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QUANTIZATIONS AND SYMBOLIC CALCULUS
OVER THE p-ADIC NUMBERS

by Shai HARAN

INTRODUCTION

We shall be concerned with functions / : VQ —^ C, defined in some
vector space Vo OYer the p-adic numbers Qp and taking values in the complex
numbers C. One of the most basic problems encountered when trying to
imitate the classical theory — where the domain VQ is a vector space over R
or C — is the lack of derivatives. Indeed, the derivation 9 / Q x is nothing
but T~^xF^ where T is the Fourier transform, and «a;» is multiplication
by the function x which is an additive homomorphism from VQ to C; and
there are no such homomorphisms from Vo to C when VQ is a vector space
over Qp.

This problem repeatedly makes its appearance in various disguises;
for example, given a unitary representation of a p-adic analytic group on
a Hilbert space, one cannot associate with it the derived representation of
a p-adic Lie algebra. From a different perspective, the derivatives {Q/Qx^
correspond to the extra poles of the oo-component of the zeta function,
while the p-components have a unique pole.

There are thus no differential operators over Qp. But as we will show
in this paper, there is a meaningful theory of pseudodifferential operators
over the p-adics, which parallels the classical theory over the real numbers
R. In fact, the theory over Qp is better behaved than the one over R, in
as much as in all estimates the numbers 2 = [C : R] for the reals can be
replaced by oo = [Qp : Qp] for the p-adics, and one encounters here the
phenomenon expounded in [15], [16].
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Elliptic operators - Spectral asymptotics.
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The pseudodifferential operator p(f) associated with the « symbol» /,
a function defined on the «phase space)) V = VQ (D VQ^ is given via
the action of the Heisenberg group (cf. 0.1.10). The composition of
operators correspond to «twisted multiplication)) of their symbols :
p(/i)p(/2) = ̂ (/i#/2)- The main goal of the symbolic calculus is to control
the twisted multiplication over appropriately defined symbol classes, thus
enabling the comparison of the resulting function algebra and operator
algebra. Classically, the symbol classes are defined using the Mihiin
condition which incorporates the global growth condition with the local
smoothness condition on the symbols. To define symbol classes in the p-adic
setting we encounter once again the lack of derivatives. Fortunately, this
time the problem can be overcome if one uses in place of derivatives a Besov
condition.

Chapter 0 is devoted to the Heisenberg group and its fundamental
representation. For the analogous theory over R see [6], [9], [21], [23], [32];
some of the material over Qp can be found in [II], [36]. In paragraph 0, we
fix our notations and recall the Schrodinger model, the Weyl quantization
procedure and twisted multiplication. In paragraph 0.2, we review the
lattice model and the Bargmann isomorphism [I], and we describe the
Wick symbols [4]. In paragraph 0.3, with an eye towards connection with
[14], [15], we offer a third realization of the fundamental representation
in the «positive)) subspace of Z/2 of the p-adic circle, or the space of
«p-adic particles)), giving explicit formulas for the Hermite functions,
and explaining why the Toeplitz operators over Qp have index zero. In
paragraph 0.4, we give a «mannerized)) version of the lattice model, and
we present the Wigner transform, the uncertainty principle and the wave-
packet-expansions [7] in the p-adic setting.

Chapter 1 is devoted to the exposition of the various functions spaces
over Qp. For the analogous theory over R, we refer to [3], [25], [33], [34];
a good reference for some of the material over Qp can be found in [31].
In paragraph 1.1, we recall the Bessel potentials and Sobolev spaces. In
paragraph 1.2, we explain the problematics of these — the lack of the
Leibniz rule for differentiation, and offer a way out via Besov spaces.
After reviewing the elementary properties of the ordinary Besov spaces, we
present the concept of a metric-covering, and the associated « mannerized))
Besov spaces. In paragraph 1.3, we define the « smooth)) functions over Qp,
and the (analytic) Schwartz spaces. We quote the Schwartz kernel theorems
and define our symbol classes (in analogy with [18]). In paragraph 1.4, we
collect the basic properties of temperate metric-coverings needed in the
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sequel, and offer as examples the Toeplitz symbols (discussed over the reals
in [12], [17], [21], [30], [35]) and the pseudodifferential symbols.

The Toeplitz symbols E^V) consist of functions / on V which satisfy

\f(x)\< Co -|W,

and for all f3 > 0,

\f(x)-f(x-^y)\<C(3' [1,^1^.1^

for |z/| <, |l,p^|. We note that our (analytic) Schwartz space, 5, which
can be defines as the intersection over all a of E0, is different from the
usual (algebraic) Schwartz space of locally constant compactly supported
functions that one encounters in the literature, though it shares much of its
nice properties such as nuclearity, closure under multiplication, convolution
and Fourier transform.

Chapter 2 is devoted to the proof of the main theorem of the calculus
(2.2.8) and the basic boundedness theorems, along the lines of [18], [19].
In paragraph 2.1, we prepare the grounds by giving the short range
estimate (2.1.6), the error estimate (2.1.11) and the Long range estimate
(2.1.24) and (2.1.27). Then in paragraph 2.2, we put these together and
prove the main theorem of the calculus (2.2.8). In paragraph 2.3, we
establish the continuity of our operators on S' and S", (2.3.1), and their
boundedness on L^ (2.3.9), and give a proof of the Calderon-Vaillancourt
estimate [5] (along the lines of [21]).

In chapter 3 we establish the basic properties of elliptic operators.
In paragraph 3.1, we prove the sharp Garding inequality (3.1.11) and the
improved Fefferman-Phong inequality (3.1.9) (cf. [8]), as consequences of the
wave-packets theory (cf. [7]). In paragraph 3.2,, we show that every elliptic
symbol defines a Fredholm operator of index zero (3.2.9). In paragraph 3.3,
we consider positive elliptic symbols, show that they give rise to self-adjoint
operators with discrete spectra (3.3.1); study their complex powers (3.3.21)
(in analogy with [28]); and determine the precise asymptotic behavior of
their eigenvalues (3.3.14) (see [10], [13], [17], [20], [27], [30] for some of the
literature on the analogous theory over R).

Thus the operators on Z/2(Vo) corresponding to symbols in E^V)
are bounded for a <^ 0, Hilbert-Schmidt for a < —dimVo? 8Ln(^ trace-class
for a < —2dimyo- For / in E^V), we can write / = /+ fo, where f(x)
is the average of / over the unit ball centered at x^ and /o ^s in the
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Schwartz space. The operator p(f) is thus the sum of p(/), an explicitly
diagonalizable operator, and of p(fo), a trace-class operator (in fact, a
« smoothening » operator in the sense that it maps 5" into 5). As a corollary
we see that if / ^ 0 is positive, then the operator p(/) is positive modulo
trace-class operators and is bounded from below. If / in E^V) is elliptic,
in the sense that \f(x)\ > C ' ^.px^ for x outside a compact set, then
p(f) is a Fredholm operator of index zero; if / is real valued, then p(f)
is an essentially self-adjoint operator, if, moreover, a > 0, then p{f) has
a discrete point spectrum tending to infinity and there is an orthonormal
basis for L^Vo) consisting of p(/)-eigenvectors all of which are in the
Schwartz space. Assuming further that both / and p(f) are positive, we
can defined their zeta functions

CpCoO^tr^/)-8) and ^(s) = [ / ( x ) - 8 dx
Jv

both of which are holomorphic in the right half plane Re{s) > - dim V,
have meromorphic continuation and moreover, their difference is entire.
Denoting by N(X) the number of eigenvalues < A, we have the following
precise estimate :

N(\) = vo\{x I f(x) ^ A} + 0(A6), for any e > 0.

Our motivation in developing the theory of pseudodifferential operators in
an arithmetical situation was derived from [14], [15], where it was shown
that such a theory could have bearings on the problem of the Riemann
hypothesis. Much of what we do here carries over to the global situation of
the adeles, where the zeta function not only controls the symbolic calculus,
but to some extent is controlled by it.

We note that the content of this paper generalizes easily to the case
of an arbitrary local field. Other future applications of our theory could
include the local Howe's duality conjectures. The theory can also be made
to work over varieties where it might be useful as a tool in defining the zeta
functions of such varieties by analytic means (a basic ingredient for trying
to do Tale's thesis for such varieties). Since we wrote this paper, we have
found some attempts to construct quantum mechanics over the p-adics in
the literature of physics, e.g. [42], but these are always wrong and lead to
strange phenomenon (e.g. the existence of two vacuum states), because the
physicists were insensitive to the basic difference between the p-adics and
the reals - the two dimensional absolute value, which for the reals is the L^
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one : \x,y\ = (|a:|2 + H2)172, should be replaced in the p-adic setting by
its Loo analog : \x,y\ = max(|a;|, \y\).

In the one dimensional theory, VQ = Qp, V = Qp © Qp, we can take
as a basic group of symmetries the group G = Sp(l,Qp) = SL(2,Qp),
and identify V \ {(0,0)} with the symmetric space G / N , where N is the

subgroup of matrices of the form ^ I * ] ^, the action of G on V, and the

resulting action on symbols, correspond to the metaplectic representation
on L2(Qp). In a similar fashion we can follow the Unterbergers, cf. [39],
[40], [41], and take as our phase space G / K , where K = SL(2,Zp) is a
maximal compact subgroup, obtaining quantizations which are relevant to
the other discrete series representations of G; or we can take as phase

space G/T = P^Qp) x P^Qp) \ diagonal, where T = { ( a ° M is a
[\0a-1^)

maximal torus, obtaining quantizations relevant to the principal and the
complementary series. Again, these constructions could be carried in an
adelic situation, and will ultimately lead to the quantization of G(A)/G(Q),
i.e. quantization of automorphic forms.

This paper was written in may-July 1990, while the author was a guest
of the department of mathematics at Cambridge, England. Special thanks
are due to Professor John Coates who gave constant encouragement and
support.

0. THE HEISENBERG GROUP

0.1. The Schrodinger model and twisted multiplication.

We denote by '0 the additive character of Qp, given by

exp(27r%a;)
(O.I.I) ^ : Qp —— Qp/Zp ^ Z^-^/Z <——^——-. C*.

We let dx denote Haar measure on Q^, self-dual with respect to
d

^(x ' y) = ̂ {Y, X i ' yi), so the Fourier transform
1=1

^d^y) = j (p(x)^(xy) dx

satisfy J^d^d^W = ̂ (-^). The symbol 0 will denote the characteristic
function of Z^, so that T^ = (/). Weshall usually assume p ^ 2, and leave
it to the reader to make the easy modifications needed for p = 2.
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We let V, ( ) denote a symplectic vector space over Qp, and El = V xQp
the associated Heisenberg groups with multiplication law given by

(0.1.2) (^i)-(^2)= (^i+^i+^2 + j^i,^)), viev, ^eQp.
El is two-step nilpotent group, with center Qp, and the Stone-von Neumann
theorem states that it has a unique irreducible representation with
central character ip (up-to-equivalence). The Schrodinger model for this
representation, p : HI -> (/(^(Vo)), is associated with any complete
polarization V == VQ (BVi, Vi Lagrangian subspaces. Fixing coordinates
we can focus our attention on the case

Vo = Vi = Q^, <(:KI, 2/1), (a;2,2/2)) = a;i2/2 - ̂ 22/i,

so that p is given by

(0.1.3) p(x, y , t) ̂ p(z) = ̂ (t + x(z - \ y)} . <p(z - y).

The integrated representation, p : Li(EI) —> B^L^Vo)), factors through
the algebra

(0.1.4) Li(E[,^) = {/ e Li(H) [ f(h • ^) = ^(^). f(h)
for ^ € Q p =center(H)l.

Identifying V with the subspace of El, via the isotopic cross-section
v ^ (z^O), we can identify Li(]HI,'0) with Li(V) via restriction. Thus for
/ € L i ( V ) a n d ^ € L 2 ( V b ) ,

(0.1.5) p(/M^) = [ dvf{v)p(v^)^p(z) = / dyKf(z^y)^(y)
JY Jvo

with associated kernel given by

(0.1.6) Kf^y)= fdxf(x^z-y)^x(z+y)).

We have p(/i)p(/2) = p(/i t] ^2) with twisted convolution t) given by

(0.1.7) fi\\f2(v)= f dv'f^f^v-v^^^v^v-v^.

Since (0.1.6) is essentially a partial Fourier transform, we see that p
induces a unitary isomorphism from the algebra L^(V), \\ onto the algebra
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of Hilbert-Schmidt operators ^(L^Vo)); hence it takes Li(V), \\ into
the algebra of compact operators )C(L^(Vo)). We have

f IIA \\f2\\L^ HA |k -ll/alk,

(0-1-8) < II/I h/2 |k. < || A |k-H/2 |k,

III/I ̂ 21| L»^ || A |k •||/2 |k.

