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VARIATONAL CONSTRUCTION
OF CONNECTING ORBITS

by John N. MATHER *)

To Bernard Malgrange on his 65t" Birthday

Introduction.

In Hamiltonian mechanics, various questions and results concern
whether there exists an orbit which in the infinite past tends to one region
of phase space and in the infinite future tends to another region of phase
space. Other questions and results concern the possibility of finding an
orbit which visits a prescribed sequence of regions of phase space in turn.

In [Ma5], I obtained results of this type for a class P! of C?
diffeomorphisms of the infinite cylinder T x R (where T = R/Z). This is the
class of diffeomorphisms which can be represented as f; ... f,, where each
fi is an exact area preserving positive monotone twist diffeomorphism of
the infinite cylinder which preserves the ends and twists each end infinitely.
(See [Ma5, §1] for a detailed definition.)

It is well known, by KAM theory, that invariant simple closed curves
for such diffeomorphims often exist. Of course, any such invariant curve
divides the cylinder into two regions and any orbit must stay in one region
or the other. Thus, the existence of invariant curves limits the possibility
of the construction of orbits of the type we seek.

Simple closed curves (i.e., Jordan curves, or homeomorphs of the
circle) in the cylinder come in two varieties : those which separate the
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top end of the cylinder from the bottom end, and those which don’t. These
two varieties may also be described as the homotopically non-trivial and
the homotopically trivial Jordan curves in the cylinder.

G.D. Birkhoff proved that when f € P!, any f-invariant homotopi-
cally non-trivial Jordan curve I' in the infinite cylinder is the graph of a
Lipschitz function u : T — R. Moreover, his argument provides an a pri-
ori upper bound for the Lipschitz constant of u, which depends only on f.
Explicitly, if both f and f~! twist the vertical by an angle of at least 6,
then cot 6 is an upper bound for the Lipschitz constant of u. (See, e.g., the
Appendix of [Ma5].)

Let K = K denote the union of all f-invariant homotopically non-
trivial Jordan curves I' in the infinite cyclinder. From Birkhoff’s a priori
bound, it follows that K is closed. For a generic f, each component of
the complement of K is topologically an annulus, which goes around
the cylinder. (The only exceptions occur when there are two f-invariant
homotopically non-trivial Jordan curves of the same rotation number. In
such cases, the rotation number is rational. Such cases do not occur for
generic f.) A component of the complement of K which is topologically an
annulus is called a Birkhoff region of instability.

The results in [Mab] concern the existence of orbits in a Birkhoff
region of instability. To state these results, it is necessary to introduce the
notion of the average action (or average Poincaré- Cartan invariant) of
an invariant probability measure. The notion of the action (or Poincaré-
Cartan invariant) for a periodic orbit of a Hamiltonian system is well known
[Cart]. Dividing the action by the period, we obtain the average action of
an orbit. This notion has an obvious generalization to invariant measures.
(See §1 for the definition.)

It is also necessary to introduce the notion of the rotation number
of an invariant probability measure p. This is the average advance in the
T coordinate of a point of the cylinder under iteration by f, the average
being taken with respect to u. For what we will do, it is necessary to define
the rotation number as a real number (not a number mod. 1). For this, it
is necessary to choose a lift f of f to the universal cover R? of the cylinder.
Replacing the lift f with another lift f + (k, 0), k € Z, adds k to the
rotation number of every f-invariant probability measure, and thus does
not change anything important in the subsequent discussion. In the sequel,
we will suppose that a lift f of f has been chosen once and for all. Then
for any invariant probability measure u whose average action A(u) is finite,
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the rotation number p(u) is a well defined real number. (See §1 for precise
definitions.)

The set {(p(u), A(p): p is an f-invariant probability measure with
A(p) < +4oo} is a convex subset of R2, since the set of f-invariant
probability measures of finite action is convex, and p(u) and A(u) are
affine functions of y. In fact, this set is the epigraph of a convex real valued
function 8 = G5 of a real variable. We call #(w) the minimal average
action associated to the rotation number w (and the diffeomorphism f).
By definition, A(x) > B(p(u)), for any invariant probability measure p
for which A(p) < +00. We say that an invariant probability measure u is
action minimizing if A(p) = B(p(p)).

If " is an f-invariant homotopically non-trivial Jordan curve in the
cylinder, then any invariant measure supported in I' is action minimizing
[Ma5, Prop. 2.8]. There are two cases. When the rotation number of I’
is irrational, then f|I" is uniquely ergodic, i.e., there is just one invariant
probability measure with support in I'. This is part of the well known
Denjoy theory. (See, e.g., [Herl].)

When the rotation number of T" is rational, each periodic orbit in I’
supports a unique ergodic invariant probability measure. In either case,
these are all the action minimizing ergodic probability measure of f whose
rotation number w is the same as that of f|T.

These results generalize to arbitrary real numbers w (not necessarily
the rotation number of an invariant curve), as long as f € P!. Thus, if
w is irrational, there is a unique action minimizing f-invariant probability
measure f, of rotation number w, and this measure is ergodic. If w is
rational, w = p/q in lowest terms, then every periodic orbit of period ¢
and rotation number p/q carries a unique ergodic probability measure.
If the periodic orbit minimizes the action over orbits of period ¢ and
rotation number p/q, then the corresponding measure is action minimizing.
All ergodic action minimizing measures are obtained in this way. In
particular, one has the existence, and, for generic f, the uniqueness of
action minimizing measures of rotation number p/q. These results were
proved in [Ma4] and again in [Ma6] by a different method and provide a
slight refinement (in the sense that the action minimizing measures are
unique) of previous results in the theory developed by Aubry and myself
(independently).

Let M, denote the union of the supports of all the action minimizing
measures u of rotation number w. In the case that w is irrational, there is



1352 JOHN N. MATHER

just one such measure p, and M, = supp p.. In this case, M, is called
the Aubry-Mather set of rotation number w, provided that there is no f-
invariant homotopically non-trivial Jordan curve of rotation number w. If,
to the contrary, there is such a curve, it contains a unique minimal set (in
the sense of topological dynamics), by Denjoy theory (see, e.g., [Her1]), and
M, is that set. In the case that w is rational, M, is the union of all action
minimizing periodic orbits of period ¢ and rotation number p/q.

Now we may state the main results of [Ma5]. Let R be a Birkhoff
region of instability bounded by f-invariant homotopically non-trivial
Jordan curves I'_ and 'y with p(T'-) < p(T'4).

THEOREM A. — Suppose p(I'-) < a,w < p(T'y). Then there is an
orbit of f whose a-limit set lies in M, and whose w-limit set lies in M,,.
Furthermore, if p(T'—) (resp. p(I'})) is irrational, then this conclusion still
holds with the weaker hypothesis p(I'_) < a, w(resp. a, w < p(T'y)).

THEOREM B. — Consider for each i € Z a real number p(I'_) <
w; < p(T'y+) and a positive number ¢;. Then there exists an orbit
(..., Pj,...) and an increasing bi-infinite sequence of integers j(i) such
that dist. (Pj(i), Mw(i)) < €.

These are Theorems 4.1 and 4.2 of [Ma5]. Our purpose in this paper
is to state and prove a version of these results in more degrees of freedom,
specifically to the setting considered in [Ma5]. Our results are far less than
what one might hope for in more degrees of freedom. We regard this paper
as (hopefully) the first step in a program which could lead to interesting
results in more degrees of freedom. We will state a conjecture in §13 to
indicate what we have in mind.

We state our results in §9. They are too technical to state in this
introduction, as they depend on a generalization of Peierls’s barrier to more
degrees of freedom (§6). This generalization perhaps deserves attention as
a new idea.

In [Ma5], the orbits we constructed were constrained minima. The
main technical difficulty was to construct the constraints so that the
constrained minima do not bump up against the constraints. The proof that
the constrained minima do not bump up against the constraints depended
heavily on order properties of the real line. For the generalization, no order
properties are available, and we have had to find a new method. When
we originally planned this paper, we planned to construct appropriate
constraints and show that constrained minima do not bump up against
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the constraints, as in [Ma5], but in a way that did not depend on the
order properties of the real line. In writing the proof down, we found
that it was simpler to introduce a new variational principle and show
that the action minimizing configurations for the new variational principle
have the required properties. Although we use no constraints, the main
technical difficulty is similar to that of [Ma5]. Here, the main technical
difficulty is to show that the action minimizing configurations for the
new variational principle correspond to trajectories of the Euler-Lagrange
flow of the original variational principle. In view of the way that the
new variational principle is constructed, this amounts to showing that the
action minimizing configurations are restricted to appropriate regions of the
configuration space M. This is analogous to showing that the constrained
minima do not bump up against the constraints.

As a historical remark, I would like to point out that the methods
of [Ma5] extend those of [Mal], and that I spoke of the results of [Mab]
in Oberwolfach in 1985. Although the results of [Mal] are very different
from the results of [Ma5] and this paper, the methods have something in
common, and may perhaps be taken as an indication that the methods of
[Mal], [Mab] and this paper have many possibilities, which are yet to be
exploited.

As a further historical remark, I would like to mention that Bernstein
and Katok [B-K] were the first to use the general sort of variational method
which we discuss in this paper in more degrees of freedom. They proved
the existence of periodic orbits near invariant tori. I also note the article by
Katok [Kat] which contains results about minimal orbits in more degrees
of freedom, and the article by Bangert [Ban2], in which he studied minimal
(or “class A”) geodesics on higher dimensional manifolds.

