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BERNSTEIN^S INEQUALITY ON ALGEBRAIC CURVES

by Charles FEFFERMAN and Raghavan NARASIMHAN

Dedicated to Bernard Malgrange

Introduction.

In this paper, we estimate the growth of polynomials on a smooth
algebraic curve F in the plane. Let F = {(a;, y) € R2 : y = tp(x) and |a;| ^ 1}
where Q(x^ ̂ (x)) == 0, Q(x^ y) being a polynomial with real coefficients. To
control r, we make the following :

Assumptions.

(I) \^(x}\ < 1 for \x\ < 1

(II) Q{x^y) has degree at most D.

(Ill) |0(^)| <C for M, |2/ |<1.

(IV) ^-(x^y) > c > 0 f o r ( ^ 2 / ) e r .

Under these assumptions, we prove :

THEOREM 1. — Let P(x^ y) be a polynomial of degree d and f(x) =
P(x, ̂ {x}). Then, there exists a constant C^ depending only on d, D, (7, c,
such that the following hold :

(A) m^|/(a:)|<amax|/(rc)|;
M<i \x\<^

Key words : Bernstein's inequality - Semi-algebraic sets.
A.M.S. Classification: 26.
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(B) max \f(x)\ <, C^ max \f{x)\ (Bernstein's inequality);
\x\<l M^l

(C) max \f(x)\ <C. / \f(x)\dx.
l^l^i j-i

Thus, / behaves like a polynomial of one variable. The point of
Theorem 1 is to control the dependence of the constant C,, on the curve F.
For fixed F, estimates (A), (B), (C) are obvious consequences of the fact
that any two norms on a finite dimensional vector space are equivalent.

Theorem 1 was conjectured by A. Parmeggiani; he uses it in his
analysis of pseudodifferential operators [P].

It is tempting to make the following conjecture from which Theorem
1 would follow easily : Let P(x, y) be a polynomial of degree at most d,
and let F satisfy (I), (II), (III), (IV). Then there exists another polynomial
P(x, y) of degree at most A,, such that P = P on F, and max \P(x, y)\ <

\x\,\y\<l
C* max |P|. Here, d^ and C* depend only on d, D, C, c. Unfortunately, this
conjecture is disproved by elementary examples. For instance, take

I\ = {(^ y)eR2: M, \y\ < 1 and y(l + x2 + y2) - e = 0}

for small nonzero e. The polynomial Pg = " satisfies
e

M ^ir^0111-
so that Pe|I\ is bounded uniformly in e. Suppose we could extend Pe|I\ to a
polynomial Qe{x^y) whose degree and coefficients are bounded uniformly
in e. Then for a sequence e^ —^ 0, we would have Q^ —^ Q uniformly,
for a polynomial Q(x,y). Since I\ approaches the a;-axis, (*) implies that
Q(x,0} = -J——2, which contradicts the fact that Q is a polynomial.

1 ~r X

The above counterexample suggests the cure for the false conjecture
: instead of extending P|r to a polynomial, we should look for a rational
function F / G , with F{x, y), G(x, y) of degree at most A,, such that F / G =
P on F, ^ < G < 0, on [\x\,\y\ <, 1} and max |F| < C*max|P|.

l^ l , l2 / l< i r
We give the precise formulation of our extension theorem in the next
section, and then we present its proof. Finally, we derive Theorem 1 from
the extension theorem. Note that we formulate the extension theorem for
hypersurfaces in W1. The proof is no harder than the special case n = 2
that we use for Theorem 1. We have recently proven an extension theorem
in higher codimension.
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We are happy to dedicate this paper to Bernard Malgrange. He has
influenced us in many ways. Moreover, parts of this paper are inspired by
his work.

1. The Extension theorem.

Let Qp denote the cube {(rci, ....,^n) € H^ : \Xj\ <: p for j =
1,2,...,n}.

THEOREM. — Let p be a polynomial in n variables, having real
coefficients and of degree at most D. Let V = {x € R71 : p(x) = 0}.
Assume that p(0) = 0, | V?(0)l > c> 0, and max \p\ < C.

Qi
Then, there exist constants p\ > 0, C' > 0 and D/ > 0 depending

only on the constants n, c, (7, D appearing in the assumptions on p such
that the following holds :

Given a polynomial f on W1 and a number p € (0,pi], we can find
polynomials F, G of degree at most D' satisfying the following conditions:

(a) f=F/GonVnQ^

(b) J ^ G < 2 on Q2p;

(c) max|F| < C" max |/|;
' / Q2p ' ' ~ vnQp1 '7"

2. Notation and definitions.

Let D be an integer, and let Ci € (0,1) be given. We fix these
parameters throughout the paper. Define Hd = the ve.ctor space of all
polynomials of degree at most d on R77', with real coefficients. Define

ii/ii-fE^i2)^01^ E^"6^
|^|<d / H<d

w = { p e H D :|| p ||= i,p(o) = o, | yp(o)| ^ ci}
Op = {On, . . . ,^) e R" : 1^-1 ^ p for j = l,... ,n}

as in the extension theorem. Given / € TV, we can factor f as f = pq
with p irreducible in R[a;i,... ,^],j?(0) = 0 and ^(0) = 1. This uniquely



1322 C. FEFFERMAN AND R. NARASIMHAN

determines p and q in terms of /. We define mainfac(/) to be p, and we
define otherfac(/) to be q for the above factorization of /. Note that
mainfac (/) is irreducible in C[a;i,..., Xn], as well as in R[a;i,..., a^]. If
feW and p = mainfac (/), then define

V(f)={xeRn:p(x)=0}.
The type of / e W is defined as the degree of mainfac (/). Set

W1' =={f ^W : f has type t}, and
W t ^ = { f ( E W : f has type ^t}.

Suppose p e W, q C H^ and p > 0 are given. We define Norm (p, g, jD', p)
to be the least constant C' such that for any / e ^D there exists an
f € ff15' that satisfies

(a) /=g / on V(p), and
(b) I I /H^C' max I/I.

Qpnv(p)

If no such constant C' exists, then we define Norm (p, g, D', p) = +00.

Next suppose p(=W,C',D',p>Q are given. We define Norm^D^C',/))
to be the infimum of Norm(p,g,D',p) over all q e ^D/ that satisfy
q(0)=^\\q\\<Cf.

3. Preliminary observations.

LEMMA 3.1. — Let < / ? i , . . . , (ps ^ H0, and let E C W. Assume that
< / ? i , . . . , (ps are linearly independent as functions on E. Then we can find
points a:i,. . . , Xs € E such that
(1)
^ |^|<C^m^ ^ ^j^k) for any real numbers $i,... ,$5.

Kj'^s "~ -s l<J'<s

Moreover, suppose (^ i , . . . , (ps e H0 and x^,..., Xs C R" are given,
and assume that

(2) 11^-^IIJ^-^I <c.

Then we have the estimate
(3)

^ l$j I < C' ^m^ ^ ^^ (xk) tor any real numbers $1,..., ̂ .
1<J'<5 ~ ~8 Kj<s
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Here, c and C1 depend only on £', < / ? i , . . . , </?s, JD , n. In particular,
they are independent o f^ i , . . . , (^s ,^ i , . . . , ^s ,$ i , . . . , $s.

Proof. — By induction on v{\ <_ v < s) we can find Xy € E so that
the vector space {y? G span (y? i , . . . , (ps) '• ^(^i) = ... = ^(^) = 0} has
dimension s — v. Hence the linear map

T : ($1,... ,^) e IT ̂  (' ^ ^-(^)) e R5

1<J'<S 1<1/<S

is one-to-one and hence an isomorphism. This implies (1), since all norms
on a finite-dimensional vector space are equivalent.