We denote the symplectic Fourier transform^ or isotropic symbol by

(0.1.9) ^/(z;) =: f(v) = /^'/(^((z/^)).

T is a unitary operator on L^ (V), satisfying J:2 = id. The Weyl quantization
procedure associates with a function / on V the operator p(f) = p(f)
on L^(Vo), which is given by

(0.1.10) p(f)^(x)= ffdydU^^{x+y))^(^x-y))^y).

We have p(/i)p(/2) = p(/i#/2), where twisted multiplication # is
given by

(0.1.11) /i #/2^) = ̂ (^/l ̂ /2)M

= yy d^i d^/i (^+^i) /2(^+^2)^(2(^1,^2))
=^(W))/1^/2(^).

Here /i (g) /2(^i^2) == /i(^i) • h{v^}, and ^(Q(D)) is the unitary operator
on L2(V C V) = 1/2 (V) 0 V2(^) given by

(0.1.12) ^{Q{D))=^^^^{Q{v^v^)J^^^

with Q(-ui, ^2) = ^ (^i, V2) the quadratic form on V C V associated with the
symplectic form ( , } on V.

The adjoint operator /?(/)* is given by :

(0.1.13) p(/)* == p(f), f the complex conjugate of/.

(0.1.14) Iff(^x) = f(x) is independent of ̂  then p(f)^p(x) = f ( x ) ' ^ ( x ) .

(0.1.15) If f(^x) = /(O is independent of x, then p{f)y(x) =
^f^Wx).
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Setting, for example,

^y^y) = p-^^^ix - x,)) ̂ {y - 2/0)),
^o(^) = ̂ ^ - ̂ o)) ^(p-^y - yo)) ̂ {(x - xo)(y - ̂ o)),

a straightforward calculation gives :

/r. -i -<^ \ ( <I>al'bl • Cb^,^
(0.1.16) -'-^1,2/1 -*-a;2,2/2

= ̂ i ' ̂ y\ if ^1 + ̂  h + 02 > 0,

^;^ #(^ = ^ ^i;^ • S if ai + 62 ^ 0 > &i + 02,

i f a i + 6 2 < 0 ^ & i +02,^015^2 . /ha2,^l
xi,y2 -*-a;2,2/i

^ai,fc2 . $02^1< a;i,2/2 --^2,2/1

For a lattice 0 C Y, we denote the c^a^ lattice by

(0.1.17) ^ = {^ e v | {?;, 0) c Zp}
and say that 0 is certain if C^ C 0. If 0 is a certain lattice, and /i, /2 are
0-locally-constant, i.e., they factor through V/0, then an easy calculation
shows that /i # /2 == fi' /2, i.e., twisted multiplication reduces to ordinary
multiplication. More generally, if V = ]J 2^ is written as a disjoint union

j
of translates of certain lattices, ̂  = Xj + Oj, Oj D OJ, and /i,/2 are
constant on each Si^, then again

ifai + & 2 , & i + ^ 2 ^ 0 .

(0.1.18) / i#/2=/r/2.

0.2. The lattice model.

If 0 C V is a certain lattice, then we can always find a self-dual
lattice 0° = (0°)^ such that C^ C 0° C 0. The representation p can be
realized in the 0-lattice model

(0.2.1) p ^ p^ ind^o^Q/Q = ind^(po)

where -0 is viewed as a character of the abelian subgroup 0° x Qp/Zp C
HI/Zp, via ^(v,t) = -0(t), and po is the representation ind^Q W
of 0 x Qp, which is finite dimensional of dimension

(0.2.2) [0 : 0°} = [0 : C^]1/2.
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In particular for V = Q^, OQ = Z92^, we obtain a realization of p
in L^V)^ where the subscript -0 indicates that we are looking on the
subspace of 1/2 (V) consisting of i^-holomorphic functions, i.e., functions
/ € L^(V) satifying the following « Cauchy-Riemann equation))

(0.2.3) f(v+vo)=f(v)^(^(v,vo)) for all veV, VQ € Oo.

The representation p^ : HI —^ U{L^(V)^) is given by

(0.2.4) P^t)f(vf)=^{t^^{v^f))f(vf-v).

To obtain the Bargmann isomorphism B : L^(V)^ —^—> L^(VQ)^ inter-
twining p^ and p, we notice that L^(V)^ is also gotten by taking the
coefficients of p with respect to (f) C L'z(Vo). Thus

(0.2.5) Bf{x) = p{f)^x) = (f^pW(x))^ ,

(0.2.6) B-l^v)=^p(v)^^^

For any v G V there is a unique function ^>y C L-^(V)^ which is
supported in v + Oo, and normalized by ^v{v) = 1; the functions
B^>y = p(v)(f)^ v G V/OQ^ form an orthonormal basis for 1/2(^0); i11

particular we have

(0.2.7) (!>o=B~l(|)=(f)^(t)= characteristic function of OQ.

For / C L^(V)^ we have f(v) = (f,^v), i.e., I/2(^)i/; is a reproducing-
kernel-Hilbert space. The orthogonal projection P^ : L^(V) —>- L^(V)^ is
given by

(0.2.8) P^f(v)=f^^v)= ( dvof(v-vo)^(^{v^o}).
JOo

For a function / € Loo(V), letting Mf denote multiplication by /, we
obtain the operator P^Mf on L^(V)^ having anti-Wick symbol /; but an
easy calculation gives

(0.2.9) P^Mf = M^ f(v) = { dvo f(v - ^o),
JOo

i.e. the algebra of such operators reduces to the commutative algebra
Loo(y/0o) acting on L^ (V)^ by multiplication.
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For any bounded operator T C B^L^V)^)^ we denote its Wick
symbol by

(0.2.10) Er(^)=(r^,^).

E is a norm-decreasing positive projection B(L'z(V)^) —» Loo(V/Oo).
The integrated representation associated with p^ is given by

(0.2.11) ^(/) /o = / \\ /o, /o e L2(V)^

and the Weyl quantization p^(f) = p^(p) == B~lp(f)B is given by

(0.2.12) ^(/) /o = f # /o, /o e L2(V)^.

The relations between the Weyl, Wick, and anti-Wick symbols are
easy to obtain

(0.2.13)
(Ep^(f)(v)=f(v)^

\Mf=p^(f) forfeL^V/Oo).

0.3. The Toeplitz model.

In this section we take d = 1, so that we are dealing with operators on
L2(Qp) and ^(QpCQp)^. Choose e C Z;\(Z;)2, and identify V ^ Qp[v^L
the unramified quadratic extension of Qp, via ( x ^ y ) <-^ x 4- \/^y\ thus
OQ = Zpiv^] is the ring of integers of V, and the associated norm is
given by

(0.3.1) \x,y\= \x+^ey\ = \x2 - ̂ 2]1/2 = max{|a;|, \y\}.

(0.3.2) Let £/i == ker{N : V* -^ Q^}
= {rr+y^ e 0^ | x2 -ey2 = 1} = ^p+i x exp^J^p).

By Hilbert lemma 90, we have a commutative diagram with exact rows
]^u=u-u

* —— Ui —— 0*0 ——— Z; —— *

"21 II Ix2
* —— Ui —— Oo* —— Z; —— *

U/U •<———I U
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Hence we may also identify

(0.3.4) U, = 0^/Z; == V^/Q; = P^Qp).

U\ may also be identified with the isometry group of the Hertmitian
form on V, given by

(0.3.5)

v i ' vz = qe(vi,V2) + Ve {vi,v^}
with symmetric part qe{x^ + \fey\,x^ + ^1/2)

= x^ - eyiy2,
[ and symplectic part (^1,^2) = tr((2\/?)~1 v^).

Note that the metric induced on U\ via U\ <-^ V is given, under the
above identification, by any of the following metrices

f^le^wl,6ev/ipw2)=r if^^
Upwi-pW2| if $1=6,

^ ^ ^ where £/i ^ ^p+i x exp(y/ipZp);
<^i, ^2) = l^i/^i - ̂ /^h wheret/i ^ V/Q^

^i:^i^2:i/2)=T^2—^^. where ^i^P^Qp).
l^i, 2/i| • |^2,2/2|

The group Sp(V) = SL2(Qp) acts on HI as automorphisms inducing
the identity on the center, hence by the uniqueness of the representation p,
we obtain a projective representation R of Sp(V) such that

(0.3.7) RAPWA1 = PW^ ^ ̂  Sp(V), v e V.

R in fact lifts to a true representation of the double cover of Sp(V), the
metaplectic group Sp(V). We have an embedding

(0.3.8) U^—SL2(Zp), x - ^ - V e y — — ( x ^Y
\y x )

by which we view U\ as a maximal abelian subgroup of Sp(V); in the
terminology of [22] : ((7i, U^) is a dual reductive pair. The metaplectic group
splits over SL2(Zp), hence we obtain a true representation R of SL2(Zp),
and a posteriori of U\. This can be summarized in the following diagram :

Sp(V) -^ U{L^Qp))

(0.3.9) ^ c— SL2(Zp) -— Sp(V)
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Explicitly, R: U^ -^ U(L^((Qp)) is given by the Mehler kernel

(O.»0) ^,(.,^^,(^^)

for x + Vey € (7i \ {±1} and R±i^(z) = <^(±z).

Here (a;, ^/) denotes the quadratic symbol, ̂ (y) denotes Well's root of
unity, and they are given by (p -^ 2)

(0.3.11) (P-71^1,?72^2) == (-l)4(P-l)jlJ2+fcij2+Jlfc2

(0.3.12) 7(p^)=41 , it J is even,
" / l(-z)i(P-D^ if j is odd.

Denote the dual group of £/i by Z = (C/i^ ^ (^p+i)" x Qp/Zp, and
write a typical character \ e Z as

(0.3.13) X^e^-) = ̂ (0 . ̂ (j^Pw),

where ^ e (^p+l)v and ̂  e Qp/p-^Zp.

We put ^ = U ^(N), ^(0) = {X0} the identity, Z^ = {^ ^ ^0}
N>0

the non-trivial tame characters, and for N > 2 : Z^ = {^ ; |g | = p1^}.
A straightforward calculation gives that -^(Qp) decomposes under the £/i
action given by R as

(0.3.14) L2(Qp) = ̂  C • ̂ , a,̂  = ̂ (u) . ̂ ,
xe^+

where Z+ = ]J z(2AQ. In particular, ^° = 0 is the unique [/i-invariant
N>0

vector. For ^ e Z^.N > 1, the Hermite function ̂  is the unique
X-covariant vector (up-to a constant of absolute value one), and is given
explicitly by

(0.3.15) ^=(l+p-l)l/2pN/2 f yux{u)p(u'z^)<f>
J u\

where q^ = N^, and d*u is Haar measure on £/i of total mass 1.
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Comparing the orthonormal basis {0^ | \ e Z~^} with the
orthonormal basis {p{x,y)(f) \ x,y e Qp/Zp} of the lattice model, we
note that

(0.3.16) #Z^ == p^d - p-2)

=#{(^)ey/0o; 1^1=^}, N>^

and each ̂  is a linear combination of pN(l +p~1) p(x,y)(f)'s, and vice
versa. More precisely,

(0.3.17) ^(v) = B-1^^) = (<^,p(^)0)

is supported in Vx = {v € V \ Nz» = ̂  (modp'^Zp)} == U^ ' z^ + Oo,
where it is given by

(0.3.18) ^(^•^+^)=((l+P- l)pN)~ l /2.xM^(j^•^^o)),

with u € U\ and vo ^ Oo.

Using (0.3.14) we obtain the Tceplitz model pr : 1HI -^ [/(^(^i)-^),
where L2(^7l)+ C L^Ui) is the subspace corresponding to ̂ (^+) ^ ^(^)
under Fourier transform L^ (£/i) ^ ^(^). The orthogonal projection
P'̂  : 1/2(^1) ^> 1/2 (^i)"^ is easily seen to be given by the singular integral

(0.3.19) P~^f(uo) == p.v. / yuf(u)6{u^uo)-\
Jui

where 6{u, uo) == (—p)"^ if 6(u^ uo) = p ~ N .

If / € C{U\Y is a continuous non-vanishing function, the associated
Toeplitz operator P^Mf is Fredholm of index zero. Indeed, any such function
is homotopic to 1, the constant function 1, since U\ is totally disconnected
and compact. This can be partially explained by considering the problem
from a dual point of view : if \ e Z^, translation by \ followed by
the projection P+ : ^{Z} —» <2(^+) induces a Fredholm operator P?^
on £^(Z^)^ which has index zero since,

(0.3.20) dimkerP^ = dim coker P?^ = p^-1, N ^ 1.

Remark. — The material in paragraph 0.3. works equally well for the
case of a totally ramified quadratic extension of Qp.
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0.4. Wave packets.

