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/-TRANSFINITE DIAMETER AND NUMBER
THEORETIC APPLICATIONS

by Francesco AMOROSO

1. Introduction.

Given a compact set X C C its transfmite diameter t(X) is defined
as the limit of

tn{X) = ̂ JV^)!2/71^-1),

where Vn{x) = Y[ (xj — Xi) is the Vandermonde determinant. We
l<,i<j<n

generalize this quantity introducing a weight as follows. Let f:X —> R"^ be
an upper semi-continuous function and put

^W^m^xflV,^)!2/^-1) fl /(r^V
V Ki^n )

As in the classical case, this sequence converges to a real number tf{X)
which we shall call the "/-transfmite diameter". In the classical case it is
well known that — \ogt(X) is the minimum over the set M.^ of all unitary
measures concentrated on X of the following quadratic functional

I[\}= f J\og-^——d\{x)d\(y)

(see [HI] Theorem 16.4.44, p.284). The same result is still true for our
generalization : —\ogtf(X) is the minimum over M.^ of

If[x] = //log W) + log W^y\+ log W)dx(xmy)-
Key words : Transfmite diameter - Integer transfmite diameter - Capacities.
AMS classification : 41A10 - 31C15 - 11J82.
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These new quantities arise in analytic number theory in the elemen-
tary approach to the Prime Number Theorem and in diophantine approxi-
mation in the study of the least deviation from zero of integral polynomials.

For the first field of applications, let us denote by ip{x) the Chebyshev
^-function and let ^i(rc) = ^ ^W. It is known that the Prime Number

h<x
Theorem is equivalent to ^i(x) ~ x2/2. The determinant

bf / x^dx}Dn=Det( / x^dx}
^ J o /0<t,j<n-l\JQ }Q<i

is a rational number whose denominator is bounded by

exp(^i(2?z) -^1(71)).

On the other hand

Dn = ̂  t ' ' ' t vn^2 d x l ' " dxn ̂ tn^ l])271^"^n- Jo Jo

(see [SZ], (2.1.9) p. 23) and so

lim-^logP, < 21ogt([0,l])) = -2 log 4.n/
Therefore, we obtain

^i(x)/x2 ̂  10!4 = 0.46209, x > 1.
o

Considering for r > 0 the more general determinants

Dm = Detf / x^UxO. - x)}2^-^ dx}
\JQ ^0<iJ<n-l

= 1. f1... f1 v^x)2 TT {^(1 - ̂ )}2r(n-l) dx, • . • dxn
n! ̂  ^ Ki<n

^^(l-^^ndO,!])271^-^

M. Nair ([N] Theorem 2; see also [C]) obtains

^i(x)/x2 > 0.49517, x^> 1.

The second number theoretic domain where our quantities are applied
is the following. For a compact set X C C, let us define its integer
transfinite diameter as

W = mf |P|WP€Z[O;],
degP>l
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where

|P|oc,X = SUp \P(X)\
xex

is the norm of uniform convergence. In [A], we obtain good estimations for
tz(I), I = [a, 6] C R being a real interval, via Minkowski's theorem by
using asymptotic bounds for

A-o,r,,nCO = Det( Ix^^x - a)^=^(b - x)21'-1^ dx\
^ J l ^0<iJ<n-l

(ro,r-t > 0, ro + ri < 1). For example, in the case I = [0,1] our method
gives the upper bound

tz([0,l]) < 0.42477.
2rp(n-l) 2ri(n-l)

It the function / is more complicated than (x — a) l-ro-^l (^ — 3;) i-r-o-ri ^
there are no explicit formulas for the determinant above. In spite of that,
we can deal with tf, which can be evaluated giving the solution of the
variational problem

mm
xeM^}

w
instead of directly estimating Dj,/,n. This can be done using the link
between tf and tz, which we shall give in Corollary 3.1.