Now suppose (^ i , . . . , (ps and :z*i , . . . , Xs are given. Introduce the linear
map

T : ($1,... ,^) e R5 - [ ̂  ^(^)) e R5.
1^J'<S 1<1/<S

If \\(pj — (pj\\ and \Xy — Xy\ are small enough, then T is a small
perturbation of T. Therefore, ||r|| < C and |det(T)| > c, with G and
c depending only on T. Hence IKT)"1]] < C' with C/ depending only
on T. In other words, C' depends only on < ^ i , . . . , < ^ s , rci , . . . ,a;s. The
a:i,. . . , Xs were specified in terms of ( /? i , . . . , y?s, £J, therefore C" depends
only on y? i , . . . , y?s, -EJ. We have shown that

(4) ||̂  - ̂ -11, |̂  - ̂ 1 < c' implies HT-1!! < C',

with C1 depending only on y? i , . . . , (ps^ E\ and with c' depending only on
< ^ i , . . . , y?s, a - i , . . . , Xsi jD, n. Again, since a:i , . . . , Xs were specified in terms
of y? i , . . . , (psi E, it follows that c' depends only on < ^ i , . . . , ̂ 5, £', D^n.

Estimate (3) is immediate from (4).

LEMMA 3.2. — Suppose feW and F is a polynomial on W1.
Assume that F vanishes on Qp D V(f) for some p > 0. Then F is a multiple
ofmainfac (/). In particular F vanishes on all ofV(f).

Proof. — Let p = mainfac(/). Thus, p(0) = 0 and Vp(0) ^ 0.

Without loss of generality we may assume that ——(0) ^ 0. Hence in
OXn

a small neighborhood of the origin, V = {z € C7'1 : p(z) = 0} is the
graph { (^ i , . . . , Zn) G C71 : Zn = G'(^i,.. • , ̂ n-i)} of an analytic function
G. The restriction of that graph to (2?i , . . . ,2^-1) real is the intersection
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of V(f) with a small neighborhood of the origin. Hence, F(^i,... ,Zn-i,
(3(^1,..., Zn-i)) is an analytic function that vanishes for real (zi , . . . , Zn-i)
near the origin. It follows that F(^i,.. . ,2^-i,G(^i,.. . ,^n-i)) = 0 for
complex (2:1,... ,Zn-i) near the origin. Thus, F vanishes on some neigh-
borhood of the origin in V. Since p is irreducible, the regular points of V
form a connected complex manifold. So it follows by analytic continuation
that F vanishes at all the regular points of V. The regular points of V are
dense in V, and F is continuous on C71. Hence, F vanishes on V. Since
p is irreducible, this implies that F is a multiple of p, F = pF for some
polynomial F. The proof of the lemma is complete.

LEMMA 3.3. — Let p e W, q e ̂  and p > 0. If D' is an integer
with D + d < D ' , then Norm (p,Q, D ' , p ) < oo.

Proof. — Let 7i be the vector space .H'15/multiples of mainfac(p). If
/ € H0 and / = 0 on Qp n V(p), then, by the preceding lemma, / is a
multiple of mainfac(p). Hence, the function

/1-^ max [/I
Qpnv(p)

is a norm on T~L.

On the other hand, let /i,.. .Jrn ^ H0 be such that their images in
H form a basis of H. The function

TH 771

/ ̂  ̂  |Afe|[|/feg||, where / = ̂  A^A mod (mainfac (p))
k=l k=l

defines a norm on T-i (if q ^ 0). Since two norms on a finite-dimensional
vector space are equivalent, there is a constant C' with

m

(+) ^\Ak\\\fkq\\<C'^m^\f\
k^i

whenever / € H0 and / = Ai/i + ... + A^/yn mod (mainfac (p)).
^ m

To / € .H^, we associate f = ̂  AkfkQ where Ai,...,A^ are as
fc=i

above. We then have / == g/ on V(p) and ||/|| ^ C" max |/| by
Qpnv(p)

(+). This shows that Norm^,^,!)',?) < oo, since / C -H^7 (we have
/ € ^D/, g € Jf^, fk € ^D and d + D <, D ' ) . The proof of the lemma is
complete.

COROLLARY. — If D' > D and C' ̂  1, then Norm,, (p, D1, C', p) < oo
for p € IV and aii p > 0.
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Proof. — We have Norm(p, l.D^p) < oo by the preceding lemma.
Clearly q = 1 satisfies q € H 0 ' , g(0) = 1 and ||g|| < 0'.

4. General properties of the main factor.

LEMMA 4.1. — If/ e W, then
c < ||mainfac(/)|| < (7, and
c< ||otherfac(/)|| < C.

Here, c > 0 and C depend only on ci, D, n.

Proof. — Let (p \ , . . . , (ps be a list of all the monomials of degree < D,
and let E be the unit cube in W1. According to Lemma 3.1, we can find
a;i,. . . ,a;s e E and 03 > 0 depending only on D, n, with the following
property : If .TI, . . . , Xs € K71 and |a^ — a^| ^ 02, then

(1) 1 1 / H ^ C2 max |/(^)| for any / € ̂ D.
Ki/<s

Here, 62 depends only on D^n.

Now suppose / € W is given. We can factor / as

(2) / = pq with p irreducible, p(0) = 0, ||̂ || = 1.

Since all norms on a finite-dimensional vector space are equivalent, we have,
for each i/, the estimate ||p|| < C3max{|p(a^)| : \Xy — Xy\ < 02}, with Cs
depending only on D^n. Since our p satisfies ||p|| = 1, it follows that we
can find r c i , . . . , Xg e W1 with \Xy — Xy\ < 02 and |p(^^)| > 03. Here, 03 > 0
depends only on -D, n.

Since ||/|| = 1, Xy € E and |:r^—a^| <, 02, it follows that |/(.r^)| < €4,
with (74 depending only on D, n. Therefore, |<7(.r^)| == |/(.r^)|/|p(^^)| <,
C^1. Hence (1) applied to q yields

(3) |M|^C2C403-1.

On the other hand, since / € TV, we have 01 < |V/(0)| = |g(0)||Vp(0)| <
|g(0)| • C'5||p||, with Gs depending only on D, n. Recall that ||p|| = 1; this
gives

(4) |^(0) | >, 04, with 04 > 0 depending only on ci,D,n.

From (3) and (4) we get

(5) CQ <, \\q\\ <: CQ^ with CQ^CQ depending only on ci,D,n.
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Comparing (2) with the definitions of mainfac, otherfac, we see that

mainfac (/) == q(0) . p, otherfac (/) = (g(0))-1 . q.

Hence from (4), (5) and ||p|| = 1, we obtain the estimates cy <
||mainfac(/)||, || otherfac (/)|| < Cy, with Cy, 07 > 0 depending only on
ci, P, n. This is the conclusion of the lemma.

LEMMA 4.2. — W^ is a relatively open subset ofW.

Proof. — If not, we could find fy e W of type < t, with fv -^ f
in H0 and type (/) > t. Write fy == p^ with p^ = mainfac (^),^ =
otherfac (/i,).The previous lemma shows that \\py\\, \\q^\\ are bounded as
v -^ oo. Passing to a subsequence, we may suppose py —^ p, q^ —^ q in
H0. Since fv = p^, we pass to the limit and conclude that / = pq.
Since ^(0) = 1 we have g(0) = 1. Comparing / = pq, q(0) = 1 with the
factorization of / into irreducible factors, we conclude that mainfac (/) | p.
Each pv has degree < t, since type (fv) < t. Taking the limit as v —> oo, we
see that p has degree < t. Since mainfac (/) | p, it follows that mainfac (/)
has degree < t. This contradicts type (/) > t.

LEMMA 4.3. — The mappings f^ mainfac (/) and /i-^ otherfac (/)
are continuous when restricted to Wt.

