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PREPARATION THEOREMS
FOR MATRIX VALUED FUNCTIONS

by Nils DENCKER

1. Introduction.

The Malgrange preparation theorem is a useful tool in analysis. It is
a generalization of the Weierstrass preparation theorem to C* functions
as follows : if f(t,z) € C°(R x R?) satisfies

(1.1) 0= £(0,0) = 3,£(0,0) =...= 971 f(0,0) and 9!f(0,0) #0,
then we can factor
(1.2) ft,x) = ct, 2) (" + an_1(2)t" " + ... + a1 (2)t + ao(z))

near (0,0), where ¢(t, ), aj(z) € C*, ¢(0,0) # 0 and a;(0) =0,0 < j < n.
A possible generalization of this result to matrix valued functions, is to
replace (1.1) by
(1.3)

0= F(0,0) = 9,F(0,0) =...= 9" 'F(0,0) and [9]"F(0,0)| # 0,

where F(t,z) € C*® is N x N matrix valued, and |F| is the determinant.
Then we should obtain (1.2) for F'(t,z), with matrix valued C* functions
c(t,z) and a;(z), satisfying |c(t,z)| # 0 and a;(0) = 0, Vj. In the case
when n = 1 in (1.3), this was proved in [1]. But clearly condition (1.3) is
too restrictive, since it does not cover the case when F'(¢, ) = (f;(t, )0k )k
is diagonal, with diagonal elements f; satisfying (1.1) with different n (in
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which case we can use the Malgrange preparation theorem). More generally,
we assume that

(1.4) 3 (det F)(0,0) # 0,

for some m, thus the determinant does not vanish of infinite order at ¢ = 0.
Then we prove that there exists n > 0 such that

(1.5) F(t,z) = C(t,z) (f: thj(g;))
t=0

near (0,0), where C(t,z) and A;(z) are N x N matrix valued C*° functions,
and |C(0,0)| # 0. We also have

(1.6) A;(@)A0) =0 j >k,

and A;(0) is a bijection V; — V;, where {V;} are linear subspaces such that
(1.7) cV =PV,
j=0

This preparation is essentially unique, up to terms vanishing of infinite
order at z = 0, under additional conditions on A;(0). See Theorem 5.3 for
the precise results.

In the special case when

(1.8) cN = @Imag’F(o,O) -
7=0
where By = () Kerd/F(0,0), we may obtain that A;(0) in (1.5) is
0<j<k

the orthogonal projection on V; = E]—L N Ej_1 by Theorem 4.3. Observe
that condition (1.8) is invariant under left multiplication of F' by invertible
systems according to Proposition 4.1.

By duality, we obtain the corresponding results for right preparation
of F, i.e. left preparation of F*, in Theorem 6.2. We also prove the
generalizations of the Malgrange division theorem in Theorems 5.9 and 6.3.
The method of proof will in part follow Mather [6], with the improvements
of Hormander [2, Section 7.5]. This method also gives C* bounds on the
matrices C(t,z) and A;(z) in (1.5). We also include the analytic versions
of the results, which generalize the Weierstrass preparation and division
theorems.
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The preparation theorems can be useful when studying systems of
partial differential equations, particularly when reducing the symbol of the
system to a normal form. See the proof of Proposition 3.1 in [1] for an
application to first order systems. !

The plan of the paper is as follows. In section 2, we divide analytic
N x N systems with matrix valued polynomials on an open set in C. In
section 3, we divide matrix valued functions in S(R) by matrix valued
polynomials globally on R. The special preparation theorem is proved in
section 4, using the implicit function theorem. The general preparation
theorem is proved in section 5, by a careful reduction to the special case.
Finally, in section 6 we prove the dual results for right preparation.

2. Analytic division.

In what follows, let m; be (complex) orthogonal projections in CcNV,

n
0 <j <mn,suchthat ) m; =Idy and 77 = ;7. Put

7=0
(2.1) P(tA) = > tm+ Y tA;,
0<j<n 0<j<n
with A = (Ao,...,An_1), where 4; € Ly = L(CN,CV) is a complex
N x N matrix satisfying
(22) Ajﬂ'k =0 when ] > k.