More generally, given a compact set X C C and an upper semi-
continuous function f\X —> R^, we define the integer /-transfinite diame-
ter ^z,/W ofXas

lim inf max|P(a;)|1/71 • fix)
n€N Pez[^, x€X ' v / 1 ' ' '

P^O,degP<n

(see §3 for the proof of the existence of this limit). I f / = l , tz,f(X) = tz(X)
provided that tz(X) < 1 (see [A] §3 for instance). The integer /-transfinite
diameter plays an important role in the study of rational approximations
of logarithms. Let I ^ m be positive rational numbers; we say that fi is an
irrationality measure for \og(l/m) if

^H >c^q~tl(^-P
\ m) q

for p, q e Z with q > 0. We also define /^(log l/m) as the infimum of the set
of irrationality measures of log((/m). Let

a = (v^+ y^)2, f3 = (VI - v/m)2;
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following a method first developed by G. Rhin ([RH1]) and R. Dvornicich -
C. Viola ([DV]) independently, we can give good irrationality measures for
log l / m if we are able to exhibit polynomials with integer coefficients which
are very close to zero in [0,/3] and not too big in [/3,a] (see Theorem 4.1
below). In §4 we obtain good estimates for ^z,/c (P?a])? wne]re fc' [0, o\ —> R
is the real function defined by

. ^ f l if^M),
J c { ) lexp(-c) i f^e[ /3,a] .

This allows us to find some explicit functions Fi^rn(t) defined on a compact
set K C R^ [k = 2,4 or 5) having the following property : if t € K and
Fi.mW > 0, then this number is an irrationality measure for \og(l/m}.
Numerical computations will give :

^ ^(0 <
log 2 3.991

log 5/3 6.851
log 3/4 3.154
log 7/5 5.456

d /^(O <
log 3 16.960

log 2/3 3.402
log 4/5 3.017

Our measures for log 2 and log 5/3 improve Rhin's results /^(log 2) <:
4.0765 ([RH1]) and /^(log5/3) <, 7.224 ([RH2]). For log 2, Rukhadze [RU]
obtains /^(log2) <, 3.893 with another method (see also [HA]). For log 3,
the best result is /^(log3) < 7.616 ([RH1]) which arises as a particular case
of a linear independence measure between 1, log 2, log 3. Finally all our
results improve those of Alladi and Robinson ([AR]).

2. Associated kernels.

We start with some classical notations from potential theory. A kernel
k on C will be a lower semi-continuous function k: C x C —> R U {+00}.
For a signed measure A on C with compact support 5'(A), we define its
potential (with respect to A;) by

U^x)= fk{x^d\{y} x e C

and its energy by

W = [ [k(x^y)d\(x)d\(y) = [u^(x)d\{x).
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Given a non-empty compact set X C C, its Wiener k-capacity will be the
real number (possibly +00)

Wfc(X)=infJfc[A],

where the infimum is taken over the set M^ of all positive measures
concentrated on X of total mass A(C) = A(X) = 1. Using the lower
semicontinuity of A;, we see that the infimum is actually a minimum (see
[FU] Theorem 2.3, p. 154); each minimizing measure A € M~^ will be
called a capacitary measure (with respect to k and X). For an arbitrary
set A C C, we take Wjk(A) equal to supWfc(X), where X ranges over the
compact subsets contained in A. It is easy to see that Wfc(A) = +00 if and
only if the interior measure JLA*(A) of A is zero for any measure u. of finite
energy. We shall say that a property P{x) involving a variable point x C X
(X being a compact set) is true k-nearly everywhere (= k-n.e.) if the set
of points A where P fails to hold, satisfies W^(A) = +00.

From now on we make the following assumptions on k :

• k is symmetric : k(x, y ) = k(y, x);

• A; is positive definite in the following "weak" sense : for any signed
measure A with compact support and total mass zero, we have Jfc[A] > 0
and the equality holds if and only if A = 0.

THEOREM 2.1. — Let X be a compact set with Wk{X) < +00. With
the previous assumptions on fc, there is only one capacitary measure A. It
is the unique measure A € A4~^ for which there exists a real constant W
such that

(a) U^(x)>W n.e/mX
(b) UJ^{x)<W ^ x e S ( X ) .