Proof. — Suppose fy -> / with f^, f C W^ We must show
that mainfac (/^) -^ mainfac (/) and otherfac (/„) -^ otherfac (/). Sup-
pose not. Lemma 4.1 shows that 11 mainfac (/^)||, 11 otherfac (/^)|| remain
bounded as v —^ oo. Hence we can find p, q e H0 such that (af-
ter we pass to a subsequence) mainfac (/„) —> p, otherfac (/„) —^ q, yet
(p,q) ̂  (mainfac (/), otherfac (/)). We have deg (mainfac (^)) = t, hence
degp < t. Also, fy = mainfac (fv) ' otherfac (/^), so / = pq. More-
over, otherfac (/^) = 1 at x == 0, so q(0) = 1. Since f = pq with
g(0) == 1, examination of the factorization of / into irreducible factors
shows that mainfac (/) | p. On the other hand, deg p < t, while mainfac (/)
has degree t exactly. Hence, p = a • mainfac (/) for a constant a. Now
we have mainfac (/) • aq = pq = / = mainfac (/) • otherfac (/), hence
aq = otherfac (/). Since q and otherfac (/) are both equal to 1 at the ori-
gin, it follows that a = 1. Thus, p = mainfac (/) and q = otherfac (/),
contradicting (p,q) ̂  (mainfac (/), otherfac (/)).
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5. Semi-algebraic sets.

Many of the results of this section may be well known to experts. We
have given direct proofs since we could not find any in the literature.

The semi-algebraic sets E C R71 are those which can be formed from
the sets {P > 0}, P being any polynomial with real coefficients, by making
finitely many Boolean operations (union, intersection, complement).

A function f : E —> R^ defined on E C ̂ M is called semi-algebraic
if its graph {(x^y) G ̂ M x M^ : x € E and y = f{x)} is a semi-algebraic
set. The set E is then semi-algebraic (by the Tarski-Seidenberg theorem
5.1, below).

A function / : E —^ M1 U {+00, -00} defined on E C ^M is
called an extended semi-algebraic function if the sets £'4- = /"^(oo),
E- = /^(—oo), £'0 = /^(M1) are semi-algebraic and the restriction
of / to £o is a semi-algebraic function.

An important fact concerning semi-algebraic sets is as follows (usually
called the Tarski-Seidenberg theorem) :

THEOREM 5.1. — The image of a semi-algebraic set under a poly-
nomial map from R^ to RM is again semi-algebraic.

A beautiful proof of this result can be found in the book [R] by A.
Robinson. The proof is given in more conventional mathematical language
in the book [BR] of Benedetti and Risler.

The next few results are simple consequences of Theorem 5.1.

COROLLARY 1. — I f E c RN+M is semi-algebraic, then {x € R^ :
{x,y) G E for some y € M^ is semi-algebraic.

Proof. — Apply the preceding theorem to the projection {x^y) »—^ x
from R^-^ to R^.

COROLLARY 2. — I f E c R^^ is semi-algebraic, then {x e M^ :
(a*, y) G E for all y e B^} is semi-algebraic.

Proof. — The complement of the given set is {x C R^ : (x,y) e
(M^^E) for some y € R^, which is semi-algebraic by the preceding
corollary.
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COROLLARY 3. — Let f : E -^ R1 be a semi-algebraic function,
with E C R^^. For x G R^, define f(x) = snp{f(x,y) : (x,y) € E},
where the sup of the empty set is denned to be -oo. Then / is an extended
semi-algebraic function.

Proof. — By hypothesis, the set

F = {(x,y,t) ̂ RN x^ xR1: (x,y) e E and f(x,y) = 1}

is semi-algebraic. Hence, so is the set Fi = {(a;, i/, t, u) e R^ xR^^ xR1 xR1 :
(x,y) e E,f(x,y) = t,u < t}. Corollary 1 implies that F^ = {(x,u) e
R^ x R1 : u < sup /(a;, y)} is semi-algebraic. By definition of / we have

{x,y)^E

F2 = {(x,u)e R^ x R1 :u < f(x)}. Applying Corollaries 1 and 2 above,
we see that^/'^co) and /"^(R1 U {oo}) are semi-algebraic sets. Hence the
sets E^ = /-^oo),^- = /-^-oo),^ = /"K111) are all semi- algebraic.
Since EQ and F^ are semi-algebraic, the set F^ = {(a-, u, v) e R^ x R1 x R1 :
x e EQ, and u < f(x) or u > v} is semi-algebraic. By Corollary 2, the set
F4 = {(a^) € R^ x R1 : (x,u,v) C ^3 for all u e R1} is semi-algebraic.
However, F^ = {(a:,?;) e R^ x R1 : .r € EQ, v <, f(x)}. Since F^ and Eo
are semi-algebraic, the set F^ = {(x,v) e R^ x R1 : x G £'0, v < f(x)}
is semi-algebraic. The graph {(x,v) € R^ x R1 : x e EQ and v == /(a;)} is
equal to ^4^5, and is therefore semi-algebraic.

Thus, J^+, £'_, EQ are semi-algebraic sets, and the restriction of / to
EQ is a semi-algebraic function. That is, / is an extended semi-algebraic
function.

LEMMA 5.1. — J f / r R 1 - ^ 1 ^ semi-algebraic, then there is a
polynomial Q(x,y), not identically zero, with Q(x, f(x)) = 0 for all x € R1.

Proof. — By hypothesis, the graph of / is semi-algebraic, hence it is
a finite union of sets of the form

(1) r = {Pi > 0, . . . , Pm > 0, Qi = 0 , . . . , Qk = 0}.

We may assume that these r are non- empty. Each of these r must have at
least one non-zero Qj in (1), for otherwise, F would be a non-empty open
set, so we could not have F contained in the graph of a function.

Thus, for each of the r that make up the graph of /, we have a non-
zero polynomial Q that vanishes on r. Multiplying together the Q arising
from each r, we obtain a polynomial Q -^ 0 that vanishes on the graph of
/.
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COROLLARY. — If f : R1 -^ R1 is semi-algebraic, then in a small
enough interval (0,6) we have \f(t)\ < Ct^.

Proof. — Let Q(x,y) be as in the preceding lemma. Since Q = 0 on
the graph of /, Q cannot be independent of y . Hence

r

Q(x,y) =^pk(x)yk with r > l and pr(x) ̂  0.
k=o

We now make the following remark : if w, ay.-fc(l <: k <, r)
are complex numbers with vf + Oy.-iw7'"1 + ... + a\w + ao = 0, then
|w| < 2-max [a^-^l^ unless all the 0,1 are 0. To see this, we may assume that

k

a == max l̂ -^ > 0. Let z = w. We have zr + a^r-l + ... + ao = o
fc a a a7'

and —r—k- < 1. Hence l^l7" < 1 + \z\ + ... + I^F"1, which implies that
Of"

v^ — 1
|2;| < 2 (because, if u > 2, we have 1 + u + . . . +1/'"1 = ——— < ̂  — 1),
proving the statement in the remark.

Now, if y = f{x), we have pr^y7' + ... + po(x) = 0; if we multiply
this by (pr(x)Y~1 and set w = pr{x)f(x), we have w7' ^-pr-i^)^7""1 +
... + (prWY^po^x) = 0, so that

\Pr{x)f(x)\ <2^m^\pr(x)k-lpr-k(x)^.

If pr has a zero of order m at x = 0, we have |pr(^)| > cla'l771 for
1^1 < 6o{<. 1), so that \f(x)\ < C^-^ for 0 < \x\ < 60.

LEMMA 5.2. — Let S be a compact semi-algebraic subset ofR^,
and let E C S be a semi-algebraic subset of S. Let f : E —> R1 be a
semi-algebraic function. Assume that f is locally bounded on E. Then for
positive constants m, C, we have

|/0r) | < C(dist (x, 5\^))-771 for all x € E.

Proof. — Set g{x,y) = \x - y\ and G = R^ x (S\E). These are
semi-algebraic. Corollary 3 to Theorem 5.1 shows that dist(a:, S\E) =
mf{g(x^y) : (x,y) € G} is an extended semi-algebraic function. We may
assume S\E to be non- empty, since otherwise Lemma 5.2 is trivial. It
follows that dist (x, S\E) always belongs to [0, oo), so that dist {x, S\E) is a
semi-algebraic function. Thus, the graph {(x,u) G E x R1 : dist(a:,5'\£1) = u}
is semi-algebraic. Hence also {(.K, it, t) € E x R1 x R1 : dist (a;, S\E) = u
and u ^ t} is semi-algebraic. Corollary 1 to Theorem 5.1 now shows that
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{(a-, t) e E x R1 : dist (x, S\E) > t} is semi-algebraic. Applying Corollary
3 to Theorem 5.1, we see that

(1) f(t) = sup{|/0r)| : x e E, dist (x, S\E) ̂  t}

is an extended semi-algebraic function. If t > 0, then {x e E :
dist {x, S\E) ^ t} = SH n {x : \x-y\ ̂  t} is compact; and we know that

yeS\E
f is locally bounded on E. Hence, / is bounded on {x e E : dist (x, S\E)
>. t}, so that

(2) f(t) < +00 for t > 0.