The results of Herman [Her2] give a very important complement to
the results of [Ma6]. He gives examples showing that the Lipschitz graph
property of invariant tori holds only for positive (or negative) definite
invariant tori, thus showing that the positive definiteness condition in not
just a convenience for the proof, but actually makes a difference in the
dynamics.

In a recent paper [Bol], Bolotin constructs connecting orbits by a
variational method similar to the one we use, but under very different
hypotheses.

Since this paper is aimed at a general audience, I have included a
great deal of expository material. §§1-5 is a summary of previous work I
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have done, with occasional small modifications. The new material begins
in §6, where I explain how to generalize Peierls’s barrier to more degrees of
freedom. In §7, I show that this generalization reduces to Peierls’s barrier
in the case that M = T. For the statement of the main theorem of this
paper, I needed a variant on the barrier introduced in §6. I define this in
88, where I also discuss the nature of both barriers in the twist map case.

In §9, I state the main theorems and discuss their application to
the twist map case. I prove these theorems in §§10, 11. In §12, I state
generalizations of these theorems. In §13, I state a conjecture. This is
intended to suggest what I hope to do with this theory.

1. The setting.

To generalize Peierls’s barrier to more degrees of freedom and state
our main results, we use the setting of [Ma6]. In this section, we recall this
setting.

We consider a smooth compact manifold M, and a C? real valued
function L defined on TM x T, where TM denotes the tangent bundle of
M and T = R/Z. In the usual terminology, L is a periodic Lagrangian (of
period one) on M. For our methods to apply, we need the following two
hypotheses :

Positive Definiteness. For each m € M and each § € T, the
restriction of L to T'M,, X 6 is strictly convex in the sense that its Hessian
second derivative is everywhere positive definite.

Superlinear Growth. Let || || denote a Riemannian metric on M.
Then
L(v, 0)/||v|| — +oo,  as ||v|| — oo,

where v ranges over TM and 0 € T.

In other words, for every C > 0, there exists C; > 0 such that
||lv]] = Ci implies L(v, ) > C||v||. This condition is plainly independent
of the choice of Riemannian metric, since M is compact.

Under these conditions, the Legendre transformation £ is defined : if
m € M, v e TM,, § €T,then L(v, ) = (d,(L|TM,,%x8), ) € T*M,, X6,
where T* M denotes the cotangent bundle of M and T*M,, denotes the
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fiber over m. If L is C™ (r > 2), then £ is a C""! diffeomorphism of
TM x T onto T*M x T which commutes with the projections on M x T.
We will write L, ¢ for the restriction of £ to the fiber TM,, x 6.

The Hamiltonian H: T*M x T — R is defined by H(m,¢&, 0) =
(€, L,‘nfg )-L (E,;:o (8)). If we introduce local coordinates z = (z1, ..., Z,)
in M and let (z,2) = (z1,...,Zn, &1,...Ln) denote the corresponding
local coordinates in TM, and (g,p) = (z,p) = (q1,---,GnsP1,---,Pn) =
(z1,-.+%n, P1,--.,Dn) the corresponding local coordinates in T* M, then
we may express the Hamiltonian in its classical form

H(g,p) =p- & — L(z,%),
where (z,%) and (g, p) are related by the Legendre transformation :
q=r, p=Ls.

One easily computes

Hy = —L,, H,=4.

If Lis C™(r > 2), then £ is C™!. The equations above show that the
first derivatives of H are C"~1. Consequently H is C". Similarly if H is
C™(r > 2), then L is C".

In the Lagrangian formulation of classical mechanics, the evolution
of the system is described by the flow of the Euler-Lagrange vector field
E}, associated to L. Its trajectories correspond to the solutions of the
variational equation (fixed endpoint problem) :

b
B / L(v(t), dy(t)/dt, t) dt = 0.

In other words, a curve in TM X T is a trajectory of Ey, if and only if it
can be represented in the form

t— (’y(t), dvy(t)/dt, t (mod. 1))»

where 7y is a curve on M which satisfies the variational equation.

In local coordinates, the Euler-Lagrange vector field is defined by the
Euler-Lagrange equations

dz/dt = i, d(L3)/dt = L.
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The Euler-Lagrange vector field is L-related to the symplectic gradient of
H, defined by Hamilton’s equations

dg/dt = H,, dp/dt = —H,.

Caratheodory [Cara, p. 207] made the following remark concerning
differentiability classes. If L is C" (r > 2), then, as we have seen, H is
CT, so the corresponding Hamiltonian vector field is C"~!, and so is the
flow that it generates. Since the Legendre transformation is C™~!, the flow
generated by Ey, is also C™~!, even though Ey, itself may be only C™~2.
This applies even in the case r = 2, and we obtain that the conclusions of
the fundamental existence and uniqueness theorem for ordinary differential
equations holds for Er, even though it may be only C°.

Since a trajectory t — (7(t), dy(t)/dt, t (mod. 1)) of Ey is C"71,
the curve vy on M is C".

In the classical theory of the calculus of variations, one also has the
following basic result concerning the boundary value problem, under the
two hypotheses that we have imposed above.

ToNELLI THEOREM. — Let a < b € R, and let mg, m; € M.
Among the absolutely continuous curves <: [a,b] — M such that
v(a) = mg and ~(b) = mg, there is one which minimizes the action

I L(v(t), dy(t)/dt, t)dt.

As Mané pointed out [Maifil], it is not necessary to assume compact-
ness of M, if the superlinear growth condition is satisfied with respect to
some complete Riemannian metric on M.

A curve which minimizes [ : L(y(t), dy(t)/dt, t)dt subject to the fixed
endpoint condition y(a) = mg, 7(b) = my, is called a Tonelli minimizer.
Ball and Mizel [Bal] have constructed examples of Tonelli minimizers which
are not C1, even though L satisfies the hypotheses we have stated above.
A Tonelli minimizer which is C! is C” (if L is C") and satisfies the Euler-
Lagrange equation, by the usual elementary arguments in the calculus of
variations, together with Caratheodory’s remark on differentiability.

The Ball and Mizel examples may be excluded by imposing the
following additional hypothesis :

Completeness of the Euler-Lagrange Flow. Every maximal
trajectory of Ey, is defined for all time.
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The fundamental existence and uniqueness theorem for ordinary

differential equations says that for any initial condition v(t9) = my,
dy(to)/dt = wvp, there is a unique maximal trajectory v : (a,b) — M,
where —00 < a < b < +00. The completeness hypothesis is that a = —oo

and b = +o0, for any initial condition.

Even without the completeness hypothesis, a Tonelli minimizer is C!
on an open and dense set of full measure in the interval in which it is
defined, and the velocity goes to infinity on the exceptional set. In view
of this, the completeness hypothesis implies that a Tonelli minimizer is C*
(and hence CT).

For every Fp-invariant probability measure u on TM x T we may
define its average action

Aw = [ Ldu.

Since L is bounded below, this integral is defined, although it may be
+oo. If A(u) < +oo, we may also associate to u its rotation vector
p(n) € Hi(M, R). This may be uniquely characterized as follows. Consider
a cohomology class ¢ € H! (M, R) and let A\, be a closed smooth 1-form
on M whose de Rham cohomology class is c¢. Usually one thinks of A\; as a
section of 7* M, but one may also think of A, as a real valued function on
T M which is linear on the fibers. One may then pull back A\; to TM x T
by composing with the projection on the first factor. The rotation vector
p(u) is uniquely characterized by the following equation :

(¢, p(w)) = / Acdp .

The bracket on the left is the canonical pairing of H*(M, R) and H; (M, R).
The convergence of the integral on the right follows from the assumption
A(p) < +oo and the superlinear growth hypothesis. It is elementary to
show that addition of an exact one form to A, does not change the integral
on the right. (See [Ma6].) Since this integral is clearly linear in ¢, the
equation above defines p(p) € H1(M, R).

The idea of such a rotation vector is classical, going back to Schwartz-
man’s asymptotic cycles [Sch].
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2. The basic theory.

Throughout this paper, we let M be a fixed smooth compact manifold.
In all examples that interest us, M is a torus, but the theorem we will
state in this section is true without any restriction on the topology of M.
We let L be a C? real valued function defined on TM x T, satisfying the
three hypotheses given in §1 : positive definiteness, superlinear growth, and
completeness of the Euler-Lagrange flow. We will also fix L throughout the
discussion. We call L the Lagrangian.

We let Ur, = {(p(k), A(p)) : p is an Er-invariant probability measure
on TM x T satisfying A(1) < +oo}. Clearly, Uz is a convex subset of
H,(M,R) x R : the set of invariant probability measures is convex and A
and p are linear functions on it.

Moreover, the projection of Uy, on Hy(M,R) is surjective. This is the
content of the Proposition on p. 178 of [Ma6). Here, we briefly outline the
proof and refer to [Ma6] for details.

We let M be the covering space of M defined by m; (M) = ker (H:
m1(M) — Hi(M,R)) where H denotes the Hurewicz homomorphism. For

example, if M = T™ then M = R™. The group of deck transformations of
this covering space is

D =im (H . 7T1(M) — Hl(M, R))
= im (Hy(M, Z) — H;i(M, R)).

It is a lattice in the finite dimensional vector space Hi(M, R), i.e. , it is
discrete and spans Hy(M, R). For example, if M = T", then D = Z"™.

Choose h € H1(M, R). Let T3,...,Ty,,... be a sequence of deck
transformation such that

n T, — h € H;(M, R), as n — +00.