Moreover, the constant W is equal to Wk(X).

Proof. — According to [FU], Theorem 2.4, p. 159, any capacitary
measure satisfies (a) and (b) for A = Wfe(X). Let us assume that A C M~^
satisfies (a) and (b) for a constant A and let ^ be any capacitary measure.
Then, using (b),

Wk{X) ^ W = [u^(x)d\(x) < A,
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and, from (a),

Ik[\} = W + W - 2 / ̂ ) d^(x)

<A+ Wk(X) - 2A = W^(X) - A < 0.

SoA=Wk(X) andA=/x.

Q.E.D.

In view of our estimations, we consider kernels kf of type

kf(x>y)=losW)+los\xLy\+logW)
where / is an upper semi-continuous function. For simplicity we shall
write £/^, J/[A], Wf(X), etc. instead of £7^, ^[A], Wj^(X), etc. Such
kernels are obviously lower semi-continuous and symmetric; they are also
strictly positive definite in the previous sense. In fact, if A has zero mass,
If[\] = IA^I^L where k^ = log.———. is the classical logarithmic kernel,

F "~ y\
which is strictly positive definite (see [L], Theorem 1.16, p.80). Finally, we
remark that for these kernels every finite set has Wiener capacity +00.

We consider the following special case. Let X = [a, b] be a real
interval, fix some points a = OQ < a\ < ' ' • < a^ = 6 in X and fix 2k
real numbers y - o , . . . , r^, c i , . . . , c^-i with r/i > 0. Put

k ^ -. k-i

fW = II 1^ ~ ah^ exp ( ~ T~r S^^M-il̂ ))
h=0 /i=l

where ̂  is the characteristic function of * and r = TQ-\-' • -+rk. In this case
we are able to find an explicit formula for W/([a, b]). We start by expressing
the 2k parameters r/i, c/i in terms of new parameters a;i , . . . , x^k with

a = ao < x\ < x^ < a\ < • ' • < dk-i < x^-i < ̂ 2k < a'k = b.

We put
2k k

^ = n 1^ ~~ xi\l/2 ]"! 1^ - ai\~l^ h=l,...,k
i=l i=o

i^h

and
^ /-X'zi+1 2^ k^ = E(-l)'c-^ / n ̂  - x ^ ' 2 ̂ (a; - a^~l dx

i=l •lx2i j=l j=0
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(the integrals are Cauchy's integrals). Now we can state our result on
the /-capacity of [a,&], which generalizes (and specifies) an idea of G.V.
Chudnovsky (see [C], pp. 97-100).

THEOREM 2.2. — The capacitary measure X of [a, b] with respect to
the kernel

1 , 1 , 1log —— 4- log ,———, + log —-—f(x) \x-y\ f(y)
is concentrated on the union L of the intervals Lh, = [^2/1-1^2/1] with.
density

.—ni-^2]!^-^-1-
v / ^i=l h=0

Moreover

(i) (I-D^M)
= - (1 - rk)(rk log(& - o)(b - x^k} + (1 - nO log(a;2A; - a))

k-l

4- ̂  rf, log^+i - ah) -h 2 ^ r^j log(a^ - a,)
h=0 0<i<j<,k

^ rX2h+l e v^ \

^i {<-l)l^>-^}'fa
+(l-r»)^;{,M-^-^},fa

^ / (—1)^-^ rx2h+2 Y

-^^(^-^— '-—— j g d x ) +(l-rfe)cfc-i
h=i 7r ^^h+i /

where
2k k

g(x)=1[[\x-xh\l/2]^(x-a^-\
h=l h=0

Proof. — Let
r)1-

^x)=T[\x-x^ ^)={(-1^ [ f x e L h ' -v / ^11 ' v / [O, otherwise

and put XQ = —oo, ^2fc+i == +00. We start with the following lemma,
proved in [M], chapter 11.
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LEMMA 2.2. — For any real number x ^ Xh and for any polynomial
P € R[a*] of degree < k — 1 we have

1 r P(y) s(y)dy f ^ + i _ p ^ i f x e L ; ,
~KJ AQ/)V2 y - x == 1 (-1) A(^ lfx e (^,^+1)

t for some h = 0 , . . . , k,

where the integral is a Cauchy's integral.