We can consider more general coefficients of the representation p than
those of (f>. Thus for (^i,y?2 € L^Vo) let c^^(v) = (^2,^)^2). After
Fourier inversion we obtain

(0.4.1) c^^(x,y)= j d z ^ ( x z ) ^ ( z + \y) ̂ {z - \y}.

A direct calculation gives

(0.4.2) ^i^^^^L^V) = (^1^3)L2(Vo) • (^2,^4)L2(Vo)

showing that p is square integrable modulo the center. The Schwartz
inequality gives

(OA3) II^^IlL^ <\ML^\ML^

Hence the map y?i 0 y?2 ^-^ ^1,^2 mduces

c : L^Vo) 0 L2W)) — L2(^) n Co(y).

Using (0.4.2) we get (^',p(c^^)^) = (c^^,c^,^) = (^, (^^2)^1), i.e.,

(0.4.4) P(c^^) is the rank 1 operator p{c^^)y = (<y?, (^2) • ^i.

Hence Cy,,^ tic^,^ = (^2,^3) • c^,^.

Taking the symplectic Fourier transform of Cy,,^, we obtain after
Fourier inversion

(0.4.5) c^(^x)= [dz^z)^(x^ \^^{x-\z\

^1^2 satisfies (0.4.2), (0.4.3), and again induces

c : L^Vo) ̂  Wo) —— L^V) n Co(V).

Moreover, by direct verification we have

(OA6) ^d^l ,^^2 (^ x) = ̂ , ,̂  (X, -0 ,

^U.4 . / J ^i,^ = = c<^2,<^l•
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We define the Wigner transform by W^p = c^^ e L^(V) n Co(V), and
by (0.4.7) it is real valued. It also satisfies the following properties :

(0.4.8) f^W^x)=\^(x)\\

(0.4.9) fdxW^x) = |^(012,

(0.4.10) W^i = W^ ^=^ <Pi=\'^2 for some A, |A| = 1.

Note that W(p{^x) -^ 0 implies that there exists z such that
x ± z C supp(^, and hence x C A(supp^) ^{ jQ/ i + y^) \ Vi e supp(^},
thus we have

(0.4.11) proj^(suppW^) C A(supp^),

and using (0.4.6),

(0.4.12) proj^(suppW^) C A(supp.F^).

We have the following inequalities :

(0.4.13) II^H^ ^ I I^H^ = jf dxd^W^x),

< \\W\L^ -vol(suppW^)

from which we obtain the uncertainly principle

(0.4.14) vol(suppl^) > IMIL2 > 1.
11̂ 11̂

We have further

(0.4.15) Wy = c^^ = ^o = characteristic function of OQ,

(0.4.16) W(p(vo)^)(v) = W^{v - vo),

(0.4.17) W{n^){v} = W^A^v), A G Sp(V), by (0.3.7).

Since Sp(V) acts transitively on the collection of self-dual lattices, we
deduce using (0.4.15), (0.4.16), (0.4.17) that for any translate of a self-dual
lattice 21 = VQ + 0, 0^ = 0, there exists a unit vector (^ e L^(Vo) such
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that W(p^ = characteristic function of 21; by (0.4.10) (^ is unique up to a
constant of absolute value one.

For any unit vector (po e L^(Vo), the map C^o(^) = c^^o is by (0.4.2)
an isometry c^ : L^Vo) ̂  L^V). The adjoint map

C^:W)——L2(Vo)

is given by C^f(x) = p{f)^{x), f G L^V) H Li(V). Since C^C^ =
[d^fYo)^ we obtain the wave packet expansion of (p as superposition
of the p{v)(po's

(0.4.18) (p{x) = dv {(p, p(v)^o) • p(v) ̂ o{x).

For / 6 Loo(V) n Li(V), denoting by Mf multiplication by /, we get the
operator C^MfC^ on L^Vo). We have

(C^MfC^^^L^Vo)

= (MfC^i,C^2)L2{V)

= dv f(v)c^^(v)c^^{v)

= ^ d^/(^)((^i,/9(v)^o) • (^2,P(^)^0)

= [dvf(v){c^^W(p{v)^o)) by (0.4.2)

= ^d^ /d^i /(^) ̂ ,,^(^i) W^o(^i - v) by (0.4.16)

= ^ d^i/*W^o(^i)^,<^(vi)

= dv^^f ̂ W(po)(-v)(^,p(v)^2)

= dvJ:'(f^W^o)(v){p{v)^^-2)= (p(/*W^o)^i^2).

(0.4.19) Hence : C^MfC^ = p{f * W^o).

(0.4.20) If y = ]j2lj is written as a disjoint union of translates of self-
3

dual lattices, Sly = ̂  + O^, 0] == 0^ and if for each j, ̂  € L^Vo) is a
unit vector such that W(pj = ̂ j is the characteristic function of 2lj, then
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the (pj form an orthonormal basis for L^(Vo). Indeed, we have by (0.4.2),
for .71 ̂  j2

K^i^L^yj2 = (^1^2)1^) -O;

moreover, letting ̂  = p(-Xj)ipj, so that by (0.4.16), <E^ = W^° is the
characteristic function of 0^ ̂  * ̂ j = <1>^, and for any locally constant
compactly supported function (p in ^(Vo)? we have by (0.4.19)

(0.4.21) ^ = p(l)^= ̂ p(^)^ = E^° * ̂
j j

-E^^^^
3

=^C^(v).^,p(v)^w}
3

= Y^ j dv^(v) • {^,p(v)^j)L^Vo) • PW^pj

=Y^^^3)^W^3'
3

If / is a function on V, assuming a constant value, say A^, on each of
the 21^'s, so that / = ̂  \j ' <^-, we have as in (0.4.21) : p(f)^pj = Aj • (/^,

3
i.e., p(f) is diagonalizable with respect to the orthonormal basis ̂  with
associated eigenvalues the A/s.

1. FUNCTION SPACES OVER Qp

1.1. Soboleff spaces.

The local zeta function of Qp is denoted by

(1.1.1) C(5) = (l-p-6)"1 = ( 0(^)1^1^*3;, Res>0 .
^Q;

It is a meromorphic function of s, (27rz/logp)Z periodic, with a unique
simple pole at s = 0. We denote by I0' the operator of multiplication by the
function

(1.1.2) |l,a; -a = max{l, l^}"^
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and we denote by J^ the operator F^I^F^, which for Re a > 0 is given
by convolution with the L\ function

(1.1.3) Ja{x)=^{\l^\-a){x) = c——Al.rr-1 -p"-1)^),

where Re a > 0 and a ̂  1 mod (27n/logp)Z.

The J^'s form an entire family of distributions, and we have
J0' * J ^ = J^^. For real a > 0, the J^'s form a semi-group of probability
measures associated with the negative definite function

(1.1.4) log|U|= [{l-W))da(x)^

where the Levi measure o~(x) is given by the divisor function

(1.1.5) a(x) = logp -Y^P71 • ^(p^x)'
n^O

Note that, since J^ is supported in Zp, and 1^ is Zp-locally-constant,
we have

(1.1.6) Z^J0 == J0^-

All this extends to the higher dimensional case VQ = Q9^;
using the metric |:ci,...,a^ = max{|.ri ,...Ja:^|} we have commuting
operators J^, Ja = J ^ ^ l I a J ^ d 5 J^ forming an entire family of distributions,
J^ * J73 == JQ;+^; for a > 0, J^ being a probability measure supported
in Z^; and

(1.1.7) J^x) = c(^(|^|a-d-pa-d) .^),

for Re a > 0, a ̂  d mod (27n/logp)Z,

(1.1.8) ^^)=^_(i-iog^^|).^).

Note that

(1.1.9) J^^L^Vo) for R e a > d ' ( l - q - 1 )

and in particular : J^ G Li, Rea > 0; J" G Z/2, Rea > jd; J^ e Loo,
Re a > d.
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The Soboleff spaces (or Lebesgue spaces of Bessel potentials [31]) are
defined by

(1.1.10) ^(Vo) = <nW)), 11/11^ = ll^/lk,
and in a similar way, we can define 1 (̂21), where 21 C Vo is any domain
such that 21 -j- Z®^ = 21. We also define the weighted Soboleff spaces by

(1.1.11) L^(Vo) = ̂ (Wo)), 11/11^1. = P-^-'/HL,.

The spaces L^, L^ are Banach spaces isomorphic to Lg, and they
satisfy the following list of basic properties [31] :

(1.1.12) Embedding L^(Vo) ̂  L^(Vo) continuously for

0 < q^ < (h1 < 1, d ' (q^~1 - q^1) $ ai - 02 ;
0 ^ q^ <: gf1 ^1, d ' (gf1 - q^1) < ai - 02.

(1.1.13) Duality (L^)' = L^01 for 1 < g < oo, ^-1 + q'~1 = 1.

(1.1.14) Relation with the Riesz potential

^ ̂  ̂ ^-^ ̂  c(d-a) 1^1^-^ for Rea > 0,
C(Q;)

L^(Yo) ̂  domain of R^ acting on Lq(Vo), Re a > 0,

i .e . l l / l lL^II/ l l^+ll-R- ' /I lL, .

In particular, let us note that we have

(1.1.15) L^{Vo) -—— Co(Vo), tor a > |d,

and that we have quasinuclear (i.e. Hilbert-Schmidt) embeddings

(1.1.16) 1/^(21) c—> L^(2l), ai - 02 > ^, 21 bounded domain,

(1.1.17) ^^(yo)-^21^), o i -02> jd, /3i-/?2> ^.
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Recalling the Bargmann isomorphism B : L^(Y)^ -^ L^Vo), where
V = Vo © VQ, (0.2.5), (0.2.6), we note that using (0.1.14), (0.1.15), and
(0.2.13), we have

(1.1.18) B~lIQB=M^-c.,

(1.1.19) B- lJQB=M|l^-a.

It becomes natural to define the Schrodinger operators by

(1.1.20) B-^K^B = M|I^|-.

and the associated spaces

(1.1.21) L^(Vo) = ^"(Wo)), \\fh^ = II^-'/HL,

since lUl-" . 11,̂  ^ [1,^1-° < 11,^1-^ and ll,^-0, for a > 0,
we have

(1.1.22) L^ ^ L^ ^ L^0 H L0^.

The operators J^, J0, T^0' belong to the algebra BL^(V/Oo)B-1, for
Re a > 0, and hence they admit the lattice basis {p{v)(f) \ v C V/Oo} as
eigenfunctions. In particular, the operators J^J0', and K^, are trace class
in the following domains, with trace

(1.1.23) tr^J^^^.*.^, Rea,Re/?>d,

(1.1.24) tr^^^^^, Rea>d.

The operators J^20, for d = 1, also admit the Hermite functions {c^}
as eigenfunctions :

(1.1.25) K^^ = (condx)"" • ̂

where cond^ = p1^ for ^ C Z^\

One can further generalize the above spaces by considering more
general « metrics)) i.e. functions g : VQ —^ {0} Uj^ satisfying

(g(vi +^2) ^ max{^(^i),^(z;2)}, Vz C Vo,
(1.1-26) <{ ^ (A^)=|A| .^) ,AeQ^, veV^

g(v) = 0 <^=^ V = 0.
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Recall that such metrics correspond bijectively to lattices 0 C VQ, the
correspondence given by

(1.1.27) 0 = {v € V | g(v) ̂  1}, g(v) = inf{ |A| ; A-1 ' v e 0}.

If Oi C Vi corresponds to ̂ , i = 1, 2, then Oi @0^ C Vi 0^2 corresponds to

(1.1.28) 91^92(^1^2) =max{^i (^1)^2(^2)}.

If 0 C V corresponds to g , the dual lattice 0" C V^, defined in the dual
vector space by

(1.1.29) 0" = {^v e V I {v\0) C Zp}

corresponds to the dual-metric ^v, given by

(1.1.30) ^v)^rK^ ;^y}.
I ^(2;) J

This holds in particular when V is a symplectic vector space identified
with its own dual by means of the symplectic form.

Given V, g we can define the operators

f 1^ == multiplication by max^^a;)}"0,

(1.1.31)
J^^-1^,

^-^-wr"^
| yCt _ DTOi D—l
I, Kg - Bl^^gB ,

and the associated spaces

(1.1.32) L^), L^^), LM(y^)^ and ^(21^)

for a domain 31 such that 91 + 0 C 51 (note that since J^v is C^-locally-
constant, suppj^ C 0). Since any metrics are equivalent by an affine
transformation (i.e. given g^,g^ on V, there exists A C GL{V) such
that pi(v) = ^(^)), it is clear that the results (1.1.12) through (1.1.17)
remain valid for the spaces (1.1.32).
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1.2. Besov spaces.