Let g € M. Let Tn = TpTp. Let @,: [0,n] — M minimize
Jo" L(dom(t), t)dt subject to the boundary conditions &,(0) = Zp and
an(n) = Z,, where a, is the projection of &, on M. The existence of
&y, follows from a version of Tonelli’s theorem on M (cf. [Ma6]). Moreover,
&, is C*, by the completeness hypothesis.

To obtain an invariant measure, we use a method which Kryloff and
Bogoliuboff used [KB] to show that any flow on a compact metric space
has an invariant measure.
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For this purpose, it is useful to extend the Euler-Lagrange flow from
TM x T to its one point compactification (T'M x T)* by letting the point
at infinity be a rest point. We extend the definition of the average action
A(p) of an invariant measure y, by letting A(u) = +oo, if the point at
infinity has positive y-mass.

We let 1, (t) = (dog(t),t mod. 1) € TM x T. We let p,, denote the
probability measure evenly distributed along 7, and let u be a point of
accumulation of p,, with respect to the vague topology on measures on
(TM x T)*. The Kryloff-Bogoliuboff argument shows that p is an invariant
measure.

It is easy to see that there exists C > 0 and, for each positive
integer n, a curve B,: [0,n] — M such that £,(0) = Zo, Bn(n) = T,

and n~! fon L(d Bn(t), t)dt < C, where S, is the projection of 3, on M.
Consequently,

/Ld,un =n"1 /nL (dan(t), t)dt <n™! /nL (dBa(t), t)dt < C,
0 0

and it follows that [ Ldu < C and the point at infinity has zero measure
with respect to .

Thus u is an Er-invariant probability measure on TM x T. It is easily
seen that p(p) = liT n~! T, = h € Hy(M, R). This completes our
n—-+0oo

outline of the proof that the projection of Uy on H;(M, R) is surjective.

Clearly, L is bounded below : there exists B € R such that L > B.
It follows from the definition that Uy, C Hy(M, R) x [B, c0). Therefore,
Uy is the epigraph of a convex function 8 = Br: Hi(M, R) — R. For
h € Hi(M, R), we will call 3 (h) the minimal average action of the rotation
vector h. This generalizes the notion of minimal average action discussed
in the introduction.

It is easy to see that 3 has superlinear growth, i.e., 8(h)/||h|| — +o0
as ||h|| — oo, where we may choose || | to be any norm on the finite
dimensional vector space Hi(M, R).

Let o : H'(M, R) — R be the conjugate of 3 in the sense of convex
analysis. (See, e.g., [Roc|.) In other words,

a(c) =max{ < ¢,h > —p(h): h € Hi(M, R)},

for ¢ € H'(M,R). Since B has superlinear growth, the maximum is
achieved and « is everywhere defined. Since (3 is everywhere defined, o
has superlinear growth.
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We set A.(u) = A(u)— < ¢, p(u) >, for ¢ € H' (M, R). We will say
that an Er-invariant measure p is c-minimal if it minimizes A.(u) over all
E1-invariant measures. We will say that it is minimal or action minimizing
if it is c-minimal for some ¢ € H'(M, R). We let M, denote the family of all
c-minimal measures. We let supp M. C TM x T denote the closure of the
union of the supports of u for u € M,. For brevity, we set M, = supp M..
Let m: TM x T — M x T denote the projection.

The principle result of [Ma6] may be stated as follows :

THEOREM 2.2. — M, is a compact, non-empty subset of TM x T. The
restriction of m to M, is injective. The inverse mapping m~*: w(M.) — M,
is Lipschitz.

Here, we have combined Proposition 4 and Theorems 1 and 2 of [Ma6].

Let ¥, = m(M.) C M x T. It follows from this theorem that the flow
on Y. which corresponds to the Euler-Lagrange flow on M, is Lipschitz,
and is generated by a Lipschitz vector field.

From the point of view of existence theory, this theorem tells us
nothing. For each h € H;(M, Z), there exists, by Tonelli’s theorem, a closed
curve v in M, of period 1, which minimizes the action f L(da(t), t)dt
among the closed curves o of period 1 whose homology class is h. By
the completeness hypothesis, v is C'. Then v satisfies the Euler-Lagrange
equation, and so is a periodic orbit of the Euler-Lagrange flow. Thus, one
already has results which imply the existence of many compact invariant
sets.

Our belief that this theorem should prove interesting is based on other
considerations. These relate to results about twist maps which we believe
should generalize to more degrees of freedom. Theorems A and B of the
introduction are examples of one way that the basic theory described in
this section may be used in the context of twist maps. In this paper, we
make a beginning towards generalizing Theorems A and B to more degrees
of freedom.

A few words on the proof of Theorem 2.2 may be helpful. The fact
that M, is non-empty is contained in Theorem 1 of [Ma8], specifically the
fact that the minimum is achieved in the formula given there for —a(c).
We may give a version of the proof given there, as follows : Let A, be a
closed smooth 1-form on M whose de Rham cohomology class is ¢. As in
the end of §1, we think of A. as a function on TM x T (independent of
the T variable). The function L — A, is a Lagrangian, i.e., it satisfies the
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conditions of positive definiteness, superlinear growth, and completeness we
assumed at the beginning. Moreover, its Euler-Lagrange flow is the same
as that of L. For an Er-invariant measure, we have

A = [ (L= 2dn

The statement that M, # @ amounts to the assertion that there ex-
ists a c-minimal measure u. The existence of such a measure may
be proved by letting an: [0,n] — M be a curve which minimizes
J(L = A¢) (dan(t), t)dt for the free endpoint problem. As before, one sets
an(t) = (dan(t), t (mod. 1)) € TM x T. One lets u, be the probability
measure uniformly distributed along o, and lets p be a point of accumula-
tion of the u, with respect to the vague topology. By Kryloff-Bogoliuboff,
u is Er-invariant. It is not at all difficult to see that y minimizes A, for
example by the argument used to prove Proposition 1 in [Ma6).

The fact that M, is compact is Proposition 4 in [Ma6]. By definition,
M. is closed in TM x T. Hence if M, is not compact, ||| is unbounded
as ({, t(mod. 1)) ranges over M.. From this, we were able [Ma6, pp. 185-
186] to construct an incomplete trajectory of the Euler-Lagrange flow, a
contradiction.

The fact that m: M, — M x T is injective and its inverse is Lipschitz
is Theorem 2 of [Ma6]. The intuitive idea of the proof is simple. There is a
well known elementary curve shortening lemma in Riemannian geometry,
as follows. Let a, B be curves on a Riemannian manifold joining points
P, P! and Q, Q' resp. Suppose a and 3 cross. Then there exist curves a,
joining P and Q, and b joining P’ and Q’ such that

length (a) + length (b) < length (o) + length (8).

(See Fig. 1.) In our setting, one may decrease the action in the same way.
(See the lemma used in the proof of Theorem 2 in [Ma6].) If © were not
injective on M., or its inverse were not Lipschitz, it would be possible to
construct an Fr-invariant measure g on T'M x T for which A.(u) < a(c), a
contradiction. This would be done by cutting and pasting trajectories using
the curve shortening lemma. Then the Tonelli theorem and the Kryloff-
Bogoliuboff argument would supply the required measure. See [Ma6] for
the details, which are not simple.
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Fig. 1

3. Twist mappings.

We define the Poincaré map f = fr: TM — TM, associated to the
Lagrangian L, as follows. Let £ € TM and let v: R — TM x T denote the
trajectory of Er, with initial condition v(0) = (£, 0 (mod. 1)). We define
£ by (1) = (f(£&), 0 (mod. 1)).

Such a mapping is an example of an optical mapping in the sense of
[Arnl]. In the case the M = T, such mappings include twist mappings.
To be precise, if f € P!, Moser showed [Mo] that there is a Lagrangian
on TT x T whose Poincaré map is f. Following an idea of Moser, Denzler
[Den] showed how the basic results of Aubry-Mather theory can be obtained
for Lagrangians on TT x T. Our paper [Ma6] may be regarded as a
generalization of [Den], with the idea of taking action minimizing measures
as the basic notion being the new idea. This idea seems essential for the
higher dimensional generalization.

In [Ma6, §6], we showed how the basic results of Aubry-Mather theory
can be obtained from the basic theory described in §2. Here, we recall briefly
the arguments.

In the case M = T, we have H;(M, R) = R, of course, so the minimal
average action may be regarded as a function 5: R — R. The first point
is that this function is strictly convex, i.e., its graph has no flat parts.
For, suppose that graph J intersects a line | in R? in a segment o (not
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reduced to a point). Let (h;, B(h;)), i@ = 0,1 be the endpoints of o.
Because these endpoints are extremal points of the epigraph of (3, there
exist action minimizing ergodic measures p;, ¢ = 0, 1 such that p(uo) = ho
and p(u1) = hi. Each has its support in M., where c € H'(M, R) = R
is the slope of [. By Theorem 2.2, the projection m of M, on the torus
T! x T! in injective. But this leads to a contradiction : since g and y; have
different rotation numbers, trajectories in 7 (supp o) cross trajectories in
7 (supp 1), contradicting the injectivity of m|M.. Thus, we have shown
that 3 is strictly convex. (For more detail, see [Ma6, Proposition 6].)

Let h € Hi(T, R) = R, let I ¢ H!(T,R) x R be a supporting
hyperplane of the epigraph of 8 which touches the epigraph of 3 at h, and
let ¢ be the slope of I. Let M} = (T T x0)NM.. Note that M} is independent
of the choice of [ : it is the support of the set of action minimizing invariant
measures of Poincaré map f of rotation number h.

