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BERNSTEIN’S INEQUALITY ON ALGEBRAIC CURVES

by Charles FEFFERMAN and Raghavan NARASIMHAN

Dedicated to Bernard Malgrange

Introduction.

In this paper, we estimate the growth of polynomials on a smooth
algebraic curve I in the plane. Let I = {(z,y) € R? : y = ¢(z) and |z| < 1}
where Q(z,v¥(z)) = 0,Q(z,y) being a polynomial with real coefficients. To
control I', we make the following :

Assumptions.
@ [¥(z)| < 1 for |z <1
In) Q(z,y) has degree at most D.
)  |Q(z,y)| < C for |z, |y| < 1.

0
(Iv) Ié%z(z,y)120>0for (z,y) €T
Under these assumptions, we prove :

THEOREM 1. — Let P(z,y) be a polynomial of degree d and f(z) =
P(z,v(z)). Then, there exists a constant C, depending only on d, D, C,c,
such that the following hold :

(A) max |f(z)] < Cu max |f();

Key words : Bernstein’s inequality — Semi-algebraic sets.
A.M.S. Classification : 26.
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(B) max |f'(z)| < C. max |f(z)| (Bernstein’s inequality);
lz]<1 lz|<1

1
©  maxlf@)l<cC. /_ (@)l

Thus, f behaves like a polynomial of one variable. The point of
Theorem 1 is to control the dependence of the constant C, on the curve I'.
For fixed I', estimates (A), (B), (C) are obvious consequences of the fact
that any two norms on a finite dimensional vector space are equivalent.

Theorem 1 was conjectured by A. Parmeggiani; he uses it in his
analysis of pseudodifferential operators [P].

It is tempting to make the following conjecture from which Theorem
1 would follow easily : Let P(x,y) be a polynomial of degree at most d,
and let I satisfy (I), (II), (III), (IV). Then there exists another polynomial

P(z,y) of degree at most d,, such that P = P on T, and rll}alx X |P(z,y)| <
C. mlg,x|P| Here, d. and C, depend only on d, D, C,c. Unfortunately, this

conjecture is disproved by elementary examples. For instance, take
Ie={(z,y) €R?:|z|,|[y| <1and y(l+2®+y?)—e=0}
for small nonzero €. The polynomial P, = % satisfies

1
P=—-
(+) T l+zr+y?

so that P|T'c is bounded uniformly in €. Suppose we could extend P |T; to a
polynomial Q.(z,y) whose degree and coefficients are bounded uniformly
in €. Then for a sequence €, — 0, we would have Q., — @ uniformly,
for a polynomial Q(z,y). Since I'; approaches the z-axis, (*) implies that

on I,

Q(z,0) = 1322 which contradicts the fact that @ is a polynomial.

The above counterexample suggests the cure for the false conjecture
: instead of extending P|r to a polynomial, we should look for a rational
function F/G, with F(z,y), G(z,y) of degree at most d., such that F/G =

PonT,c. <G < C, on {|z|,ly] < 1} and | rlr}alJiIIFl C, max|P|

We give the precise formulation of our extension theorem in the next
section, and then we present its proof. Finally, we derive Theorem 1 from
the extension theorem. Note that we formulate the extension theorem for
hypersurfaces in R™. The proof is no harder than the special case n = 2
that we use for Theorem 1. We have recently proven an extension theorem
in higher codimension.
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We are happy to dedicate this paper to Bernard Malgrange. He has
influenced us in many ways. Moreover, parts of this paper are inspired by
his work.

1. The Extension theorem.

Let Q, denote the cube {(z1,....,z,) € R™ : |z;| < p for j =
1,2,...,n}.

THEOREM. — Let p be a polynomial in n variables, having real
coefficients and of degree at most D. Let V = {z € R" : p(z) = 0}.
Assume that p(0) =0, |7 p(0)| > ¢ > 0, and max lp| < C.

1

Then, there exist constants p; > 0,C’ > 0 and D’ > 0 depending
only on the constants n,c,C, D appearing in the assumptions on p such
that the following holds :

Given a polynomial f on R™ and a number p € (0, p;], we can find
polynomials F,G of degree at most D’ satisfying the following conditions:

(a) f=F/GonVNQap;
(b) —;—SGS2oanp;

c max |F| < C' max |f];
©  max|F| < O gax |f]

2. Notation and definitions.

Let D be an integer, and let ¢; € (0,1) be given. We fix these
parameters throughout the paper. Define H? = the vector space of all
polynomials of degree at most d on R™, with real coefficients. Define

171=( S 10k) forf= X gos e

la|<d |o|<d
W ={peHP:|pll=1,p(0)=0,| vp(0)| > c1}
Q,={(z1,...,zn) R : |zj]| < pfor j=1,...,n}

as in the extension theorem. Given f € W, we can factor f as f = pq
with p irreducible in R[z1,...,z,],p(0) = 0 and ¢(0) = 1. This uniquely
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determines p and ¢ in terms of f. We define mainfac(f) to be p, and we
define otherfac (f) to be ¢ for the above factorization of f. Note that
mainfac (f) is irreducible in C[zy,...,z,], as well as in R[xh...,‘xn]. If
f € W and p = mainfac (f), then define

V(f) ={z € R": p(z) = 0}.
The type of f € W is defined as the degree of mainfac (f). Set
W!={feW:f hastype t}, and
W' ={feW:f hastype >t}.
Suppose p € W,q € HP? and p > 0 are given. We define Norm (p,q, D', p)

to be the least constant C’ such that for any f € HP there exists an
f € HP' that satisfies

() f=gqf on V(p), and

b fll<C' max |f].
d) Nfl me,(p)lfl

If no such constant C’ exists, then we define Norm (p, ¢, D’, p) = +o0.

Next suppose p eW,C’,D’,p>0 are given. We define Norm, (p,D’,C’,p)
to be the infimum of Norm (p,q,D’,p) over all ¢ € H D’ that satisfy
q(0)=1,]¢l<C"

3. Preliminary observations.

LEMMA 3.1. — Let ¢1,...,ps € HP, and let E C R™. Assume that

©1,.-.,ps are linearly independent as functions on E. Then we can find
points x1,...,zs € E such that
1)
< . D .. .
Z & <C max Z €;p;(zk)| for any real numbers &, ...,&;
1<j<s -7 '1<5<s
Moreover, suppose @1,...,ps € HP and %,,...,%, € R" are given,
and assume that
) les — &ill |25 — %] < e
Then we have the estimate
@)
| < 0 (2 R
Z |1 < C 1%11?%(3 Z €;p;j(Zx)| for any real numbers &, ...,&s
1<j<s 1<j<s
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Here, ¢ and C' depend only on E, ¢1,...,ps, D , n. In particular,
they are independent of @1,...,Ps, T1,...,ZLs, &1y-+.,&s.

Proof. — By induction on v(1 < v < s) we can find z, € F so that

the vector space {¢ € span(p1,...,9s) : p(z1) = ... = p(z,) = 0} has
dimension s — v. Hence the linear map

T:(§1,...,55)€R3-—>( > gjcpj(my)) €R®

1<j<s lsvss

is one-to-one and hence an isomorphism. This implies (1), since all norms
on a finite-dimensional vector space are equivalent.

Now suppose @1, ...,Ps and Z1,...,Z, are given. Introduce the linear
map

Tt eRm (T 656))  eR
1<v<s

1<5<s

If ||@; — @;l and |#, — z,| are small enough, then T is a small
perturbation of T. Therefore, |T|| < C and |det(T)| > ¢, with C and
¢ depending only on 7. Hence ||(T)"!| < C’ with C’ depending only
on T. In other words, C’ depends only on ¢1,...,9s, Z1,...,Zs. The
zi1,...,Ts were specified in terms of ¢1,...,ps, E, therefore C’ depends
only on ¢1,...,ps, E. We have shown that

(4) 5 — @ill, |1, — 2| < ¢ implies |T7}|| < ',

with C’ depending only on ¢1,...,¥,, E; and with ¢ depending only on
Ply--+yPsy T1,---,Ts, D, n. Again, since x1,...,zs were specified in terms
of ¢1,...,9s, E, it follows that ¢’ depends only on ¢;,..., s, E, D).