Let [A;| = det A; be the determinant of A;, and let [|A[| = 3 [|A;]|, where

|A;|| is the matrix operator norm. We are going to divide Jmatrix valued
analytic functions with such matrix valued polynomials. Let w be an open
set in C, let G(t) be analytic in @ with values in Ly, and assume that
|P(t,A)| # 0 on dw € C'. Then

(2.3) G(t) =Q(t)P(t,A) + R(t) for tew,

where

(2.4) Q(t) = (27ri)_1/ G(s)P(s,A)_l(s — t)"1 ds
Ow

is analytic in w, and

(2.5)  R(t) =(27ri)_1/8 G(s)P(s,A)" (P(s,A) — P(t,A))(s —t)"lds
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is a polynomial of degree n — 1 in ¢t according to (2.6). When P(t, A)™!
analytic in w, we find R(t) = 0.

PROPOSITION 2.1. — The remainder R(t) in (2.3) is uniquely deter-
mined by

(2.6) R(t)m,  is a polynomial of degree <k, 0<k<n
R(t)P(t,A)™! is analytic when t¢ w.

Proof. — We find from (2.5) and (2.2) that
2.8)  R(t)me = (2mi)~ / G(s)P(s, A) " ((s* — t*)ms
ow
+Z T -t Ajmi) (s —t) "' ds
i<k

is a polynomial of degree < k in ¢, which gives (2.6). In order to prove (2.7)
we observe that (2.5) gives

(2.9) Rt)P(t, A"t = —-2mi)™ ' | G(s)P(s,A)"}(s—t)"lds t¢m,
Ow

which is analytic in (. Since |P(t,A)| # 0 near dw, we find R(t)P(t,A)~!
analytic there.

To prove the uniqueness of R(t), we observe that (2.3) implies that

Q(t) = (2mi)~* g G(s)P(s,A)" (s —t)"ds

—(Zwi)_l/a R(s)P(s,A) (s —t)"'ds

when t € w. If R(t)P(t,A)~! is analytic in Cw we may push the integration
contour to 1nﬁn1ty in the second integral. Since we have R(t)m), = O(|t|*~1)
and R(t)P( ZR n2P(t,A)~!, we find from Lemma 2.2 below

that the integrand is O([sl‘z). Thus @ is equal to (2.4), which gives the
uniqueness. O

LeEMMA 2.2. — If P(t,A) is given by (2.1), where A; satisfies (2.2),
then we find

(2.10) Pt A) T = Ot 7F) as |t — oo.
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Proof. — To prove (2.10), we observe that P(t,A)my = Pk(t, A)mg,
where Py(t,A) = t*Idy + > t/A;. Now, if we assume ¢t € C, such
i<k
that |P(t,A)| # 0, then we have mP(t,A)"'P(t,A)r; = &,mk, and
CN= @ Vjt), where
0<j<n
(2.11) Vi(t) = Im P(t, A)mr, = Im Py (¢, A)my.

Observe that Vi (t) — Im 7y, which are orthogonal, as t — oo. We obtain
that

(2.12) e P(t, A)™? =0 when j#k.
V;(t)

If also |Px(t,A)| # 0, we find
(2.13) T P(t,A) ™ = mPe(t,A)™ on V().

It is clear that Py(t,A)~! = O(|t|~*) as |t| — oo, so we obtain (2.10) from
(2.12)—(2.13). O

3. Polynomial division on R.

Now, we want to make the division (2.3) when G € S(R), depending
C> on the parameters + € R%. We shall also obtain C* bounds on Q
and R. As before, we let {7 } be fixed orthogonal projections satisfying
> m; =Idy and m;m; = 6;;7;, thus ) Rank7; = N. Assume P(t, A) given

J=0 J
by (2.1), where A = (Ay,...,A,—1) satisfies (2.2). Let my = Rank 7, and

n—1
m= Y. j-mj,andlet VC @ Ly be the set of A = (Ag,...,An_1)

1<j<n =0
satisfying (2.2). Since Ay = > Agm;, Ay lies in a subspace of (complex)
>k

dimension Y m;N of Ly. This implies that V = C™" since we have
>k
>k |

S my= 3 gem=m.
0<k<j<n j=1

LEmMA 3.1. — Assume that P(t,A) is given by (2.1), where A
(Ag,...,Ap_1) € V satisfies (2.2). Let m = Y j. Rank n; and p(t)

Jj=1
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det P(t,A), then it follows that
(3.1) 9;"p(0) # 0,

and 0]""'p = 0. If A € V satisfies |A|| = 3 ||4;]| < § < 1, then we find
that

(3.2) p(t) = 0 = |t| < 6/

Observe that it follows that the determinant of P(t, A) is a polynomial
n
of exactly degree m = Y j - Rank;.