The second point is that the projection 7 of M, ,? C TT on T is injective
and has Lipschitz inverse. This is immediate from Theorem 2.2.

Of course, 7 (M})) inherits a cyclic order from T. The third point is
that f|M, ,‘3 preserves this cyclic order. For, otherwise, the projection of M,
on T x T would not be injective.

It is a well known result in the Denjoy theory of orientation preserving
homeomorphisms of the circle that if g: T — T is an orientation preserving
homeomorphism of irrational rotation number, then g is uniquely ergodic,
i.e. there is exactly one g-invariant measure on T. In the same way we may
prove the fourth point : f|M} is uniquely ergodic when h is irrational. This
follows from the cyclic order preserving property of f|M}.

It is easy to check that if g: T — T is an orientation preserving
homeomorphism of rational rotation number, then every ergodic measure
is supported on a periodic orbit. Similarly, we have the fifth point : if h is
rational, say h = p/q lowest terms, then f|M} is periodic of period g. This
follows from the cyclic order preserving property of f|Mp, together with
the definition of M} as the support of a set of invariant measures.

4. The variational principle.

As in §2, we let M be the covering space of M such that 7r1(]\7 ) =
ker (H:m (M) — Hy(M, R)).
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We may define a continuous function h = hp: MxM— R, called
the variational principle associated to L, as follows. For m, m' € M, let

1
h(m, m') = min/ L (dy(t), t)dt
0
where the minimum is taken over all curves 5: [0, 1] — M such that

5(0) = m, (1) = m/, and - denotes the projection of % on M. By Tonelli’s
theorem, the minimum is achieved, and

(Hop) h is continuous.
Moreover,
(Hy) h(Tm, Tm') = h(m, m'), ifT eD.

(Recall that D denotes the group of deck transformations of M ) If we
provide M with a Riemannian metric, lift it to M, and let d denote the
corresponding metric on M, then we have

(H2) h(m, m') — +o0, as d(m, m’') — occ.
Actually, it follows from the superlinear growth condition that
h(m, m')/d(m, m') — +oo as d(m, m') — occ.
However, the condition above is strong enough for the applications which
have been given in [Banl|, [Ma2], and [Ma3].

In the case that M = T, we have that there exists a positive
continuous function p on R? such that

(Hs) O12h(z, 2') < —p(z, o) (D).

Here, (D) stands for in the sense of distributions, and 812 denotes the
mixed second partial derivative. In general, the function h need not be
differentiable, so this inequality makes sense only if it is understood in
the distributional sense. See, for example, [Ma2] for a proof in the case
f € P! : the proof in general works the same way. We do not know of any
generalization of (Hs) to manifolds of higher dimension. (See, however,
[B-P] for some progress on related questions.)

In the case that M = T, we also have that there exists on positive
continuous function 8 on R2 such that

(Hﬁ) 611 h(CE, xl) < 0(3’), :E/)v 822 h(.’E, .'17/) < 0 ('I’ :E/)(D)
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See [Ma2] for a proof in the case f € P! (when 6 can be taken to be
constant) : the proof in general works the same way, although 6 cannot be
taken to be constant in general.

Until recently, Aubry-Mather theory for twist maps was based
on the study of minimal configurations in R for a variational princi-
ple h satisfying suitable conditions. The basic theory was developed in
[Banl] under conditions (Hp) — (H4) which are implied by our conditions
(Ho), (H1), (H2), (Hs) and (Hs). The subsequent development in [Ma2]
and [Ma3] was based on these latter conditions.

We may define minimal configurations in complete generality, not

just in the case M = T. A configuration is a bi-infinite sequence
(-+-, My, -+-), My € M. A segment of a configuration is a finite sequence
(Mg, +++y My, -++, M), M; € M, a < b € Z. For such a segment, we set
b—1
h(Mg, -+, mp) = > h(M;, M;41). Such a segment is said to be minimal if
i=a
h('fﬁa: Tty ﬁlb) < h(ﬁ't;, Y ff"i))
for any other segment (my, ---,m,, ---, my) such that m, = m, and

my, = mp (but not necessarily m; = m; for a < i < b). A configuration
is said to be minimal if every segment of it is minimal.

Given a segment of a minimal configuration (Mg, -+, Mp), we may
construct a Tonelli minimizer 5: [a, b] — M by letting F(t), i<t <i+1,
be a Tonelli minimizer satisfying the boundary condition (i) = m,
(i + 1) = Mmy41. Conversely, if 3: [a, b] — M is a Tonelli minimizer,
a<beZ,then (Mg, ---, mp) is a segment of a minimal configuration, if
m; = (i). These assertions follow immediately from the definitions.

We will say that v: R — M is a Tonelli minimizer if the restriction of
it to each finite interval is a Tonelli minimizer. From the above discussion, it
follows that there is a one-one correspondence between mappings R — M
which are Tonelli minimizers and minimal configurations.

5. Minimizers and minimal measures.

In what follows, we identify a curve v in M (or M) with the curve
t — (v(t), t mod. 1) in M x T (or M x T).

We say that a curve in M is an M-minimizer if a lift of it to M is a
Tonelli minimizer. There is a close relationship between M-minimizers and
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minimal measures, which is stated as Propositions 2 and 3 in [Ma6, §3].
In this section, we recall Proposition 2 and state a slightly more precise
version of Proposition 3, which may be proved in the same way.

Let v: R — M be a C* curve and let ((t) = (dy(t), ¢t mod. 1) €
TM xT. Let p be a probability measure on the one point compactification
(TM x T)* of TM x T. We say that p is a limit measure of 7 (or () if
there is a sequence [a;, b;| of closed intervals in R with b; — a; tending to
00, such that u; tends vaguely to u, where p; is the probability measure
evenly distributed along | [a;, b;].

Let d denote the metric on M associated to the lift of a smooth
Riemannian metric on M.

ProrosiTION 5.1. — Let 7v: R — M be an M-minimizer and suppose
that

Jim inf d (7(a), 5(0)) /(b - a) < oo,

where 5 denotes a lift of v to M. Then there exists ¢ € H*(M, R) such
that every limit measure of v minimizes A..

In particular, the point at infinity in (T'M x T)* has zero mass with
respect to such a limit measure.

This is [Ma6, Proposition 2].

To state our refinement of [Ma6, Propositon 3], we introduce the
following notion. We say a curve 7 in M is a c-minimizer (where ¢ €
H'(M, R)) if it satisfies the following condition. For any interval [a, b] and
any curve v;: [¢, d] — M such that ¢ —a € Z and d — b € Z, we have

/ (L — 7 — () (dv(®), 1) / (L — 1 — (0)) (dm (1), t)dt

where « is as defined in §2, i.e., the conjugate of 3 (the minimal average
action).

We emphasize that segments of the curve minimize for curves in M
(not M). Moreover, we have replaced the fixed endpoint problem by the
requirement that the endpoints differ by an integer.

Note that if we replaced L by L — 1. — a(c) in the definition of M
minimizer, we would not change the class of curves we get. Subtraction of
the closed one form 7. would make no difference, by Stokes’s theorem.
Subtraction of the constant a(c) would make no difference for a fixed



VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS 1367

endpoint problem. However, in the definition of c-minimizer, we no longer
have a fixed endpoint problem, and the constant —a(c) is important.

It also follows from Stokes’s theorem that the notion of c-minimizer
is independent of the choice of 7. representing c. Clearly, any c-minimizer
is an M-minimizer. On the other hand, any limit measure of a c-minimizer
minimizes A., as may be seen from the proof of [Ma6, Proposition 2].

By Theorem 2.2, m: M, — £, (= m (M.) C M x T) is a bi-Lipschitz
homeomorphism, for any ¢ € H'(M, R). The restriction of the Euler-
Lagrange vector field to M, induces a Lipschitz vector field E§ on .. This
vector field generates a flow on ¥, which we will call the c-Euler-Lagrange
flow.

ProPosITION 5.2. — Any trajectory of the c-Euler-Lagrange flow is
a c-minimizer.

This is a slight refinement of [Ma6, Propositon 3] and may be proved
in the same way.

6. A barrier.

In this section, we will define a partial generalization of Peierls’s
barrier to several degrees of freedom.

Throughout this section, we fix ¢ € H! (M, R). Recall that ¥, C
M x T and that there is a Lipschitz flow on ¥., which we called the c-
Euler-Lagrange flow. We set 2 = £, N (M x 0) and let f.: 2 — 2 be
the time one map associated to the c-Euler-Lagrange flow. We call f, the
c-Poincaré map. Clearly, f. is Lipschitz.

We define a function h = h,: M x M — R, as follows. We choose
a closed smooth one form 7. on M whose de Rham cohomology class is c.
For m, m’ € M, we let

1
he (m, m') = min /0 (L — 1) (dy(8), t)dt — ax(c),

where a: H'(M, R) — R is as defined in §2, and the minimum is taken
over all curves 7: [0, 1] — M such that y(0) = m and (1) = m/. This is
similar to the variational principle defined in §4, but differs in two respects :
L is replaced by L — 1. and h, is defined on M, whereas the variational
principle of §4 was defined on M.In addition, we have subtracted a(c).
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Note that h. depends on the choice of 7. If ., = 0. + du, where u is
a smooth function on M, then h.(m, m') = h.(m, m’) + u(m’) + u(m).