Let now

{ ., 2k k -v I / MA = ,(i-7) n i^i172 n i.-^i-1}^^^ = -^x^)dx.
n—\. ri—O

For any y G L/i we have

ig(j/)i (_i)fc-fe ^ _ ->.d-7) = .(i - r)w^ [ n^ -a:-) ro/ -»'-)1}
%=1 i=0

- (•l)fc"ft fTOly^"^^172!TrO-r^y)^^ w '^ (y - a,) J

for some monic polynomials P of degree k — 1. Hence, for any x / a/i,

fc
E
1=0

^)= /•rfA(y) ^ r, 1 ^ (-I)" f_P(^_s(y)dy
J y - x ^1-rx-ai 7r(l-r)y A(y)i/2 y-a;

^(^/) y^ r, 1 ^ (-1^ r P(y) s(
y ~ x ~QV-rx-ai 7r(l - r) y AQ/)1/2 i/ - x

k f / ^ \ , A / \ • ^ / < ) » - -.^ {(-l)^^)1/2 /• 1 ^ 1 1 i
+ ̂  ̂  ̂ T^W^) 1 W/2 \-'y~x ~ ̂ swdy

( l - r ) ( x - a i ) f

Lemma 2.1 gives

(-l^r^a,)1/2 /• 1 s(y)dy r.
/ i = 0 , . . . , k ,7r(l - r)(x - en) J A(^)1/2 y-ai (1 - r)(a: -

hence

^ = (-l)fc /• P(y) s(y)dy ^ (-l)tr,A(a,)l/2 /• 1 s(y)dy
7r(l - r) 7 A(y)i/2 y _ ^ ^ ,(1 - r)(.r - a,) 7 A(y)i/2 y - x •
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If x is in the interior of L, the same lemma gives (f)(x) = 0. Otherwise, if
x € (^2^2/1+1), x ^ ah,

(^ ^ (-1)^+1 f —(-^^^(a,)1/2!
(2) ^) = (l-^A^V^^^g———W^)———;

^ (_l)Wi^)
1-r

In particular,

y'rfA(y)=[^(-:r)^)]-^

= iin, ^)-_r-=i,
rr^+oo 1 — r 1 — r

hence A € Mt ^ and its potential U^ is constantly equal to some Wh on
d£/^ '

L/i, since —"- = ( / ) ( x ) == 0 on the interior of L. For h = 0 , . . . k — 1, let us
dx

consider the function
k-l

^h(x) = U^(x) + Y^ log \x - an\ - ^—^ ̂  c^^^,+i](^)
1=1

which is continuous on [^2/1^2/1+1] (on (—oo,a:i], if /i = 0) and differen-
tiable on (.r2^^2/z+i)\{^i}- From (2) we have

(3) ^ = ̂ ) + -'- . ̂ - = ————{(-1)^<^) - -z/-},v / dx ' ' 1 - r x-dh l-rl' x - a^ J

for any a: e (a;2/i, ^2/i+i)\{^/i}- Hence, for h = 1, . . . , k - 1,

WH^ - WH = ̂ (^+l) - ̂ 2/0

= ^(^2/1+1) - ̂ (^2/1) + Y-r-(^ - ̂ -i)
^ i ^2/1+1 — 0'h

- -——— log —————————1 - r ah-x^h
1 /'a^/i+l , 'y»7 '»

= ——— / {(-l)"-^^) - -^—} dx
l-7-^ l ;l;-a^J

(_l)fc-fc ph+i j. 3; _ a
+ -———— / g(x) dx - -—— log —-——— = 0.

