). By (1.12), this is a
solution of Cu = 0 if and only if

k(n + k)
(2.1) A^———^—<7.

Suppose now that g(^p^uj) = h((p)Y(cj) where Y(u) is a spherical
harmonic of degree i G { 0 , 1 , . . . , k}. We recall [SW] that

(2.2) A^n-iV = -C(£ + n - 2)V.



136 N. GAROFALO, Z. SHEN

Using (1.13) and (2.2), one easily checks that (2.1) holds if and only
if

(Ph ncos^pdh \k(n+k) ^+n-2)]
(2.o) —T) + — ——— — + ————— — ————o—— \n = 0.d(p~ 2 sm (p dip \_ 4 4 sin y? J

We let T = cosy?, u(r) = h(^p) in (2.3). By this change of variable,
the latter equation transforms into

, , d?u (n \ du \k(n^k) ^+n-2)1
^ ^-(2+l)T^+[4---^)-ju=o•

Setting v(r) = (1 — T2)""^4^?-) one verifies that v satisfies

, , , .d<2v (n \ dv f k - £ \ f k - £ n\
(2.5) (l-r^-^+^l)^+(-^-)(-^-+^^=0.

This is a Jacobi differential equation, provided £ = k(mod 2) (see
[E], vol. 2, p. 169). One polynomial solution of (2.5) is given by the
ultraspherical (or Gegenbauer) polynomial

v(r)=ci^(r)
~~2~

(see [E], vol. 2, p. 174).

To summarize, we have proved

LEMMA 2.6. — Let k be a nonnegative integer and £ = A;(mod2),
with 0 < i <_ k. Suppose that Yg is a spherical harmonic of degree £. Then

g(^,uj) = sin^ ^^(cos^y^cc;)

satisfies (2.1).

Fix now an integer £ > 0 and denote by {Y^j}j=i,2,...,^ an orthonor-
mal basis for the space of spherical harmonics of degree £ on S^1. Recall
[SW] that

(2.7) (^-2)r(n^-2)v / r (^+i)r(n-i)
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We define,

(2.8) Uk = span ^ sin^ (pCJ^ (cos y?)Y^(o;)

j= l , 2 , . . . , ^ , 0^</c , ^ = A ; ( m o d 2 ) ^

Consider the measure on

(2.9) ^ = ̂ ,t) e IT+1 p = (|^|4 + 4^ = ll

given by

(2.10) dfl = sin2' ( p d ( p d u } .

Here, we have parametrized ^ (see (1.2)) by

2:1 = sin 2 (^sin^i.. .sin ̂ -2 sin^_i,

z'2 = sin 2 (^sin^i.. .sin^_2cos^_i,. . . ,

Zn = sm'2 (p cos ̂ i, ^ = - cos (p.
z

We have

LEMMA 2.11. — The following- direct sum decomposition holds :
00

L2^d^)=@U^
k=0

Proof. — We begin by observing that the spaces Hk are mutually
orthogonal in L2^,^). This follows from the orthogonality properties of
spherical harmonics together with the fact (see [Sz], p. 81)

(2.12) ( ^(cos^C^cos^sin2^^
Jo

21-2A7^^(J + 2A) 1=[rwn^w^^ioTX>-2- ^°-
00

To prove the completeness of Q) ̂ k it suffices to show that if
k=0

f C L2^,^) is orthogonal to each 7^, then / = 0 a. e. on 0. Suppose,
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in fact, that

/ /(^o;)sin^ (^^(cos^y^)^ = 0
»/Q

for .7 == 1 ,2 , . . . , d^ and m in N U {0}. By Fubini's theorem, we infer
/»7T

/ ^(^^(cos^sin^?^ = 0,
^0

where

u^ (^) =sin- j ^ / /(^ ̂ )y^ ^ (o;)do;.
Js71-1

One recognizes that ̂ j € ^([O.Tr], (sin^)^+?d^). By the complete-
ness of {C^(cos(^)}^o in the space ^([O.Tr], (sin^)2^), we conclude
^j(^) = 0 for a. e. ^ e [0,7r]. Using the fact that the surface harmonics
form a complete system in L^^-1) [SW], we finally have f((p,uj) = 0 for
a. e. (y?,^). This concludes the proof of the lemma. D

We now let

(2.13) Pk:L\^d^)-^Hk

denote the projection operator onto the (k + l)-th eigenspace of Ca in
(1.13).

For k,£ € N U {0}, we introduce the normalization constants 6^ by
the formula

(2 14) b2 =(k+ D2^"2^ + i)]2^ + 1)
^ ^r(^ + § ) •

It follows from (2.12) that

(2.15) { bk,^ sin^ ycJ^ (cos^,^)
Jfl 2

•bk,e, sm^ fCf^(cosv)Y^(uj)dfl = 6^6^,

where 0 $ ̂  < k, t, = fc(mod 2) and 1 ̂  ^ ^ d<. for z = 1,2. Thus, we
can write

(2.16) Pk(g)(v,u})= f Gk(v,^,0,r))g(0,r]){sme)!sd0dSn~\r))
i/o v sn — ^"
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where

(2.17) Gfc(^,^) = ^ ^sin^ ̂ ^(cos^)
0<!<fc 2

;SSfe(mod2)

^ n ^

• sin^ ̂ ^(cos^) ̂ y^(o;)y^(77).
j=i

It is known that, for n > 2,
^ n-2

r9i^ Y^v ^ /^v ^^ ^ c(.2 (cos 0(2.18) ^Y^)Y^)=^.^^-

where C is the angle between uj and 77 on S'71"1, and 0 ^ C ^ 7r (see [E],
v. 2, p. 243).

In the next two sections, we will study the mapping properties of the
projection operator P/c.

3. L1 - L°° estimates.

Our goal in this section is to prove the following :

THEOREM 3.1. — There exists C > 0 such that

IÎ )HL-(^) ^ C'(A:+l)n-l|H|^(^)

for every g G L1^, d^t).