In this section, we will consider configurations in M rather than in
M. Thus, we use the same definitions as in §4, but now the configura-
tions are bi-infinite sequences (---, m;, --+), with m; € M. When we
wish to distinguish the two notions, we will refer to M -configurations or
M-configurations. We will say that a segment (mg,---, mp) of an M-
configuration is c-minimal if

hC(maa ) mb) < hC(m,cv T m:i)

for any other segment (m, ---, m}) such that m, = m] and m, = m),.
Note that we do not require d — ¢ = b — a, in contrast to the definition of
minimal M- -configurations given in §4. We will say that an M-configuration
is c-minimal if every segment of it is c-minimal.

In analogy to the one-one correspondence between M-minimizers and
minimal M-conﬁgurations described at the end of §4, there is a one-one
correspondence between c-minimizers and c-minimal M-configurations :
starting with a c-minimal configuration (---, m;, ---) one connects m; to
m;+1 by a curve v which minimizes j;Hl(L —ne)(dy(t), t)dt. In this way,
one obtains a c-minimizer.

Any orbit of the c-Poincaré map f.: £2 — X0 is a c-minimal M-
configuration, by Proposition 5.2.

The n-fold conjunction A? of h. with itself (in the sense of [Ma2, §5])
is defined by the formula

n—1

hg (5’ 77) = min { Z h’C (mi) mi+1): mo = 67 Mp =10
=0

andm,-erorOgign}.

We set
hee (€, m) = lim inf A7 (&, n),

for &, n € M. We set B.(§) = h® (&, £). Note that B, is independent of
the choice of 7. representing ¢. We call B, the barrier (or c-barrier). We
will show in §7 that when M = T, this function reduces in many cases to
Peierls’s barrier.



VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS 1369

The barrier B, is a Lipschitz non-negative function on M which
vanishes identically on 0. In fact, we added the normalizing summand
—a(c) in the definition of h. (m, m’) to obtain this property.

To show that B, is non-negative, we first note that [ (L —n.)du —
a(c) =0, for any c-minimal measure y, by the definition of a. From this, it
follows that h7 (¢, £) > 0. For, otherwise, it would be possible to construct
an invariant measure 4 such that [ (L—n.) du—a(c) < 0, by using Tonelli’s
theorem and the Kryloff-Bogoliuboff argument as in [Ma6]. But this would
contradict the definition of a. From A? (€, §) > 0, it follows that B, is
non-negative.

Let & € 0. To show that B, (&) = 0, we suppose the contrary. Then
there exists a large positive integer N and a small positive number § such
that hZ (&, &) = 6, for all n > N. Note that a Lipschitz constant for A,
is also a Lipschitz constant for A7, for all n > 1. Consequently, there is a
neighborhood U of & in M such that A% (&, n) > §/2, for all £, n € U and
alln> N

By the definition of £ and Proposition 5.2, c-minimal measures
correspond one-one to f.-invariant measures on X2. In particular, X2 is
the closure of the union of the supports of all such measures. Thus, there
exists an ergodic f.-invariant measure p whose support meets U. From the
Birkhoff ergodic theorem, it follows that there exists £ € U such that fi(£)
returns to U with positive frequency and

lim Z he(£2©), £272(©) = [ he (& £:(©)) dut) =0.

n—00 n
The last equation is a consequence of the fact that p corresponds to a
c-minimal measure.

Since f};(g) returns to U with positive frequency, there exist n; > N,
ng > N, ... such that f"l({f) € U, fmtn2(¢) € U, ..., and there exists a

constant C such that z ng < CK for all K > 1. Since h” (£, n) > 6/2
forallé,ne U and n 2 N, we have

§|N
wloa
>

= Zh &, £H @) > — 52 55

when n = n; + --- + ng. This contradicts the previous equation. This
contradiction proves that B.(£o) = 0.



1370 JOHN N. MATHER

It is obvious that h2° is Lipschitz as a function on M x M and that a
Lipschitz constant for h. is also a Lipschitz constant for A2°. In particular,
the barrier B, is a Lipschitz function on M. Clearly, A7t"(¢, v) <
h?(f, n + h?(na V); hence, hgo(g, v) < hgo(Ea n) + hgo(n’ v), for all
& n, ve M.

For §, n € M, we set dc(§, n) = hZ(§, n) + hZ(n, ). Obviously,
de(§, €) = 2Bc(§) > 0, and dc(§, v) < de(§, ) + de(n, v) for all
£, m, ve M. Welet ©9 be the set where B, vanishes. Thus, £2 c £,
Clearly, the restriction of d. to E‘c)' is a pseudo-metric, i.e., d.(§, &) =
0, dc(&, m) = dc(n, €), and the triangle inequality holds.

Clearly,

R (€, n) + R (n, v) < min (de(€, 1), de(n, v)) + (€, v).

Thus, h°(§,v) = hX(€,n) + kX (n,v) if either d.(&,m) = 0 or dc(n,v) = 0.

If (---,my,- - -) is a c-minimal M-configuration, it follows from Propo-
sition 5.1 that any limit measure of it has support in X°. In particular, there
exist @, w € XY such that « is an a-limit point of (---,m;, ---) and w is an
w-limit point of (---,m;, ---), i.e., there exist iy — —oo such that « is the
limit of m;, and jx — +o0 such that w is the limit of m;, .

Note that h’j'i(mi,mk) = hﬁ'i(mi,mj) + hlcc—j (mj,mg), fori < j <
k. Since (- --,m;, - --) is c-minimal, we have h*~%(m;, my) = iIllf Rt (ms, my)
and similarly for j in place of i. Hence, iIllf hL(m;,my) = hI~(m;,m;) +
iIllf hl (m;, my). By passing to the limit, we have A2 (m;, w) =hI""(m;, m;)+

h&(mj,w), for i < j. Furthermore, h2®(w, m;) < hZ®(w, m;)+hI~¢(m;, m;).
Adding, we obtain d.(mj,w) < dc(m;,w), for i < j. In other words,
dc(m;,w) is a monotonically decreasing sequence. Since we already know
that its lim inf is zero, we obtain

li de (my, w) =0.

Similarly, d.(m;, &) is a monotonically increasing sequence and

lim  d.(mi;, @) =0.
1——00

From the triangle inequality, it follows that

de(a, w) = lim d;(a, m;) = lim d.(m;, w).
1—+00 1——00
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Also, if w’ is a second w-limit point of (---, my,---), we have d.(w, w') <
de(w, my;) + dc(my, w'), so d.(w, w') = 0, by passage to the limit. Likewise,
if o/ is a second e-limit point of (---, m;,---), then d.(a, ') = 0.

If de(a, w) = 0, we will say that (---, m;,---) is a regular c-minimal
configuration. In this case, d.(a, m;) = d¢(w, m;) = 0, for all i, since
these are monotonic bi-infinite sequences converging to zero at both ends.
Consequently d.(m;, m;) < de(m;, w)+d (w, m;) =0, s0m; € 9. By the
triangle inequality, d.(m;, m;) < dc (m;, @) + dc(a, m;) = 0, so we have
dc(mg, mj) =0

Conversely, for any & € 28', there exists a unique regular c-minimal
configuration (- - -, m;, - - -) such that £ = my. This may be shown as follows.

Existence. Choose an increasing sequence ni, na,- -, ng, - - - of pos-
itive integers such that h* (£, £) — B.(£) = 0. For each k, choose a seg-
k

ment m§, ---, m¥, ---mk_of an M-configuration such that £ = m§ = mk
0> ) ) 0 Nk

and Al (&, &) = nil he(m¥, mk, ). For every integer j, set mk = mk,
where 0 < 7 < nk 1s the remainder obtained by d1v1d1ng j by ng. By
passing to a subsequence, we may suppose that mJ — m;. The result-
ing M-configuration (---,mj,---) is easily seen to be c-minimal and satisfy
mo = €.

To show that (---,mj,---) is regular, we observe that for i>0,
d.(&, m;) = kllrgodc(ﬁ, mk). Moreover, d. (&, mF) = A (&, mF)+hX (mk, £).

Since h$° (€, €) = B.(€) = 0, we have h>(€, mf) < h(€, €) +hi(¢, mf) =
hi(€, m¥). Likewise, h2®(mk, &) < A+ ~¢(mk, £). Therefore,

de(€, mF) < RL(E, mE) + A2 (mE, €) = hPx(€, ©).

Since the last quantity tends to zero as k goes to infinity, it follows that
de(&, m;) =0, for 4 > 0. A similar argument shows that we have this also
for 7 < 0. Passing to the limit, we obtain d.(a, w) = 0.

Uniqueness. This is again the curve shortening argument. Given
two regular c-minimal configurations (---, m;,---) and (---, m},---) with
mo = mg = &, we may use the curve shortening Lemma of [Ma6, §4] to

construct two new conﬁgurations (---, m!,---)and (---, m}’,---) such that
m; =m;, for i <0, m! =m!, forz>0 m’”=m forz<0 m}" =m;,
for i > 0, and

he(m”y, mg') + he(mg', mi") + he(m”y, mg) + he(mg, my
< he(m_1, mg) + he(mo, m1) + he(m’_y, mg) + he(mg, mh).
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It follows that d.(a"”, W) + d.(¢", W") < dc(a, w) + dc(a/, w'), where
a, o, etc. are the a-limit points of (---,m;,---), (---,m},---) etc. and
w, ', etc. are the corresponding w-limit points. However, d.(a, w) =
d.(c/, W), so we have obtained a contradiction. This contradiction proves
uniqueness.

We may extend the c-Poincaré map f. to 22/, as follows. Given
e 221, we let (---,m;,---) be the unique regular c-minimal configuration
such that mg = & We set f.(§) = mj. It is clear that this extends
the previously defined f.. Moreover, f, : £9 — %9 is a bi-Lipschitz
homeomorphism. This follows from the proof of the uniqueness of the
regular c-minimal configuration (---,m;,---) such that & = myg : the curve
shortening Lemma of [Ma6, §4] contains the requisite Lipschitz result.