We may assume that 60 = dist (x°, S\E) > 0 for some x° € E, since
otherwise lemma 5.2 holds vacuously. Fix such an XQ. If t < 60, then the
sup in (1) is taken over a set of x that includes x°. Hence,

(3) f(t) > -oo for t < 60.

In view of (2) and (3), the restriction of f(t) to (0,<$o) is a semi-algebraic
function. We may redefine f(t) to be identically zero outside (0,<$o) to get a
semi-algebraic function on all of M1. Applying the corollary to Lemma 5.1,
we get the estimate \f(t)\ ^ Ct-^ for t € (0,^], with 0 < 6 < <$o. In view
of the definition (1), this means that

(4) \f(x)\ ̂  C(dist {x, S^))^ if x € E and 0 < dist (x, S\E) < 6,
and that

(5) \f{x)\ ̂  CT-^ if dist (x, S\E) ̂  6.

Since also (dist^.^E'))-7" > (diamS')-771 for x e E, (5) implies
(6)
\f(x)\ ̂  [CT-m(diam5)m](dist(.r,5\E))-m if x e E, dist (x, S\E) > 6.

The conclusion of Lemma 5.2 follows at once from (4) and (6).

LEMMA 5.3. — The sets W, W^ W^ C H° are semi-algebraic.
The function (p, q, p) e W x H01 x (0, oo) ^ Norm(p, q, D ' , p) is
an extended semi- algebraic function. For D/ > D,C' > 1, the function
( p , p ) C W x (0,oo) h-> Norm^D', C ' , p ) is semi-algebraic.

Here, of course, to define semi-algebraic sets and functions on H0\
we identify H° with an euclidean space.

Proof of Lemma 5.3. — The set W C H0 is defined by polynomial
equations and inequalities, so W is obviously semi-algebraic. The set
{(/^, q ) ^ H D x H s x H0-8 : f = pq,p{0) = 0} is semi-algebraic. Hence so
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is {(/,?, q) C W x I I s x H0-8 : f == pg,p(0) = 0}. Theorem 5.1 Corollary 1
implies that {/ e W : f has a factor p of degree < s with p(0) = 0} is semi-
algebraic. This set is equal to W^TV^1^. Hence W^ is semi-algebraic,
as is W1- = W^\W^1^.

From the previous paragraph, we see that {(/,?,<?) C TV* x ̂  x
^D-t ^ / = W,P(0) = 0,g(0) = 1} is semi-algebraic. Theorem 5.1
Corollary 1 implies that {(/,?) C W* x J^ : degp <, t,f = pq, for
some g € H0^ with g(0) = 1} is semi-algebraic. The union of these sets
over all t(l < t < D) is {(/, p) e W x H° : p = mainfac (/)}. Hence
/ € W ^-> mainfac (/) is semi- algebraic.

It follows that {(/, p, x) e W x H° x W1: p = mainfac (/), p{x) = 0}
is semi-algebraic. Theorem 5.1 Corollary 1 implies that {(f,x) C W x W1:
x € V(f)} is semi- algebraic. Hence {(f,x,p,p) e H0 x R71 x W x (0, oo) :
x C V(p),x C Qp} is semi-algebraic. Theorem 5.1 Corollary 3 shows that
^ '' (f,P,p) ^ H0 x W x (0,oo) ^ sup | f(x) | is an extended semi-

v(p)nQp
algebraic function. Since V(p) H Qp is a compact set containing the origin,

sup \f{x)\ is never ±00. Thus, (f) is a semi-algebraic function. Also,
V{p)nQp
{(/, x,p) e H^ x W1 x W : x C V{p), f(x) ̂  0} is semi-algebraic. Theorem
5.1 Corollary 1 shows that {(/,?) € H01 xW : f does not vanish on V(p)}
is semi-algebraic. It follows that

(a) {(/, /,?, q) € H01 x H0 x H0 x H 0 ' : f = fq on V{p)}

is semi-algebraic. Since (f) is semi-algebraic, the set {(f,f,p,C',p,u) €
H01 x H0 x W x [0, oo) x (0, oo) x [0, oo) : ||/|| < C'u, u = sup |/|} is

V{p}HQp
semi-algebraic. Theorem 5.1 Corollary 1 shows that
(b)
{(/J,P, C", p) € ̂ D /x^x TV x(0,oo)x(0,oo): 1 1 / 1 1 <C' sup |/|}

v(p)nQp

is semi-algebraic. From (a), (b) it follows that the set {(/, /, p, q, C",
p)^ e H^ x H0 x W x H01 x [0, oo) x (0, oo) : / = qf on V(p) and
11/11 < C' sup |/|} is semi-algebraic. Applying Theorem 5.1 Corollaries

v(p)nQp
1 and 2, we find that the set E = {(p, q, C', p) € W x H01 x [0, oo) x (0, oo)
: for all / (E H0 there exist / e H^ for which / = qf on V(p) and
11/11 <. C ' sup |/|} is semi-algebraic.

v(p)nQp

By definition, Norm (p, g, D', p) = in^C" € [0, oo) : (p, g, C", p) € E}.
Hence Theorem 5.1 Corollary 3 shows that (p, q, p ) e W x H 0 ' x (0,
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oo) i—> Norm (p, q, D1', p) is an extended semi-algebraic function. Note that
Norm(p,^,Z/,p) may be +00, but it cannot be —oo. Set £'0 = {(?? q->
p) e W x H01 x (0, oo) : Norm(p, q, D^ p) < oo}. Thus, EQ is semi-
algebraic, and Norm (p, g, D', p) is a semi-algebraic function on EQ. The
set £1 = {(p, q , p ) e W x H 0 ' x (0, oo) : (p, g, p) € ^o, qW = 1, ||g|| < C1}
is semi-algebraic, since £o is semi-algebraic. Since

Norm, (p, D ' , C ' , p) = inf {Norm (p,q, D ' , p } : (p,q,p) € £q},
it follows from Theorem 1 Corollary 3 that

^ : ( p , p ) CW x (0, oo) ̂  Norm*(p, D1, C ' , p)
is an extended semi-algebraic function. Note that Norm (p, g, D', p) >: 0, so
Norm+(p, .D', (7', p) > 0. In particular, Norm^(j), D'\ C", p) is never equal to
—oo. If we note that by the corollary to Lemma 3.3, Norm+(p, D'\ C", p)
is never equal to +00 provided that Cf > 1 and D' is >: D, we find that '0
is an extended semi-algebraic function which is never ±00, and so ^ is a
semi-algebraic function. We have proven all the assertions of Lemma 5.3.