Estimate (3) is immediate from (4).

LEMMA 3.2. — Suppose f € W and F is a polynomial on R".
Assume that F' vanishes on Q,NV (f) for some p > 0. Then F is a multiple
of mainfac (f). In particular F vanishes on all of V(f).

Proof. — Let p = mainfac(f). Thus, p(0) = 0 and Vp(0) # 0.
Without loss of generality we may assume that 8—(0) # 0. Hence in

a small neighborhood of the origin, V = {z € (C" p(z) = 0} is the
graph {(z1,...,2n) € C" : 2z, = G(21,...,2,—1)} of an analytic function
G. The restriction of that graph to (21,...,2n—1) real is the intersection



1324 C. FEFFERMAN AND R. NARASIMHAN

of V(f) with a small neighborhood of the origin. Hence, F(z1,...,2n-1,

G(z1,...,2n—1)) is an analytic function that vanishes for real (21, ..., 2,-1)
near the origin. It follows that F(z1,...,2n—1,G(21,...,2n-1)) = 0 for
complex (21,...,2,—1) near the origin. Thus, F' vanishes on some neigh-

borhood of the origin in V. Since p is irreducible, the regular points of V'
form a connected complex manifold. So it follows by analytic continuation
that F' vanishes at all the regular points of V. The regular points of V are
dense in V, and F is continuous on C™. Hence, F' vanishes on V. Since
p is irreducible, this implies that F' is a multiple of p, F = pF for some
polynomial F. The proof of the lemma is complete.

LEMMA 3.3. — Letp e W, g€ H% and p > 0. If D' is an integer
with D + d < D', then Norm (p,q, D’,p) < oo.

Proof. — Let H be the vector space HP /multiples of mainfac(p). If
f € HP and f = 0 on Q, N V(p), then, by the preceding lemma, f is a
multiple of mainfac(p). Hence, the function

= max
f QoNV(p) |f|

is a norm on H.
On the other hand, let fi,...,fm € HP be such that their images in
‘H form a basis of H. The function

m m
f ) |Acll|frqll, where f =) Axfimod (mainfac (p))
k=1 k=1
defines a norm on H (if ¢ # 0). Since two norms on a finite-dimensional
vector space are equivalent, there is a constant C’ with

(+) D 1Akl frgl < €' max |f|

=1 Q.NV(p)
whenever f € HP and f = A1 f1 + ... + Ay fm mod (mainfac (p)).
To f € HP, we associate f = i Ak frq where A;,...,A,, are as
above. We then have f = ¢f on Vk(;; and ||f|| < CIQ‘I’Irlji‘i,.)gp) |f| by

(+)- This shows that Norm (p,g,D’,p) < oo, since f € HP' (we have
fe HD',q € H%, f, € HP and d + D < D'). The proof of the lemma is
complete.

COROLLARY. — If D'>D and C'>1, then Norm,(p, D', C’, p) <o
forp e W and all p > 0.
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Proof. — We have Norm (p,1,D’, p) < oo by the preceding lemma.
Clearly q = 1 satisfies g € HP', q(0) = 1 and ||g|| < C".

4. General properties of the main factor.

LEMMA 4.1. — If f € W, then
¢ < ||mainfac (f)|| < C, and
¢ < |lotherfac (f)|| < C.
Here, ¢ > 0 and C depend only on ¢;, D, n.

Proof. — Let ¢1,...,ps be a list of all the monomials of degree < D,
and let E be the unit cube in R™. According to Lemma 3.1, we can find
Z1,...,Zs € E and ¢z > 0 depending only on D, n, with the following
property : If Z;,...,%Zs € R"® and |Z, — z,| < cg, then

M £l < C2 max |f(&,)] for any f € HP.
Here, C5 depends only on D,n.

Now suppose f € W is given. We can factor f as
(2) f =pg with p irreducible, p(0) =0, ||p|| = 1.

Since all norms on a finite-dimensional vector space are equivalent, we have,
for each v, the estimate ||p|| < Csmax{|p(Z,)| : |Z, — z.| < c2}, with Cs
depending only on D,n. Since our p satisfies ||p|| = 1, it follows that we
can find Z4,...,%s; € R™ with |Z, — z,| < ¢z and |p(Z,)| > c3. Here, c3 > 0
depends only on D, n.

Since || f|| = 1, z, € FE and |%, —z,| < ¢g, it follows that |f(Z,)| < Cy,
with C4 depending only on D, n. Therefore, |q(Z,)| = |f(Z.)|/|Ip(Z.)] <
Cucy !, Hence (1) applied to g yields

®3) lgll < C2Cacs™.

On the other hand, since f € W, we have ¢; < |V f(0)| = |¢(0)||Vp(0)| <
|g(0)] - Cs||p||, with C5 depending only on D, n. Recall that ||p|| = 1; this
gives

(4) |g(0)| > c4, with ¢4 > 0 depending only on c¢;, D, n.
From (3) and (4) we get
(5) c6 < |lg|l £ Cs, with Cg,cs depending only on ¢1, D, n.
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Comparing (2) with the definitions of mainfac, otherfac, we see that

mainfac (f) = ¢(0) - p, otherfac (f) = (¢(0))™* - q.

Hence from (4), (5) and |p|| = 1, we obtain the estimates c; <
|mainfac (f)||, ||otherfac (f)|| < C7, with C7, ¢; > 0 depending only on
c1, D, n. This is the conclusion of the lemma.

LEMMA 4.2. — W?* is a relatively open subset of W.

Proof. — If not, we could find f, € W of type < t, with f, — f
in HP and type (f) > t. Write f, = p,q, with p, = mainfac(f,),q, =
otherfac (f,).The previous lemma shows that ||p,||, ||g.| are bounded as
v — oo. Passing to a subsequence, we may suppose p, — p, ¢, — ¢ in
HP. Since f, = p,q,, we pass to the limit and conclude that f = pq.
Since ¢,(0) = 1 we have q(0) = 1. Comparing f = pq, ¢(0) = 1 with the
factorization of f into irreducible factors, we conclude that mainfac (f) | p.
Each p, has degree < t, since type (f,) < t. Taking the limit as v — oo, we
see that p has degree < t. Since mainfac (f) | p, it follows that mainfac (f)
has degree < t. This contradicts type (f) > t.

LEMMA 4.3. — The mappings f+— mainfac (f) and f+ otherfac (f)
are continuous when restricted to W?.

Proof. — Suppose f, — f with f,, f € W' We must show
that mainfac (f,) — mainfac (f) and otherfac(f,) — otherfac (f). Sup-
pose not. Lemma 4.1 shows that ||mainfac (f,)||, ||otherfac (f,)|| remain
bounded as ¥ — oo. Hence we can find p, ¢ € HP such that (af-
ter we pass to a subsequence) mainfac (f,) — p, otherfac(f,) — ¢, yet
(p,q) # (mainfac (f), otherfac (f)). We have deg (mainfac (f,)) = t, hence
degp < t. Also, f, = mainfac(f,) - otherfac(f,), so f = pqg. More-
over, otherfac(f,) = 1 at z = 0, so ¢(0) = 1. Since f = pg with
¢(0) = 1, examination of the factorization of f into irreducible factors
shows that mainfac (f) | p. On the other hand, deg p < ¢, while mainfac (f)
has degree t exactly. Hence, p = a - mainfac (f) for a constant a. Now
we have mainfac(f) - ag = pg = f = mainfac(f) - otherfac (f), hence
aq = otherfac (f). Since ¢ and otherfac (f) are both equal to 1 at the ori-
gin, it follows that a = 1. Thus, p = mainfac (f) and ¢ = otherfac (f),
contradicting (p, q) # (mainfac ( f), otherfac (f)).