Now we may introduce some more terminology, using the one-one
correspondence between c-minimal trajectories of the Euler-Lagrange flow
and c-minimal configurations. We will say that a c-minimal trajectory of
the Euler-Lagrange flow is regular if the corresponding M-configuration is
regular. We let M. C TM x T denote the union of all c-minimal trajectories.
The assertions of Theorem 2.2 extend to M.

THEOREM 6.1. — M/ is a compact, non-empty subset of TM x T*
containing M.. The restriction of w to M, is injective. The inverse mapping
771 w(M!) — M is Lipschitz.

The proofs of all these assertions follow from the discussion above.

We set X = w(M.) C M x T. It follows from this theorem that the
flow on X/, which corresponds to the Euler-Lagrange flow on M, is Lipschitz,
and is generated by a Lipschitz vector field. Clearly, £ = ¥/ N (M x 0)
and f, : 9 — £ is the time one map of this flow.

7. Peierls’s barrier.

In this section, we specialize to the case M = T. We will show that
if (¢, (c)) is an extremal point of the epigraph of «, then the barrier B,
(defined in the previous section) is the same as Peierls’s barrier P, for a
suitable rotation symbol w. Peierls’s barrier was defined originally in [A-
LD-A] and again in [Mal] and [Ma2]. See also [Ma5], which is perhaps the
most convenient reference for this notion, and also for the notion of rotation
symbol. Here we recall only that a rotation symbol is a Dedekind cut of
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Q. Thus, to each irrational number, there corresponds a unique rotation
symbol. To each rational number, there correspond three rotation symbols,
denoted p/q—, p/q and p/q+.

To be more explicit, we have to recall some properties of the minimal
average action 8 : H; (T, R) — R and of its conjugate o : H!(T, R) — R,
which were proved independently by the author [Ma7] and Bangert [Ba3],
and discussed much earlier from a physicist’s viewpoint by Aubry [Aub]. In
terms of the identification H; (T, R) = R, we have that 3 is differentiable at
all irrational numbers. Moreover, if p/q is a rational number in lowest terms,
then S is differentiable at p/q if and only if there exists a homotopically
non-trivial fr-invariant curve I' C TT (= T x R) of rotation number p/q,
consisting entirely of periodic orbits of period gq.

Of course, these results may be reinterpreted in terms of the conjugate
function a: H(T, R) — R. We use the identification H(T, R) = R and
thus think of « as a real valued function of a real variable. The fact that 3
is strictly convex translates to the fact that o is differentiable. The fact the
[ is differentiable at irrational numbers translates to the fact that every
flat piece of graph « has rational slope.

ProposITION 7.1. — When w = &/(c) is irrational, we have B, = P,,.

Strictly speaking, in [Mal] and [Ma2], we defined P, to be a real
valued function of a real variable. However, it is periodic of period one.
Thus, we may think of it as a real valued function on T. The equation
B, = P,, above means equality of functions on T.

For the proof, we recall that P, was defined to be identically zero
on X2 in [Mal] and [Ma2]. In the previous section, we showed that B, is
identically zero on X2. Thus, it is enough to consider aeT\X2 and show
that B.(a) = P,(a). The component of T\X? which contains a is a segment
whose endpoints we denote by a_ and a... Since ax € X, there exist unique
c-minimal configuration €4 = (- - -, &+, - -) such that o+ = a4. We choose
lifts @, Gu, &4 of @, ax, &+ to Rsuch that 4_ <@ <y <d- +1, &y =
a4, and such that Ei =(--- ,Eii, -+-) is a minimal configuration. Peierls’s
barrier is defined as follows ([Mal], [Ma2]) :

P.(a) =min Y A (&, &r1) — h (€, Eisrm).

i€l

Here, h is the variational principle associated to L in the sense of §4,
so it is a function defined on R x R. The minimum is taken over all
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§:= (- -;,Ei, ---) € RZ such that &_ < & < &4 and & = a. The condition
Lo <& < EH guarantees that the sum above is absolutely convergent,
since Y Em_ - §~,-_ < 1 in the case that w is irrational. Note that if §~_ is
replaced by &, in the formula above for P,(a), it is still valid.

To prove that B.(a) = P,(a), we consider how the definition of P, (a)
may be put in a form more closely resembling that of B.(a). If we replace h
by the variational principle &, associated to L — 7, — a(c) in the expression
defining P, (a), we get the same quantity. From Aubry’s crossing lemma,
we then obtain

Pw(a) = k,ll—i*n—l{oo h'lcc (g—k—’ a) + hlc (a'7 fl—) - hlcc-H (§—k—a gl—)‘

Note that RE*t (€ x_, &) = AP(é_k—, &), since (-+-,&_,--+) is ¢
minimal.

Since w = a’(c) is irrational, it follows from the well known theory of
twist maps that 22 is a Denjoy minimal set for the Poincaré map f.. Thus,
every orbit of f. is dense in X0. In particular, we may choose £ € X9 and
sequences kj, [; — +o00, j = 1,2--- such that {_k,— — § and §,—- — &
as j — oo. Clearly, Jlggo he® (§—k;—, &) = hX(§, §) = 0. Moreover,

lim A& (§_g,—, a) = h(€, a) and lim h¢ (a, &,) = hP (a, £). Therefore
Jj—oo J—oo
Bc(a) = b (a,€) + h (€, a) = Pu(a). O

ProposiTION 7.2. — If o/(¢) = p/q in lowest terms and c
max{c*: o/(c*) = p/q} (resp. ¢ = min{c*: o/(c*) = p/q}) then B.(a)
P,/q+(a) (resp. Pp/q—(a)).

The proof is similar to the proof of Proposition 7.1 and we omit it.

Thus, we have related B.(a) to Peierls’s barrier in all cases when
(c, a(c)) is an extremal point of the epigraph of a. When (¢, a(c)) is not
an extremal point of the epigraph of o, then it lies on a flat part of the
graph of a. Let p/q be the slope of this flat part, expressed in lowest terms.
Then B, and P,/, have the same zero set. However, in general they are not
equal.
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8. Another barrier.

In the next section, we will state versions of Theorems A and B of the
introduction (Theorems 4.1 and 4.2 of [Ma5]) in our more general setting.
For this we need a variant of the barrier defined in §6. In this section we
define this variant and develop some of its properties.

We set
Bj(m) = min {hZ(£, m) + h°(m, n) — X (€, m): &, € X2}

It is easily seen that B}(m) is a Lipschitz function of m, with a uniform
Lipschitz constant for c in a compact set. Note that

Be(m) = min {h°(€, m) +hX(m, n) — kX (€, n): € 1 € T2, de(€, 1) = 0}

It follows that 0 < B} < B.. Clearly, {B, = 0} is the union of the regular
c-minimal configurations and {B} = 0} is the union of the c-minimal
configurations. Moreover, if d. vanishes on £2 x %0, then B} = B..

In §6, we observed that if (---, m;,---) is a regular c-minimal config-
urations, then d. (m;, m;) = 0. Thus, if the Poincaré map f.: £2 — X2
has a dense orbit, then d. vanishes identically on %2 x 9.

In the case of a twist map, if w = o/(c) is irrational, then f.: £% —
%0 has a dense orbit, so d. vanishes identically on £% x £2, and B, = B?.

Let d be a metric on M associated to a smooth Riemannian metric.
The pseudo-metric d, satisfies a Holder condition of exponent 2 with respect
to d, viz.,

de(&, n) < Cd(&, )?, cexl neM.

Here, C is a constant which depends only on the Lagrangian L and the
cohomology class c. Moreover, C may be chosen to be independent of ¢ for
c in a compact subset of H!(M, R).

To prove this, we use the fact that there is a regular c-minimal
configuration (---, m;,---) such that £ = mg. Let @ be an a-limit point
and w an w-limit point of (---, m;,---). Then

de(§,m) = h (& ) + kS (0, )

= h& (a, ) + he (n, w) — kP (e, §) — hP (€, w)

< he (m_1, ) + he (0, m1) — he(m—1, €) = he(€, m1)
< Cd(¢ n)
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Here, the second equation is consequence of the equations hS° (a, &) +
he (&, m) = hZ (e, m) and AP (n, §) + hEF (§, w) = h (n, w), which
hold because d; (e, §) = d.(§, w) = 0. To prove the first inequality, we
consider sequences kj, l; — +oo such that m_x, — o and m;; — w.
Then he’ (m-k;, ) = inf b (m_x,, €) — h& (@, €) and ke (€, my,) =
ixle RL (&, my;) — A (€, w). The first inequality follows easily. The second
inequality is elementary.

Since d. satisfies a Holder condition of exponent 2, we have that
d.(&,m) = 0, if £, n € X0 and ¢ and 7 can be connected in X0 by a
rectifiable curve. Thus, it follows that d. vanishes identically if X2 = M.
For example, in the twist map case, we have seen that if p/q is a rational
number and {c: @'(c) = p/q} is reduced to one point, then ¥2 = T!. Thus
d. vanishes identically in this case.

Continuing with the twist map case, we next consider the generic
situation, viz. {¢: @'(c¢) = p/q} is an interval [co, ¢1], with ¢y < ¢;. For
any ¢ € [co, ¢1], 2 is the union of the minimal configurations of rotation
symbol p/q. If, furthermore, ¢ € (co, ¢1), then £¢' = £2. On the other hand,
if ¢ = ¢o (resp. ¢ = ¢1), then £ is the union of the minimal configurations
of rotation symbol p/q — (resp. p/q+) and those of rotation symbol p/q,
and properly contains £9 (c.f. [Ma2]).