The problem with operators J", and the spaces L^, is that unlike
the real case, where we have ./-2N ==(!-+- 92/9x2)N, we lack in the p-adic
setting an analogue of the Leibnitz rule

f9^^ f\ V ( N \ ( 9 V f f9^'^U ̂ •^-^E^JU^'U h

which follows upon taking the Fourier transform from the Newton rule :

(i.2.i) 0/1+2/2)^= E (^yi-y^3-
0<j<N v J /

Thus, for example, in the p-adic setting /i,/2 e L^ does not imply
/i • /2 ^ L0^. To see the problem more clearly, we notice that we can write
for Re a > 0 and yi € Qp,

(1.2.2)

«27T/logp/.27T/10gp 1

|^+^=p.v./ dt.-^
Jo 27r
,J^ 1 CO) , C(-l)C(-(l+a)n
^^ 2 C ( l + a ) + C(a) ;

xd^ r^ '12 /21 -^+12 /11 -^ •12/2^}

+((l^")E^-l)•(-^)-(l+')C(-^)
XT^I

x r710^ • ̂ . x^i) iz/ii^2^ • x^) i^i072-^
Jo 27r

where ^ varies over all non-trivial characters of Z* but the sum ^ is
x

actually finite for ^1+^/2 7^ 0. Thus, (1.2.2) like (1.2.1), expresses \y\ -^-y^
as «sum» of ^1(2/1) • X2(^/2), with ^i • ^2 = | I0.

To overcome this problem we introduce the Besov spaces B^ (or
Lipschitz spaces) of functions that are well approximated by locally-
constant-functions. We shall use the following notations : V is a Qp-vector
space with a metric g corresponding to the lattice 0 C V, and C^ C V^ is
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the dual lattice. We let

' (f)g ̂  = Fourier transform of the characteristic
function of p~k0", k ^ 0;

^g,k = 0<7,fc - ̂ g^k-l for k > 1, (Rg^o = (f)gft ;

dgX = Haar measure in V normalized by
d^(0)=l;

(1.2.3) < L,=L,(V,d^);

d^ - C(c0 • ^Q/)^ • d<^, ^ = dimY, so
that d^y is the «multiplicative Haar
measure)) with ^y{pk0\pk+10} = 1;

L; =L,(0,d^);

t-^y. is the usual ^r-space on A; € {0,1,2,. . .}.

The Besov space B^(V, g) consists of functions / (or distributions, i f a < 0 )
such that

(1.2.4) ll/llB-^^ll^.fc*/^)!!^ < oo.

We shall only consider these spaces for 1 <. q < oo, 1 <. r <_ oo. The
B" = B°(V,g) are Banach spaces with the following basic properties :

Embeddings

(1.2.5) B^,

(1.2.6) B^

%.„ n^ra;

B^, a i > Q 2 ;
f n^
^g.g ^ B^, Kq^2,

(1.2.7)
DO:
,̂2 ^ B^ 2 < g < c x ) ;

(1.2.8) B^^-^ —— B^ ^^o;

(1.2.9) Interpolation [B^, B^J^ = B^^, for the complex method;

here 0 < 0 < 1, q~1 = (1 - 0) • Qo1 + 0 ' q^\
r-1 = (l-^.To^+^rf1, a = (l-0)'ao+0'a^ao ^ ai;

(1.2.10) (L^°,L^1)^ = B^, for the real method;

(1.2.11) Duality (B^)7 = B^^, with g-1 + q'~1 = 1 = r-1 + r'-i
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(1.2.12) Lifting J^ : B^ -^ B^ ;

(1.2.13) Characterization via approximation : for a > 0,

\\f\\B^^\f\\L,+\\Pka•\\f(x)-^^fW\\^

(1.2.14) Characterization via differences : for a > 0,

I f\\B^ ̂  \\f\\L, + ff(2/)-° • ||/(;r) - f(x+y)\\L,
L*

(1.2.15) Pointwise multiplier : for a > 0,

\\fl'f2\\B^<C\\fl\\B^-\\f2\\B^

(1.2.16) Bqy a and B^ are quasi Banach algebras of continuous
functions.

(1.2.17) Remark. — Note that if supp/ C 0 then suppy?^ * / c 0.
Hence we can define B^(0,g) = {f € B^(V,g) \ supp/ C 0}, and
similary we can define B^(^,g) for any domain such that 51 + 0 = 21.
All the above properties remain valid for the spaces B^^g). When
21 = x + 0, we shall write B^(2l) for B^(2i, ̂ ).

(1.2.18) Remark. — The only discrepancy from the analogous spaces over
the real numbers is (1.2.14); for the reals, one has to use instead of the
difference Ay f(x) = f{x) - f(x + y ) , the TV-fold-difference

^/c^)- E (^(-W^+M2^
0<j<nn<^<-.n \ J /

N an integer greater than a. The proofs of (1.2.5) through (1.2.12) are
immediate translations of the corresponding proofs in the real case (e.g. [3]).
The proof of the equivalence of the norms (1.2.4), (1.2.13), (1.2.14) follows
as in [31], theorem (2.2), p. 180. The proof of (1.2.15), (1.2.16) follows as in
the real case (cf. [25]), or as a consequence of (1.2.14).

We shall also need the Besov spaces of a product space given by

(1.2.19)
B^{V, x V^g^g,) d^ B^(V^g,) 0 B^(V^g,)^

B^{^ x ̂ gi^g2) d^ B^(2li,^i) 0 B^(<^2),
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with 21̂  + Oi = 21^, where 0 denotes the completed (in the crossed-
product topology) tensor product. These are again Banach spaces, satisfying
analogous properties, their norm being given by

(1.2.20) ii/iia,— = llp'1'1^2'2!!^^ ̂ ^wJ*/||^

In particular, we can restate the pointwise multiplier assertions
of (1.2.16) as trace theorems :

(1.2.21) Res : B^^^fV x V, g (g) g) —> B^^^V, g), a > 0,

(1.2.22) Res : B^I^V x V^g^g) —. B^^g)

are continuous, where Res denotes the restriction to the diagonal. The
spaces in (1.2.21), (1.2.22) are spaces of continuous functions, and we can
view the ^-functions as elements of their dual. We have

(1.2.23) l l^ci^l l fR^2^/2^ = ll^ci^ll^-^2 '-^2 = 1-
' • 2 , 1 / 2,oo

We can also define the weighted Besov space B^(V^g) given by
the norm

(1.2.24) H/ll^i, = ^ll^^^*/)^)!!^!!^ - \\I^f\\B^

noting that I g ^ ^ g ^ * /) = ^g,k * (-^A since supp^,fc c 0.
B^/ will satisfy the analogous properties, e.g.

. interpolation [B^^B^1], = B^^ as in (1.2.9) with
f3 = (1 - 0)f3o + 0 • /3i;

. duality (B^^B,^^

. lifting ̂ :B^°-^^°^;

• pointwise multiplier ||/i •/2 | |Dc.i /3i+/32 < C'| |/i | |D^l^i • I I ^ H R C ^ I ^ ?
-"g.r ^oo^r <l,r

for a > 0;

etc.

A metric-covering of V is an assignment for each x 6 V of a metric g^
such that

(1.2.25) gx(y}<^ =^ g x = g x ^ y .
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Letting Ox denote the lattice correponding to g^, and setting 34 = x + Ox,
i.e.

(1.2.26) ^ = { y e V \ g x ( x - y ) < ^ l }

we can choose a sequence xj e V such that V = U 24 , a disjoint union.
j

Conversely, given a covering V = U^, by disjoint sets 21̂  of the form
j

^ = ^j + ^j? ^j a lattice, we obtain a metric covering by setting

(1.2.27) Qx = the metric corresponding to Oj, for x € 21 .̂

A g-continuous weight is a function m : V —)- R4', such that for some
constant C,

(1.2.28) ^(^/) < 1 =^ C-1 • m(^) < m{x + ^/) < G • m(x).

Given such g and m, we define the Banach space JE?^y.(m,^), with norm

(1.2.29) ll/llB,^,,) = sup ——, - \\MB^(^)
x^V m'\J-')

where fx denote the restriction of / to Sla;.

Choosing a sequence Xj e V such that V = ]_j2lj, 2lj = .Tj + 0^.,
_ 3

and putting for x € 5ij : m(rc) = m(^) = m^-, it follows from (1.2.28)
that B^(m,g) = B^^(m,g). Hence we may as well assume from the
start that m is g-locally-constant in the sense that

(1.2.30) gx(y) < 1 =^ m{x) = m{x + y)

and then the norm of B^(m, g) is given by

(L2-31) ll / l lB^(m,<7) =SUp^-||^||^^(^.^.)

where fj denotes the restriction of / to 2^.

The spaces B^(m, g) will inherit many of the properties of B^tV),
in particular :
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Embeddings

(1.2.32) B^^(m,g)^B^(m,g), n < ̂  ;

(1.2.33) B^(m,g)^B^(m,g), ai > 03 ;

(1.2.34) B^dW<t-^(m,g)^B^m,g), q <, go ;

(1.2.35) B^(mi,ff) -^ 5^(m2,ff), mi < C-ma.

Liftings

(1.2.36) ^ : B^(m,g) ̂  B^^m, g),

where J^f(x}=J^f(x);

(1.2.37) J^:B^(mo,g)^^B^(m.mo,ff),

where Imf{x) = m(a;) • /(a;).

Pointwise multiplier : for a > 0,

(1.2.38) ||/i . h\\B^^g) ^C-\\fl\\B^(m,,g) • \\h\\B^(^g)

and characterizations via approximation and difference similar to (1.2.13)
and (1.2.14) of which we note : for o; > 0,

(1.2.39) ||/||̂  ,oo(^)^^l^)l

"+ sup ———.1/(^A^.
xo,xiev rn{xo) gxo[xo - x^

0<9xo{xo-xi)<l

1.3. Symbol classes and the analytic Schwartz space.

For a lattice 0 C V we denote by Coo(O) the Frechet space defined
by the norms | | /HL^? a > 0. We can also use the norms H/HL^ ^ >. 0,
for any 1 < q < oo, and similary we can use the norms | | /HBC< , a ^ 0, for
any 1 < q,r < oo. In particular, we see that Coo(O) is an algebra under
pointwise multiplication, consisting of continuous functions, and that it is
a nuclear space.
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(1.3.1). — For any open set 21 C V, we denote by Coo (21) the Frechet
space defined by the norms H/Hz,0 (rc+o)? o ; > 0 , a ' 4 - O C 2 l a translate
of a lattice contained in 21. Again we can use the norms associated with
L^x-^-O), or with Ba(x-^0)^ and Coo (21) is a nuclear algebra of continuous
functions. In particular, we have Coo(2li x 212) = Coo(2li) ^> Coo (212). Just
as Coo(VQ = lim Coo^), the inverse limit taken over all lattices 0 C V
with respect to the restriction mapping Coo(Oi) —^ €00(02)? Oi 2 02?
we can define the space of compactly supported smooth functions
Coo^c(Y) == lim Coo (0), where now we take the direct limit with respect to
the mappings Coo (02) ̂  Coo(Oi), Oi 3 Oii given by extending by zero.
Coo,c(Y) is similary a nuclear algebra of compactly supported continuous
functions.

(1.3.2). — We define the (analytic) Schwartz space S(V) to be the
Frechet space defined by the norms H/H^ 1 ^ , Q^/3 >. 0. Equivalently, we
can use the norms associated with L^, a,/? >: 0, for any g; or the
norms of L^ , a > 0, associated with the Schrodinger operator (1.1.21);
or the norms of B^/{V^g)^ a, (3 > 0, for any 1 < g,r < oo and any
metric g on V. S(V) is a nuclear algebra of continuous functions. Fixing
some non-degenerate quadratic form, giving an identification V ^ V^
of V with its dual, we can view the Fourier transform T as a mapping
^:L^(V) -^^(y), hence F defines an automorphism of S(V),
which consequently forms an algebra also under convolution. We have again
<S(Vi © V^) = S(Vz) 0<?(V2). Denoting by S^\g(V) the algebraic Schwartz
space of locally-constant compactly-supported functions, we have proper
dense inclusions

<?alg C C^ C S C S ' C C^ C S^

We note that <Saig^ C'oo,c? S, Goo, as well as their duals, are all stable
under the action of the Heisenberg group given by p.

We have the Schwartz kernel theorems (cf. [33] for the similar proof
over M) :

J Hom(Coo(2li),C^(2i2)) ^ C^ x Sli),

f Rom(S(V,)^Sf(V^^S\V2(BV,).
(1.3.3)

An operator A on functions on VQ will be called smoothening if

A : ̂ (Vo) —— S{Vo)
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continuously, or equivalently if A is given by a kernel A{x, y) e S(Vo C Vo).
A still equivalent condition for A to be smoothering is that A = p(f)
with / e S{VoOVo) = S(V), since A(x,y) and /(^.r) are obtained
from each other by a partial Fourier transform which takes S(Vo C Vo)
isomorphically onto S(VQ^ Vo).