The proof of Theorem 3.1 relies on the following lemma.

LEMMA 3.2. — There exists C > 0 such that

[ s. 1 2

^ ^ sin^CL^cos^) (^+l ) n - 2 <G(A;+l ) n - l
• — o

0^<fe J
Z=fc(mod2)

for every k C NU{0}.

Taking Lemma 3.2 for granted, we give

Proof of Theorem 3.1. — By (2.16), it suffices to show that

(3.3) \Gk{^^,0,rj)\ < C(k + I)71-1 for 0 < ^,0 < TT and O;,T/ e 571-1.
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It follows from (2.7) and Stirling's formula for the Gamma function
that

(3.4) ^<GO?+1)71-2.

Thus, by (2.17), (2.18) and Lemma 3.2, we have

(3.5) \Gk(^^^^)\<C ^ bi^sm^cJ^(cos^)\ (^l^-2

0<l<k L 2 J
i=fc(mod2)

^C(k+l)n-l.

The desired estimate (3.3) then follows from the Schwarz inequality and
(3.5).

The proof is completed. Q

To prove Lemma 3.2, we need the following

LEMMA 3.6. — Let 0 < A < 1. There exists C = G(A) > 0 such that
for each k e N U {0} and 0 < 6 < TT, we have

k(^-E^).̂ .^^(cost

Proof. — We have the following integral representation of C^cos^),
for 0 < 6 < TT, 0 < A < 1

C^cosO) = ̂ sm^lmL1^0^-^
7T {

• / (te^yt^-^l-tr^l-te210)-^}
Jo )

(see [Sz], p. 90).

Recall that for |r| < 1,

^ oo,-—.—-—,— = yvc^cose),
(1 - 2rcos0+r2)A z-^ 3 v 7

(see [Sz], p. 82).
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A limiting argument shows

k

E CX(
\\ S-

J=0
7———1——^ - ̂ C^cose) = f2) sin(TrA)
(2-2cos^ ^ ^ ) \7rj v )

{ /.I /y. i0\A;+l ^
Im e^^-^l / v ) ., t^-^l - t)-^! - te210)-^ I.

7o l-^0 / J

It follows that
(3.7)

^ K /.I ^fc+2Ak \ />! ^fc+2A

^^^-g^(cos^) ^G^ ^_^^_^_^(cos (9) < G / ————,————,—————^dt.f l - lo ^-te^e\\l-t\x\l-te2^e\

One sees easily that, for 0 < t < 1 and 0 < 0 < TT,

|1-^0 >tsin(9,

\\-te2ie\ > ctsm0.

Substitution in (3.7) yields

k I ^ /*!
-.A/1 C /*1

(3.8) -——————-y -y^C^cos^) <-——^TTT / ^"^(l-^)"^v / (2-2^(9)^ —o ~ (smO)^1 Jo v /

c r ( f c+A) r ( i -A)
- (sin^)^1 ' r ( / c + l ) '

The conclusion of Lemma 3.6 now easily follows from (3.8) and
Stirling's formula for the Gamma function.

We are now in a position to give the

Proof of Lemma 3.2. — We first consider the case when k is even. In
this case we can write i = 2j, j = 0,1, . . . , k / 2 .

Thus, by (2.14),

(3.9) ^ ^Jsin^A^cosJ (^l)71-2

0<l<k L 2 J
i=fe(mod2)

<-^ i ̂ 'l̂ y^- F o^r^)"-2
j=0 J- V 2 ' J ' 2
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We now recall the following addition formula for Gegenbauer polyno-
mials (see [E], vol 2, p. 178) :

(3-10) C^(cosycosip+sm(psm'<pcos0)
_ y [r(j + A)]2!^ - j + 1)2^ . .„
- 2^ ———r(m+j+2A)——— sm3 ̂ ^•(cos^)si^ ̂ -^os^)

r (2A- l ) (2 j+2A-l ) . ^
•————p(A)]2————•C, ^cosff).

In (3.10), when A = 1/2, we must replace

r (2A- l ) (2 j+2A- l ) ,_,
————[r(A)p————c, 2^)

by [r(l/2)]-22cos(j0) when j ̂  0, or by [r(l/2)]-2 when j = 0.

We now let A = n/4, m = fe/2, y = ̂  and 0 = 0 in (3.10). It follows
that the right-hand side of (3.9) is bounded by

C(k + 1). {k + l)"-2-^-!) . cj(l) < C(k + I)"-1

where we have used n - 2 >_ (n/2) - 1 when n >_ 2 and

(3.11) (^(1) = r(J + 2A) ^ (. + i)2A-i5 v / r(2A)r(.7 +1) {3+ i)

(see [E], v. 2. p. 174).

This proves the lemma when k is even.

Suppose now that k is odd, and write (. = 2j'+l, j = 0,1, . . . , (A;-l)/2.
We need to show

(3.12) ^^y[^o•+i+^]2^(^-,•+l)2^•
^ rC^i+j+j+i)

I sin '̂ ̂ 'y/ (cos y)1 • (j + 1)»-2 ^ <-(fc + i)"-2

where C > 0 is independent of k and y.

To this purpose we let m = (k - 1)/2, A = (n/4) + (1/2) and y = ̂
in (3.10), obtaining
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C^_i2 (cos2 (p + sin2 (p cos 0)

(-) ̂ i^^^^
•mi1^-

If n ^ 4, then n - 2 ^ (n/2). Setting (9 = 0 in (3.13), we see that the
left-hand side of (3.12) is bounded by

Csm^k + l)71-2-^^^^!) < C{k + I)71"2,

where we have also used (3.11).

Finally, we consider the case when n = 2 or 3 (and k is odd).