In the cases ¢ = ¢y and ¢ = ¢;, the pseudo-metric d. vanishes on
$0 x %0 In the case ¢y < ¢ < ¢, two points in X2 are at positive distance
with respect to d if and only if their images in the quotient space -2 / fe
are in distinct connected components. For a generic twist diffeomorphism,
%2/ fe is one point (in the case o/(c) € Q), but in exceptional cases, it has
several points and d. does not vanish on £9 x £0. In the case that £2/f.
is one point, B} = B, but in the remaining cases, B} < B,, and {B} = 0}
properly contains {B. = 0}.

Continuing with the twist map case with the restriction that {c: a(c) =
p/q} is an interval [c, ¢1], we now consider the situation when $2/f (c €
[co, c1]) has two or more points. (Note that this set is independent of
¢ € [eo, 1], since %0 is the union of the minimal configurations of rota-
tion symbol p/q.) Consider &, n € £ which have positive distance with
respect to d. and hence represent different elements in %0 / fe, and let

To(& m) = {m € T': A (€, m) + h®(m, n) — hZ(€, 1) = 0}.

Since X0 inherits a cyclic order from T, there is an induced cyclic order
on X2 / fe, and also on the quotient of the set of complementary intervals of
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30 by f.. Now X0(¢, n) may be described in the following way. There is a
critical value ¢’ with ¢g < ¢’ < ¢; such that for ¢ < ¢ < ¢; (resp. g < ¢ <
), (&, n) is the set of all m € T* such that either m is in the orbit of £ or
1 under f., or m is in a configuration of rotation symbol p/q+ (resp. p/q—)
and (&, m, n) is positively (resp. negatively) oriented with respect to the
quotient cyclic order. Moreover £9 (€, ) is the union of the two sets just
described.

Since { B} = 0} is, by definition, the union of all the sets £2(¢, n) just
described, this provides a description of {B} = 0}.

9. Versions of Theorems A and B
in more degrees of freedom.

In this section, we state versions of Theorems A and B of the
introduction (Theorems 4.1 and 4.2 of [Ma5]) in more degrees of freedom.
We will also discuss the extent to which these generalize Theorems A and B.

We let Wy, = {c € H*(M, R) : there exists an open neighborhood U
of {B* =0} in M such that the inclusion map H;(U, R) — H;(M, R) is
the zero map}. From the fact that {B} = 0} is the union of the c-minimal
configurations, it follows that the set function ¢ — {B} = 0} is upper
semi-continuous. Consequently, Wy, is open in H!(M, R).

THEOREM 9.1. — Suppose ¢y and c; are in the same connected
component of Wy,. Then there is a trajectory of the Euler-Lagrange flow
whose a-limit set lies in M/, and whose w-limit set lies in M, .

THEOREM 9.2. — Consider a bi-infinite sequence (---, ¢;,--+) of
cohomology classes, each of which lies in the same connected component
of Wr,. Let (-, €;,---) be a sequence of positive numbers. Then there is a
trajectory of the Euler-Lagrange flow which passes within a distance of €;
of each of the sets M/, in turn.

These are our versions of Theorems A and B in more degrees of
freedom.

To see to what extent these generalize Theorems A and B, we examine
the relationship between the connected components of Wi, and the Birkhoff
regions of instability.
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Thus, we consider a twist mapping f. According to Moser [Mo], there
is a Lagrangian L: TT x T — R, satisfying the hypotheses we considered
in §1, whose time one map is f. Clearly, a cohomology class ¢ is a member
of Wy, if and only if {B} = 0} is properly contained in T. In the case
that o'(c) is irrational, this holds if and only if there is no homotopically
non-trivial f-invariant curve of rotation number o’(c). However, in the case
that o/(c) is rational, the situation is more complicated.

Let p/q be a rational number, expressed in lowest terms. Let [cg, ¢1] =
{c € HY(M, R):&(c) = p/q}. If [co, 1] is reduced to one point c, then there
exists a homotopically non-trivial invariant curve of rotation number p/q,
consisting entirely of periodic orbits of period ¢ (cf. [Aub], [Ban3], [MaT]).
In this case, {BX =0} ={B. =0} =T, soc¢ W.

Thus, we restrict our attention to the case when ¢y < c;. This case
divides into several subcases, depending on how many action minimizing
orbits of rotation number p/q there are.

In the generic situation there is just one. When there is just one,
we see from the description in §8 of {B* = 0} that ¢ € W, if ¢ € (co, ¢1)-
Moreover, in the case ¢ = ¢g (resp. ¢ = ¢1), ¢ € Wy if and only if there does
not exist a homotopically non-trivial f-invariant curve of rotation number
p/q consisting entirely of orbits of symbol p/q or p/q — (resp. p/q+).

When there are two action minimizing orbits of rotation number p/q,
the situation is the same as before for ¢ = ¢g, ¢1, but more complicated
for ¢g < ¢ < ¢;. The assumption that there are two minimizing orbits
means that $0/f. has two elements. Let £, 7 € X9 represent the two
different elements of X/f.. As discussed in §8, we have {B; = 0} =
$0(¢, n) U XO(n, £). After some thought, the reader should be able to see
that if there is a homotopically non-trivial f-invariant curve I" of rotation
number p/q, then {B¥ = 0} = T in at least one of the following cases :
c=cy,c=cy, c=c,orc=c"’, where ¢ is the bifurcation value of £%(¢, 1)
(i.e. the unique value of ¢ between ¢y and ¢; where it changes) and ¢” is
the bifurcation value of £2(n, £). More specifically, there are the following
possibilities : I" consists of orbits of rotation symbol p/q+ (resp. p/g—) and
orbits of rotation symbol p/q, in which case { B} = 0} = T (resp. {B}, =
0} = T); or it contains orbits both of rotation symbol p/g— and of rotation
symbol p/g+, in which case £, (&, 7) =T or £%, (n, £) =T.

In the case of two action minimizing orbits of rotation symbol p/q, it
may happen that {B} =0} = T for some ¢y < ¢ < ¢; even though there is
no homotopically non-trivial f-invariant curve of rotation number p/q. If
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this happens at all, it must happen when ¢ is one of the critical values ¢’
or .

To see how this can happen, we consider for simplicity the case when
p/q = 0. Then X0 has two points £ and 7. Let I (resp. J) denote the arc in
T consisting of all points 6 for which (¢, 8, n) (resp. (n, 0, £)) is positively
oriented with respect to the cyclic order in T. We could consider, e.g., a
twist mapping f, for which every element of I is part of a configuration
of rotation symbol 0+ and every element of J is part of a configuration of
rotation symbol 0+ or 0—, but there exist an element in J which is not
part of a configuration of rotation symbol 0+ and an element in J which
is not part of a configuration of rotation symbol 0—. Such twist maps are
easily constructed. We may do this in such a way that ¢” < ¢’. For such
mappings, there is no homotopically non-trivial invariant curve of rotation
number 0, but {B. =0} =T.

Such examples are very exceptional, but they do show that Theorems
9.1 and 9.2 do not generalize Theorems A and B. Such examples give a
kind of extraneous obstruction to finding connecting orbits - extraneous in
the sense that the connecting orbits exist in these examples, even though
their existence does not follow from Theorems 9.1 and 9.2.

Presumably, it should be possible to improve Theorems 9.1 and
9.2 by weakening the hypothesis, so that there are no such extraneous
obstructions. However, we have not done so until now.

10. Proof of Theorem 9.1.

Let cg, ¢; be in the same connected component of Wy. Since W, is
an open subset of the finite dimensional vector space H!(M, R), we may
choose a simple smooth curve I in W, joining ¢y and ¢;. For each ¢ € T
we choose a smooth closed one form 7, whose de Rham cohomology class
is c¢. We choose 7. so that it depends smoothly on ¢ and the other variables
jointly and so that for any ¢* € I', we have a neighborhood U+ of {B}. = 0}
in M and a neighborhood J.- of ¢* in I" such that nc|Uc~ = Nex |Ue~ for
¢ € J.». The possibility of choosing 7. in this way is a consequence of the
assumption that {B}. = 0} has a neighborhood V in M such that the
inclusion map H;(V, R) — H;(M, R) is the zero map, together with the
fact that the set function ¢ — {B} = 0} is upper semi-continuous.
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Given a sequence ¢ = (c%,---, cV) of elements of I, an increasing

sequence j = (j; < -+ < Jjn) of integers, an M-configuration (- - -, m;, - --),
and integers a < j; and b > jn, we define

N Ji+1—1

hé',f(ma’ ) mb) = Z Z hci (mka mk+1)7

i=0  k=j;

where we set jo = a and jy4+1 = b. Note that h.i depends on the choice of
7n.i. For what follows, it is essential that 7, be chosen as indicated above.

We will say that the segment (mg,---, mp) of an M-configuration
is (¢, j)-minimal if for every increasing sequence j’ = (j; < --- < ji)
of integers satisfying j;,, — j; < ji+1 — Ji, ¢ = 1,---, N, any integers
¢ < ji and d > jy, and any segment of an M-configuration (m,---,m})
satisfying the boundary condition m, = m/, my = m/;, we have

hé-’;(ml,"', mb) < hai(mé,,m;)

We will say that an M-configuration is (, f)-minimal if every segment of
it is (&, 7)-minimal.