6. The main technical lemmas.

LEMMA 6.1. — Let p C Wt and p > 0 be given. Then there exists
a neighborhood U ofp in H° such that p ̂  Norm (p, 1, D, p) is bounded
onunw^

Proof. — Let ̂  be a list of all monomials of degree < D — t^ and
(y?Q;), a list of monomials of degree < D such that the (pa and ^mainfac (p)
form a basis for H°. If p G W* and p is close enough to p, then y?co
^mainfac (p) belong to H0 and lie near (pa, ^mainfac(p). Hence (^pa)
and (^mainfac(p)) form a basis for H0\ provided p € U D Wt. Here U
denotes a small enough neighborhood of p. Consequently, if / G H0 is
given, then we can find real numbers ̂  such that

(i) /=E^«on v^-
a

Note that the (pa are linearly independent modff0"* • mainfac(p). Hence
they are linearly independent as functions on V(p) D Qe.. (This follows
from Lemma 3.2.) We can now apply Lemma 3.1 to produce points
x/3 € V{p) H QE. such that whenever xp € M72 with \xp — xp\ small enough,
then we have

(2) y ^ |^Q;| ^ C max ^^a^a( . r^) , with C independent of the $o;,.r^.
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If p € IV* lies close enough to p, then ||mainfac(p) - mainfac (p)|| will
be small, by Lemma 4.3. Also, mainfac (p) vanishes at 0 with a non- zero
gradient. Hence there is po > 0 depending only on p such that whenever
x € QEQ. H { zeroes of mainfac (p)}, then for p € Wt close enough to p
we can find x € Qpo D { zeroes of mainfac (p)} as close as we please to x.
Assuming p < pch we mav apply the above observation to the x p . Thus,
given e > 0 there is some 6 > 0 such that whenever p e Wt, \\p — p\\ < 6
then we can find xp € V(p) Fl Qp with \xp — x^\ < e. If we take e small
enough, then (2) applies. Hence, we can find 6, C > 0 with the following
property. I f p C W1' and ||p —p| | < 6, then

(3) ^ |$a| < C • max ^a^) , for all (^).
Ct a; p Ct

For a given / € H°, we take / = ̂  ̂ a^a with ^a as in (1). Then (1) and

(3) yield
(4) 7 = / o n V(p), and ||/|| ^ C^"^ |/|.

This holds whenever p € W* and \\p — p\\ < S. Since also / has degree
< J9, it follows from (4) that Norm(p, 1, D, p) < C for all p e W1 with
HP ~ Pll < ^- This is the conclusion of Lemma 6.1. We proved it under
the assumption p < po? but that assumption can immediately be removed,
since p ̂  Norm (p, 1, D, p) is monotone decreasing.

LEMMA 6.2. — Let p € W1' be given, and let integers m, D' be
given. Then there exist a neighborhood U of p in H0, and continuous
maps ^a : U H IV* -^ ̂ ^^(l < a < s) and a constant C* with the
following properties :

(a) The polynomials ^>a (p) are linearly independent as functions on V(p).

(b) Suppose we are given p e UnW1', g C H 0 with ||^||<1, and re (0, 1).
Let (po, == ^^(p), and let q = otherfac(p). Then given f € H01, we
can find coefficients Aa{l < a < s) and a polynomial f^ € H^^^0

such that
(i) q-f= ^ A^+T^mod^+r^

l<,a<s

and
(ii) |A,, 1)^11 < ̂ H/ll.

Proof. — We use induction on m. If m = 0, the result is trivial. In
fact, we take s = 0 (i.e. there are no <I>cO. Condition (a) holds vacuously.
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To check condition (b) with m = 0, we take /^ = / and note that (i) and
(ii) are obvious.

Assume Lemma 6.2 holds for a given m. We will prove it for m + 1.
Thus, we assume we are given £/,<I>Q,C* satisfying (a) and (b). Let
(^)i</3<s/ be a list of all monomials of degree < D' + mD.

Let A be a maximal set of /3's such that the polynomials '0/?(/3 € A)
and <I>Q(p)(l < a <: s) are linearly independent as functions on V(p). After
renumbering the '0's, we may assume that A == {1 , . . . , s"}, with s" <, s ' .
Thus,

(1) ^(1 < /3 ^ s") and ^a(?)(l < o; < s)

are linearly independent as functions on V(p), and

(2) F o r l < 7 < 5 ' we have ^= ^ C^ + ^ £^a(p)
K/3^5" Ka^s

as functions on V{p).

Next we add new mappings ^a to our list, by setting

(3) ^(p)=^for 1</3<5".

Our new mappings are obviously continuous. Moreover, the new list
(^cOi^a^s+s7' still satisfies (a) and (b). In fact, (a) is equivalent to (1);
while (b) for the new list follows from (b) for the original list by simply
taking Aa=OioTS-{-l<a<:s-\- 5".

Property (2) asserts that each ̂  is a linear combination of the ^a(p),
as functions on V(p). After a trivial change of notation, we thus have found
U^ {^a)i<a<:s^C^ such that (a) and (b) are satisfied, and

(c) Each tf^fs is given as '0^ = ^ C'S^c^p) as functions on V(p).
l<a<s

Condition (c) means that as polynomials in J^f2^7711^

(4) ^ = ^ C^a(p) +^/3mainfac(p), with
l<,a<s

(5) hp € ft1^77^-^ since mainfac(p) has degree t.

Now let Tp : R8 x T^^^-* -> ^D/+mD be the linear map defined
by
(6) 7p((^)i<,<,,/i)= ^ ^^(p)+^mainfac(p) for peUnW^

l<a<s
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Since the <l>o: are continuous maps on U D TV*, Lemma 4.3 shows that Tp
depends continuously onpeUnW*. Moreover, (4) shows that Tp is onto.

We now make the following :

Observation : let Tp : R^ —)• RM be a linear map depending continuously
on a parameter p. Suppose Tp is onto, and that TpV\ = wi e ̂ M — {0}. For
p close enough to p, we can find v\ as close as we please to z?i, satisfying
TpV-i = wi.

To prove the observation, we complete w\ to a basis wi , . . . , WM of
R^ and we extend v^ to a list z » i , . . . , VM € R^ such that TpVj = Wj. Let
V denote the span of t » i , . . . , VM, and let 7-f = Tp \y.

Thus, TJ^ : V —>- ̂ M is a linear map depending continuously on p,
and Tf is an isomorphism, with T^v\ = wi.

The linear map T^(T^)~1 depends continuously on p and is equal
to the identity at p = p. Hence for p in a small neighborhood of p,p i—^
(r^(T^)-1)-1 is well-defined and continuous.

Set Di = (T^)-1^^)-1)-^!. This depends continuously on
p provided p stays close enough to p. We have T^v\ = [T^r^)"1]
[^(r^)'"1]"1^! = wi. Hence also TpV^ = wi. The proof of the observation
is complete.

We use the observation with Tp given by (6), and with wi taken to
be ^p. The observation gives us functions

(7) C^ :U^Wt ̂  M1 and 7^ •• U^^Wt -^ f^-^-*

defined on U\ D Wt with L7! C U an open neighborhood of p in Jif^,
continuous at j), and satisfying.

(8) ^ = ̂  C^(p)^^(p) + ̂ (^)mainfac (p) for p C E/i U M^.
Q!

Since the functions (7) are continuous at p, they are bounded on a small
neighborhood of p. Thus

There exist C > 0, and U^ C H0 open, with p e U^ C U\^ and
IW), \\W)\\ < C for p e (72 n ̂ .

We are ready to define maps ^_\U^^\Wt -^ HD'^m^D gy^ ̂ ^ ^^
and (b) will hold with U^ in place of £7, with (m + 1) in place of m, and
with a suitable constant C^ in place of C^. In fact, we define

(10) <^(p) = ^(p) • otherfac (p).
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Since ̂ a is a continuous map from U^nW* into H0'^^0 ^ and since otherfac
is a continuous map from U^ HlY* into H° (see Lemma 4.3), it follows that
<I>Q is a continuous map from U^ H TV* into j/'-0^7'7^1)2^ as required for
the inductive step.

Next, we verify that the ^>a satisfy (a). Recall that the <I>a satisfy
(a), and that a polynomial vanishes on V(p) if and only if it vanishes
on some small neighborhood of the origin in V{p). Hence, the ^a(p)
are linearly independent as germs at the origin of functions on V(p).
Since otherfac (p) = 1 at the origin, we have otherfac (p) ^ 0 in a small
neighborhood of the origin. Hence, the functions otherfac (p) • ^o-(p) are
linearly independent as germs at 0 of functions on V(p). So the ^g satisfy
(a). —

Next we verify that the <l>q satisfy (b), with (m + 1) in place of m,
and with a new constant C^ in place of C+. In fact, let / be given, let
p € 1/2 H IV* be given, let g e H0 be given with \\g\\ < 1, and let rG (0,1)
be given. We apply (b) to write

(11) [otherfac (p)]771/ = ̂  A^(p) + r^ mod(p + rg), with
ex.