We multiply both sides of (3.13) by C] (cos 6) sin? 0, j = 0 ,1, . . . , (k-
1)/2, and integrate on [0,7r] with respect to 6. Using the orthogonality
relation (2.12), we obtain for j = 0,1, . . . , {k - 1)/2,

7^ (cos 0) sin? 0 d0/ CJ^ (cos2 (p + sin2 (p cos 0)cf (cos 0) sin? 0 d0
Jo 2

^l^^'^^m
Summing in j = 0 ,1 , . . . , {k — 1)/2, we see that the left-hand side of

(3.12) is bounded by
fc-i

/•TT -, ^ n

C(k + I)?"1 / C]^_2 (cos2 (/? + sin2 (p cos (9) sin ̂  ̂  G^ (cos (9) • sin? 0 d0
Jo 2 .-n/O

= 1 + 1 1 .

j=0

Here, I is that part of the integral performed on the set A = < 0 <

0 < TT 0 < sin 0 < —,————.—— \, whereas I I is that part of the integral on- - - ( fc+ l)sm(^J

the set B = { o < 0 < TT y , — — 1 — — < sin 0 <1\.( fc+l)s in(^ ~ ~ J
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We recall the following asymptotic estimates for the Gegenbauer
polynomials ([Sz], p. 172) :
(3.14)

' sm•~x00((j+l)x-l) i f — ^ ^ e ^ T T - -
J + 1 - ~ J + 1

if 0 < 0 < -1 or TT - —1— < 0 < TT.
C^(cos(9)=

O^+l)2^1), ~ ~~ J + l . 7+1~" ~
The estimate of I will follow from (3.14) and the following

fc-i

(3.15)
2 /-»y c^cos^) < -—-„,

z^ 3 (sin^

for 0 < 0 < TT and 0 < A < 1, where C depends only on A.

To see (3.15), suppose first k ^ l/(sin0). Then,

^ C^cosO) ^ ̂  (7^(1) ^ C ̂ (j + l)2^1

j=o ;?=o j=o
C

< C{k + 1)2^ < —
-'^^^ -(sin^-

When A'sin^ > 1, (3.15) follows easily from Lemma 3.6. Using (3.15),
we have

(3.16) |J| ̂ G^+l^^Gl^^sin^ (measure of A)

^(/c+l)71-2.

We now turn to estimating I I . For a fixed (p C [0,7r] we define
C € [ 0 , 7 r ] b y

(3.17) cos (^ = cos2 ip + sin2 (p cos 0.

We claim that

(3.18)
sin <p sin 0

sin^
<,V2.

TT
In fact, i f O < C ^ .,

sin ( > \/1 — cos ̂  = sin ̂ vT—cos^ ^ —,= sin (^ sin ̂ .
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If, on the other hand, (Tr/2) < <^ < TT, we have

sin (^ >: \/1 + cos ̂  = y2 — sin2 (p + sin2 (/? cos 0

> sin (^v^l + cos 6 >_ —,=- sin (^ sin 0.
v2

To finish the proof, we write

fc-i

II=C(k+l)^-1 f ̂ (cosOsm^f^C^cosg)- 1 1
^B 2 ^p^O ^ — Z C O S C 7 ; 4 J

sin^(9d(9+C(/c+l)^-1 /' C^ (cos C) sin ̂
JB 2

^(sin6^d(9=JJi+JJ2.(2-2cos(9)^

Here, B = ^ 0 < 0 < 7 r 7,————.—— < sm0 < 1 \. It follows from[ - - (k+l)sm(p ~ ~ \
_1

| (k + l)sin(^ —

Lemma 3.6, (3.14) and (3.18) that

(3.19) \Ih\ <C(A;+l)n- j(sm^)-^+^ f (sm0)-^d^
J B

<C(A;+l)n-2(sin^) l-5 <,C(k+l)n~2.

If n = 3, by (3.14) and (3.18), we have

(3.20) \Ih\ ̂ C{k+l)^(sm^)~^ [ {sm0)~^d0
JB

<,C{k 4-1).

In the case when n == 2, we need an integration by parts argument to
estimate 11^.

By (3.17), we have

dC, sin2 ip sin 0
(3.21)

Thus,

d(9 sinC

(3.22) A.^O-"^--2."™1^
-2- smC (fc+^sin^sin^
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(see [Sz], p. 80). It follows that

c r d_ / f c + i \ i
2 (&+l)sin(^, /Bd6l c o sV 2 7 ' (2 - 2cos6>)5

C f ^+1^ 1
^^ __ ____________________ I /">/"\Q I _________ 1 I • ______________________

(k+l)smif[ \ 2 ) (2-2COS0)? sin0=[(fc+l)siny]-l

/• / ^+1A sm(9 , 1

^^^r^^cos^d'
where we have used integration by parts. The desired estimate for 11^ then
follows easily. This completes the proof of Lemma 3.2.

4. Weighted L2 - I? estimates.

In this section we establish weighted L2 - L2 estimates for the
projection operator Pk in (2.13).

THEOREM 4.1. — (a) If n is even and 0 < a < 1/2, there exists
a constant C > 0 depending only on a and n, such that, for every
peL^.dn),

(4.2) / sin-a^Pfefsin-a(•)^(^a;) d^<cf\g\
Jfl \ ) J^i

fdO
/Q I \ / I ^'

(b) Ifn is odd, (4.2) holds provided 0 < a < 3/8.

Theorem 4.1 is a consequence of the following lemma :

LEMMA 4.3. — (a) If n is even and 0 < a < 1/2, there exists a
constant C > 0 depending only on a and n, such that, for every g € 7-Ck,

(4.4) || sm~°'(-)^||L2(n,dn) < C\\g\\L^^d^y

(b) Ifn is odd, (4.4) holds provided 0 < a < 3/8.

We will postpone the proof of Lemma 4.3, and show how Lemma 4.3
yields Theorem 4.1.

Proof of Theorem 4.1. — Let

T^)((^) =sin-^P^)((^).
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It follows from Lemma 4.3 that

(4.5) ||T^(p)||L2(^) ^ C\\Pk(g)\\L^{^d^ < C\\g\\m^dQ)

for 0 ^ a < 1/2 when n is even, and 0 ^ a < 3/8 when n is odd. Note that
the adjoint operator of Ta,k is given by

T^Q7)(^) = P^sm-'O^)^).