An easy compactness argument shows that for any sequence ¢ =
(% ---,cN) of elements of I', and any increasing sequence j = (j; < - - <
jn) of integers, there exists a (¢, 7)-minimal configuration.

The strategy of proof of Theorem 9.1 is to choose a sequence ¢ =
(c® = cg, ¢!, c2,---,cN = ¢;) of elements of T, with c**! very close to c',
an increasing sequence (j; < --- < jn) of integers, with j; 1 — j; very
large, and a (C, j)—minimal configuration (- - -, m;,---). Then we construct
a curve v : R — M by letting v(¢), 7 < t < i + 1, be a Tonelli minimizer
satisfying the boundary condition () = m;, v(i + 1) = m;41.

Our assertion is that if ¢ and 7 are chosen appropriately (i.e., if ¢i*+!
is sufficiently close to ¢, and j;41 — j; is sufficiently large), then v satisfies
the required conditions, i.e., it satisfies the Euler-Lagrange equation, and
the curve t — (dv(t), t mod. 1) in TM x T has its a-limit set in M/ and
its w-limit set in M.

The assertions about the a- and w-limit sets are easy consequences
of the theory which we have already developed. We leave their verification
to the reader.

The crux is the assertion that v satisfies the Euler-Lagrange equation.
It is obvious that - satisfies the Euler-Lagrange equation except possibly at



VARIATIONAL CONSTRUCTION OF CONNECTING ORBITS 1381

t=7; ¢ =1,---,N. To verify that + satisfies the Euler-Lagrange equation
at t = jj, it is enough to check that 7.i-1 = n.: in a neighborbood of m;;,.

We may first choose ¢*?, - - -, c**, ordered along T, starting at ¢*® = ¢
and ending at ¢** = ¢;, such that for each i, there is an open set U; C M
with the property that if ¢ is in the arc [¢**~!, ¢***1] in T, then 7, = 7~ on
U; and {B} = 0} C U;. This is a consequence of the way that the 7, were
chosen and the upper semi-continuity of the set-function ¢ — {B} = 0}.

We think of ¢*0,--.,c** as defining a partition of I'. We choose
c®,---cVN, ordered along T, to define a refinement of this partition. In other
words, we choose the latter so that {c*?,---,c**} C {c?,---,cN}. It is easy

to see that if ¢t~! and ¢t are sufficiently close and j; — j;_1 and ji41 — j;
are sufficiently large, then m;, € U; where [ is chosen so that ¢*~! and ¢'
are in [c*'~1, ¢*!]. Thus, 71 = 7 in a neighborhood of mj,, as required.

11. Proof of Theorem 9.2.

This is very similar to the proof of Theorem 9.1.

Let (---,ci,---) be a bi-infinite sequence consisting of elements of
the same connected component of Wi. This time, we choose a smooth
parameterized curve I': R — W, such that I'(i) = ¢; and T'|[i, i+ 1] is an
embedding. For each t € R, we choose a smooth closed one form 7; whose de
Rham cohomology class is I'(t). We choose 7; so that it depends smoothly
on t and the other variables jointly and so that for any to € R, we have a
neighborhood Uy, of {Bl":(to) =0} in M and a neighborhood J;, of to in
R such that 77|Uto = nt0|Ut° for t € J;,. The possibility of choosing 7; in
this way is again a consequence of the assumption that { B}, ) =0} has a
neighborhood V' and M such that the inclusion map H; (V, R) — H;(M, R)
is the zero map, together with the fact that the set function ¢ — { B} = 0}
is upper semi-continuous.

The strategy of proof of Theorem 9.2 follows the strategy of proof of
Theorem 9.1, with appropriate modifications.

Since we may have 7y # 7y, even though I'(t) = I'(t'), we need to
introduce the function hy;: M x M — R defined by

hi(m, m') = min‘/0 (L —me) (dv(¢), t)dt — a(l"(t)),
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where the minimum is taken over all curves +: [0, 1] — M such that
7(0) = m and (1) = m'. This is the same as the definition of A, in
§6 (with ¢ = I'(t)), but now the dependence on 7. is taken into account
explicitly.

Given a bi-infinite sequence t = (- -, t;, ---), a bi-infinite increasing
sequence j = (--- < j; < ---) of integers, an M-configuration (- --,m;, - --)
and integers a, b, we define h{, 7 (ma, - - -, mp) by an obvious modification of
the definition of bz, 7 given in the previous section. Likewise, we introduce
the notion of a segment (mq, - - -,m;) of an M-configuration being (£, 7)-
minimal by an obvious modification of the notion of a (¢, 7)-minimal
configuration introduced in the previous section. Finally, we say that an
M-configuration (---,m;, - --) is (£, j)-minimal if each finite segment of it
is (£, 7)-minimal.

An easy compactness argument shows that for any sequence t =
(-++,t;,---) of real numbers, and any bi-infinite increasing sequence j =
(-++,ji, - ) of integers, there exists a (#, j)-minimal configuration.

To prove Theorem 9.2, we choose an increasing sequence ¢ = (- <
t; < ---) of real numbers, with t;11 very close to ¢;, an increasing sequence
(-++ < ji < ---) of integers, with j;41 — j; very large, and a (£, j)-minimal
configuration (---,m;,---). Then we construct a curve v: R — M by
letting y(t), 2 <t < i+ 1, be a Tonelli minimizer satisfying the boundary
condition y(2) = m;, v(i + 1) = miq1.

Our claim is that if ¢ and j are chosen appropriately (i.e. if ¢, is
sufficiently close to ¢;, and j;+1 — j; is sufficiently large), then ~y satisfies
the required conditions. The proof of this is similar to the corresponding
argument in the proof of Theorem 9.1, and we omit it.

12. A weaker hypothesis.

Just before the deadline for submitting this paper for the proceedings
of the conference in honor of Malgrange’s 65" birthday, I noticed that the
proofs of Theorems 9.1 and 9.2 work under a weaker hypothesis, which I
will explain in this section.

Given c € H(M, R), we define

Ve =) {iv+H1(U, R): U is a neighborhood of {B} = 0}}.
U
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Here, iy;: U — M denotes the inclusion map. Thus, V. is a vector subspace
of H;(M, R). Moreover, V, = 0 if and only if c € Wy.

We define Vcl to be the annihilator of V.. In other words, if ¢’ €
H(M, R), then ¢/ € V- if and only if < ¢/, h >= 0 for all h € V,. Clearly,

vi= U { ker if;: U is a neighborhood of {B} = 0}}.
U

Note that there exists a neighborhood U of {B} = 0} in M such that
Ve = iy« H1(U, R) and V' = kerij;.

We will say that cy, c; € HY(M, R) are C-equivalent if there exists
a continuous curve I': [0, 1] — M such that I'(0) = ¢y and I'(1) = ¢y,
and for each ty € [0, 1], there exists § > 0 such that I'(t) — I'(¢) € V[:%to)
whenever t € [0, 1] and |t —to| < 6.

Theorem 9.1 remains true if the hypothesis that ¢y and c; are in the
same connected component of W7, is replaced by the hypothesis that ¢y and
c; are C-equivalent. Likewise, Theorem 9.2 remains true if the hypothesis
that the c; are all in the same connected component of Wy, is replaced by
the hypothesis that the c; are all C-equivalent. The proofs are the same.

13. A conjecture.

To demonstrate the usefulness of our theory, we would need to give
examples to which it applies. At present we have no real examples beyond
twist maps. In this section, we will state a conjecture which we hope to
prove at some future date by an extension of the methods of this paper.
This conjecture gives an example of what we are aiming for in developing
our theory.

Our conjecture concerns generic Lagrangians in the sense of Maiié
[Man3]. We consider a smooth Lagrangian L, on a smooth compact
manifold M, i.e., a C* mapping Lo: TM x T — R satisfying the
hypotheses listed in §1, viz., positive definiteness, superlinear growth,
and completeness of the Euler-Lagrange flow. We consider the family of
Lagrangians of the form L = Ly + v, where ¢: M x T — R is a C*®
function. Here, we identity ¥ with ¥ o 7w, where m: TM xT — M x T
denotes the projection. We will also assume that for any L of this form,
the Euler-Lagrange flow is complete.
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We will say that a property of the Euler-Lagrange flow Ef, is generic
(in the sense of Maiié) if for any Lo, the set of 1 for which it is satisfied is
residual, with respect to the C*° topology on C*°(M x T). We conjecture
that if dim M > 2, then generically there exists an orbit v which escapes
to infinity, in the sense that for every compact subset K of TM x T, there
exists to such that v(t) ¢ K, for t > to.

Such a result is false when dimM = 1, by KAM theory. When
dim M > 2, the usual KAM tori do not separate phase space, so KAM
theory does not tell whether our conjecture is true.

Our conjecture belongs to a class of speculations which go back to
Boltzmann’s quasi-ergodic hypothesis. Recently, Herman (see [Yoc]) has
produced examples of Hamiltonian systems for which Boltzmann’s quasi-
ergodic hypothesis is false. It is noteworthy that in Herman’s examples,
variational methods do not apply.

Let us mention also the famous paper of Arnold [Arn2]| who gave an
example to show that certain results guaranteeing boundedness of orbits
in Hamiltonain systems in two degrees of freedom in the autonomous case
or one degree of freedom in the non-autonomous case have no analogue
in more degrees of freedom. The method of [Arn2] is another method one
might try to use to prove our conjecture, but it seems (at least to the
author) that variational methods such as described here are more likely to
succeed for proving the conjecture we have stated here.
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