J=1

Proof. — First we note that by a (constant) orthogonal base change,
we may assume that

(3.3) Immg :{(zl,...,zN):zj #0

k—1 k
= ZRankm <j< ZRankm }, 0<k<n.
i=0 i=0

Since P(t,A)m, = (tF + 3 t7 A, )7, we find that
=
J

9;"p(0) =

n
Z klme| # 0,
k=0
which proves (3.1). Similarly, we obtain that 8]"*'p = 0.

Assume that P(t,A)w = 0, where t # 0, w = Y w; # 0 with
w; = mjw. If we put vy = t*wy, we find

(3.4) v:%:vk:_;(z Ajtj_">vk=—( 3 Ajwktj‘k)v,

0<j<k 0<j<k<n

since S"t/mjw = — Yt/ Ajw. If [t| > 6/™ and [|A]| < § < 1, we find
J J

Z Ajﬂ'ktj_k =

0<j<k<n

?;Aj ( > mﬁﬂ"’“)

j<k<n

<l <,
J

thus (3.4) implies that v = w = 0. This proves (3.2). a
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ProposITION 3.2. — Let G(t) € S(R) have values in Ly. Then we
can find Q(t,A) € C*(R x V) and R;(A) € C*(V), 0 < j < n, with
values in Ly and depending linearly on G(t), such that R;(A)mr, =0 when
j >k, and

(3.5)
G(t) = Q(t,A)P(t,A) + RX: t'R;(A) when |A||<C and tecR.
=0

Also, we have the following estimates
(3.6)
105:02Q(t, A)| < Cag JUIGI +IGP) dt,  k =3+ a+m(|B]+1)

102 R; (M) < Cs [UIGN + IGB ) dt, k=2 +m(B] +1),
for |t| < c and 0 < j < m, with m = } j - Rankm;. Here Oy means

J
differentiation with respect to the components of A € V.

Remark 3.3. — If G(t, z) € S(R x R?%) depends on parameters x, then
Q(t,A) € C®(R x V x R%) and R;(A) € C°(V x R%), Vj. In fact, by
linearity and continuity, we may differentiate directly on G. Observe that

by a dilation in ¢, we may choose any constant C in (3.5) (see the proof
below).

Proposition 3.2 and Remark 3.3, without the linear dependence on G
and the estimates (3.6), can also be obtained from (1.2) in [7]. By adapting
the proof of [2, Theorem 7.5.4], to the matrix case, as in the proof of
[1, Proposition A.2], we obtain Q(t,A) satisfying the estimates in (3.6)
uniformly for all ¢t € R.

Proof. — We shall first divide by p(t) = det P(¢t,A), when A € V.
By [2, Theorem 7.5.4], we may find C*° functions Q(¢,A) and R;(A) with
values in Ly, depending linearly on G(t), so that

m—1
(37) G(t)=Q(t,A)p(t)+ Y _ t/R;(A) when JJA|<c and teR
j=0

for some ¢ > 0, since the degree of p(t) is equal to m by Lemma 3.1. We also
get (3.6) for all t € R by using (7.5.14) in [2], since the coefficients in p(t)
are algebraic functions of the elements of A. From the proof of [2, Theorem
7.5.4], it is clear that (3.6) also holds for bigger k. By first making a dilation

s = 6t for small enough é and using that A; = > A;my, we obtain (3.7)
i<k



872 NILS DENCKER

when |[A] < C’ Since p(t) = tP(t,A)°P(t,A), it only remains to divide
R(t,A) }: t'Rj(A) with P(t,A) in order to get the wanted remainder

terms. For thls purpose, we use (2.4)-(2.5) with G(t) = R(t,A) and w C C
containing t and all the zeros of det P(t,A), and with C! boundary. This
gives

R(t,A) = Qo(t,A)P(t,A) + Ro(t,A) when |A||<C and teR.