Since PA; is a projection operator, we may write

sin-^P^snT0^)^^) = sin^ (^Pfc o P^sin-^O^)^,^)
=T^or^07)M.

Theorem 4.1 then follows from (4.5) and a duality argument. D

It remains to prove Lemma 4.3. To do so, we need to establish an
estimate on ultraspherical polynomials.

LEMMA 4.6. — Let 0 < A < 1 and 0 < a < min(l/2, (A/2) + (1/4)).
Then, for 0 ^ j < k,

F (sm^-^d^p ( C^cos^+sin^cos^)
Jo J o

J^cos^+sin^
/o ^o

.̂ - .̂(sin^-^^
C;--(l) ' ' -^1

where C is a constant depending only on a and X.

Assuming Lemma 4.6 for a moment, we give the

Proof of Lemma 4.3. — Fix an integer k ^ 0, and let

(4.7) M )̂ = ̂ M sini ̂ A^ (cos ̂ ) for 0 < ̂  < fc, i = A:(mod 2),

where &/c^ is the normalization constant given in (2.14).

By (2.15),

(4.8) [h^)Y^[uj) 0 < £ < k,£ = A;(mod 2), 1 < j ̂  d^
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is an orthonormal basis for 74 c L2^,^). Notice that (4.8) is also an
orthogonal set in L2^, sin-2^ ^dO). Thus, it is not difficult to see that the
estimate in Lemma 4.3 will follow if we can show

W I ' IM Î̂ sin^-2^ < C
Jo

for 0 < a < 1/2 when n is even, and 0 < a < 3/8 when n is odd.

To establish (4.9), we have to distinguish two cases. First, consider the
case when k is even. In this case, we may write £ == 2j, j = 0 ,1 ,2, . . . k / 2 .
We need to show

(4.10) ( ^ i i ) [rq +t)mt -,+1)2^
r(t+j+f)

/>7r r • ^ 1 2
j sm3 ̂ C3^ (cos (^) (sin ̂ ) 5 -2a^ < 0

To this end, let 71 be the integer such that (n/4) - (5/4) < 71 <
(n/4) - (1/4). We let A = Ai = (n/4) - 71, m = ( k / 2 ) + 71 and ^ = ^
in the addition formula (3.10). We then multiply both sides of (3.10) by
^^^os0)(sm0)2^-l/C^(l), and integrate on [0,7r] with respect to
(9, to obtain that the left-hand side of (4.10) equals

(4.11) C(k + 1) I (sm^-^dy C C^. (cos2 ̂  + sin2 ^cos0)
./o Jo 2 71

.̂ •̂ .(.i.O)"-̂
^A1-2/1^ /

^•+71 W

Clearly, (1/4) < (n/4) - 71 < (5/4). Since 71 is an integer, we have
(1/4) < A = (n/4) - 71 < 1. Moreover, if n is even, we get (1/2) < A < 1.
Thus, by (4.11) and Lemma 4.6, (4.10) holds for 0 < a < 1/2 when n is
even, and 0 < a < 3/8 when n is odd.

Next, we consider the case when k is odd. Write £ = 2 ? + 1
j = 0 ,1, . . . , (k - 1)/2. We need to prove

(4.12) [ro-+^r(^-,+i)2^
^(k^+j+^)

I [sW+^Gg^cos^l (sin^t-^^^C.
Jo L 2 •' J
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To do this, let 72 be the integer such that (n/4) — (3/4) < 72 <
(n/4) + (1/4). We let A = A2 = (n + 2)/4 - 72, m = (fc - 1)/2 + 72, and
(p = '0 in the addition formula (3.10). As in the case of k even, we multiply

both sides of (3.10) by C^^(cos0)(sin6>)2A2-l/G^^(l) and integrate

on [0,7r] with respect to 0. We then see that the left-hand side of (4.12)
equals

(4.13) C{k + 1) /* (sin ̂ ^-^d^p / C^ (cos2 ̂  + sin2 (p cos 0)
JQ JQ 2 +^2

.̂ ^ .̂(sin^-^
^(D

Note that, by definition, (1/4) < (n + 2)/4 - 72 < (5/4). Hence,
(1/4) < A2 = (n+2)/4-72 < 1. Furthermore, i fn i s even, (1/2) < A2 < 1.
Thus, as before, by (4.13) and Lemma 4.6, (4.12) holds for 0 < a < 1/2
when n is even, and 0 <, a < 3/8 when n is odd.

This completes the proof of Lemma 4.3. D

We close this section, by giving the

Proof of Lemma 4.6. — It follows from the addition formula (3.10),
(2.12) and a familiar argument, that

F C^[cos2 y + sin2 ycosff} • cj ^OS0) • (sin^)^-1^
Jo Cj 2 (1)

--^^^""F^-^0-
Also, by (2.12), one sees easily that the estimate in Lemma 4.6 holds for
a=0 . Thus, it suffices to show that

I = f (sin^-2^
Jio^^'^'my^^}

F C^(cos2 (̂  + sin2 ̂ cos0) . cj ^ose) • (sin^-^
Jo Cj 2 (1)

is bounded by C / ( k + 1) where C is independent of k and j.
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We may assume A 7^ 2a. We write I = Ji + ^2 + ^3, where

A- / (sin ̂ -2^
*/0^siny?<^-

r^/ ^ c'^^cos^)/ C^(cosC)- 3 , i—— /-y ^(cosO.-^——^^sin^-1^^ ^-^(l)
^ = / ' (siny)^-2"^

J-k^^smy^^

I ^(cosO-^^^sin^-
^"^TiETTfî  C7- 5^

f ^(cosO-^^^^sin^-^,
-^TIETTfî  ^ '(1)

J3=/ ' (siny)^-2"^
•'Fh'^81111^^;

1sin 0> .. . 1 .——— (fc+l) sin tp

^(cosO.^^^^sm^-1^.
Cj 2(l)

In Ji, Ja, h above, we have, as in (3.17), let cosC, = cos2 y+sin2 (p cos 0
forCe[0 ,7r ] .