(12) f#=^B^, and
/3

(13) |AJ, \Bi,\ <; C*||/||.
Substituting (8) into (12), and then putting the result into (11), we find
that

[otherfac (p)?/ = ̂  A,<U?) + ̂ -m E W(p)^(p)
a /3a

+ E ̂ BpH^p) mainfac (p) mod(p + rg).
13

Multiply this equation by otherfac (p), and note that mainfac (p)'otherfac (p)
= p == —rg mod(p -I- rg). Thus we obtain

(14) [otherfac (p)]^1/ = ̂ A^ . ̂ (p) + T^^n^p 4- rg\
a

where we have set

(15) A^A^T-E^^p)
P

and
(16) U=-9^BMp).

f3
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Recall that H^p) e H^^0-^ while g e H0. Hence f# e Jf^+(^+i)D
as required for the inductive step.

Substituting (9) and (13) into (15), (16), and recalling that r € (0, 1)
and \\g\\ < 1, we obtain a constant C_^ independent ofj?,^,T,/, such that
(17) |Aa|, I I^H ^CJ|/||.

Equation (14) and estimate (17) show that U^^C_^ satisfy (b), with
(m + 1) in place of m.

Thus we have found U^^C,_ that satisfy (a) and (b) with (m + 1)
in place of m. The inductive step is complete and Lemma 6.2 is proven.

LEMMA 6.3. — There is a small constant po > 0 with the following
properties :

(a) For all p e W, V(p) n Qp, = [x G Qp, : p(x) = 0}.

(b) For all p e W and x eQp^, we have |Vp(a:)| ^ -ci.

(c) Let p e W and x e V(p) D QES, be given. Then for any e > 0 there
is a 6 > 0 such that i f p e W and \\p - p\\ < 6, then there is a point
x e V(p) n QpQ with \x - x\ < e.

Proof. — (a) amounts to saying that otherfac (p) -^ 0 throughout
Qpo. Since otherfac (j?) = 1 at the origin, and since || otherfac {p)\\ ^ C
by Lemma 4.1, we can pick po > 0 depending only on ci, D, n such
that otherfac (p) ^ _ throughout Q^. (b) is obvious, since |Vp(0)| ^ ci
and ||p|| = 1 for p e W. (c) is proven as follows. By (b), we can pick

• 9p | ci
^o(l < io < n) so that ,— > — at x. The implicit function theorem

OX-^Q 2iTt

shows that p(x) = 0 if and only if^, = F(p, (^•)^,J, provided \\p-p\\ and
\x - x | are small. Here, F denotes a smooth function. Restricting attention
to those x that differs from x only in the ^-coordinate, we obtain p(x) = 0
when x = G(p) for a smooth function G defined on a neighborhood of p.
Moreover, G{p) = x. In view of (a), we have x = G{p) C V{p}, provided
x e Qpo. Since \x - x\ = |G(p) - G{p)\ < C\\p -p\\ and x e Q^., it follows
that \x - x\ < e and x e Qp^ if \\p - p\\ < 6. Therefore \x -2x\ < e and
x e QpQ n V{p) if \\p - p\\ < 6, which proves (c).

LEMMA 6.4. — Letp^Wt be given, and let D', m, p > 0 be given.
Then there exist (7, 6 > 0 with the following- property :

Let p = p + r^, with p e TVS ^ C ̂ D, r > 0, ||̂ || < 1. Assume that
HP - P\\, r < 6. Then given any f e H^ we can find f e .H^̂ ^ such
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f=[otheTtac(p)}mf on V(p),

<C{ max l/l+r^im.
Qpnv(p)' ' "•/ lu

Proof. — Let U, ̂ ,, C^ be as in Lemma 6.2. Given / e AT^, Lemma
6.2 produces coefficients A^ and a polynomial f^ e ^^D/+mD such that

(1) [otherfac (p)?/ = ̂  A^(p) + r771/^ modp,
Q=l

and

(2) |AJJ|^||<G.||/||,

provided we take 6 small enough that \\p-p\\ < 6 implies p e U. We define

(3) f= ^ A^^^+r^e^^^.
Ka<s

Then (a) is immediate from (1), and it remains only to check (b). Let po > 0
be as in Lemma 6.3. Set ~p = min {^Po, op}- According to Lemma 6.2, the
^a(p) are linearly independent as functions on V(p). Hence, they are also
linearly independent as functions on Q^H V(p). According to Lemma 3.1,
we can find points 3:1,... ,Xs G Q-p U V(p) and constants C", e > 0 such
that

(4) E ̂ <cf^ E ̂ -(^L
l<J<s - - l<j'<s

provided

(5) ll^a-^a(p)||J.rj-^| <£.

Now suppose that ||p - p\\, r < 6 with 6 small enough. The continuity of
the maps <I>c, shows that

(6) 11^(P)-^(P)||<^

while Lemma 6.3 (c) implies that we can find ^ i , . . . , Xs C V(p) H Q2p such
that

(7) |a^ — a;j| < e.
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Estimates (6) and (7) show that (5) holds with (pa = ^a(p) and with
Xj = Xj G Q<zp H V(p). Therefore (4) holds with these data, which means
that

E |Aa|<C'max ^ A,<D,(p)(^)
Kj<s

Ka<s Ka<,s
s

'̂̂ ^ S^-MS
0=1

(8)

this estimate holds under the assumption that \\p — p\\^r < 6.
In view of (6), we have also the weaker estimate

W ll^(p)|| < C for \\p-p\\<6^
with a constant C" independent of p. Combining (8) and (9), we obtain a
constant C independent ofp, r, g, Aa such that

(10) E ̂ ^(p)]! <. G^^ | E ̂ ^(p)
Q!==l Q=l

Moreover, since 2p < po? we have

(11) max |/^| < max |/^|^ C||̂ ||,
Q2^n^(p) QPQ

with (7 depending only on ci, D, n.

By (3), (11) and the equation [otherfac (p)]771/ = / on V(p), we have

max^ VA^^(p). < max \f\-\-rm max 1/^1
,-nv^-n^ z—' r» _(m7^^\ ' ' r\ r ^ \ r ( ^ \ " ' i "Q'2-p^v{p} Q2^n^(p)Q2^nv(p)

0=1

(12) < ^max^ |[otherfac (p)]-/! + T-GH^H

^^{Q^^)^^'^"}5

in view of estimate (2) and Lemma 4.1 Here, C^ is independent of /, p, r,
g. By (10), (12) and the fact that 2p <, p, we have

(13)
a

^AMp) <,C'#{^^ I /I +^11/11}

with C^ independent of /, p, r, ^.

Substituting (13) and (2) into (3), we obtain the estimate

'l7"^^^^)^^"1^}'
with C^ independent of /, p, r, ^. This is precisely conclusion (b).
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7. Local boundedness of the norm.

LEMMA 7. — Fix t(l < t < D). There exist constants D' , C ' ,
(D' > D, C' > 1) such that the following holds : let p € W* and p > 0 be
given. Then there exist positive numbers 6, K such that Norm^(p, D ' , C",
p) < K for all p € W with ||p - p|| < 6.

Proof. — We use backwards induction on t.

First suppose t = D. Lemma 4.2 shows that W° is a relatively open
subset of W. Thus, given p e W° we can find <5i > 0 such that
(1) P e W, ||p - p\\ < <5i imply p e W°.
On the other hand, let p e W° and p > 0 be given. By Lemma 6.1, we can
find K, ^2 > 0 such that
(2) p c W0, ||p - p|| < 62 imply Norm (p, 1, D, p) < K.
Set 6 = min{<5i, 6^} for a given p e TV^, p > 0. Then (1) and (2) show at
once that p G TV, ||p - p|| < (^ imply Norm (p, 1, D, p) < J<T.

Hence by definition of Norm^(p, D, C", p), we have
(3)
Norm*(p, D, C", p) < ̂  for all p € IV with ||p - p|| < 6, provided C' > 1.
This proves Lemma 7 for t = D.