BERNSTEIN’S INEQUALITY ON ALGEBRAIC CURVES 1327

5. Semi-algebraic sets.

Many of the results of this section may be well known to experts. We
have given direct proofs since we could not find any in the literature.

The semi-algebraic sets E C R™ are those which can be formed from
the sets {P > 0}, P being any polynomial with real coefficients, by making
finitely many Boolean operations (union, intersection, complement).

A function f : E — R" defined on E C RM is called semi-algebraic
if its graph {(z,y) € RM xRY : z € E and y = f(z)} is a semi-algebraic
set. The set E is then semi-algebraic (by the Tarski-Seidenberg theorem
5.1, below).

A function f : E — R! U {4+00,—00} defined on E C RM is
called an extended semi-algebraic function if the sets E, = f~1(00),
E_ = f}(~0), Ey = f~!(R!) are semi-algebraic and the restriction
of f to Ey is a semi-algebraic function.

An important fact concerning semi-algebraic sets is as follows (usually
called the Tarski-Seidenberg theorem) :

THEOREM 5.1. — The image of a semi-algebraic set under a poly-
nomial map from RN to RM is again semi-algebraic.

A beautiful proof of this result can be found in the book [R] by A.
Robinson. The proof is given in more conventional mathematical language
in the book [BR] of Benedetti and Risler.

The next few results are simple consequences of Theorem 5.1.

COROLLARY 1. — If E C RN*M js semi-algebraic, then {z € RN :
(z,y) € E for some y € RM} is semi-algebraic.

Proof. — Apply the preceding theorem to the projection (z,y) — z
from RV+M to RYV,

COROLLARY 2. — If E C RN*M js semi-algebraic, then {z € R" :
(z,y) € E for all y € RM} is semi-algebraic.

Proof. — The complement of the given set is {x € RY : (z,y) €
(RN+M\E) for some y € RM}, which is semi-algebraic by the preceding
corollary.
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COROLLARY 3. — Let f : E — R! be a semi-algebraic function,
with E C RNtM, For z € RY, define f(z) = sup{f(z,y) : (z,y) € E},
where the sup of the empty set is defined to be —co. Then f is an extended
semi-algebraic function.

Proof. — By hypothesis, the set
F ={(z,y,t) e RYN xR™ xR!: (z,9) € E and f(z,y) =t}

is semi-algebraic. Hence, so is the set F; = {(z,y,t,u) € RV xRM xR! xR! :
(z,y) € E, f(z,y) = t,u < t}. Corollary 1 implies that F» = {(z,u) €

RY xR!:u < sup f(x,y)} is semi-algebraic. By definition of f we have
(zy)€E

Fy = {(z,u) € RN xR! : u < f(z)}. Applying Corollaries 1 and 2 above,
we see that f~!(oco) and f~'(R!U{oo}) are semi-algebraic sets. Hence the
sets E; = f~1(00), E_ = f~1(~00), By = f~1(R!) are all semi- algebraic.
Since Ey and F, are semi-algebraic, the set F3 = {(z,u,v) € R¥ xR! xR! :
z € Ep, and u < f(z) or u > v} is semi-algebraic. By Corollary 2, the set
Fy = {(z,v) € RY x R! : (z,u,w) € F3 for all u € R} is semi-algebraic.
However, Fy = {(z,v) € RN xR : & € Ep, v < f(z)}. Since F; and E
are semi-algebraic, the set F5 = {(z,v) € RN xR : z € Ep, v < f(z)}
is semi-algebraic. The graph {(z,v) € RN xR! : z € E and v = f(z)} is
equal to F4\Fs, and is therefore semi-algebraic.

Thus, E,, E_, Ey are semi-algebraic sets, and the restriction of f to
Ej is a semi-algebraic function. That is, f is an extended semi-algebraic
function.

LEMMA 5.1. — If f : R! — R! is semi-algebraic, then there is a
polynomial Q(z,y), not identically zero, with Q(z, f(x)) = 0 for all z € R!.

Proof. — By hypothesis, the graph of f is semi-algebraic, hence it is
a finite union of sets of the form

(1) F={P1>0)"',Pm>0,Ql=0a'°"Qk=0}'

We may assume that these I' are non- empty. Each of these I" must have at
least one non-zero Q; in (1), for otherwise, I' would be a non-empty open
set, so we could not have I' contained in the graph of a function.

Thus, for each of the I' that make up the graph of f, we have a2 non-
zero polynomial @ that vanishes on I'. Multiplying together the @ arising
from each I', we obtain a polynomial ¢ # 0 that vanishes on the graph of

f.
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COROLLARY. — If f : R! — R! is semi-algebraic, then in a small
enough interval (0,6) we have |f(t)| < Ct—™.

Proof. — Let Q(z,y) be as in the preceding lemma. Since @ = 0 on
the graph of f, @ cannot be independent of y. Hence

Q(z,y) = Zpk(a:)y’“ with r>1 and p.(z) #0.
k=0

We now make the following remark : if w, a,—x(1 < k < 7)

are complex numbers with w™ 4+ a,_jw™™ ! 4+ ... + a;w + ag = 0, then
1

lw| < 2-m’i1x |ar—k|* unless all the a; are 0. To see this, we may assume that

w Qe a
o = max |a,_g|'/* > 0. Let 2= —. We have 2" + ——2""14 . . + =2 =0
k a o7 o’

and Ia;;kl < 1. Hence |2[" < 1+ |2| + ... + |2}, which implies that

T
,,,_lzu _1

|z| < 2 (because, if u > 2, we have 1 +u+...+u 1

<u" —-1),
proving the statement in the remark.

Now, if y = f(z), we have p.(z)y" + ... + po(z) = 0; if we multiply
this by (p,(z))""! and set w = p,(z)f(z), we have w" + p,_1(z)w""! +
o4 (pr(z))"Ipo(x) = 0, so that

Ipr(2)£(2)] < 2 max Ip,(2)" " pe-s(@)IF.

If p, has a zero of order m at z = 0, we have |p.(z)] > c|z|™ for
|z] < 60(<L 1), so that |f(z)| < Clz|~™ for 0 < |z| < bo.

LEMMA 5.2. — Let S be a compact semi-algebraic subset of RY,
and let E C S be a semi-algebraic subset of S. Let f : E — R! be a
semi-algebraic function. Assume that f is locally bounded on E. Then for
positive constants m,C, we have

|f(z)| < C(dist (z, S\E))™™ for all z € E.

Proof. — Set g(z,y) = |z — y| and G = RN x (S\E). These are
semi-algebraic. Corollary 3 to Theorem 5.1 shows that dist (z, S\E) =
inf{g(z,y) : (z,y) € G} is an extended semi-algebraic function. We may
assume S\E to be non- empty, since otherwise Lemma 5.2 is trivial. It
follows that dist (z, S\ E) always belongs to [0, 00), so that dist (z, S\E) isa
semi-algebraic function. Thus, the graph {(z,u) € E xR! : dist(z,S\E) =u}
is semi-algebraic. Hence also {(z, u, t) € E x R! x R! : dist (z, S\E) = u
and u > t} is semi-algebraic. Corollary 1 to Theorem 5.1 now shows that
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{(z, t) € E x R! : dist (z, S\E) > t} is semi-algebraic. Applying Corollary
3 to Theorem 5.1, we see that

(1) F(t) = sup{|f(z)| : z € E,dist (z, S\E) > t}

is an extended semi-algebraic function. If ¢ > 0, then {z € F :

dist (z, S\E) >t} = SN [ {z:|z—y| > t} is compact; and we know that
yES\E

f is locally bounded on E. Hence, f is bounded on {z € E : dist (z, S\E)

> t}, so that

(2) f(t) < +o0o for t>0.