Given a metric-covering g , and a ̂ -locally-constant weight function m,
we define the symbol class S{m, g) to be the Frechet space defined by the
norms ||/HB^ ^(m,^)? <^ > 0. These norms are given in an equivalent form
in (1.2.39), so that / e S(m, g) if and only if for some constants C, Co, we
have

(1.3.4) \f(x)\ < C ' m{x) for all x e V,

(1.3.5) \f(xo) - f(x^\ ̂  G, • m{xo) . g^xo - x^,

for all XQ,X\ C V, gxo(xo - x-i) < 1, and for any given a > 0.

Using the pointwise-multiplier, or by using (1.3.4), (1.3.5), we have :

(1.3.6) /, e 5(m,, g) => /i . ̂  e 5(mi . m^ g),

Note that Coo,c c S{m,g) C Goo, but the first inclusion is not
dense, hence a continuous linear form on S(m^g) is not determined by
its restriction to Coo,c; such a form will be called weakly continuous if its
restriction to a bounded subset of 5(m, g) is continuous in the Coo topology.

1.4. Temperate metric-coverings.

We return to a symplectic vector space V, ( ), and we shall deal with
a metric-covering ̂ , corresponding to V = [J2lj, 2lj = Xj + Oj, where g^

j
is always assumed to be certain : g^ < g^, or equivalently Oj D OJ • g^
will be said to be temperate if there exist no? N >, 0, such that

(1.4.1) g^(x) ̂ no .^) .^(l,^ -^ ^0^1^ e V,

where ^(l,^) = max{l,^v(a;)}. Using the definition (1.1.30) of the dual
metric, one can write (1.4.1) in the equivalent form,

(1.4.2) g,, (x) < p710 • g^ (x) . g^ (1, x, - x^.
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Taking x =XQ-X\ in (1.4.1) we have in particular,

(l-4^) 9U^X^^^Pno'9^^-x^\

From (1.4.1) we may also deduce that

9^(xi - xo) < p^ . g^^_,(x, - xo) . 9^^-^X2 - ̂ o)^

^^-.0(^1 - ̂ o) < P^ ' 9^(x, - xo) . ̂ (l,^i - ̂
^^•^(l^i-o-o)^1

and similary with x\,x^ interchanged, from which we obtain

(1.4.4) ̂  (m -^o) < P^^0 < (1, rci -.ro)^1 •^ (1, ̂  -.z-o)^^^.

Multiplying (1.4.4) with the similar expression obtained by inter-
changing rci, a;2 we finally get,

(1A5) 9^ (a-i - ̂ o) • 9^2 - xo)
<^(2^)no .^(^^ _^W .^(^^ _^)(^1)2.

LEMMA (1.4.6). — For a > d(27V + 1),

^^.(l,^. - ̂ -a < p^o . C(a - d(27V + 1)).
3

Proof. — Set ^(fc) = { j | ̂ . (1, x, - x) < p^. For j 6 ̂ (^) we have

9^(y)<pn^kN9x{y)
by (1.4.2), and hence Xj +p^o+feN . ̂ ^ ^ .̂ ^_ ̂  ^ ̂  Similarly, using
^ <^ and (1.4.1), for j ^ J(k),

9x(x - x,) ̂  g^(x - x,) ̂  p^ • g^x, - x)^ < p^^i^

and hence ̂  C a: +p-^o+fc(^v+i)] . ̂  Denoting by vol the Haar measure
in V normalized by vol(Cy = 1, we get from the above two inclusions :

#J(k)= ^ 1 = ^ vol(^•+pno+fcN(^).pd(no+fcN)
iej{k) iej(k)

^VOl( ]_J ^Ypd^kN)

3^JW

< \0\{x +p-[no+A;(N+l)]0^) .p^o+fcN)

^ d(no+fc(A^+l)) . d{no+kN) ̂  2dno . d(2N+l)fc
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Hence

^9^x,-x)-a=^#(J{k)\J{k-l)).p-k•a

3 J>0

^ p2dno . y^(d(2N+l)-a).fc

fe>0

^^^(a-^Tv+l)). D

Using (1.4.5) we deduce the following

COROLLARY (1.4.7). — For (3 > d ' {2N + 1) • {N + I)2,

E ̂  (1^ - ̂  • ̂ , (l^i - ̂ -/3 < oo.
J'l J2

The weight function m will be called temperate if there exist C and /3,
such that

(1.4.8) m(^i) < C • m(xo) . ̂  (1, ̂ i - x^.

If m is temperate, so is m" for all a > 0, and using (1.4.3) also for a < 0.
We also have

(1.4.9) h^^s^p93^- is temperate.
y 9'xW

Indeed, using (1.4.1) and (1.4.2), we have

h^^p^^h^) .^(l^i-^o)^.

Given two temperate weights mi, 7722, then mi • m^ is also temperate;
moreover we have

mi(:ri). 7712(^2) <Cl'C^'m^xo)m2{xo)g^{l,x^-xo)f31'g^(l,X2-xo)f32

which by (1.4.5) is smaller than

Co • mi(.ro) • m2(a;o) • ̂ (l^i - xo)00 . g^x^ - xof°

for some new constants Go, A)- Hence,

(i 4 10) ^ n To - Tn^0 • ^v n r. T }-^ < r ml(:co) •^2(^0)V-1--"- lu^ c /rEl^ l5J- /2 ^O^ 9 x 2 \ ± ^ x ^ ~ X O ) S ^0 •———;——^——;———•
mi(a;i)m2(.T2)
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When g and m are temperate, we have l/m{x) < C/m{0) ' g^l^x)0,
and using (1.4.2) we easily obtain B^^^^go) ̂  B^^(m,g), and
hence S(V) c-^ S(m^g). Conversely, given g^ the functions rriQ^x) =
go(l,x)~1, m\(x) = (^(l,^)"1, are temperate, and an easy estimate
gives %,oo(m^ • m^^.g) ̂  B^(V,go). Thus we conclude that

(1.4.11) <?(V)=n5(m,<7),
m

where the intersection is taken over all temperate weights m, i.e. the
topology of S(V) is defined by all the norms B°^^{rn,g)^ a > 0,
m temperate.

Beside the uniform metric-covering gx = go < 9o^ which we
studied in paragraph 0.2, basic metrics are the Toeplitz metric and the
pseudodifferential metric which we next describe. The Toeplitz symbols are
defined by

(1.4.12) E0 = 5(7^), g^y) = |1,̂ |-1 • H, m^rc) = 11,? .̂

It is easily verified that g^ is a metric-covering (i.e. it satifies (1.2.25)), that it
is certain (i.e. g^(y) < g^(y) = |l,p.r| • \y\) with h(x) = |l,pa;|~2 = m"2^),
and that it is temperate; indeed, we have a stronger inequality than (1.4.1)

r g^W <, g ^ { x ) ' \i,p(xo - a;i)|,
(1.4.13)

[ \l,p(xo -x^)\ < ̂ (l,^i -xo).

This follows from the basic inequality

(1.4.14) |l,2/o|<|l^iHl^o-2/i|.

Explicitly, / € E0' if and only if

(1.14.15) |/(^)|< Co •11,^1"

for all x € V, and for all (3 > 0 :

\f(x) - f(x + y)\ ^ Cf,. 11,̂ 1̂  • \yf for \y\ ̂  |1,̂ |
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Letting %(V) = Ft B^(V) denote the Frechet space defined by
(3>0

the norms of B^10^, /? > 0, we note that since

l^llB^^m^)

= sup 11,^1-". |/(;c)|+ sup II^^^M-^I/^-^+Z/)!
a; ' ' a;,2/ '

\y\<\l,px\

^ sup [l^l-0. |/(a:)| +sup |l,p^|-aH-^|/(r^)-/(^+^/)|
x x^y

M<1

"B^->/3|-Q
'00,00

we have

(1.4.16) E" -^ CTV).

In particular, S0 consists of bounded smooth functions, and ̂ a for a < 0
consists of smooth functions vanishing at infinity. Letting E~00 = Q E"

a
denote the Prechet space defined by the norms of all the E^'s, we have
by (1.4.11) and (1.4.16) :

(1.4.17) E-°° = S(V).

The pseudodifferential symbols are defined by

{ 5° =5(7^),

(1.4.18) 9{^x)(r],y) =max{)l,p$|-1 • I T / I . I I / I } ,

m^^ll,?^,

where (^, a;) and ('rj, y ) refer to the symplectic coordinates associated with
the complete polarization V = VQ (B V\. Again it is easy to verify that g^x
is a metric-covering, certain with h(^,x) = |l,p^|~1 = m"1^,^), and that
it is temperate with in fact a stronger inequality

{ ^(so^o^'y) ^ ff(Sl,^l)(77>y) • |i,p(^o -^i)|,
(1.4.19)

|1,P($0 - $i)| < ff(^,.i)(l^o - $i,.ro - xi).

Explicitly, / € S0' if and only if

' |/($,a-)| ^ Co • 11,̂ 1° for all ($,.r) e V,
and for all /3 > 0 : |/($, a;) -f^+-n,x+y)\

<Cf,. 11,^1°. maxdl.p^l-1.^!,^^
.for |7?|<| l ,p$|and|y|^l .
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For the norm associated with (1.4.20) for a fixed (3, we have

sup ll.^l-". \f(^x)\

^cTLll?pra max^ll?prll^ l^l}^' 1^^) - f^ + ̂  + v)\
\y\<.^\^\\^\

> sup 11,^1-|/(^)|

+ sup \^P^~a'^y\-^\f^x)-f(^^x+y)\
x,y^,r) 1

|2/^1<1

-ll^llB^-

with I ^ f ( r ] , y ) = ll^^l-0 • f(rj,y). Hence, letting

^(-"'^fv) - n i-^B^
^00 V / — I I ̂  ^OO,^?

/3>0

the Prechet space defined by the norms H^/IL^ , (3 > 0, we have
- —'00,00

(1.4.21) 5°-—C^°)(V).

In particular, 6'° C C°^ consists of bounded smooth functions, and 5°'
for a < 0 consists of smooth functions vanishing at oo in the ^-direction.

2. THE SYMBOLIC CALCULUS

2.1. Estimates for twisted multiplication.

We fix a temperate, certain, metric-covering g^ in our 2d-dimensional
symplectic vector space V, so V = [J ̂ ;, ̂ ; = Xj + Oj, Oj^ D 0^. In V C V

3 3

we have the metric covering g (g) g corresponding to

vev=Y[ ̂ ^=^x^ = (^,^)+o^ eo,,.
Jl J'2

We begin by giving a short range estimate for the restriction to a, of

(2.1.1) fi#f2(x)==^(Q(D))f^f^x,x)
= .F® ̂ (Q(vi, V2))^<8 ̂ /i ® /2(a;,a;),
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where /i,/2 € B^(2lj), x e 2lj, and Q is as in (0.1.12). We have
for .EI , a;2 € 2lj

'IWOT)/! 0/2(^2) |
< ||WW)/i ® /2||^(vew,-) by (1.2.23),

f2 1 2) < ^ ̂ fl (2> •^^•i'1^®^®^) (since WW)is "Qitary
on Z/2 and commutes with convolution)

= 11/1 <S f2\\B'i''d'{-&,,) since ^PPfi c ̂ j

= I I /i II B^ (a,) • ll/alls^ (a^-

Usmg (2.1.2) we also obtain

f ||^,,fcl ® Vg,M * V'(0(£>))/1 ® /2||^(^,,)

= ||^(Q(£>))^,,fc, * /I ®^,,fe3 * /2||̂ (ai,,,)
(2.1.3)

^ llya,,fei * /illa^^a,) • II Vg,^ * /2|lB^^(a,)

=Pfcl'dlly5„fcl */ilk(a,) •P^'^Vg.M */2||L2(a,).