We start with /i. Since A > 0,

(4.14) C^(cosC) \<^C^l)^C(k +1)2A-1.

It follows that

^-^
ii^cr^^^e^e

Jo c^w
I (A+l)2A-l(sm^)2A-2ady

«^O^sin(^<^—Y

^-5;
^C(fc+l)20-2 /" ^ 2(cosg) (sin^)2^1^.

^ ^-^(1)
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If 1^ A ^ 1/2, ^-^(cos^l ^ C7^(l), and we have |Ji| ^ C(fc +
I)2" 2 ^ C(A;+1)-1, since a < 1/2. I f O < A < l / 2 using (3.14), we obtain

rjc'^cos^)r c. ^cos^) „, ,
/ -'——i——'- (smff^deJo r j " 2 / ^'0 I (^(l) I /

^ C f (sm^-^ + GO- + l)-A+5 /' (sin^^s^
^"^JTT ,/sinO^

^co'+i)-^^.

Thus,

l^il ^ C(k + l)20-2^ + 1)-^? ^ C'(fc + l)2"-^-^ < C(k + I)-1,

where we have used the assumption that a < (A/2) + (1/4).

Next, we turn to the estimate of /a. We have, by (4.14),

I^I^C'^+l)^-1 f (smy)^-•m^-^dy
•'fc^r^siny^

c^^cose)f C. 2 (cos 61) ,« ,
/ -^——i——/ (sin^-1^
^sine<.. ..; .—— ^"sfTi/sin9<77-——-—— | C''A-sf11— ( f c + l ) s i n v > ' '-^j ^-1-^

If A ^ 1/2, as in the case of Ji, we have

W^C^k+l)^-1 [ (siny)^-2^
•''^iy^siny<5

/' (sin^)^-1^
./sin 0^ ,^1 sin y

<C(k+l)-1 f (siny)-2"^
^Tfc^TyOiny^^

^(7(fc+l)-1 .
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If A < -, we use (3.14) to obtain

\h < C{k + l)^-1 f (sin^-2^
^^hy^sirK^

/ .̂ ^ (sin^-1^
^^•(fetTy3111^

+ ^(A; + l)^-1 /' (sin^)^-^^
^fe^T^sin^^^

/ ^>^ a+^^-^sme)^.^
^^•(^TT8111^

< C^ + I)-1 + C{k + 1)̂  0 + 1)^-^

/l (sin^-^-^
7sin^>^-

<G(fc+ l )~ 1 .

Here, again, we used the assumption a < (A/2) + (1/4).

Finally, we need to estimate 1^ which is the essential part of I .

Write

i^f ^(-y^-^
./smO^ C'j l̂)

/' G^cosC)(siny)2A-2"^.
^^siny>^,,^

We claim that, if0<\<,l,0^a< min(l/2, (A/2) + (1/4)) and
A^2a.

(4.15) | ( C^cosC^smy^-^dy
I •'^mv>^^y

$ C(k + l)A-2(sm0)-A-l + C(k + l)20-^^^)20-^-1

and

(4.16) / C^cos^C^cose^smffdO->!/
^k(

^^^m6<^

^C(k+l)~\smy)~2.
\J-n-,-^——<sme<-—
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We assume (4.15) and (4.16) for a moment and give the estimate for

If 1/2 < A < 1, by (4.15), we have

I^C^+l)^2 / (sin^-sm0}x~2d0
7sin(9>-A-/sin0>^

\2a-2C^+l)2-2/1 (sm0)
7sin(9>-2-^

+ C (k + : sin^)^-2-^,„ n\2a-2
/sme>^ '

^C^+l)-1 since a < 1/2.

If 0 < A < 1/2, it follows from (4.15) and (3.14), that,

|^3| < C{k + 1)^ [ C^^ ̂ x-^
Jsm0>— r7 ^n^sm^>^l C;"̂ !)

+G(fc+l)2-2 / C^^OS0)^^-
Jsin0>—— ^"s/n

[sin^)^-2^
sin^^l C;"2^)

^G^+^^+C^+l^-^+l)^^ / (sm0)-^d0
Jsiae>——^^JTT

+ C(k + l)20-2^- + l)i-A /' (sin^)2"-^^
7sin0>-3-r/sin0>——

<G(fc+l)- 1 ,

where we have used a < (A/2) + (1/4).

In the case A = 1, we use (4.15) and (4.16) to obtain

\h\^C I
Jsism0>^

\C2(cos0)\sm0d0

, ^(cosC)(sin^)2-2a^ +C f (sin^)2-2^
^^sin^^1^, Js,n^>—— / '/sin^>^

^(cosOa^cos^sin^
^(fc+i^in^^^^^J^T

<C(A;+1)-1 /l

^si
C^ (cos (9) (sin e)-1^

sin0>^-

•C(A'+1)-1 /l (sin^)-2^
«/sin a?> , 1 -

+C(k+l)-1 (sin^-2^
^siny>^

<(7(A;+1)-1,
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where in the last inequality we have used (3.14) and a < 1/2.

Thus, all that remains to prove is (4.15) and (4.16).

We recall an asymptotic formula for ultraspherical polynomials :

<4-17' ^<co8"=^^^^-i)'-<'
-r^^-^ [(-)<-¥]

+(A;+l)A-2(sinC)-A-10(l),

uniformly for C ^ [c/k,7r - (c/k)} as k —^ oo (see [Sz], p. 198).

Note that, ifsin^ > 1/(A;+l)sin6>, then sin C > C/(k-\-l) by (3.18).
Substituting (4.17) into the left-hand side of (4.15), one sees that the
integral which contains the remainder (k + l^^sinC)'"^"1^^!) can be
handled easily. We will give details for the estimate of the integral which
contains the main term in (4.17). Consider

(4.18) (A^+l)^1 { (sinC)-^
J^>smy>^^,

cos \(k + A)C - ̂ ] (sin^-2^.