We may assume that § = dist (20, S\E) > 0 for some z° € E, since
otherwise lemma 5.2 holds vacuously. Fix such an zy. If t < g, then the
sup in (1) is taken over a set of = that includes z°. Hence,

3) f(t) > —oo for t < &.

In view of (2) and (3), the restriction of f(t) to (0,8) is a semi-algebraic
function. We may redefine f(t) to be identically zero outside (0,80) to get a
semi-algebraic function on all of R'. Applying the corollary to Lemma 5.1,
we get the estimate |f(t)| < Ct~™ for t € (0, 6], with 0 < § < &. In view
of the definition (1), this means that

4) |f(z)| < C(dist (z,S\E))™™ if z € E and 0 < dist (z,S\F) < §,
and that
(5) If(z)] < C86~™, if dist (z, S\E) > 6.

Since also (dist (z, S\E))™™ > (diam S)~™ for z € E, (5) implies
(6)
|f(z)| < [C6~™(diam S)™](dist (z, S\E))™™ if z € E,dist (z,S\FE) > é.

The conclusion of Lemma 5.2 follows at once from (4) and (6).

LEMMA 5.3. — The sets W, Wt, Wit C HP are semi-algebraic.
The function (p, ¢, p) € W x HP' x (0, c0) — Norm (p, q, D', p) is
an extended semi- algebraic function. For D' > D,C’ > 1, the function
(p,p) € W x (0,00) — Norm,(p, D', C', p) is semi-algebraic.

Here, of course, to define semi-algebraic sets and functions on HP,
we identify HP with an euclidean space.

Proof of Lemma 5.3. — The set W C HP is defined by polynomial
equations and inequalities, so W is obviously semi-algebraic. The set
{(f,p,q) € HP x H* x HP=% : f = pq,p(0) = 0} is semi-algebraic. Hence so
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is {(f,p,q) € Wx H* x HP~* : f = pq, p(0) = 0}. Theorem 5.1 Corollary 1
implies that {f € W : f has a factor p of degree < s with p(0) = 0} is semi-
algebraic. This set is equal to W\W+1)+. Hence Wt is semi-algebraic,
as is Wt = Wt+\w(t+1)+

From the previous paragraph, we see that {(f,p,q) € Wt x H® x
HP-t . f = pq,p(0) = 0,9(0) = 1} is semi-algebraic. Theorem 5.1
Corollary 1 implies that {(f,p) € W* x H? : degp < t,f = pq, for
some ¢ € HP~t with ¢(0) = 1} is semi-algebraic. The union of these sets
over all t(1 <t < D) is {(f, p) € W x HP : p = mainfac (f)}. Hence
f € W+ mainfac (f) is semi- algebraic.

It follows that {(f, p, z) € W x HP x R™ : p = mainfac (f), p(z) = 0}
is semi-algebraic. Theorem 5.1 Corollary 1 implies that {(f,z) € W x R™ :
x € V(f)} is semi- algebraic. Hence {(f,z,p,p) € HP? x R* x W x (0,00) :
z € V(p),z € Q,} is semi-algebraic. Theorem 5.1 Corollary 3 shows that

¢ : (f,p,p) € HP x W x (0,00) — sup |f(z)| is an extended semi-
V(p)NQp
algebraic function. Since V' (p) N Q, is a compact set containing the origin,

sup |f(z)| is never +oo. Thus, ¢ is a semi-algebraic function. Also,
V(p)NQp

{(f,z,p) € HP'xR"xW : z € V(p), f(z) # 0} is semi-algebraic. Theorem
5.1 Corollary 1 shows that {(f,p) € H?" x W : f does not vanish on V' (p)}
is semi-algebraic. It follows that

(a) {(f.f,p,q) € H? x HP? x H? x HP" : f = fq on V (p)}

is semi-algebraic. Since ¢ is semi-algebraic, the set {( f, f,p,C p,u) €
HP x HP x W x [0,00) x (0,00) x [0,00) : | f|| £ C'u,u= sup |f|}is

V(p)NQp
semi-algebraic. Theorem 5.1 Corollary 1 shows that

(b) N

{(f,£,p,C",p) € H? x HP? x W x (0,00) x (0,00) : [| /|| < C" sup |f]}
V(p)NQp

is semi-algebraic. From (a), (b) it follows that the set {( f, fpa C,

)GHDXHDXWXHDX[Ooo)x(O 00) : f = qf on V(p) and

|7l <C" sup |f|} is semi-algebraic. Applying Theorem 5.1 Corollaries
V(p)NQp

1 and 2, we find that the set E = {(p, ¢, C", p) € W x HP' x [0, 50) x (0, 00)
: for all f € HP there exist f € H?' for which f = ¢f on V(p) and
Ifll <C" sup |f|} is semi-algebraic.
V(p)NQp
By definition, Norm (p, ¢, D’, p) = inf{C"’ € [0,0) : (p,¢,C", p) € E}.
Hence Theorem 5.1 Corollary 3 shows that (p, ¢, p) € W x HP" x (0,
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o0) — Norm (p, g, D', p) is an extended semi-algebraic function. Note that
Norm (p,q, D', p) may be +oo, but it cannot be —oo. Set Eq = {(p, g,
p) € W x HP" x (0, 00) : Norm (p, q, D', p) < co}. Thus, Ep is semi-
algebraic, and Norm (p, q, D’, p) is a semi-algebraic function on Ejy. The
set B1 = {(p,q,0) € W x H”" x (0,00) : (p, 4, p) € Eo,9(0) =1, lql| < C'}
is semi-algebraic, since Ey is semi-algebraic. Since

Norm,(p, D', C’, p) = inf{Norm (p,q, D', p) : (p,q,p) € E1},
it follows from Theorem 1 Corollary 3 that

¥ : (p,p) € W x (0,00) — Norm,(p, D', C’, p)

is an extended semi-algebraic function. Note that Norm (p, ¢, D', p) > 0, so
Norm,(p, D', C’, p) > 0. In particular, Norm, (p, D', C’, p) is never equal to
—00. If we note that by the corollary to Lemma 3.3, Norm,(p, D/, C’, p)
is never equal to +oo provided that C’ > 1 and D’ is > D, we find that v
is an extended semi-algebraic function which is never +o0, and so ¥ is a
semi-algebraic function. We have proven all the assertions of Lemma 5.3.

6. The main technical lemmas.

LEMMA 6.1. — Let p € W* and p > 0 be given. Then there exists
a neighborhood U of p in HP such that $ — Norm (p, 1, D, p) is bounded
on UNW?.

Proof. — Let 1) be a list of all monomials of degree < D — ¢, and
(¢a), a list of monomials of degree < D such that the ¢, and ¥gmainfac (p)
form a basis for HP. If 5 € W! and p is close enough to p, then (g,
ypmainfac (5) belong to HP and lie near ¢,, ¢smainfac (p). Hence (o)
and (gmainfac (§)) form a basis for H?, provided p € U N W*. Here U
denotes a small enough neighborhood of p. Consequently, if f € HP is
given, then we can find real numbers £, such that

1) f=) &pa on V().

Note that the ¢, are linearly independent mod HP~* - mainfac (p). Hence
they are linearly independent as functions on V(p) N Q¢. (This follows
from Lemma 3.2.) We can now apply Lemma 3.1 to produce points
zg € V(p) N Q¢ such that whenever £ € R™ with |25 — 2| small enough,
then we have

(2) Z |€a] < Cmgx , with C independent of the &,,Zg.