1 -r Jx^ l~r a-h-X2h

This yelds U^(x) =. W e R for any x e L = S(\). Moreover, from (2) we
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dU} dU)
-^ = (f)(x) > 0 for x^h < x < ah and —J- = ^(x) < 0 for ̂  < x < x^i
(h = 0 , . . . ,A : ) ; hence U^(x) > W for any x € [a,&]\{ao,. . . ,0^}. By
Theorem 2.1, A is the /-capacitary measure of [a, 6] and Wf([a,b]) = W',
the first assertion of Theorem 2.2 is proved. For the second, let

(4) ̂ /log^ î̂ /lo^^)

1 ^ rX2h+2
+ ,,0^7)2 ̂ c/l/ (-1)'-^)^.v / /l=l ^^h+l

For h = 0 , . . . , k — 1, we have, using (3),

1 fX-zh+l ,

^~^-ri {(-l)fc-^)-^}&

= w + r?7 ̂  î ^+i - ̂ i -1^7
-/^l^a/j^^^l^10^0'1-"1'-^

i^h

Let now

^(x) = U^x)+-^ log |̂ -a,|+^ log k-a|-^ ̂  c^[a,a.,,](^
z=l

which is continuous on [a;2fc,+oo) and differentiable on (^2fc,+oo)\{ao}.
We have

lim ^fc(a-) = F
x—>'+oo

d^k , . . Tk 1 , 1 - Tk 1
——— = (1){X) + -——— • ————— + -———— • ————
dx 1-r x- Ok 1-r x- a

1 (,^ rk l_-rk\
=~^-r{9{x)-^a,--^a}'

Therefore,

(5.) -—r to- ̂ --^}dx
1 - r Jak l X-CLk X - C L !

/ -. k-1

= - ^ ̂ r^ ^(y) + E i?7 ̂  1^ - ̂ i - ̂  ̂ (^ - ")•
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Similarly,

«,) -_r°{,(,)_^_i^},fa
l~r Jx2k l x-ak x - a J

=F-TV-^log(fr-^)-^log(^-a)+^.

Now, from equations (5o), . . . , (5^) and (4), we easily obtain

(1 - rk)F - (r - rk)W

1 f fc-l

=y-T7 ^ - (1 - ̂ rk log(6 - a) + ̂  r^ log^+i - ̂ )
I /i=o

+2 ^ r,rj log(a, - a,)
0<i<j<k

+E^^'>+l{(-l)fc-/l^)-^—}^fc=o • / " < . ' • x-a,h,)
k— , (-l)fc-fc /•^+2 ^

-E^-———— 9dx) .
^=1 ^^/i+l / J

Our claim (1) is established taking into account (6).

Q.E.D.

Remark. — The previous result remains true if r/i = 0 for some index
/i (in this case, necessarily OH = x^h or OH = 2*2/1+1 and all the quantities
which appear in the formulation of Theorem 2.2 still have a meaning, except
perhaps for r^ log(a:2/i+i - a/i) and for rj, log(& - x^k), which we take = 0).
This can be verified directly or by using a continuity argument.

3. Connections between ty, Wf and tzj.

As announced in §1, the Wiener /-capacity and the /-transfinite
diameter are closely related.

THEOREM 3.1. — For any compact set X c C and for any upper
semi-continuous function f: X i-̂  R4' the sequence of real numbers tf^n(X)
converges to a real number tf(X). Moreover, tf(X) = exp{-Wf(X)}.
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For the proof, see [HI], Theorem 16.4.4, p. 284, although this author
considers only the classical case / = 1.

Let / be as before and let us define

tz^n(X) = ^ m^ \P{x)\1^ . f{x).
P^O, degP<n

We have tzj^+mW71^ < ̂ zj,nW • ^z,/,m(^)m, hence it is easy to
see that the sequence ^zj,n converges to its infimum. We define the integer
/-transfinite diameter of X as

t^f{X) = h^zj,n(X) = ̂ tz^n(X).

The next theorem, which generalizes a classical result of Fekete explains
the links between tf and ^z,/-

THEOREM 3.2. — Let X C C be a compact set, symmetric with
respect to the real axis (i.e. X = X) and let f:X —> H^ be an upper
semi-continuous function such that f{x) = f(x} for any x € X. Then,
t^f(X) < ̂ /tf(X).