By (3.17),

(4.19) dC 2 sin tp cos y?(l — cos 6)
dip sin C

It follows that

(4.20) cosL+A)C-^1

^_______sinC________d_C . r ,. TTAH
2(k+X)smycosy(l-cos0)d<p\sm[[ K 1 J;'
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Hence, (4.18) equals

(A^+l)^1

.J '{sin^+AK-^ll0)Ji>^>____d^\ L 2 J J
(4.21)

2(fc+A)(l-cos0)^>^>^^

•(sinO-^sin^-^-^cos^)-1^.

Note that

(4.22) sin<" < v^l-cosC = v^^/1 - cos2 y? - sin2 (p cos (9

= v/2sin(/?\/l — cos0.

It follows from integration by parts, (3.18) and (4.22) that (4.21) is bounded
in absolute value by

C(k + l^-^sin^)-^-1 + C(k + ̂ -^sin^-^-1

C^k+l)^2 f/.+
(1-COS(9) J^>smy>-^

^-{(sinO^^sin^^-^-^cos^)-1'
d^p t

dip

< C(k + l^-^in^-1 + C(k 4-1)20-^™^)20-^-1

+ G(A; + l)^-^^^-^1 f (sin^)^-20-1^
^ 1 >sm (p> , , , l.._a^^sin </?>•/

2a—2/-,'- /)\2Q:—2A—1< C(fc + ̂ -'(sin^-1 + G(A; + l)2a-2(sin0)

This proves (4.15).

To prove (4.16), we recall that

sin[(fc+l)C] _ ^cos[(fc+l)C]
^(cosC)= sin^ (k + l)sin2 (psm0

(see (3.21) and (3.22)). Thus, the left-hand side of (4.16) equals

1
'-{cos^k+!)(:}}-Cf (cos 0)d0

(fc + 1) sin2 (p -<sm0<— d6-pD^^^^^^TTT

The desired estimate then follows from integration by parts, (3.14)
and the fact

d[CJ(cos0)} = -C/_^cos0)sm0
d0
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(see [Sz], p. 81).

The estimate (4.16) is proved and the proof of Lemma 4.6 is finally
complete. D

5. Carleman estimates.

Recall that p = (|^|4 + 4^2)? and sm(p = \z\2 /p2. In this section we
prove the following Carleman estimates for the Grushin operator C in (0.1).

THEOREM 5.1. — Let 0 < e < 1/4, s > 100 and 6 = dist (s,N) > 0.
Suppose that p = 2n/(n - 1), q = 2n/(n + 1) (i.e., 1/p + 1/q = 1 and
1/p = 1/q — 1/n). Then there exists a constant C > 0 depending only on
e, 6 and n, such that for f e C^M7^1 \ {0})

(5.2) p-^sin^Yf
LP(Rn+l,-^)

.-5+2^<C p-^sin^)-^/)
^(Rn+l,^)

ifn^2 is even, and

(5.3) L-^sm^^f
Lp^n+l^^

<C p-^^sin^)-^-^/)
^(K^2,-^)

ifn^3 is odd.

Our proof of Theorem 5.1 follows the idea of D. Jerison in [J]. The key
ingredient is a L9 — L^ estimate for the projection operator Pk in (2.13).

THEOREM 5.4. — Let p = 2n/(n — 1) and q = 2n/(n + 1).

(a) Jfn>:2 is even and 0 < a < 1/p, there exists a constant C > 0
depending only on a and n, such that for g € Lq{^t^ dfl,),

(5.5) | sin-0 ̂ (sm-^Off)!!^,^) < C(k + 1)— IJpH^^dn).

(b) Ifn>.Z is odd, (5.5) holds provided 0 < a < 3/(4p).
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Theorem 5.4 follows from Theorem 3.1 (L1 - L00 estimates) and
Theorem 4.1 (L2 - L2 estimates), by a standard complex interpolation
(see [SW]). We omit the details.

We are now in a position to give the proof of Theorem 5.1. As we
mentioned earlier, the argument is similar to that in [J].

Proof of Theorem 5.1. — We will only give the proof of (5.2) in the
case of n even. (5.3) follows from part (b) of Theorem 5.4 in the same
manner.

First, suppose /(p,y?,o;) = h(p)gk{(p^) where h e Go>o(]R-^) and
gk C Hk' Using (1.12) and (2.1), it is not difficult to see that

p-^C^f) = sin^^Hp2/̂ ) + (n + 2s + l)ph'(p)

-\-[s(n-{-s)-k(n-^-k)]h(p)}.

Recall that the Mellin transform of h is defined by

(5.6) h(rj) = F h{p)p-^dp, r j e R .
Jo

Now, let

(5.7) ^(f)=p-S^C(psf).

We have, if f(p^^) = ft(p)^(^,o;), gk € Hk,

(^sW{rf, (^, (j) = sin ̂ ds(r], k)h(rj)gk^, a;)

where

(5.8) a^, fc) = -r]2 + i{n + 2s + 1)77 + [s(n + s) - k{n + k)}.

It then follows that, for / e ^(R71-^1 \ {0}),

{/:,(Pfc(/))r(77,^,a;)=sin^.a,(77,A;).{Pfc(/)}~(77,^a;).

Hence, for / e ̂ (R^1 \ {0}),

00

(5.9) Wf)r(r,,v^)=smv^a^,k)Pk(f(r,,;-))(v^).
k=0
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This implies that, at least formally,
00 -t / p / \ \

r / '— l / - c \ i~ / \ \~~^ T-» / J \ ^ 1 i ' ' > ' ) \ r \
{cs (/)} ̂ ^^'a^^-^Y^-

We shall show that, for / e C§°(R^ x f2),

(5.10) \\Cg (f)\\LP(^ xQ (siny)-l+ePdpd»^ <: ̂ ^^^(R X^i (sin v)~l~£qdPdn \'

Clearly, (5.10) yields the estimate (5.2) because

dzdt (sin^)2^" (siny?)"1

^---^-^^--^-^

(see (1.7) and (2.10)).