Z §apa(@p)
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If 5 € W* lies close enough to p, then |mainfac(p) — mainfac (p)| will
be small, by Lemma 4.3. Also, mainfac (p) vanishes at 0 with a non- zero
gradient. Hence there is py > 0 depending only on p such that whenever
T € Qe N { zeroes of mainfac (p)}, then for p € W? close enough to p
we can find Z € Q,, N { zeroes of mainfac (p)} as close as we please to z.
Assuming p < po, we may apply the above observation to the zg. Thus,
given € > 0 there is some § > 0 such that whenever p € W, ||p—p| < §
then we can find Zg € V() N Q, with |z — zg| < €. If we take & small
enough, then (2) applies. Hence, we can find §, C > 0 with the following
property. If p € W' and ||p — p|| < 6, then

®  Sklso e | Y

e [0

, for all (&).
zeV(P)NQ, (f )

For a given f € HD, we take f = 3" £40q with £, as in (1). Then (1) and
(o7

(3) yield

4 f=fon V(p), and ||f| <C max .

(@ f=fon V@), and |fl <C max |f

This holds whenever p € W* and || — p|| < 8. Since also f has degree

< D, it follows from (4) that Norm (p, 1, D, p) < C for all p € W* with

I — p|| < 8. This is the conclusion of Lemma 6.1. We proved it under

the assumption p < pg, but that assumption can immediately be removed,

since p — Norm (p, 1, D, p) is monotone decreasing.

LEMMA 6.2. — Let p € W' be given, and let integers m, D' be
given. Then there exist a neighborhood U of p in HP, and continuous
maps ®, : UNW? — HD'+mD(1 < a < s) and a constant C, with the
following properties :

(a) The polynomials ®,(p) are linearly independent as functions on V (p).

(b) Suppose we are given p € UNW?, g€ HP with ||g||<1, and 7€ (0, 1).
Let ¢o = ®,(p), and let § = otherfac (p). Then given f € HP | we
can find coefficients A, (1 < o < s) and a polynomial fy4 € HP'+mD

such that
(i) q*f= Y AaBa+1"f4mod(p+T9),
1<a<ls
and
(ll) lAalv ”f#” < C*“f”
Proof. — We use induction on m. If m = 0, the result is trivial. In

fact, we take s = 0 (i.e. there are no ®,). Condition (a) holds vacuously.
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To check condition (b) with m = 0, we take f4 = f and note that (i) and
(ii) are obvious.

Assume Lemma 6.2 holds for a given m. We will prove it for m + 1.
Thus, we assume we are given U, ®,,C, satisfying (a) and (b). Let
(¥8)1<p<s be a list of all monomials of degree < D’ +mD.

Let A be a maximal set of 3’s such that the polynomials ¥3(8 € A)
and ®,(p)(1 < a < s) are linearly independent as functions on V(p). After

renumbering the v’s, we may assume that A = {1,...,s"}, with s < ¢
Thus,
1) Pp(1< B <s") and Ba(p)(1 < @ <s)

are linearly independent as functions on V(p), and

(2) For1<vy<s wehave 9, = Z Chyp + Z E3®,(p)
1<B<s" 1<a<s

as functions on V' (p).

Next we add new mappings @, to our list, by setting

(3) D,15(p) =yp for 1<p <"

Our new mappings are obviously continuous. Moreover, the new list
(Pa)i1<a<s+s still satisfies (a) and (b). In fact, (a) is equivalent to (1);
while (b) for the new list follows from (b) for the original list by simply
taking A, =0fors+1<a<s+4s".

Property (2) asserts that each v, is a linear combination of the ®,(p),
as functions on V' (p). After a trivial change of notation, we thus have found
U, (®a)1<a<s, Cx such that (a) and (b) are satisfied, and

(c) Each 9 is given as g = )  C§®Pqa(p) as functions on V(p).

1<a<s

Condition (c) means that as polynomials in HP'+™D,

(4) Vg = Z C§®a(p) + hpmainfac (p), with
1<a<s
(5) hg € HP'*™P=t  since mainfac (p) has degree ¢.

Now let T : R® x HP'+mD~t _, gD'+mD }e the linear map defined
by

(6) T5((¢a)i<a<s h) = Z £.®4(P) + hmainfac (p) for pe UNW"

1<a<s
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Since the ®, are continuous maps on U N W*, Lemma 4.3 shows that T
depends continuously on p € U N W*. Moreover, (4) shows that T}, is onto.

We now make the following :

Observation : let T; : RN — RM be a linear map depending continuously
on a parameter p. Suppose T}, is onto, and that T,v; = w; € RM™ —{0}. For
P close enough to p, we can find ¥; as close as we please to v, satisfying
Tﬁ’ﬁl = wj.

To prove the observation, we complete w; to a basis wq,...,wps of
RM | and we extend v; to a list vq,...,vn € RN such that T,v; = w;. Let
V denote the span of v1,...,v, and let Tg’ﬁ =T5 |v.

Thus, Tg"lE : V — RM is a linear map depending continuously on 3,
and T is an isomorphism, with T#v; = w;.

The linear map Tg’£ (T;,"’e)“1 depends continuously on p and is equal
to the identity at p = p. Hence for p in a small neighborhood of p,p —
(nge (TF#)~')~! is well-defined and continuous.

Set 9; = (T#)‘I(Tf (T#)™')"'w;. This depends continuously on
p provided p stays close enough to p. We have Tzf v = [Tf (T;ﬁ‘)‘l]
[Tg’e (Tf)‘l]“lwl = w;. Hence also T;9; = w;. The proof of the observation
is complete.

We use the observation with T; given by (6), and with w; taken to
P
be 1. The observation gives us functions

(7) Cg:UiN W' > R'and Hg:UiNW* — gD'+mD-t
defined on U; N W with U; C U an open neighborhood of p in HP,

continuous at p, and satisfying.

(8  ¥p =D C3(P)Pa(p) + Hp(P)mainfac (p) for j€ U NW".

Since the functions (7) are continuous at p, they are bounded on a small
neighborhood of p. Thus

©) There exist C > 0, and U, C HP open, with p € U, Cc Uy, and
ICE®)], IHs(B)I| < C for peUpnW*

We are ready to define maps ®, : Uy "W — HDP'+(m+1)D guch that (a)
and (b) will hold with U in place of U, with (m + 1) in place of m, and
with a suitable constant C, in place of C,. In fact, we define

(10) 24(5) = ®a(p) - otherfac (5).
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Since ®,, is a continuous map from UsNW* into HP'+™P_ and since otherfac
is a continuous map from U, NW* into HP (see Lemma 4.3), it follows that
®, is a continuous map from Uy N W* into HP'+(m+1)D a5 required for

the inductive step.