Proof. — The proof is a consequence of the following two lemmas,
which, on the whole, are classical.

LEMMA 3.1. — Let X C C be a compact set and let f:X —> R"^
be an upper semi-continuous function. For h,n € N, 0 ^ h < n,
put M^n == min|P • /n |ooX? where the minimum is taken over the set
of monic polynomials P G C[x] with degree <: h. Then the sequence
( ( \ 2/n(n-l)^
\[ n M3^-l} \ converges to tf(X).
^O^j^n-l 7 J n^N

Proof. — We use the same arguments as in [HI] p.269-270. Let
x\,..., Xn € X such that

^(x)^-1)/2^!^)! [J f(x,r-\
Ki<n

Then

^w71^-1)/2 = n /(^)n-l^ i^- - ̂ i > nM^'
j=l i=l j=0
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On the other hand, let PH (h = 1,..., n - 1) be a monic polynomial of
degree h such that Mh,n-i = \Ph' /n~l|oo,x. Using Hadamard's inequality
for determinants we find

^nPO-C1-1)/2 = iDetOri/^)"-1)^^^!

= iDe^P,^/^)"--1)^.^!
n-1 n-l< IL E \p^)fw < ̂  • n ̂ n-r
h==0 \j=l J=0

Q.E.D.

LEMMA 3.2. — Let X C C be a compact set, symmetric with respect
to the real axis and let f i , . . . , fn:X —^ C be linearly independent functions
such that fi(x) = fi(x). Put

Mh = inf sup |Ai/i + • • • + Xh-ifh-i + fh\'
Ai,.. . ,A/i_i€R x

Then there exist integers A i , . . . , \n such that

sup |Ai/i + • • • + An/n| < n(Mi • . . Mn)*.
X

Proof (see also [FE] and [S]). — Let us consider the symmetric convex
set

C = {(a; i , . . . ,Xn) € R71 such that |.z;i/i + • • • - » - ^n/n|oo,x < 1}.

For 8 > 1 and 1 < i < j < n let \ij € C be such that

|Aij/i + • • • + Xj-ijfj-i + /j|oo,x ^ 6Mh, j = 1,... ,n;

from our hypotheses on X and /i,..., /n we can assume A^j e R. Let us
consider the linear map L: R71 —> R71 defined by L(a;) = Aa;, where A is
the n x n matrix A = (\ij) (\ij = 0 for i > j and A^ = 1). The image
via L of the parallelepiped

P == {(^i? • • • ̂ n) € R71 such that \Xi\ <, (6nMi)~1^ i = 1,... ,n}

is contained in G. So, taking 6 —>• 1,

^^(^"M-M:-
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Hence, MinkowskFs Convex Body Theorem gives

n(Mi... M,)* G n Z71 / { (0 , . . . , 0)}

and our assert follows. Q.E.D

In general, it is not convenient to apply Theorem 3.2 directly. For
example, it only gives the trivial bound ^z([0,l]) ^ 1/2. It is better to
introduce first some arithmetical information and this may be done using
the following simple result :

THEOREM 3.3. — Let X and f be as in the previous theorem and let
Qi^'^Qk ^ Z[x]. Given n , . . . , r f c > 0, put

k k
r = ̂ r^degQ^, g(x)l-r = f(x) {J |Q^)p.

h=l h=l

Then

tzj(X) < t^(X)l-r

Proof. — For any 6 > 1 and for any sufficiently large n e N, we can

find a polynomial Pn € Z[x] of degree < mn = [(l-r)n] - ̂  degQ^ such
that h=l

max\P(x)\l/m-g(x)<tz^X)6.
a;tA

k
The polynomial Rn(x) = Pn(x) Y[ O^)^71^1 e Z[x] has degree < n.

h=l
For any x e X we have

\Rn{x)\^f(x) = (iPn^)!1/-^^))"-/^)6- n IQ^)!^,

/i=l

where an, bn and Cn are positive numbers defined by

_ r^n , _ rrin [r^n} +1 r^m^
n~ n' bn~l~^~^n- chfn = ————— - (1^7)n-

Therefore,

fc
^zj(^) ^ te,,(X)^ . max{l, 1/loo.x}671 • 11 max{l, lO/J^x}^.