Multiplying (2.1.3) by pC^i+^a^ and taking ^r-norm, we conclude that

(2.1.4) ||^(Q(Z?))/i ® /2||^,^a,,,) ^ IIAIlB^(a,-) • ll/2|lB^(a,)-

Using (1.2.21), we obtain from (2.1.4)

(2.1.5) HA #/2||B^(a,) < ca • ll/i|lB^"(a,) • \\M\B^W

Note that Haar measure is normalized by (1.2.3) as da;(2lj) = 1, so
that £oo(2lj) ̂  -£'2(2l.») with norm 1, and hence \\f\\B^^,) <. 11/llag, ^(a,)>
so that (2.1.5) gives

(2.1.6)

{\\h#h\\B^)
^\\h#h\\B^,)
< Ca • ll/l|lB^°(a,) • ll/2|lB^°.(a^)

^ Co • 11/1 llB^(a,) • ll/2|lB^(a,-)-

To estimate the «error », that is the difference between /i #/2 and /i • /2
we notice that for y 6 Qp we have

(2.1.7)
f 2 i f y ^ Z p ,

m(y) - 1 < <
" " " l - l 0 i f y e Z p ,
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and hence in particular for any 7 >, 1

(2.1.8) |^(y) - 1| < \y\\

Also, using ffj" = gj, we have

(2.1.9) sup \(xl,X2}\=p(kl+k2)sup—[{x^^
ff;(^)=^ ^X^i)-<^2)
i^^)^2 . .

:=p(^+^)sup^W=p(fcx+fc2).^.
x 9j (x)

where hj is defined as in (1.4.9) with the metric gj.

(2.1.10) Applying these remarks we can now estimate

|^(<9(£»))/i 8> f2(xi,X2) - fi <8> /2(a;i,a-2)

< \\^(Q(D)) - 6)f, ® /2||^(ve^^) ^ (L2-23)

= E ̂ ^ll^^^^^-Wi^i'^))-l)^/i ®^/2||^^^
fci,fc2^0

(by the definitions (1.2.4), (0.1.12) and Plancherel)

<h] ^ ^^•^^ll^^^^^^/i^^ll^^^
A;i,fc2^0

(by using (2.1.8) and (2.1.9), with any 7 > 1),

= U ' I I /I I I B^ (21,.) • II/21| B^ (a,)

(by Plancherel again, and the definition (1.2.4)).

Using (2.1.10), we can now deduce as in (2.1.3), (2.1.4), (2.1.5) and
(2.1.6), that we have

(2.1.11)

f 11/1 #/2 - /I • f2\\B^^j)

<\\fl#f2-fl'f2\\B^W

< Ca • h] • || A lla^-a ̂  • ||/2|lB^y+«(^.)

[ < Co • h] ' ||/i|[^+;y+a^ • \\f2\\B^+ot^y
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We next give the long range estimate for the restriction to ̂  of
/i#/2? where supp/^ C 21 ,̂ and at least one of the ji's is different
from j. We recall from (0.1.11) that we can write V?(0(D))/i (g) f^ also as a
convolution

(2.1.12) ^(Q(D))f, 0/2(^2)

= // ^x'^xllf^xl)f^x")^(2{xf-x^xll-x^.
JJ ̂ 31^32

We set

(2.1.13) 9nJ^X)= mm ^(1^+z/s)
2/2 & ̂ j'a

so that we have

(2.1.14) 9n,J2 is ^Ji + 0^-locally constant, and

(2.1.15) ^9^^x)^g^x).

Hence if we put

(2tL16) ^-^r^^F
then J^ acting on S^V), preserves by (2.1.14) C^(5l^), the distributions
supported in 21̂  ; moreover, it commutes with convolution, and by (2.1.15),
(1.2.12), and Plancherel, we have for f3 > 0

(^•^ ll̂ /illa ,̂) < 11^-fAll^,) = ll/illB^^,)-

Similary we can define ^J^, and ^^, and they satisfy the same
properties.

Notice that we have in the distributional sense,

(2.1.18) F ^ ^ x ' - x ^ ' - x ^ ^V^i,^'-^)) -^-^

and hence, letting J^^ act through the variable x1\ we have

(2.1.19) J^^x'-x^^-x^}

-r^(^.xll-x^^{xt-x^xll-x^Y



1034

Putting,

SHAIHARAN

-1.20) ^2^)= min ^(1,^-^)(2
x ^•"72

= ^Ji J2 (1 'x" ~~ ^2), for any x" e %„,

we obtain from (2.1.12) and (2.1.19),

(2.1.21) ^(0(2?))/i®/2^i,a-2)

= 9n (^2, S^)-^ . V>(Q(I?)) [^^A ® /a] (a-i, ̂ 2).

Similarly, using 5^ ̂  and J^, and the analogous formula to (2.1.19), we
have

(2.1.22) ^(Q(D))/i<8/2(a;i,a;2)

=^(^2,^)-^(^,a,J-^

•^^(^K.A®^,^^,^).

Now we can estimate, as in the short range-estimate (2.1.2),

flWCD))/i®/2(a;i,;E2)|

= gj^W0 • g^W13

•IWW^lA^l^i,^)!
< 9j^W0 • g^x,,^)-'3

• \\^QW)J^f, ̂  J^MB^V^^(2.1.23)

^ 9n^W3 • 9j^^)-i3

•K^^^nf^B^y,^)

^ ff;,(^,a,j-/3. ̂ (^,a,j-^
• IIAIlB^(a,,) • ll/2|la^(^) by (2.1.17).

Using the fact that by our normalization we have £oo(2li,ffj) ^->

^2(^,5.,) with norm 1, and the embedding (1.2.6), we obtain from (2.1.23)
that for any / 3 ' > (3 + d

(2.1.24) \W(D))f,®f^,X2)\ ̂  C • g^x^)-^g^(x^)-'3

IIA I B^(^)MB^(^)-
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This, of course gives an estimate for ||/i # h\\L^{^), but to estimate
the Besov norms of /i -#- f^ we need a further argument since we have
different metrics ̂  and ̂ . We remark that since we have, by (1.4.2), for
any xi e ̂

(2-1-25) Q^^gM'p^'gUx^y

an easy estimate gives

;.i.26) sup QAyY^Q-^^f^B^v^(2
9j{y)<^-

< fi • fnnooiny ( ^ r - 9( \No. \\ r [|
-^ ° P Q^^z^^i) '1^1'B^+^(V,^•.)•

Hence from (2.1.24) and (2.1.26) we deduce, since ^(Q(D)) commutes
with translations, that for x e 2lj, ft' > f3 + d, we have

f SUp ^)-a|/l#/2^)-/l#/2^+^|
| 9 o (?/)<!

< sup gAyy\^QW)h^{6Q-6,y}^f^x^x)\
93 (?/)<!

+ sup gj{y)~a^(Q{D))(6o-6y)^f^f^x^y^+y)\
9j (?/)<!

<C.^(^^)-^(^^)-^||A||^,^^^

\.su)p<l^(')-QII?~^)*/211<-(^^•(^)^i
+C.^(^2l,J-^(^,^)-P

(2.1.27) • s u p ^r'li^o-^)*/!!!^ ^ , . ) - i i / 2 i i ^ .,.
g - ( y ) < ^ l "-"oo,^^?^!; -DOO, 00(^2)

< C' • ov (T 21 • ^"^r^ fr 21 't-/3(^v fr 91 • 'l7^^ ^ ^Jl^? ̂ 27 ^V^'^1^ yj2^x^^2)

' II^HB^ rsi- ) ' ll^ll^+a^ ^-'-'oc^oo ̂ Ji ^ -Doo,oo V-aJ2 I

-\- C' a ' (r 21- "l""^^ fr 21 't-/3<^v fr 91 • ^7VQ!
-r ^ y^ ̂ , ̂ 2 / y^ V^ ̂ ji ̂  ^•i ̂ 5 ̂ ji;

'^^IB^+^^^'II^HB^^^)

< (777 • n^ (r 21 "l"^^ fr 91 • ^"^^ f^ 91 • }Nanv (v 9f ^a
-^ ^ yji^^J y j ^ ^ ^ j i ) i^^l\x•>^^l) 9 j 2 \ x ^ ^ a j 2 )

' lljlllD^+c^of. \ ' ^HD^'+a.oj ^
-"oo.ool^i; -"oo,^^^^^

where the constant C" depends only on a, {/3 — f31), no and d.
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2.2. The main theorem of symbolic calculus.

We now give a global estimate for /i # /2? where fi € S(mi, g) and the
weights 7711,7712 are temperate, i.e. they satisfy (1.4.8). We let /^) denote
the restriction of fi to 9lj, and we note that the partial sums ^ /^)

j<M

are bounded in S(mi,g)^ and they converge to fi in Coo(V), since they are
ultimately equal to fi on any compact set. Letting /3o denote the constant
in (1.4.10), we deduce from (2.1.24) that for any f3' > /3 + d + /?o,

(2.2.1) |/i,o,) #/2,(^)|
<C.^(a:,^)-^(^,^)-^.mi(a;)m2(a;)

• IKVi^JI^^) • ||̂ 2 'fw^B^^y

Taking (3 sufficiently large so that (1.4.7) applies, we obtain

(2.2.2) El/i.^^W^I

< C' • mi . m^x) . \\fi\\^^) • 11^11<^,,).

From the estimate (2.2.2), being valid for all fi in a bounded subset
of S(mi,g) we deduce that the form /i (g) /2 ^ /i#/2 defined on
Coo^^Q^Coo,^^) = Coo,c(^®^) extends uniquely to a weakly continuous
linear form on S{m\^g) (g) S(m'z,g), given by

/1#/2(^=^/1,00#/2,0.)(^).

31 J2

Similarly, note that the functions

(2.2.3) mi{y)=mi(yVgy(x^y)-Na

are again temperate, with the corresponding constants in (1.4.8) depending
only on 77^, g and a (and independent of re); letting (3a denote the associated
constant in (1.4.10) (with mi replaced by m^), and using (1.4.5), we deduce
from (2.1.27) that for any f3' > (3 + d + /?a + {N + I)2 • Na, we have

(2.2.4) ||/i,0.)#/2,a.)(^l|^^^)

^CIII'g]^x^)-^g]^x^)-ftm^(x)

' II^VujJiB^o^) • ll^1^^)!!^^^,)-
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Taking again a /3 satisfying (1.4.7), we conclude that with some new
constant C

(2.2.5) ^ ||/i,(ji) # /2,(j2) HB^O^)
J'l J2

< C . m^(x) • ll/ill̂ ,̂,) • WB^(^Y

Thus the map /i <8) /2 '-̂  /i # /2 is weakly continuous when viewed as a
map

S{m^,g)^S(m^g) —> 5(mi -m^g).

Moreover, since the function x ^ h(x) of (1.4.9) is temperate, and since
for x ^ 21̂

(2.2.6) 1 < j^n g^x - y) <, ̂  • ̂ (^),

we see that, using (1.4.5), we can bound for x ^ 51̂  H 21 ,̂

(2.2.7) ^(^^)-/31•7^(^,^)-/31•7 ^ h(xr

for some /^i > 0. Hence, by taking (3 large, we can replace m\ ' m^(x) in
the right hand side of (2.2.4) by W ' mi • m^x), for x ^ 21̂  n 21^, and
a posteriori we can similarly replace m\ ' m^ by W ' m\ • ms in (2.2.5) if
we sum only over j\ ^ j^. When ji = j^ = j, we can use the estimate
(2.1.11). Thus we conclude that the map f\ 0/2 '—> A # /2 — /i • /2 is weakly
continuous when viewed as a map 5'(mi, g) (g) S{m^,g) —> S'(^7 • mi • 7722, p),
for any 7. We summarize the above discussion in the following

MAIN THEOREM (2.2.8). — Given a temperate^ certain, metric-
covering g in the symplectic space V, and two temperate weights mi, 7722,
then

# : S'(mi,^)(g) S{m^g) —> S(m^m^g)

is weakly continuous. If h(x) = s\ipgx(y)/g^(y)^ then for any 7 the map
y

fi ̂  /2 '—^ fi # /2 — f i ' /2 is weakly continuous

S(m^,g) (g) S(m'2,g) —> S(h^ ' mi 'm^,g).
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2.3. Bounds for operators.

In this section we study the continuity of the operators p(f) on the
spaces S(Vo) c—^ L^(Vo) c—^ ^'(Vo), for / e S(m,g), g^m temperate. We
first remark that since by (0.1.13) p takes complex conjugates to adjoints,
the continuity in <S'(Vo) follows from the continuity in «S(Vo)- Secondly, we
note that the Bargman isomorphism B~1 : L^Vo) -^ L'z{Vo)^ induces an
isomorphism B~~1 : <S(Vo) —^ S(Vo)^ = S(V) n L^(V)^ onto the subspace
of S(V) consisting of ^-holomorphic functions. By the description of S(V)
given in (1.4.11), and the description of B~~lp(f)B given in (0.2.12), we
deduce from our main theorem (2.2.8) the continuity in S(Vo). Thus we
have :

THEOREM (2.3.1). — -For a temperate certain-metric-covering g^ and
a temperate weight m, the operators p(f) are continuous in <S(Vo)? ^d in
S^Vo)^ for every f G 5'(m, g). Moreover^ the map f \—^ p(f) induces weakly
continuous embeddings

(2.3.2)
S(m^) ̂  Kom{S(Vo)^(Vo)) = S(Vo) ̂ ^(Vo),

S(m^) ̂  Hom^^Yo)^'^)) = ̂ (Vo) ̂  5(Yo).