Next, we verify that the ®, satisfy (a). Recall that the ®, satisfy
(a), and that a polynomial vanishes on V(p) if and only if it vanishes
on some small neighborhood of the origin in V(p). Hence, the ®,(p)
are linearly independent as germs at the origin of functions on V(p).
Since otherfac (p) = 1 at the origin, we have otherfac (p) # 0 in a small
neighborhood of the origin. Hence, the functions otherfac (p) - ®,(p) are
linearly independent as germs at 0 of functions on V(p). So the ®, satisfy
(a)-

Next we verify that the @4 satisfy (b), with (m + 1) in place of m,
and with a new constant C, in place of C,. In fact, let f be given, let
P € Uy N W be given, let g € HP be given with ||g|| < 1, and let 7€(0,1)
be given. We apply (b) to write

(11) [otherfac (5)]™f = ) Aa®a(P) + 7™ f mod(f + 7g), with

(12) f# = _ Bpvs, and
B

(13) |4al, |Bg| < Cul| f]I-
Substituting (8) into (12), and then putting the result into (11), we find
that
[otherfac (5)]™f = Aa®a(B) + 7™ Y BoC§ (5)@a(P)
a Ba
+ Z 7™ BgH(p) mainfac (p) mod(p + 7g).
B
Multiply this equation by otherfac(p), and note that mainfac(p)-otherfac(p)
= p = —7gmod(p + 7g). Thus we obtain

(14)  [otherfac(B)]™ ' f =) Aa - Ba(P) + 7™ f5 mod(p + T9),

where we have set

(15) Ag =As+7™Y_ BsCE(p)
B

and

(16) fe=-g Z BgHs(p)-

B
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Recall that Hg(p) € HP'+™DP~t while g € HP. Hence fy € HP'+(m+1)D
as required for the inductive step. o

Substituting (9) and (13) into (15), (16), and recalling that 7 € (0, 1)
and ||g|| < 1, we obtain a constant C, independent of p, g, 7, f, such that
(17) |Aal, £l < C.IIF.

Equation (14) and estimate (17) show that Us, ®4,C, satisfy (b), with
(m + 1) in place of m.

Thus we have found Us, @4, C, that satisfy (a) and (b) with (m + 1)
in place of m. The inductive step is complete and Lemma, 6.2 is proven.

LEMMA 6.3. — There is a small constant py > 0 with the following
properties :

(a) Forallpe W, V(p) NQp, = {z € Q,, : p(z) = 0}.
(b) Forallp € W and z € Q,,, we have |Vp(z)| > 1c1

(c) Letpe Wandz € V(p) N Q 2o be given. Then for any € > 0 there
isa § > 0 such that if p € W and ||p — p|| < 6, then there is a point
e V(P)NQy, with |z —z| <e.

Proof. — (a) amounts to saying that otherfac (p) # 0 throughout
Qp,- Since otherfac (p) = 1 at the origin, and since |otherfac (p)|| < C
by Lemma 4.1, we can pick po > 0 depending only on ¢;, D, n such

1
that otherfac (p) > 3 throughout @Q,,. (b) is obvious, since |Vp(0)| > ¢;
and ||p|| = 1 for p € W. (c) is proven as follows. By (b), we can pick
10(1 < ig < n) so that ‘8—-’ > % at . The implicit function theorem

shows that p(Z) = 0 if and only if &, = F (D, (&;);4,), provided ||p—p|| and
|# — x| are small. Here, F' denotes a smooth function. Restricting attention
to those & that differs from x only in the ig-coordinate, we obtain p(£) =
when £ = G(p) for a smooth function G defined on a neighborhood of p.
Moreover, G(p) = z. In view of (a), we have £ = G(p) € V(p), provided
& € Qp,- Since |2 —z| = |G(p) — G(p)| < C||p —pll and = € Qg it follows
that |£ — 2| < € and & € Q,, if ||p — p|| < 8. Therefore | — z| < € and
& € Qp NV(P) if ||p — p|| < 6, which proves (c).

LEMMA 6.4. — Let p € W be given, and let D', m, p > 0 be given.
Then there exist C, 6 > 0 with the following property :

Let p=p+7g, withp € W', g€ HP, 7> 0, ||g|| < 1. Assume that
5 — pll, 7 < 6. Then given any f € H?" we can find f € HP'*™D such
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that
(a) f = [otherfac (5)]™f on V(p),
and
(b) Il <c{ omax Ifl+ 7™ £11}-

Proof. — Let U, ®,, C, be as in Lemma 6.2. Given f € HP', Lemma
6.2 produces coefficients A, and a polynomial fy € HP "+mD guch that

(1) [otherfac (5)]™f = D Aa®a(P) + 7™ f4 modp,
a=1
and
(2) lAal, 11l < CullF1ls
provided we take § small enough that ||p — p|| < 6 implies p € U. We define
(3) F=Y" Au®a(p)+7™fy € HP'HMD,
1<a<s

Then (a) is immediate from (1), and it remains only to check (b). Let po > 0
be as in Lemma 6.3. Set p = min {—po, 5'0}' According to Lemma 6.2, the
®,(p) are linearly independent as functions on V(p). Hence, they are also
linearly independent as functions on Q5N V' (p). According to Lemma 3.1,

we can find points z1,...,2s € Q5N V(p) and constants C’, € > 0 such
that

(4) > lglsc max D &),
1<j<s -7 '1<s<s

provided

(5) I6a — @a®), 1Z; — 5] <e.

Now suppose that ||p — p||, 7 < 6§ with § small enough. The continuity of
the maps ®, shows that

(6) [®a(D) — 2a(P)]l <e,

while Lemma 6.3 (c) implies that we can find #1,...,2s € V(p) N Q25 such
that

(7 |2; — z;| <e.
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Estimates (6) and (7) show that (5) holds with ¢, = ®,(p) and with

Z; = &; € Qo5 N V(pP). Therefore (4) holds with these data, which means
that

Z |A|<C Joax

1<a<s -

Y Aaa(B)(E))

1<a<s
<C' max

AP,
Q2NV (P) Z p)‘

this estimate holds under the assumption that IIp —pll, 7 <é.

(®)

In view of (6), we have also the weaker estimate
(9) |2a(®)ll < C” for |5l <8,

with a constant C” independent of . Combining (8) and (9), we obtain a
constant C independent of p, 7, g, A, such that

10 Aa®,(P)|| < C max A<1>a~|.
(10 S 4l <0 may |3 4.0
Moreover, since 2p < pg, we have

11 < max <C ,

(11) QX )|f#l na |f] < Cll fll

with C depending only on ¢;, D, n.
By (3), (11) and the equation [otherfac (5)]™f = f on V(p), we have

max An®o(p).] < max |f|+T™
QunV (7) ?;1 B < B 1+ QI ¥
(12) < Qe |[otherfac (§)]™ f| + 7™ C|| f«|
27
< m
Cuf o ma 171 +7mIA1,

in view of estimate (2) and Lemma 4.1 Here, C4 is independent of f, p, 7,
g. By (10), (12) and the fact that 2p < p, we have

Aa®a(p)|| < C +7m
S 42| < C4{ myr 191+ 711}

with CJ, independent of f, p, 7, g

(13)

Substituting (13) and (2) into (3), we obtain the estimate

fll < Clxd max + 7™ ,
171 < G e 171+ 7m0}
with CJ independent of f, p, 7, g. This is precisely conclusion (b).
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7. Local boundedness of the norm.

LEMMA 7. — Fix t(1 < t < D). There exist constants D’,C’,
(D' > D,C’" > 1) such that the following holds : let p € Wt and p > 0 be
given. Then there exist positive numbers §, K such that Norm,(p, D', C’,
p) < K for all p € W with ||p — p|| < 6.

Proof. — We use backwards induction on ¢.

First suppose ¢t = D. Lemma 4.2 shows that WP is a relatively open
subset of W. Thus, given p € WP we can find §; > 0 such that
1) PEW, [p—pl<é imply peWP.
On the other hand, let p € WP and p > 0 be given. By Lemma 6.1, we can
find K, 65 > 0 such that
(2) pewp, ||l — p|| < 82 imply Norm (5,1, D, p) < K.
Set § = min{é;, 82} for a given p € WP, p > 0. Then (1) and (2) show at
once that p € W, ||p — p|| < § imply Norm (p, 1, D, p) < K.

Hence by definition of Norm,(p, D, C’, p), we have
®3)
Norm, (p, D,C’,p) < K for all p € W with ||p — p|| < 6, provided C’ > 1.
This proves Lemma 7 for t = D.