/i=i
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Using

lim an = (1 - r), lim bn = lim c/^ = 0
yi€N neN n6N

we get tzj(X) < tz,gW^-^6. Our claim follows taking 6-^1.

Q.E.D.

In particular, combining Theorems 3.2 and 3.3, we obtain

COROLLARY 3.1. — Let Qh, rn, r and g be as in Theorem 3.3 and
assume tg(X) ^ 1. Then

tz(X) < tg(X)^-^2.

For example, with

g(x) = {x(l - x)}~^\l - 2x\~^

(ro,ri > 0, r = 2ro + ri), Corollary 3.1 gives

log^z([0,l]) ^ (l-r)log^([0,l]) < l^log^([0,l])

and the last quantity can be evaluated by Theorem 2.2. A proper choice of
the parameters again gives the inequality ^z([0,1]) < 0.42477 proved in [A].
The choice of further polynomial factors leads to negligible improvements.

4. Irrationality measures for logarithms.

The link between integer transfinite diameter and irrationality mea-
sures is given by the following

THEOREM 4.1 (G.Rhin, 1989). — Let a, b be two positive integers and
put

a = (v/a + V^)2, (3={Va- Vb)2.

For c > 0 , let f^ = exp(-c^[^^]) and let e(c) = log^zjc(M)- Then, if
e(c) < — I ? th^ number \oga/b is irrational and its irrationality measure is
bounded by -c/(l + e(c)).
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Sketch of the Proof (see also [RH2]). — Let e = e(c) and assume that
e < -1. For 6 > 1 we can find a polynomial P € Z[x] of degree < m such
that

e' = log |P|oo,[o,/3] < Sem, log |P|oo,[/3,a] < cm + <fem.

Let us consider the linear map a: R[x] —> R[x] defined by axh == (b - a)^
Lh{x}, where

Lh(x)=^'^xh(l~x)hez^

is the h-th Legendre polynomial. For n € N, let Pn(a;) = crP71, which is a
polynomial with integer coefficients and degree < nm. Repeated integration
by parts gives

^ ^(a-^P^)^^ r1 J^-bYxd-x)^ {a-b)dx
Jo b-^-(a-b)x Jo ^ b+(a-b)x j b - { - ( a - b ) x '

The function
^ ^ (a - 6)^(1-.r)

6 + (a - &)a;
maps [0,1] onto [O,/?], so we deduce

log \In\ = £'(n + o(n)), n -^ +00.

Moreover In = <7n log(a/6) - pn, where pn, 9n are rational numbers whose
denominators are bounded by

^mn+i = lcm{l , . . . , nm + 1} = exp(nm + o(n))

(see [AR], for instance). The Laplace formula gives

1 />7r

\qn\ = - Pn{ci + b + 2^/a6cos0) d0 ̂  exp(cnm + Senm).7r Jo

By standard facts about the estimate of irrationality measures, we obtain
our claim.

Q.E.D.

Let a, y3, c, /c and e(c) as above and consider the function

fr^x) = ̂ f^ = XT-. CXp ( - ̂ ^ (,;)).
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Theorems 3.3, 3.2 and 3.1 give

e{c) = logtzj,([0,a]) < (1 - r)log^z,UM)

< l^log^([0,a]) = -l^-T^ao.o]).

The last quantity is easily evaluated using Theorem 2.2 with k = 2, ci = c
and

OQ =0, ai = /3, 02 = a,
a:i€(0, /3) , a:2= A 3:3 e (/3, a), 3:4=0.

This leads to the following generalization of a theorem of K. Alladi and L.
Robinson (see [AR] theorem 1).