For the continuity on L^(Yo) we take / G S(l, g) and write / = ̂  fi
i

for the corresponding decomposition of / with respect to the metric
covering g . We shall use the lemma of Cotlar-Knapp-Stein-Calderon-
Vaillancourt, so that we need to estimate the operator norms

(2.3.3) ||pCA)W)|lop = Wallop = llpW.#/.))||op

< IW^^)HL.(V) < ̂  • F^-lk,^)

for a sufficiently large. From (2.2.4) we obtain for f3' ^> f3,a

(2.3.4) ||/^/,-[|^^^ ̂ G.^^^r^^^-^ll/ll^^.

By using repeatedly (1.4.1), and the inequality of (1.1.26), one easily
obtains that for some constants Go, M, and all x G V

(2.3.5) ^(^.^^min ^(W - V " } < Co • g^x^ . g^x^.
y ^i
y " ^ j
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Putting (2.3.3), (2.3.4), (2.3.5) together we obtain, with some new
constant G, for 7 > /? > 0,

(2.3.6) WiYW\\^ < C • gn^M^ • 11/11^(1,,).

By an analogous proof to the proof of Lemma (1.4.6) we have, for f3 » 0

(2.3.7) ^^(^.^^-^oo, ^^(^,2l,)-^<oo.
i 3

From (2.3.6) and (2.3.7), we obtain by applying the lemma of Collar
et al.,

(2.3.8) ||p(/)||op ^ C ' \\f\\B^(i^ for 7 sufficiently large.

THEOREM (2.3.9). — For a temperate certain metric-covering g, and
a temperate bounded weight m, the operators p{f) are bounded on L^VQ)
for every f € <S'(m, g). Moreover^ for some (7,7 we have

(2.3.10) \\P(m^<C-\\f\\B^(m^

If m vanishes at infinity^ the operators p(f) with f € *S'(m, g) are all
compact.

Proof. — The inequality in (2.3.10) follows immediately from (2.3.8),
since i f m < C 7 , then ||/HB^(I^) < C • ||/HB^(^^)- ̂ e compactness
assertion follows since the operators p(fi) are all compact, and by (2.3.8)

11^) - E )̂||̂  c. ||i>L_^ < c • \\f\\B_^ • ̂
which converges to 0 as j —> oo by assumption. D

(2.3.11) Remark. — We note that if fj is a bounded sequence in 5(1,?)
converging to / in Coo(V) then for any (p € ^2(^0)5 pUj)^ —^ p{f)^P
in L^(Yo). Indeed, we may assume / = 0, and in view of the uniform
bound (2.3.8) we can take (p € <S(Vo)? then by the weak-continuity assertion
of (2.3.1), p(fj)^p is bounded in 5(Vo), and converges to zero in <S'(Vo),
hence a posteriori in <S(Vb) and inZ^Vo)-

The inequality (2.3.8) can be sharpened in various ways, one of
which we describe next. For a self-dual lattice 0 = C^, denoting by <I>
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its characteristic function, we know from (0.4.15), (0.4.17) that there is
a unit vector yo e L^Vo) such that Wyo = $ = $. If / is such that
supp/ C 0, then by (0.4.19), we have p(f) = p(f * $) = C^MyC^,, and
hence ||p(/)||op ^ ||/HL^,. This also holds for_/ such that supp/ C x + 0,
since the function U(y) = f(y + x) = J-(^ . f)(y) is supported in 0,
and so

ll^llop-ll^-^)^)^-^)!^
= l|p(̂  •/)|1^< 11^ •/ll^= ll/ll^.

Thus for a self-dual metric covering g^ = g^, corresponding to
V = ]_[2lj, 2lj = Xj + Oj, Oj = O], letting $j denote the characteristic

function ofSlj, we have for any function /

lollop-|KE^*/)|L,<Ellw*/)llop
^Eii^^^oo^ii/ii^^,).

j

Here the right hand defines a norm for a Banach space B^ ^(g)
analogous to a Besov space. If for example ^ = g is independent°°of x,
^.^ g = g^ is a self-dual metric corresponding to a lattice 0 C V and
y = U (x + ̂ ) is the associated covering, then an easy calculation gives

x€V/0 °

ll^*/!!^^^!^)-^!!^-0/!!^
and since ^ ^(1, ̂ )-a = ^(a - 2d)/C(a) is finite for a > 2d == dim V

xev/o '
we obtain

(2-^) ll̂ )|lop ^ 11/11^(,) < ̂ ^ . ||/||̂ .(̂ ,

From this we deduce the following

THEOREM (2.3.13). — For a self-dual metric g , the operators p{f)
are bounded on L^Vo) for every f e L^(V,g), a > dimV. If such an f
vanishes at infinity, then p(f) is compact.

For a ^-locally constant function m, we define the operator
J^ = p(m-1); if m > 1, it is bounded on L^Vo) by (2.3.8). We define the
m-th Soboleff space by

(2.3.14) L^(V,) = J^(W)), |M|̂ ^ = \\p(m)4^.
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Since for p-locally constant functions m\^m^ we have m\ # m^ =
mi • m2, we deduce that J^J^2 = J^'1'1712, and in particular, we see
that J^ = J ^ 2 ' (J^Y is positive, and J^J^~1 = id, so that J^ is
invertible. For example, taking g and m as in (1.4.12) (or as in (1.4.18))
we get essentially the operator AT" of (1.1.20) (respectively, the usual J01),
and the space L^^Vo) of (1.1.21) (respectively, L^(Yo)). For a temperate
weight mo if / € 5(mo,^), we have f#m'Q1 € S(l,g), hence by (2.3.8)
P{f # rno1) = p(/)J^° is bounded.

Similarly replacing / by m^1 # / # mi C 5'(mo, g), we obtain the

COROLLARY (2.3.15). — For temperate weights mo,mi, every f in
5'(mo,^) defines a bounded operator p(f) : L^107711^) -^ I^O^).

3. ELLIPTIC OPERATORS

3.1. The Garding inequalities.

Fix a temperate certain metric covering g in V corresponding to
v = U^ ^j = Xj + Oj, Oj 3 (9J, and write ̂  = p-^ for the quantity

3

defined in (1.4.9) for the metric g ^ . For each j choose a self-dual lattice 0°
such that Oj 3 0^ 3 OJ, and moreover such that we have

(3.1.1) p^Oj D(^°,

with bj = [j^-] = (the greatest integer < ja^-). To see that such a choice
for 0°j is possible, write in some symplectic basis

Oj = p'^Zp e • • • ep'^Zp e Zp e - • • e Zp, o < ei < • • • ^ e^,
0] = Zp C ... C Zp e p^Zp e ... C P^Zp, so ei = o^, and take

ô 0 = p-^Zp e • . . ep-^Zp ep61 e • • • ep^Zp, with c, = [|e,].

We denote by ̂  the characteristic function of 0° which is by (0.4.15),
(0.4.17) the Wigner transform of a unit vector (f)j e ^2(^0)5 ^j = W(pj. For
a function / in V, we denote, as usual, by fj the restriction of / to 21 ,̂ and
we let f{x) = ̂  * fj(x) for x C ̂ , / is the average of / over the x + O^s.
We have the following :
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LEMMA (3.1.2). — For / € S(m,g), we have f-fe S(mh^,g), for
any 7.

Proof. — It is enough to prove that for any a, 7 > 0, we have for all j

(3.1-3) /l7711^•-^•llB_(.^2.||/,||^^,

With the notations of (1.2.3), using (3.1.1), we have

(3.1.4) cf>g^ ̂  * / = < .̂ ̂  * /, and hence ^ ̂  * / = ̂ . ̂  * /,

for A; = 0,1,. . . , 6y. From (3.1.4) we obtain

^M-MB^,
= p7^ supp^ sup |̂ ,,, * (/, - /,)(^)[

fc^O a;€2tj

= p1-^ SUp p0^ SUp |^,fc * (/, - /,)(^)|
fc>bj a;G2lj

^ p7-^ sup p0^ [sup |^,,fc * /.(a;) I + sup |^,,fc * $, * /,(^)|]
k>b, xefHj xe^j

< 2 • p^ sup p"^ sup ly^fc * /,(a;)|
fc>frj .1:621,

^ 2 • SUP p(a+2^ g^ j^^ ^ ̂ .(̂

A;>6j a;62lj

< 2. W^ ,̂, * /,(.)| = 2. ||/,||,̂ ,̂. n

The operator p(/) corresponding to / is expressed by (0.4.19) as

(3.1.5) p(f) = ̂ p(/, * ̂ ,) = ̂ p(^. * TV^) = ̂  ̂ .M^.G^,.
^ ^ 3

In particular, if / > 0 is positive, p(f) is positive in the sense that

(3.1.6) (p(f)^ ^)L^Va) ̂  0 for all ^ e <?(Vo).

Thus we have obtained the following

COROLLARY (3.1.7). — If f e S{m,g) is positive, f > 0, then
f = f + /o, where the operator p(f), is positive, and fo e S(mh^,g)
for all 7.
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COROLLARY (3.1.8). — Iff <E S(m,g) is positive, then for any 7

(^^^^^^-^•MIL^-)^
forallyeS(Vo).

Proof. — Writing / = /+ /o as in (3.1.7), we have
(/)(/), ̂ )^^

> (p(/oW)^) - (Krn-^h-^^f^^m1/2^)^)^

> -\\p{m-^h-^p(f^ \^ . \p(m^h^\\^

>-^-11<^.^

where C denotes the norm of p(fo) : L^2^^) -> L^"172^, which
is bounded by (2.3.15). Q

As a special case of (3.1.8) we note that we have

COROLLARY (3.1.9). — If f e S(h~^,g) is positive, then, for all
^eS(Vo),

W^^L^^-G'Mwy

We say that / e S(m, g) is strongly-elliptic if for some A > 0, we have

(3.1.10) Re f(x) > A ' m{x) for x outside a compact subset of V.

SHARP GARDING INEQUALITY (3.1.11). — For a strongly-elliptic f in
S(m, g), we have for any 7 :

M/K/W)^ > A. IMÎ v^ -c. M^^^y
Proof. — S e t / i = Re/ - A • m + <^ where ^> C C^(^) is large

enough to make /i ^ 0. Applying (3.1.8) to /i, and noting that by (0.1.13)
^O^/)^ ^L^Vo) = (p(Ref)y, ̂ )L2(Vo)^ we g^ the desired result. D

We can write 21, = [J ̂ -^ with 21̂  = Xj, + 0^ z = 1 , . . . , [0^ ^°],

so that the decomposition V = U^iji corresponds to a self-dual metric
_ _ JZ

covering g ^ with g^ ^ g ^ ^ ^. For any / G S(m,g), denoting by
fjz = f^ji) the average of / over ^-^ the operator p(f) is diagonalizable
with respect to the orthonormal basis (^ e ^2(^0), W^jz = characteristic
function of ̂ , cf. (0.4.20) : p(/)(^ = /„ • ̂ . Thus we have «almost
diagonalized)) p{f).
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3.2. Fredholm operators.

By the Stone-von Neumann theorem, p : L^(V) —^ ^2(^2(^0)) is an
isometry onto the ideal of Hilbert-Schmidt operators. Since an operator is
trace-class if and only if it is a product of two Hilbert-Schmidt operators,
we conclude that

(3.2.1) p{f) is trace-class, if and only if / e L^V) # L^ (V),

and note that L^V) # L^(V) C L^(V) H Co(V).

Given an invertible trace-class operator /C, if IC^p^f) is bounded
then p(f) is trace-class, so we can use the criteria for boundedness of
paragraph 2.3 to get criteria for p(f) to be trace-class. In particular, using
(1.1.23), (1.1.24) we get :

LEMMA (3.2.2). — The operator p(f) will be of trace-class provided
either p(f #^(1,^,^)°') is a bounded operator for some metric g in V,
and some a > 2d == dimY, or if p{f # go^l,^)^ • 9o{^^x)oi2) ls a bounded
operator for some metric go in VQ^ and some ai, 0:2 > d.

For example, using the first criteria of the lemma, we see that the
Toeplitz symbols S01 correspond to trace-class operators if a < —2d.

A symbol / € S{m, g) will be called elliptic if

(3.2.3) \f{x)\ > ^ ' m{x) for x outside a compact set K of V.