Since P~1(t,A) is analytic in Cw, we obtain from Proposition 2.1 that the
remainder Ry(t,A) is unique, satisfying (2.6). The derivatives of Qo(t, A)
and Ry(t,A) can be estimated by derivatives of R(¢,A), which in turn can
be estimated by (3.6). O

4. Left preparation.
Now, let F(t) be a C* function on R with values in Ly. Put
E_{=C¥% and

(4.1) Ex= () Kerd!F(0), k=>0.
0<j<k

These spaces are invariant under left multiplication of F'(t) by invertible
systems, according to the following

ProrosiTiON 4.1. — If

(4.2) cN = éfmag‘F(O)

=0 o

K

then it follows that E,, = {0}. We find that the spaces Ex, 0 < k < n, and
condition (4.2) are invariant under left multiplication of F(t) by invertible
systems.

Proof. — Assume that C(t) is an invertible system, then Ker CF(0) =
KerF(0). Now, we have by Leibniz’ rule

F(CF)(0 i ( )a’“ 1C(0)8! F(0),

Jj=
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so by induction we obtain

(] Kerd/(CF)(0 ( N KeraJF( )) N Ker 8F (CF)(0)

0<5<k 0<5<k

[ Kerd]F(0),

0<j<k

which gives the invariance of Ey, V k. We also obtain that

(4.3) Im 8F (C'F)(0) = C(0)Im 8F F(0)

k—1

Ex_1 ’
Since |C(0)| # 0, this gives the invariance of condition (4.2).

It remains to prove that dim F, = 0. Let my = dim Ey, so that
m—_y = N. Then, we find

dim (Im 9k F(0)

) = dim Ej_;—dim <Ker OFF(0)

= Mk_1—Mk.
Er_1 Ex-1

Thus, we obtain from (4.2) that
Z (mg—1 —mg) = N —m,,.
J=0

This means that m,, < 0, which proves the result. O

Observe that the proof of Proposition 4.1 also works if we have

)

N :ilmﬁth(O)

=0 By

in fact, this condition implies (4.2). The spaces Fj, will be used to construct
the orthogonal projections  in the preparation. Let Ei- be the orthogonal
complement of Fj.

ProposITION 4.2. — Let CN = E_1 2 Ey 2 ... D E, = {0}, and
let m, be the orthogonal projection on Ekl (N Ex—1 for 0 < k < n. Then it
follows that mjmy = 6;xmk, and

k
(4.4) @Plimn, =E, 0<k<n

n
In particular, we obtain @ Imn; = CN, which implies Y m; = Idn.
0<j<n Jj=0
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Proof. — Clearly, Kermy = (Immy,)+ = E @ Ej-_,, implying
Imm; C E;_1 C Ex C Kermy if j>k.

Thus, mm; = 0 when j > k, and by taking adjoints we obtain this when
i< k, which implies Tk = 6jk7l'k.

By taking orthogonal complements, we find that (4.4) is equivalent
to

k
(4.5) ﬂ Kermj = E, 0<k<n.
j=0

We find Kermy = Ey @ EL; = Ey. Assume by induction that (4.5) holds
for some k > 0. Then we find that

ﬂ Ker mj = Ey ﬂ(Ek-H [&5) E,'CL) = Eitr,
0<j<k+1
since Fx4+1 C Ek, thus by induction we obtain (4.5) for all k. Since E,, = {0}
n n 2 n
we find that )~ =; is bijective, and since ( > 7r]~> = > mj, it is equal to
i=0 i=0

J j=0 J
the identity. O
When Ej, = () Kerd?F(0) we find that 7 is an orthogonal pro-
i<k
jection into Ej_1, such that Kermy b = Ker 9F F(0) b = Ey. Now,
k—1 k—1

we can prove the following generalization of the Malgrange preparation
theorem.