Next suppose Lemma 7 holds with t replaced by any t' > t. (1 < t <
D - 1). We will prove that Lemma 7 holds for the given t. This backwards
induction step will complete the proof of Lemma 7.

Thus, for suitable constants D' , C ' ( D ' >_ D,C' > 1), we assume the
following.

Let p e l^^+^+.p > 0 be given. Then there exist 6, K > 0 such
that p C IV, ||p - p|| < 6 imply Norm*(p, Df\ C\ p ) < K. In other words,
for each p > 0, the map p e W^^ i-̂  Norm^(p, Df\ C ' , p) is locally
bounded.

Since also Norm^p.Zy.C',?) is monotone decreasing in p, it follows
that the map

(4) ^(p.p^Norm^p.iy.C',?)
is locally bounded on E = W^^ x (0, 1].

We apply Lemma 5.2, with / and E as above, and with S = W
x [0, 1]. Note that S is compact, E and S are semi-algebraic sets, and / is
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a semi-algebraic function, by Lemma 5.3. Thus the hypotheses of Lemma
5.2 are satisfied.

Lemma 5.2 gives us constants C" ^ m such that

(5) Norm.(p, D9', C\ p) < C^dist ((p, p), W x [0,1}\W^1^ x (0,1])]-7"

forallpcTy^-^+.pe^,!].

Note that dist ((p, p), W x [0, l]^^1)4- x (0,1]) > min(p, dist (p, W
\^+i)+)) > cp•dist(p,WVy( t+ l)+), since W x [0, l]^^1^ x (0,1] =
(H^Ty^^) x [0, 1] UW x {0}. Putting these inequalities into (5), we get

(6) Norm,(p, D\ C ' , p ) < G'^-^dist (p, ̂ TV^^)]-771

forpeTV ( t+ l ) + .
Recalling the definitions ofNorm*^,^',^',?) and of Norm {p,q,D',p),

we can reformulate (6) as follows :

(7) Let p C IV^1)4- be given. Then we can find q 6 H 0 ' with

(a) 9(0) = 1 and ||g|| < C",
such that for any / € H0 we can find an / € H° for which we have

(b) f=qfon V(p)
and

(c) H/11 < C'p—tdist (p, W^^)}— ̂ m^ |/|.

Our task now is to find constants D', C1 with lY ^ -D, G' ^ 1, such that
given p € IV* and p > 0 there exist 6, K_ > 0 such that p eW, \\p -p\\ < 6
imply Norm^(p, D ' , C'', p) < K_' We begin by picking D1 and G'. With JD',
m as in (7), we set

(8) D' = D' + mD.

Then we pick C' to satisfy the following conditions :

(9a) C' > 1

and

(9b) Ifp € W and g € ^D/ with ||g|| ^ C", then ||[otherfac (p)]771^! < C1.

We can satisfy (9b) by virtue of Lemma 4.1.

Now suppose we are given p € Wt and p > 0. We pick 6_ > 0 small
enough to satisfy the following conditions :

(10) IfpeW and ||p -p|| < 26 then p € W^.
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There is a constant K^ such that any p ^Wt

with \\p - p\\ < 6 satisfies Norm (p, 1, D'', p) < J<:i.

There exists K^ > 0 with the following property :
Assume p = p - ^ r g with p C TV^ G H0 ,r > 0,

(1-)
N^l, | |p-p| |<10&T<10^.

Then given any / e H 0 ' there exists / C H0'^0 such that

(12a) /=[otherfac(p)]m/on Y(p),

and

(12b) imi ^^{^^i^i^^ii/ii}-
Note that we can satisfy (10) by Lemma 4.2, we can satisfy (11) by Lemma
6.1, and we can satisfy (12) by Lemma 6.4. This completes our selection of
6. We fix constants K^ as in (11) and K^ as in (12). Next we pick K_. Let
C^ be a positive constant for which we have

(13) q ^ H ^ ^ ^ C ' imply max\q\ < C^.
Qp

Then we define

(14) K = K, + K^{C# + C ' p - ^ } .

Now let p C W be given, with ||p - p\\ < 6_. We will prove that

(15) Norm^P'.C^) < K,.

This will complete the backwards induction on t.

In fact, (10) shows that either p e W1 OT p e W^^. I f p e W\
then (11) implies (15) since D' > D'\C1 > 1 and K^ <, K_. Hence to prove
(15), we may assume p e TV^^. Let q be as in (7). Define

(16) r = dist (p, W\W^1^),

and let p € W\W^1^ with

(17) \\P-P\\=r.

We can find such a p, by Lemma 4.2. Note that r > 0 since p e W^^.
Also, since p e W^IV^1)-^, we have r < ||p -p|| < ^. Thus, (17) shows
that

(18) ||P-P|| ^2^ and 0 < r < 6.
Now set g = (p - p)/r. Then (17) implies

(1^ P = P + T(/ with ^ € ^D, I I ^ H = 1.
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By (10), (18) and the property p € H^H^4-1^, we have
(20) p e W^

Now suppose / G H1^ is given. By (7) and (16), we can find an
/ € H01 that satisfies
(21) f=qf ony(p), and
(22) 1 1 / H ^ Cp—r— max [/I.

QpHV{p)

To this / we apply (12). Note that the asumptions of (12) are satisfied, by
virtue of (18), (19), (20). Thus there exists an / <E H^^0 that satisfies
(23) / = [otherfac (p)]771/ on Y(p), and

(24) "^^^{^^l^l4-^^}-
From (21), (23) we get
(25) /=(g[otherfac(p)D/ on Y(p).
From (21) we get max |/| <, (max \q\\ - max |/|. Hence, (7a) and (13)

yield max |/| < C^ max |/|. Putting this and (22) into (24), we see
Qpf~}V(p) Qp^V(p)

that
(26) 1 1 / H < K^C# + Cp-^} max |/|.

Opnv(p)

Comparing (26) with (14), we get
(27) 1 1 / 1 1 <K^ I/I.

Thus, given f e HD,we have found / C ^^D/+mD that satisfies (25)
and (27). By definition of the Norm, this means that
(28) Norm (p, q ' [otherfac (p)?, D' + mD, p ) < K.
Let us examine q ' [otherfac (p)]771. Since q € H01^ we have
(29) q • [otherfac (p)]771 € JfD/+mJD.
By (7a) and the defining property of otherfac (p), we have also
(30) q • [otherfac (p)]771 = 1 at the origin.
Moreover, (7a) and (9b) imply
(31) ||g. [otherfac (p)]7711| ^C'.
Since D1 = D1 + mD, we see from (28), (29), (30), (31) and the definition
of the Norm+ that Norm^p,!)',^,?) < K_, which is the desired estimate
(15). Thus, (15) holds for all p € TV with ||p -p|| < 6. We have shown that
there exist D', (V such that for any p € W*, p > 0 there exist 5, K_ > 0 such
that for any p € W with ||p - p|[ < 6_ we have Norm^p,!)',^',/?) <, K_'
This completes our backwards induction on t, thus proving Lemma 7.
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Proof of the extension theorem.

It is now trivial to prove the extension theorem. By Lemma 7 we can
find constants D^ C\D' > D, C' > 1) with the following property :

For any p > 0, the function p € W ^ Norm^p,!)',^7,?) is locally
bounded. Since W is compact, it follows that

(1) f(p) = sup{Norm.(p, D\ C\ p) : p e W}

satisfies

(2) 0 < f{p) < oo for all p € (0, oo).

Theorem 5.1 Corollary 3 and Lemma 5.3 imply that f{p) is an ex-
tended semi-algebraic function on (0, oo). Estimate (2) then shows that /(p)
is a semi-algebraic function on (0,oo). Since f(p) is monotone decreasing,
it is locally bounded on (0, oo). Lemma 5.2 applied to S = [0, oo], E = (0,1]
yields

(3) \f(p)\ ̂  Cp-^ for 0 < p < l .