Next suppose Lemma 7 holds with ¢ replaced by any ¢/ >¢. (1<t <
D —1). We will prove that Lemma 7 holds for the given ¢t. This backwards
induction step will complete the proof of Lemma 7.

Thus, for suitable constants D', C'(D’ > D,C’ > 1), we assume the
following.

Let p € WD+ 5 > 0 be given. Then there exist §, K > 0 such
that p € W, ||p — p|| < 6 imply Norm,(p, D', C’, p) < K. In other words,
for each p > 0, the map p € WD+ s Norm,(p, D', C’, p) is locally
bounded.

Since also Norm, (p, D', C’, p) is monotone decreasing in p, it follows
that the map

(4) f : (ﬁ7p) = Norm*(ﬁa Dlv Clap)
is locally bounded on E = WD+ x (0, 1].

We apply Lemma 5.2, with f and F as above, and with § = W
x [0, 1]. Note that S is compact, E and S are semi-algebraic sets, and f is
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a semi-algebraic function, by Lemma 5.3. Thus the hypotheses of Lemma
5.2 are satisfied.

Lemma 5.2 gives us constants C”, m such that
(5) Norm,(p, D', C’, p) < C"[dist ((§, p), W x [0, \WT+DF x (0,1])]~™
for all p € WD+ 5 € (0,1].

Note that dist ((§, p), W x [0, 1]\W¢+1+ x (0,1]) > min(p, dist (p, W
\WED+Y)) > ¢ p-dist (p, W\WEHD+) since W x [0, 1] \WE+D+ x (0,1] =
(W\WED+) x [0, 1]UW x {0}. Putting these inequalities into (5), we get

6) Norm,(p, D', C", p) < C"p~™[dist (p, W\W D +)]™
for p € WEt+tD+,

Recalling the definitions of Norm, (p,D’,C’,p) and of Norm(p,q,D’,p),
we can reformulate (6) as follows :

(7 Let p € WD+ be given. Then we can find § € HP' with

(a) 4(0) =1 and |lg]| < C",

such that for any f € HP we can find an f € HP' for which we have
(b) f=df on V(p)

and

(c) £l < €" p~m{dist (b, WAW D)™™ max_|f].

QeNV(H)
Our task now is to find constants D', C’ with D’ > D, C' > 1, such that
given p € Wt and p > 0 there exist §, K > 0suchthat pe W, |[p—p| < §
imply Norm, (p, D', C’, p) < K. We begin by picking D’ and C’. With D',
m as in (7), we set

8) D'=D'+mD.

Then we pick C’ to satisfy the following conditions :
(92) g'>1

and

(9b) Ifp€ W and § € H? with ||g]| < C’, then ||[otherfac (5)]™g|| < C'.
We can satisfy (9b) by virtue of Lemma 4.1.

Now suppose we are given p € Wt and p > 0. We pick § > 0 small
enough to satisfy the following conditions :

(10) Ifp€W and ||p —p|| <26 then pe W',
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There is a constant K; such that any p € W*

11
(1) with ||p — p|| < § satisfies Norm (p, 1, D’, p) < K.
There exists Ko > 0 with the following property :
(12) Assume p=p+7g with pe Wt ge HP 7>0,

lgll < 1,15 — pll < 108, < 106.
Then given any f € H? there exists f € H?'+mD guch that

(12a) f = [otherfac (5)]™ f on V (),
and
(120) 17 < Ko{ Jmazc 11 +77 71}

Note that we can satisfy (10) by Lemma 4.2, we can satisfy (11) by Lemma
6.1, and we can satisfy (12) by Lemma 6.4. This completes our selection of
8. We fix constants K; as in (11) and K> as in (12). Next we pick K. Let
C4 be a positive constant for which we have

(13) ae HY gl < C' imply max|d| < Cy.
Then we define

(14) K=K+ K{Cy+C'p™}.

Now let p € W be given, with ||p — p|| < §. We will prove that
(15) Norm, (p,D',C’,p) < K.

This will complete the backwards induction on t.

In fact, (10) shows that either p € Wt or p € WD+ If € W,
then (11) implies (15) since D' > D’,C’ > 1 and K; < K. Hence to prove
(15), we may assume p € Wtt1D+, Let § be as in (7). Define

(16) 7 = dist (p, W\Wt+D+),
and let p € W\W )+ with
(17) P — ol =

We can find such a $, by Lemma 4.2. Note that 7 > 0 since p € WttD+,
Also, since p € W\W D+ we have 7 < ||p — p|| < 8. Thus, (17) shows
that

(18) I6—pll <28 and 0<7<8.
Now set g = (p — p)/7. Then (17) implies
(19) p=p+7g with g€ HP |g|| = 1.
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By (10), (18) and the property $ € W\W+1+  we have
(20) pew.

~ Now suppose f € H D is given. By (7) and (16), we can find an
f € HP' that satisfies

(21) f=df onV(p), and
22 fil<C"p~™r™ max .
(22) Ifl<Cp o If]

To this f we apply (12). Note that the asumptions of (12) are satisfied, by
virtue of (18), (19), (20). Thus there exists an f € HP'+™D that satisfies

(23) f = [otherfac (5)]™ f on V(p), and

24 fll < fl+ 7™ F)l +

(24) 171 < Fof jmax 171+ 71511}

From (21), (23) we get

(25) f = (g[otherfac (B)]™)f on V(p).

From (21) we get max |f] < (max|g|)- max . Hence, (7a) and (13
(1) wess e |fl < (mooelal)- max|1f (7a) and (13)

ield max < Cy max . Putting this and (22) into (24), we see

yield max || < Cy max_|f|. Putting (22) into (24)

that

26 fll < Ko{Cy +C"p™™} max_|f].

(26) 171 < KalCy +C"p ™) max|f
Comparing (26) with (14), we get

27 fll < K max .

(27) 17 < K max_ 1

Thus, given f € HP, we have found f € HP'+™D that satisfies (25)
and (27). By definition of the Norm, this means that

(28) Norm (p, § - [otherfac (p)]™, D’ + mD, p) < K.
Let us examine § - [otherfac (5)]™. Since § € H?', we have
(29) G - [otherfac (§)]™ € HP'+mPD,

By (7a) and the defining property of otherfac (), we have also
(30) § - [otherfac (p)]™ = 1 at the origin.
Moreover, (7a) and (9b) imply

(31) 14 - [otherfac (5)]™| < C".

Since D' = D’ + mD, we see from (28), (29), (30), (31) and the definition
of the Norm, that Norm,(p,D’,C’, p) < K, which is the desired estimate
(15). Thus, (15) holds for all p € W with ||p — p|| < §. We have shown that
there exist D', C’ such that for any p € W¢, p > 0 there exist §, K > 0 such
that for any p € W with ||p — p|| < § we have Norm, (p,D’,C’,p) < K.
This completes our backwards induction on ¢, thus proving Lemma 7.
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Proof of the extension theorem.

It is now trivial to prove the extension theorem. By Lemma 7 we can
find constants D', C’(D’ > D,C’ > 1) with the following property :

For any p > 0, the function p € W — Norm,(p, D', C’, p) is locally
bounded. Since W is compact, it follows that

1) f(p) = sup{Norm.(p, D', C’,p) : p € W}
satisfies
(2) 0 < f(p) < oo for all p € (0, 00).

Theorem 5.1 Corollary 3 and Lemma 5.3 imply that f(p) is an ex-
tended semi-algebraic function on (0, c0). Estimate (2) then shows that f(p)
is a semi-algebraic function on (0, 00). Since f(p) is monotone decreasing,
it is locally bounded on (0, c0). Lemma 5.2 applied to S = [0, o], E = (0, 1]
yields

®3) If(p)l < Cp™™ for 0<p<1.
From (1) and (3) we get

Norm,(p,D',C’,p) < Cp~™ for all pe W,p € (0,1].
Note that D’,C’,C,m depend only on c;, D,n.