THEOREM 4.3. — Let F(t,z) be a C* function of (t,z) in a neigh-
borhood of the origin of R x R¢, with values in Ly, and assume that

46 cN =P mdF(@,0 ,
(4.6) ]Qjomt( )EH

where E_; = CN and E, = () Kerd F(0,0). Let m; be the orthogonal
0<5i<k
projection on E,Cl () Ex—1 for 0 < k < n. Then, we may factor

n n—1
4.7y  F(t,z) = C(t,x) (Z tir + Z tjAj(:r)> = C(t,z)P(t,A(z))
§=0 =0

near (0,0), where C(t,z) and A;j(x) are C* functions with values in Ly,
satisfying Aj(z)m, =0, j > k. We also find |C(0,0)| # 0, and A;(0) =0
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for 0 < j < n. If F(t,x) is analytic in a neighborhood of the origin, then we
may choose unique analytic C(t,z) and A;(x) satisfying (4.7). If F(t,z) is
real (matrix) valued, then the projections 7, are real (matrix) valued and
we may choose C(t,x) and A;(x) real (matrix) valued.

The projections m; are chosen orthogonal in order to get uniqueness.
As in the scalar case, we find that C(t,z) and Aj(x) are not uniquely
determined, but the proof gives C'* bounds on these functions, depending
on F(t,z). Since (4.7) implies

F(t,0) = C(t,0) ) t'm;,
7=0

we obtain from Proposition 4.1 that condition (4.6) is necessary for the
preparation (4.7). It is not hard to prove that 0% A;(0) and 0ZC(t,0) are
uniquely determined by (4.7), Va.

Proof. — By Proposition 4.1, we find that E,, = {0}. Since 7y, is the
orthogonal projection on E,cL () Ex—1, we obtain from Proposition 4.2 that
n
Tk = 6jk7rk and Z T = IdN Let
=0

P(t,A)= Y tm+ Y t/A;
0<j<n 0<j<n

where A = (Ao,...,An—1) satisfies Ajmy = 0 when j > k, ie. A e V =

C™N. Here m = Y j-m; and m; = Rank ;. Since the result is local, we
Jj=1
may assume F' € C§°. By using Proposition 3.2 and Remark 3.3, we get

n—1
(4.8) F(t,z) = Q(t,z,A)P(t,A) + Y /R;(x,A)

j=0
near (0,0,0) € R x R? x V. Here Q and R; are C*™ functions, satisfying
R;(x,A)m, = 0 when j > k, thus (R;(z,A)); has values in V. Now we need
the following

LEMMA 4.4. — Assume that F(t,z) satisfies (4.6) and (4.8), where
Q@ and R; are C™ functions, satisfying R;m, = 0 when j > k. Then, we
obtain

(4.9) |Q(0,0,0)] #0
(4.10) R;(0,0)=0, 0<j<n.
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End of proof of Theorem 4.3. — Differentiation of (4.8) with respect
to the components of A, when A =0 and = = 0, gives

n n—1 n—1
(4.11) 0=1daQ(t,0,0)> #m; + Q(£,0,0) > _t/dA; + Y t/dsR;(0,0).
j=0 J=0 j=0

By composition with 7, we obtain from (4.11) that

Q(t,0,0) Y " t/dA;m, = —daQ(t,0,0)t* 7, — > t/da R;(0, 0)my.
j<k i<k
Since @ is invertible in a neighborhood of the origin by Lemma 4.4, we find
that

Q(t,0,00> #B; =0(t]*)  t—0,
i<k
implies Bj = 0, 0 < j < k. Thus, the differential of the mapping
(4.12) V3A—R=(Ry,...,R,_1) eVC™

is bijective at (0,0). By the implicit function theorem and Lemma 4.4, we
find that the equation

R(z,A) =0

defines a unique C* function A(z) of z in a neighborhood of the origin of
R4, with values in V, such that A(0) = 0. Naturally, the unique function
A(z) depends on the choice of Q(¢,z,A) in (4.8). Since

F(t,z) = Q(t,z, A(x)) P(t, A(x)),

we obtain (4.7) with C(t,z) = Q(¢,z,A(z)). When F(t,x) is real, we find
that 7; is real, 0 < j < n. Then, we may take @ and R; real, and use the
implicit function theorem with A € ReV = R™V.