From (1) and (3) we get

Norm^p, D ' , C ' , p) < Cp-^ for all p (E W, p <E (0,1].

Note that jD', C", (7, m depend only on ci, P, n.

By definition of the Norm, this means the following. Let p € TV, p €
(0,1] be given. Then there exists q € ^D/ with g(0) == 1, ||g|| ^ C', such
that for all / G ̂ D we can find an / G ^D/ that satisfies

(a) f = qf on V{p), and

(D ii/ii ̂ -TO^ 1/1 .
Now pick a small constant pi > 0 depending on ci,D,n. Lemma 6.3(a)
shows that V(p) H Q2pi = {x C Q^ : p(a-) = 0}. Also, q C ^D/,
g(0) == 1, ||g|| ^ C' imply that , < q <: 2 on Q2pi if Pi is small enough.

2t
Hence, (a) and (b) above yield :

(a) f = f / q on [x € Q^ : p(x) = 0} where /, q € ^D/

(/?) i < ̂  < 2 on Q2pi

(7) max I/] ^ Cmax{|/(.r)| :x eQp^ and p(rc) = 0}.
Q2pi
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Here, C depends only on ci,n,P since pi only depends on ci,n,.D. We
have proved (a), (/3), (7) for p € W, f e H0.

Next, let p, c, (7, D be as in the statement of the extension theorem.
We have p/\\p\\ G W with ci depending only on c,(7,D,n. Applying
(a), (/?), (7) to j)/||p||, we obtain the conclusions of the extension theorem
for the value p = pi. Thus, it remains only to pass from p = pi to p < pi.
Now, if p satisfies the hypotheses of the extension theorem, so also does
p(x) = ̂ (-^x} for 0 < p < pi.

P \Pi /
Applying the conclusions of the extension theorem to the polynomial

p and the value p = pi gives us the extension theorem for the polynomial
p and any given value of p (0 < p < pi).

Proof of Theorem 1. — Let /, P, Q, r, ̂ , P, d, c, (7 be as in the state-
ment of Theorem 1. Thus, conditions (I) • • • (IV) hold. Denote by c*, C*, C^
etc. a positive constant depending only on c, (7, d, D.

We have to prove (A), (B), and (C). The first step is to reduce matters
to the case in which -0 satisfies

(1) W(x)\<. f o r M ^ l .

9Q 9QIn fact, Q(x,^(x)) =0, — < G,, and — > c^ at (x^{x)) for |a:| <, 1.ox dy

Hence, f^^ +^{x)(9Q^ = 0 and therefore W{x)\ < C,1 for |.r| ^ 1.\ ftr y \ 9y )
If 2(7^ <_ 1, then we have (1). Otherwise, set

^) = ̂ )/(2C^),r = {M(;r)): |^| < i},
0(o:, 2/) = 0(^,2(7^),P(a:,2/) = P(^,2G^).

One checks easily that ^, F, Q again satisfy conditions (I) • • • (IV) with
constants depending only on c,(7,D. Moreover, (1) holds for ^. Also,
f{x) = P{x,^{x)) = P(x,^x)). Thus, to prove (A), (B), (C)~we may
replace P, Q, F, ̂ , by P, Q,r, '0. So we may assume that (1) holds.

For XQ e [-1,1] and 6 > 0, define

Ixo,6 = [x C R : \x - XQ\ < 6} and Uxo,s = {(x,y) eR2 : \x - XQ\ < 6
and \y-z/;(xo)\ < S}.

Assume that Ixo,26 C [-1,1]. Then by (1), x e Ixo,26 implies {x,^{x)) e
Q^QQQ_

~9y
> c at y = ^(a;) and < C, in Uxo,2S- HenceUxo,26' A1SO, 9y2
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r\^\

(^ y) € U^^s implies -- > c - C* |z/ - ^(a;) [ > c - C* • (4<^) > 0 provided
we take

(2) 6 < c^ for a small enough c\.

Therefore for fixed x e Ixo,26, we can have Q{x,y) = 0, (x,y) e E4o,2<? for
at most one y . This condition holds when y = ^(x), so we have proven that

(3) {(x, y) e U^6 : Q(x, y) = 0} = {(a:, ̂ (x)) : a; e ^0,2^}, and

(4) {(^,/) e u^ : Q(^, 2/) = 0} = {(a;, ̂ (.z:)): x e l^}>
Let /?i be as in the statement of the Extension Theorem, with n = 2, and
with d-\-D in place ofD. Thus p\ is a small constant of the form c*. Assume

(5) 6<p,.

Then the extension theorem shows that there are polynomials F(x,y),
G(x,y) of degree at most D1, satisfying the conditions:

(6) P = F/G on {(^,/) € £4o,2, : Q(x^ y) = 0}

(7) J < G < 2 on E7 .̂

(8) max |F| < C. max{|P(a-,7/)| : (^^) e U^g and 0(a;,2/) = 0}.
^XQ^S

Now we fix ^ to be a small constant c* < —, small enough to satisfy (2)
and (5). Thus, (3), (4), (6), (7), (8) hold provided 1^ C [-1,1]. From
(3) and (6) and the definition of /, we get

(9) ^-^j^^7--
From (3) and (7) we get

(10) ^G(x^{x))^2forxel^^

Also, (7) and the fact that 6 = c+ and G is a polynomial of degree at most
D' yield the bound

(11) \G^x^y)\,\Gy(x^y)\<C^(x^y)eU^^
for the partial derivations of G.

Since —{G(x^{x))} = Gx(x,^(x)) + ̂ \x)Gy(x^(x)), equations
(l),(3),(ll)?ield

(12) ^{G(x^(x))} ^C. for xel^.
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Next, (4), (8) and the definition of / yield
(13) max |F| ^C*max|/|.

Uxo,26 Ixo,6

Since F is a polynomial of degree at most D' and 6 has the form c^, (13)
implies the bounds

(14) max(|F,|+|Fj)<C*max|/|
Uxo,26 Ixo,6

for the partial derivatives of F. From (3) and (13) we get

(15) \F(x^(x))\ ̂  C. max I/I for all x C 1^6-
*XQf6

Also, since —{F(x,-^(x))} = Fx{x,^(x]) + if)'(x)Fy(x,'4)(x)), equations
(1), (3), (14) imply

(16) -^{F(x,^(x))} ^ (7, max I/] for all a- € I^s.^M ,̂ ̂ \^f)S\ _^ ^* AAKIAdx 1^,6XQ,S

Immediately from (9), (10), (12), (15), (16) we obtain the basic estimates
(17) max I/] < C^ max |/| and

Ixo,26 Ixo,6

(18) maxl/'l <^ max I/].
1XQ,26 -txQfS

We have proven (17) and (18) for 6 = c^ < —, assuming Ixo,26 C [-1,1].

Now it is trivial to complete the proof of Theorem 1. Using (17) and
induction on A;, we see that

max I/I < C^ max |/| for 0 < k < 2^-1.[-1,1] " / ' - * [-1+^,1-^] " / ' - - 3

Taking k > ̂ -1, we obtain the first conclusion of Theorem 1. From (18)
we obtain at once max |/'| < C* max |/| which is the second conclusion of
Theorem 1.

Next we divide [-1,1] into 2N equal subintervals JT^, where TV is a
large integer to be picked in a moment. For each Iy we have

maxl/l^-maxl/'l+TV / \f{x)\dx.i^ rx i^ j ^
Applying this to the Iy containing a point where |/| is maximized on [-1,1],
we find that

(19) max I/I < - max l/'l + N ( \f(x)\dx.
[-i,ij i\ l-i,i] j_i
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Putting the second conclusion of Theorem 1 into (19), we obtain

(20) max |/| < c- max |/| + N [ ' \f(x)\dx.
[-i,ij i\ l-UJ j-i

We pick N to be the least integer larger than 2C*. The first term on the
right in (20) can then be absorbed into the left-hand side, leaving us with
the estimate

1 max I/] ^ (2C. + 1) ( 1 \f{x)\dx.
z [-i»i] J-i

This proves the final conclusion of Theorem 1.
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