By definition of the Norm, this means the following. Let p € W, p €
(0,1] be given. Then there exists ¢ € H? with ¢(0) = 1,]j¢|| < C’, such
that for all f € HP we can find an f € HP " that satisfies

(a) f=4qf on V(p), and
(b) Ifl<Cp™™ omax 1.

Now pick a small constant p; > 0 depending on c¢;, D,n. Lemma 6.3(a)
shows that V(p) N Q2, = {z € Q2, : p(xr) = 0}. Also, ¢ € HY',

1
q(0) = 1,||g]| < C’ imply that 3 < ¢ < 2 on Qg if p; is small enough.
Hence, (a) and (b) above yield :

@  f=F/q on {z€Qup :plz) =0} where fge H”
®) 5Sas2on Qs

™ glaXIfl < Cmax{|f(z)| : = € Q,, and p(z) =0}.

2p1
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Here, C depends only on c;,n, D since p; only depends on ci,n,D. We
have proved (a), (8), () for p € W, f € HP.

Next, let p,c,C, D be as in the statement of the extension theorem.
We have p/|lp|| € W with ¢; depending only on ¢,C,D,n. Applying
(@), (8), (7) to p/|lpll, we obtain the conclusions of the extension theorem
for the value p = p;. Thus, it remains only to pass from p = p; to p < p;.
Now, if p satisfies the hypotheses of the extension theorem, so also does

~ p1 p
p(x) ==p| —z ) for 0 < p < p;.
(=) p (Pl) P

Applying the conclusions of the extension theorem to the polynomial
D and the value p = p; gives us the extension theorem for the polynomial
p and any given value of p (0 < p < p1).

Proof of Theorem 1. — Let f, P,Q,T', 4, D,d,c,C be as in the state-
ment of Theorem 1. Thus, conditions (I) - - - (IV) hold. Denote by c«, C, C.
etc. a positive constant depending only on ¢,C,d, D.

We have to prove (A), (B), and (C). The first step is to reduce matters
to the case in which v satisfies

(1) W ()] <
9Q

T

for |z| < 1.

N =

In fact, Q(z, ¥(z)) = 0, |

Hence, (%—g) + W(x)(%%) = 0 and therefore |¢/(z)| < C} for |z] < 1.

If 2C} < 1, then we have (1). Otherwise, set
P(x) = 9(2)/(2C;),L = {(z,%(2)) : |z < 1},
Q(z,y) = Q(x,2Cly), P(z,y) = P(x,2Cly).

One checks easily that 9,I, @ again satisfy conditions (I) --- (IV) with
constants depending only on ¢,C,D. Moreover, (1) holds for 3. Also,
f(z) = P(z,¢(z)) = P(z,9¥(x)). Thus, to prove (A), (B), (C) we may
replace P,Q,T, %, by P,Q,T,9. So we may assume that (1) holds.

For z¢ € [-1,1] and 6 > 0, define
Iys={r €R: |z — x| <6} and Uzys = {(z,y) ER?: |z — 30| < 6
and |y — 9(zo)| < 6}.
Assume that I, 25 C [-1,1]. Then by (1), z € I, 25 implies (z,%(z)) €
U. > caty = Y(z) and ’

Zo,

< C,, and ’%—3—‘ > ¢, at (z,9(z)) for |z| < 1.

1o}
—ﬁ < Cy in Uy, 26. Hence

26- AISO, 8y2

By
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(z,y) € Ugy,26 implies

%3—‘ > c—Cily—9¢(z)| > ¢—Cy-(46) > 0 provided
we take
(2) 8 < ¢! for a small enough cl.

Therefore for fixed x € I, 25, we can have Q(z,y) = 0, (z,y) € Uy, 25 for
at most one y. This condition holds when y = (), so we have proven that

3)  {(z,y) € Uzo,25 : Q(z,y) = 0} = {(2,9%(2)) : « € Iy, ,26}, and

(4) {(2,9) € Uso,5 : Q(z,9) = 0} = {(2,9¥(2)) : = € Iz 6}
Let p; be as in the statement of the Extension Theorem, with n = 2, and
with d+ D in place of D. Thus p; is a small constant of the form c,. Assume

(5) 6 < pP1.

Then the extension theorem shows that there are polynomials F(z,y),
G(z,y) of degree at most D', satisfying the conditions:

(6) P=F/G on {(z,y) € Uyy,2 : Q(z,y) = 0}
(7) % < G <2on Uzo,26-

(®)  max |F| < C.max{|P(z,y)|: (,y) € Uzo,s and Q(z,y) = 0}.
Q>
Now we fix é to be a small constant ¢, < i, small enough to satisfy (2)

and (5). Thus, (3), (4), (6), (7), (8) hold provided I, 25 C [-1,1]. From
(3) and (6) and the definition of f, we get

_ F(z,y(z))
(9) f(-T) = m for z € Ia:o,26-
From (3) and (7) we get
(10) % < G(z,9¥(x)) < 2 for z € I, 25.

Also, (7) and the fact that § = ¢, and G is a polynomial of degree at most
D’ yield the bound

(11) |Gz(z;y)|7 |Gy(x) y)l <, (:L‘, y) € Uzo,26y
for the partial derivations of G.

Since diz{G(a:, ¥(z))} = Ga(z,¥(z)) + ¥ (2)Gy(z,9(x)), equations
(1), (3), (11) yield

(12) ‘%{G(xﬂ(x))}‘ < C, for z € I, 2.
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Next, (4), (8) and the definition of f yield
(13) max |F| < C. max|f|
z0,2
Since F' is a polynomial of degree at most D’ and § has the form c,, (13)
implies the bounds

(14) max (|Fy| + |Fy|) < Cymax|f|

Uzo,u Iz0,6
for the partial derivatives of F. From (3) and (13) we get
(15) |F(z,¢(z))| < Cs max |f| for all z € I, 2.

zq,6
Also, since %{F(m, Y(x))} = Fyp(z,¥(z)) + ¢ (z)Fy(z,¥(z)), equations
(1), (3), (14) imply
(16) ‘—d—{F(x,z/J(x))}‘ < C.max|f| for all z € I, 25.
d:l: Izo,6
Immediately from (9), (10), (12), (15), (16) we obtain the basic estimates
(17) max |f|<C*ma.x|f| and
I::o 26 I
(18) max |f'| < C, ma~)<|f|
z0,2

1
We have proven (17) and (18) for § = ¢, < 20 assuming I, 25 C [—1,1].

Now it is trivial to complete the proof of Theorem 1. Using (17) and
induction on k, we see that

<k<Zé6
[fxl]!f‘ [1+nz[el&1 kslflforo k 6

Taking k > -2—6_1, we obtain the first conclusion of Theorem 1. From (18)
we obtain at once [m?,xll |f'| <C. [mla.xll | f| which is the second conclusion of
Theorem 1. , ’

Next we divide [—1,1] into 2N equal subintervals I,,, where N is a
large integer to be picked in a moment. For each I, we have

max|f|<—max|f|+N/ f(z)]dz.

Applying this to the I, containing a point where | f| is maximized on [-1, 1],
we find that

(19) ax |f] < max|f|+N / \f(2)dz.

[11]
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Putting the second conclusion of Theorem 1 into (19), we obtain

C
(20) max |f] < T max 7]+ N / f(z)dz.

We pick N to be the least integer larger than 2C,. The first term on the
right in (20) can then be absorbed into the left-hand side, leaving us with
the estimate

1
— <
2[mlaslclfl (2C, +1)/ |f(z)|dz.

This proves the final conclusion of Theorem 1.
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