To prove (5.10), let g(y,^,uj) = /(e^,^,^) for y € R and

(5.11) R,(g){y^^) = /l ( ( e^-^ f^ J^——d^x^^dx
JR\JR ^o^(r],k) )

where Qk is the operator defined by

(5.12) o,(^(^^^)=p^^__lV^a;).
\ sm^'j /

Then, it is not hard to see that (5.10) is equivalent to

(5.13) ^^(g^LPiRxQ^sm^-^Pdyd^) < C\\g\\Lq^Q^sm^-l-£(ldy d^)

for g^C§°(Rxfl).

Now, fix s > 100 such that dist (s, N) = 6 > 0. Suppose 2^ <
(5/10) < 27V+1. Choose a partitionon of unity {^}5Lo ^or ^+ suc^ ^na^

(5.14)

and

(5.15)

f^^(r) =1 f o r a l l r > 0
/3
supp^ C {r : 2^-2 < r < 2^}, /? = 1,2,. . . ,N - 1
supp^o C {r : 0 < r < 1}

{[-^}supp^N C ^ r : r >

d^
dr^
—Mr)\<^Ce2-^, £=0,1,2,....
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Note that

(5.16)a,(r7^)=-L-Jf.+^)-JA;(n+A;)+.+(n^
I L\ 2 / V 4 ]}

•{,-.[(.^)+^(»+t)7.7(^]}.• \ r ] - i \ \s+

So, foTO^/3 ^ N , we let
(5.17)

^,fe)=' / — / » ^as(r],k)^ h-1 s+
(n+1)'

' - A k(n+k)+s+ (n+1)2

and

(5.18) ^(g)(y,y,a;) = f ( / e^-^ ̂ ^{r,,k)Qkdri\g{x^)dx.
JK\JR ^ /

We first consider the case that 0 <: /3 < N - 1. Note that, if
^(7?,A:)^0. then, by (5.14),

^-^ ,-.[(.+^-l)-^(n+fc)+.+(n^l)2]|^^.

It follows that \rj\ <, 2^ and \s - k\ < 2(3+l. This implies that there are at
most 2/3+2 nonzero terms in the sum over k which defines J?f and the values
of these k's are comparable to s. The above fact, together with (5.15), (5.16)
and (5.17), also yields

(5.19) ^y&f(^) <^•2-^-1.2-^

By (5.5) in Theorem 5.4, we have

\\Qk(9)\\LP^^smy)-^Pd^ ^ C{k-{- ^""ll^llL^^smy?)^-*^)

for 0 ^ a < 1/p. Let e = 1 / p — a, we see that

(5.20) \\Qk{9)\\LP^sm^-^Pdfl} < C(k + l)^ ||^||L9(^,(sin^)-i-^^).
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It then follows from integration by parts, (5.19) and (5.20) that

/• °°
e^-^^^k)Qk(9)drjJR k=Q LP^^sm^-^Pd^)

<

(^ r / f) \ 3
r7|7 ̂  / ( An ) ̂ ' fc) (N(3fc(ff)lk'>(n,(siny)-l+.Pdn)

' fc=0-111 v '/
<

\y-x\3

C
|2/ - X\3

c
—— . 2-^ . 2/3. s-^^M^^n^-^)

c
(2/3|z/-.^|p' ' 2/3 ' 5-^ II^II^W^m^)-1-^^).

Choosing j = 10 and j = 0, we see that

I /* °°
e^-^^^kWg)d^

1^ ^ LP^^sin^-^Pd^)

r^

< (l-\-2(3\v -x\}10 s n ' 2 l^ll1^^111^)"1"^")-

Thus, by (5.18), for 0 < (3 < N - 1,

ll^s (^IlLP^x^^sin^-^^dyd^)

<C..-..2^1 ^ z

<G.5 -^ .2^

/K(l+2^ |2/ -^ | )^ 1 1^ 5

1

11^(^5 •? •)l|L9(0,(sin^)-1-^^)

(1+2/3|•|)10|LA^)

\\LP(R,dy)

\\9\\L(l{Rx^l,{sm^p)-l-£(ldyd^

— -1 ^3

< C ' S ^ - 2^ ||^||L9(Rx^,(sm^)-i-^di/d^)

where we used Minkowski's inequality in the first inequality and Young's
inequality in the second one.

It then follows that

N-l

^ . \\^'s(9)\\LP(Rxfl,{smy)-^Pdyd^) ^ C\\g\\Lq(Rxfl,{sm^-^-^dy d^)'
(3=0
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Finally, we need to estimate Af(^). To this end, one first observes
that, on the support of 6^(77, fc),

M^)|~(H+5+A02.
Moreover,

(5.21) ( 9 V^Cn ]c\[ar,) &sw fc ) ^
~ (H + s + kV+2'

It follows from integration by parts and (5.21) that

(5.22) | ( e^v-^^ k)drj < c

\JR (k + s)l + \y - :- (k+s)[l-^\y-x\{k+s)]'

Thus,

^ f e^-^^Q^g)^
k=OJR LP^^sm^-'^+^dfl)

oo /i , -i \n~ l

^^V^ (^+1) n „

~ ô ̂  + ̂ t1 + \v -x^ +5)] ll^lk^sm^-l-£^
^G||^||^(^(sin^)-i-^^){ ^ (/;+!)-*+ ^ (A;+1)-1-^ |^-^|-11

l^^ fc>^^ J
•^1.-.

C< i——i^Erll^ll^^^sm^)-1-^^)-\y — x\ ri

The desired estimate for R^ then follows from Minkowski's inequality
and the well known theorem on fractional integration.