For such an / we define

/,,,. f-z, . ifW ^ x € V \ K ,(3.2.4) JK (a-) == \
10 if x € K,

where we can take K to be a finite union of the sets 21, corresponding to
the metric-covering g. Since we have for x £ V \ K, and for y such that

9x(y) ^ 1,

I/^I^A-1.^)-1,

n (y}-a\f-l(r} f-^r I ^| - ̂ (^""l^ + J/) - A^)l
9x{y' \fKW-fK^+V)\- \f^f(x+y)\

<A~2 •Ca •m(x)~1,
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we see that f~^ e 5'(m~1,^). By the main theorem (2.2.8) we get,

(3.2.5) l-f#f^\ l-f^^f^S^h^g) for all 7.

If h vanishes at infinity we conclude from (2.3.9), (2.3.15), that p(f)
defines a Fredholm operator : L^\Vo) -^ L^(Vo). Assume now that g
is global, in the sense that we have

(3.2.6) h(x) < C ' go(l, x)~6 for some 6 > 0.

We first remark that from (3.2.6) we obtain for any temperate
weight m,

{ m{x) < Ci . m(0) • ̂ (1, xf1 by (1.4.8)

(3.2.7) <C2'go(l,xf2 by (1.4.3)

<C3'h{x)-^ by (3.2.6)
so that n S(mh^,g) = ^ S{h^,g) = S(V) by (1.4.11).

'y>0 7>0

To calculate the index of p(f), f e S(m,g) elliptic, we may assume
that m = 1 by the logarithmic law for the index. So let / C S'(l,^),
\f{x)\ >_ A for x ^ K, and assume that (3.2.6) holds, so that

l-f#fK^ l-^^/^^V),
and they correspond by (3.2.2) to trace-class operators. Hence we have,

' Index(p(/))
= tr(l - p(f^ # /)) - tr(l - p{f # f^))

(3-2-8) < =^(p{f#fKl)-P(fKl#f))

= fdx(f#fj,\x)-f^#f(x)).

Writing / = / + /o, f~K1 = f]K1 + A as in Lemma (3.1.2), with
fo^fi ^ S(Y) by (3.2.7), so that p(fi) are trace-class, we obtain from
(3.2.8)

Index(p(/)) = f dx(f#f^{x) - f^ #/(^)).
j v ^\J -tt-JK \^) ~ fK1

But since / and f^1 are ^-locally-constant, we have f # f^1

/ p 1 #f = f ' /K1^ an^ we have proved the following

THEOREM (3.2.9). — For global p, every elliptic f e S(m, g) defines a
Fredholm operator of index zero

^^(yo)-^^).
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3.3. Zeta functions and spectral asymptotics.

In this section we fix a global metric-covering g , temperate and certain,
so that we have from (3.2.7) : ?] S(mh^,g) = <S(V), for any temperate

7>0

weight m. Let / e S(m,g) be a real valued elliptic symbol. By (0.1.13),
p(f) is formally self-adjoint. From (2.3.15) we know that p(f) is bounded
as an operator from L^^o) to L^(Vo). Let us denote by A the unbounded
operator on L^(Vo) defined by p(f), with domain L^^Vo).

Note that we can write f^#f= I-RQ, with RQ <E S(V) as in (3.2.5),
hence if (p e L^ (Vb) is any element such that p(f)y e ^2(^0), then

p(m)^ = p(m # f^) p(f) ̂  + p{m # Ro) ̂ ,

showing that p(m)(p e L^{Vo), and so (^ e L^^Vo). From the continuity of
p(f) in ^'(Vb), we deduce that the operator A is closed. We claim that A is
self-adjoint, and to prove it we shall show that A equals the closure of its
restriction to <S(Vo). Let ^k denote the partial sums of the characteristic
functions of the sets 2L, corresponding to the metric-covering g. The <I>^
are a bounded sequence in S(l,g) covering to 1 in C^(V), and by (2.3.11)
we have for any <p e L^(Vo), p{^>k)^ -^ ^ in ^(Vb); moreover, since
^k ^ S(V) the operators p(^/c) are smoothening, and so p(^/c)^ e ^(Vb).
For^G47 n )(yo)wehave

Ap(^ = p(f #^k# f^W) ̂  + P(f # ̂  # -Ro) ̂ .

The / # ̂ k # fK\ and / # ̂  # J?o, are bounded in 5'(1, ̂ ), and converge
to f#f~K1^ and to /^o, in Coo(y), respectively, hence by (2.3.11) we
have

Ap^k}^ — p(f # f^)?^ + p(f # Ro)^ = A^

in La (Vo)- Thus A is indeed self-adjoint. We note that if / ^ 0 is positive,
so that by Garding inequality (3.1.11) A is bounded from below, and hence
for some real number Ao, {A - \o) is invertible. Its inverse (A - \o)~1 is
a self-adjoint injective operator with image L^^Vo). Assume now that
m~1 e Co(V) vanishes at infinity. From Theorem (2.3.9) we see that
(A - \o)~1 is a compact operator. From the spectral theorem for compact,
self-adjoint, injective operators, we deduce that there is an orthonormal
basis {(^} for L^Vo) consisting of eigenfunctions for (A - Ao)~1 , with real
non-zero eigenvalues ̂  converging to 0. Hence the 0/s are eigenfunctions
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of A with the real eigenvalues Xj = Ao + / ^ • 1 , converging to 4-00. Moreover,
writing

(/-A,)^#(/-A,)=1-^,,
with R\^ e S(V), we have <^ = p(R^)cf)j is in «S(Vb). We summarize the
above discussion by the following

THEOREM (3.3.1). — For a global certain temperate metric-covering g,
and a temperate weight m, every real-valued elliptic f € S(m, g) defines an
essentially self-adjoint operator p(f). Denoting by A the unique self-adjoint
extension of p(f), Domain(A) = L^^Vo), and iff>.0 is positive, A is
bounded from below. If moreover, m~1 e Co(V) vanishes at infinity, then A
has a discrete point spectrum, and there is an orthonormal basis for L'z(Vo)
consisting of eigenfunctions (f)j € S{Vo},A(t)j = \j ' ( / ) j , with eigenvalues \j
converging to +00.

To study the asymptotic behaviour of the eigenvalues \j, we may
assume that f(x) > c • m(x) > e > 0, and moreover that minAj > e, since
we can always achieve this by adding to /a large constant. For A G C\ [e, oo]
we can write

(3.3.2) f(/-A)-^(/-A)=l-^
la-A^cf-A)-^!-^

with R\,R\ £ S(V). From (3.3.2) we obtain

(3.3.3) (.4-A)-i-p((/-A)-i)
= p{R^ #(f- A)-1) + pW{A - A)-^(^).

For A ^ {\j} the operator (A - A)"1 is bounded, so that the right
hand side of (3.3.3) is a smoothening operator and can be written as p(r[\\)
for some r^j € S(V); thus we conclude that for A ^ {Aj},

(3.3.4) (A-Xr^^x})
for some /^} € S(m-\g) with f{^ - (f - A)-1 = r^} € S(V).

Note that for Re(A) ^ £-1 < e we have the inequalities

(3.3.5)

' sup | (/-A)-1 (a;) | <, |c-mj-A|-1 <. |e-A|-1,
X^j

sup g,{x, - a;2)-Q|(/ - A)-^^!) - (/ - A)-^)
Xl,X2E^.j

=SUD ffj^l-^)-0!/^!)-/^)!

^ea, |/(a:i) - A| • \f(x^ - A|
<, Ca • \C • mj — \\~2 <, Ca\£ - A|~2.



^S SHAIHARAN

Hence in particular,

(3.3.6) ||(/-A)-i[|^^^=o(|A|-1) for|A|-.oo, Re(A) < e,.

From (3.3.5) and the error estimates of the main theorem (2.1.11), (2.2.4),
(2.2.7), a straightforward calculation gives for

Rx = (f - A)-1 • / - ( / - A)-1 #/, Re(A) < e, < e,

the inequalities

/Q Q ̂  I ll^ll^ooC^) ^ c^^ and similarly^o.o.t) ^
Ul^llB^^^-y^) ^C^.

From (3.3.6) and (3.3.7), combined with (2.3.8), and with (2.3.15), we
have as |A[ —> oo, Re(A) ^ ^i,

fllw-Ar^iL^odAi-1),
(3.3.8) J ll/3(^)|lop^)=0(l)'

lll^^llop^-O^).

where ||A||op(A^ denotes the norm of R : L^''\Vo) -> L^^Vo).
From (3.3.8) we have for the right hand side of (3.3.3) the estimate

(3-3-9) ll^{A})|lop^) = M - A)-1 - P((/ - A)-1)!^ == 0(\X\-1)

as |A| —^ oo, Re(A) < £1.

For Re(s) < 0 we have

(3.3.10) As=— r^00 ̂ (^ - A)-l dA
2^ ^,-zoc

which converges in the operator norm since \\A - (e^ + ^)||op = Od^"1).
From (3.3.5) we see that for Re(^) < 0 we have

1 pe-i-\-ioo

(3•3•ll) r : =27^/ ^(/-^-^Ae^m^)^).-" l' J e^—ioo
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From (3.3.9) we see that for Re(s) < 0

1 /•e-1+ioo
(3.3.12) r^ = —— / X8^ dX € S(V)

27r21 Jci-ioo

since the norms || ||op(/i^)? A > 0, define the space S(V) by the remarks
after (1.3.3).

Combining (3.3.10), (3.3.11), (3.3.12) with (3.3.4) we conclude that
for Re(s) < 0

f A8 = p(f^8) with f^8 = /s +r<^ € ^(m1^,^,
(3.3.13) {

[r^ C<?(V).

Since for 5 an integer (3.3.13) holds with f : ^ s = f # - • ' ^ f , s times, we
see that (3.3.13) actually holds for all s € C. Thus we have proved the
following

THEOREM (3.3.14). — For a global certain temperate metric
covering (7, a temperate weight m with m~1 € Co(V), and a positive
elliptic symbol f € 5(m, 5'), denoting by A the unique self-adjoint extension
ofp(/), and assuming that A is positive^ A generates a holomorphic group
of operators A8 (bounded only for Re{s) <: 0) and given by A8 = p(/^5),
/^^4-r^} e^m1^5)^),^ CS{V).

Note in particular that s ^—> r^ is an entire holomorphic function
of s with values in S(V); for Re(5) < 0 this follows from (3.3.9) (3.3.12),
and we have a «step by step » holomorphic continuation by means of the
recursion formula

rW^f^rW+a^f8-/^8).

Assume now that we have

(3.3.15) m'1^) < C ' ^(l^)""0 for some OQ > 0.

It follows from Lemma (3.2.2), and from Theorem (2.3.9), that the symbols
in S^m"5,^) correspond to trace-class operators for s > 2d/OQ. Thus we
can define the zeta function^

(3.3.16) C.400 = tr^-5) = ̂ A78 = f Ar/^-^),
J Jv
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which is a holomorphic function of s in the right half plane Re(s) > 2d/ao.
Similarly we can define

(3-3.17) Q(s)^ [ dxf(x)-8

Jv

which is holomorphic in the same right half plane Re(s) > 2d/o;o. Setting

NAW= # { A , < A } ,

Nf{\)=vo\{x\f(x)<X},

we have the Mellin transform expressions for our zetas

(3.3.18) C^^A-dA^A),

(3.3.19) ^(s)= fx^dNfW.

Their difference is given via (3.3.14) by

(3.3.20) ^(s)-(:f(s)= f X-8 d(NA(\) - Nf{\)) = / dxr^(x),

and is an entire function of 5. Applying the inverse Mellin transform we
obtain the following

THEOREM (3.3.21). — For a global certain temperate metric-
covering g , a temperate weight m such that

mW^C'go^x)^, ao>0,

and a positive elliptic f e S(m,g), denoting by \j the eigenvalues of the
self-adjoint extension A of p(/), we have for every e > 0

NAW = # {A, < A} = 0(A2d/QO+£), as A ̂  +00.

Moreover, we have for every e > 0

N^W = vo\{x I f{x) < A} + 0(A^ as A -> +00.

This theorem should be compared with the remark at the end of
paragraph 3.1. Using the notation of the same paragraph, / is ^-locally
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constant and the operator A = p(f) is explicitly diagonalizable; denoting
by \j its eigenvalues, we have {\j} = f{V), so that for any positive real A
we have an equality # {Xj ; |A^| < A} = yo\{x ; \f{x)\ < X} if finite, and
more precisely we have an equality of measures

(3.3.22) ^^.=/.(d.r).
3

Here there are no ellipticity or positivity assumptions on /. If however
the assumptions of Theorem (3.3.21) are satisfied, then / is also positive
elliptic, and so for any e > 0, combining (3.3.21) with (3.1.2) we have as
A —> +00,

f NA(X) = vo\{x | f(x) ^ A} + 0^)
(3.3.23) ^ = vol{rr | f(x) < A} + O^)

[ =A^(A)+0(A £) .

For particular examples of Theorem (3.3.21) one can take the Toeplitz
symbols defined in (1.4.12).
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