THEOREM 4.2. — Let a, b, a, /3 be as in Theorem 4.1 and let ^2 be

two positive real numbers with t^ < f3 < t^ < a. Let also r =

g(x) = ̂  t'-^t'-^and c = Cg(x) dx-Then'if
1 f [tl r /•+oo ^

^= ̂ _ .\ loga-r'log^ -r g(x) - - dx - g(x) - - dx
v ^ 1 JQ •L J OL ^

~c(l+^ f QW^) \ <-^

the irrationality measure of\og{a/b) is bounded by -c/(l + e).

Given a and b, the best values for the parameters i\ and t^ can be
found using the optimization routine DBCONF in the IMSL library of
FORTRAN subprograms. The following table shows some explicit results :

^ ^(0 (^2) (r,c)

log 2 4.047 (0.1010 7211,5.0374 9422) (0.7135,3.6353)
log 3 26.817 (0.0687 0930,7.1179 7508) (0.3497,3.6326)

log 5/3 7.158 (0.0984 3191,13.9891 8578) (0.5867,4.5371)
log 2/3 3.402 (0.0772 0888,8.9403 8240) (0.8308,4.5708)
log 3/4 3.154 (0.0603 1302,12.9096 0087) (0.8824,5.2203)
log 4/5 3.017 (0.0490 8116,16.8985 0597) (0.9107,5.7166)
log 7/5 5.456 (0.0937 5426,21.3483 7215) (0.7074,5.1610)
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All the above results can be checked using a personal computer. Some
improvement is obtained considering more complicated functions /. Let
7=l / ( [ l / /3]+l)€(0, /3)andlet

/ro,n,ci,c2^) = X~^(X/-Y - l)1^ exp ( - -^(c^^}(x) + c^^}{x)\

r=ro+ri.

Using Theorems 3.3, 3.2, 3.1 and 2.2 with k = 3 and

0,0 =0, ai = 7, 02 = 13, as = a,

X\ = = t i , ^2=^2, ^3=^35 ^4 =/?, ^5=^4, .Z-6 = ,̂

we obtain

THEOREM 4.3. — Let a, 6, a, /?, 7 be as above and Jet ti,^3,^4 be
four positive real numbers with t^ < t^ < 7 < t^ < /3 < t^ < a. Put

1 /^2^4 , _ 1 /(7-^)(7-^)(t3-7)(^4-7)
0 7V ^ ' 1 - 7 V ( 0 - 7 ) ^ - 7 ) — — — — — ;

Cl=rl log^——y+ [ 3 g(x)--^
/•t3

/ ^)-
Jti7-^2 7t2 ^ - 7

dx, c2 = ci + / ^(a;)
J(3

rt^
\ g(x) dx

JQ
and

(X-t^)(x - t2)(x - t^)(x - t^)g(x)=
(x-a)(x-(3)X [ X — '

Then, if

e = log a - r^ log ti - r\ log(t3 - 7) - 2rori log 72(1-r)

f rn f13 ri />+00 1
j, -^-^^-r.j^ ,W-^dx-^ ^--^dx-ro I -g{x
Jo

+ci (n - ̂  f g(x) dx) - c2 fl + ^ r ^(^) dx} \
v 7r ^3 7 v 7r ^4 7 j

-rilog7+max{0,ci} < -1,

the irrationality measure of\og(a/b) is bounded by

-(c2-max{0,ci})/(l+e).
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Numerically :
^ ^(0 d^t^t^)

log 2 4.001 (0.1082 8477,0.1629 2110,0.1693 4883,5.3168 2544)
log 3 16.960 (0.1136 4578,0.4578 5023,0.5267 3509,7.1932 1262)

log 5/3 6.851 (0.1136 1007,0.2446 9414,0.2531 5690,14.5506 5964)

Finally, considering

./ro.ri^.ci^^)

= X^{xh - 1)^0(3;)^ exp ( - ̂ (c^(3](x) + C2Xh,a](^)))

where r = ro + n + 2r^ and Q(x) = {x - f3) (x - a) € Z[x] is the minimal
polynomial of a and /?, some other small improvements can be obtained.
For example, we find that

/z(log2) < 3.991

with t = (0.1104 9544,0.1631 0685,0.1692 5754,0.1715 2667, 5.2726 2890,
5.8241 7429).
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