The proof is complete.

6. The strong unique continuation property.

In this section we apply the Carleman estimate (Theorem 5.1) to
establish the strong unique continuation property for -£-\-V under certain
1̂  conditions on V.

For p > 0 and to e R, let

(6.1) B, = ̂ ((0, to)) = {(^ t) G r^KH4 + 4|t - tol2)^ < p}.
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We denote by S2(Bp) the closure of Cg°(Bp) under the norm
(6.2)

\\u\\s-w-[ t (IV^I^ \z\292u\2+\\7,u\2+\\z\9tU\2+\u\2)dzdt\2.
UBp J

By the subelliptic estimates, if u C S2(Bp), then |V^u + |<9tn| e ^{Bp}.
In particular, it follows that u C L^^Bp) where go = 2(n + l)/(n - 1) by
Sobolev embedding.

We say that u vanishes of infinite order at the point (0, to} in the 1^
mean, if

/„(6.3) {u^dzdt = O^), as p -^ 0 for all N > 0.
/Bp((0,to))

We now state and prove the main result of this paper.

THEOREM 6.4. — Suppose that u € S2(Bp^(0,to))) for some po > 0
and to ^ ^- Also, assume that

(6.5) A,n + H2^ < \Vu\ in B,, = Bp,((0,to))

for some potential V e L\^ where r > n when n is even and r > 2n2/(n+1)
when n is odd. Then u = 0 in Bp^ ifu vanishes of infinite order at (0,^o)
in the L2 mean.

Proof. — The argument we will use to deduce Theorem 6.4 from the
Carleman estimates (Theorem 5.1) is similar to that in the elliptic case
(e.g. see [JK]).

We first consider the case of n even. Without loss of generality, we
may assume to = 0 and po = 1.

Let (3 e C^OR7^1) such that f3 = 1 when p(z,t) < 1/2 and f3 = 0
when p ^ 3/4. Also, let ^j(p) = \(jp} where \ = l-f3. A standard limiting
argument shows that the Carleman estimate (5.2) holds for / = f3\jU.
Thus, for p = 2n/(n - 1), q = 2n/{n + 1) and s = k + 1/2,

(6.6) p ^sin^/^-n
\\LP(^n+l^A^)

^dL-^sin^-^.n)
^(P^^t)
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+C p~s^(sm^)-£C((3u)
^(p>pi,^t)

=1+11

where 0 < p\ < 1 is a constant to be determined and j ^> 1.

Clearly, if e is small enough, by Holder inequality,
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-s+2-S±2, -s+2-^
IKCp, q \WU}\\L^<CP^ • q \\U\\S^B,Y

To estimate J, note that

L(^u) = L(^)u + 2V^- • V,n + 2H2^ • 9^ + XjL{u).

It follows that

(6.7) I<C\\p-s+\sm^r£Vu\\^^^+CjM({ ^dzdt
P<i
^

+CjM( [ (\^.u\2+\z\12\9tU\2}dzdt\
\Jp<1 \ ) )

where M > 0 is a constant depending on s.

We claim that

(6.8) / (|V^|2 + ̂ {OtU^dzdt = 0(pN) as p -^ 0 for all N > 0.
J B ,

In fact, by a variant of Caccioppoli's inequality and (6.5),

(6.9) [ {^^-^{z^QtU^dzdK0 f ^dzdt^ f ^u^dzdt.
JBp P JB^ JB^

By Holder's inequality,

(6.10) [ ^u^dzdK^V^B^ I {u^dzdt
^B2p \ JB^p

^

By assumption, V e L^Bi) and r > n. It follows that 2 < 2r' <
2n/(n - 1) < qo = 2(n + l)/(n - 1). Since u e ^(Bi), we obtain, by
interpolation, that u vanishes of infinite order at the origin in the L2^
mean. The claim (6.8) then follows from (6.9) and (6.10).
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Now, let ^ -^ +00 in (6.6), using (6.7) and (6.8), we see that, if e is
small enough,

llp-^sin^ll^^^

< CV-^sm^Vu^^^ +Gp^+2~^lIMl52(Bi)

-s+2--"^2,
< CIKsin^-^VII^^^IIp-^sin^^ll^^^^^ +^S+2~^IHI^)

< ̂ ll^llL-^^llp-^sin^nll^^^^^) +CrP^+2~^M^(B,)

where we have used the Holder inequality and the assumption 1/p =
1/q — 1/n, r > n.

Finally, we choose pi > 0 so small that C||V||^(^ ) < 1/2, to obtain

P
<WI^(BJ.(sm^u

<Pi. ^(P^i--^)

Letting 5 = A: + ^ ^ +00, we get u = 0 in 5p,((0,0)). Hence, -a = 0 in

Bi((0,0)) by the unique continuation results for the second order elliptic
equation with C°° coefficients (see [H]).

To complete the proof, we now consider the case when n >, 3 is odd.
In this case, we use the Carleman estimate (5.3), the same argument as
above, and the fact

(sm(p)~'4p~Ev
^(5p)

<C1HlL2(Bp), for e small.

We obtain

\\p~s(sm(p)^p^Eu
L^P<P^W

<C (sin^)-^-2^ p s(sm(p)4p̂e\

^(^pi) ^^P<P^W
-s+2-

+^i q Ms^y

Note that, by Holder inequality,

(sin^-^-^VH
'^(^pi)

< (sin^)-^-^
'^(^pi)

ll^(Bp,)
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where 1/r = 1/n — 1/r. Since r > 2n2/(n + 1) by assumption, we have

T < 2n2/(n - 1). It follows that r( - — - 2e ] > —— is e is small enough.\ Zp ) z

Thus, (siny?)"^"26 < +00 by (1.7). This implies that
^(5pi)

p'^sm^'k^u <:Cp^8 q \\u\\s-^{B^'
Lp{p<pl^)

Hence, u = 0 in Bi((0,0)) by the same argument as in the case of n > 2
even. The proof is complete. D
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