In the case when F' is analytic near the origin, we choose € > 0 so
that F' is analytic in a neighborhood of {|{| < € A |z| < €}. By using
(2.4)—(2.5) with dw = {[t| = €}, we get (4.8) when [|A|| < &, |t| < e
and |z| < e, by Lemma 3.1. By Proposition 2.1 we find that R; and Q
are uniquely determined, since P~1(t, A) is analytic in Cw. Since Q@ and R;
depend linearly on F (¢, x), they are analytic in = too. By using the implicit
function theorem in the analytic case, we obtain unique analytic A(x) and
C(t,x) = Q(t,z,A(x)) in (4.7), with the required properties. O



PREPARATION THEOREMS FOR MATRIX VALUED FUNCTIONS 877

Proof of Lemma 4.4. — By taking £ = 0 and A = 0 in (4.8), we obtain
(4.13) F(t,0) = Q(t,0,0) Y " t/m; + Y _ t'R;(0,0).

Differentiation with respect to ¢ gives

(4.14)
k

F(0,0) = Z( )a’“ JQ(o 0,0)j!7; + k!Ri(0,0) when k< n,

implying
(4.15) Im 9 F(0,0)m, = ImQ(0,0,0)m;, when k <n,

since Ry, = 0. We also find from (4.14) that Ry (0,0)7; = 0F F(0,0)m; /k! =
0 for j > k, since Im7; C E;_; C Ker 8fF(0,0) then. Since Rym; = 0 when
j <k, we find Rg(0,0) =0, Vk.

Now, condition (4.6) is equivalent to
(4.16) CN = P 1md] F(0,0)r;,
j=0
since Im7; = Ef (\Ej_1 and 8] F(0,0)| = 0. We find from (4.15)-(4.16),
that

E;

= P 1mQ(0,0,0)m;,

j=0
thus Q(0,0,0) is bijective. O

Example 4.5. — Let F(t,x) be a C* function with values in £y, and
assume that

(4.17) |7 F(0,0)] #0 and &/ F(0,0)=0, 0<j<n.

Then we obtain from Theorem 4.3

(4.18) F(t,z) = O(t,z) (t"IdN + ¥ tjAj(x)),
0<j<n

where C(t,z) and A;(x) are C* functions with values in Ly, satisfying
|C(0,0)| # 0 and A;(0) = 0 for 0 < j < n. (The case when n =1 was
proved in [1, Theorem A.3].)
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5. The preparation theorem.

Now, condition (4.6) in Theorem 4.3 is still too restrictive. In fact, the
systems P(t,A(z)) in (4.7) do not satisfy condition (4.6) when A(0) # 0
satisfies (5.6), but will be acceptable normal forms when A(z) € V, i.e.
Aj(x)m, = 0 for j > k. As before, we assume that m; is orthogonal

n
projection in CV for 0 < j < n, such that m; = Ildy and mimy; = 65m;.
Jj=0
First, we consider the necessary conditions for such a preparation.

ProprosiTiON 5.1. — Let F(t) € C*(R) with values in Ly, and
assume that

(5.1) Fit)=C t)(Zth]+ZtJA> C(t)P(t, A)

where |C(0)| # 0 and Ajm, =0 when j > k. Then it follows that
(5.2) 0;" (det F)(0) # 0,
for some m. We also find

(5.3) E,= () KerdfF(0)={0}.

0<k<n

Proof. — Since the spaces Ey are invariant under multiplication from
left by invertible systems by Proposition 4.1, we may replace F'(¢) by P(t, A)

n (5.3). Now 9FP(0,A) = k!(m + Ax), where Ay = > Agm;. Thus, we
k<j
find that Ker 87 P(0, A) = Ker m,. By induction we have

ﬂ Ker (m; + 4;) ( ﬂ Ker 7rj> N Ker(m, + Ag) = ﬂ Kerm;,

j=k j=k+1

for 0 < k < n, which proves (5.3). It is also clear that condition (5.2) is
invariant under multiplication by invertible systems. Thus, it follows from
Lemma 3.1 (but not necessarily with the same m as in (3.1)). d

The factorization (5.1) is not unique, according to the following
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Example 5.2. — Let

t 1
Pi(t) = (0 t) =t Idy + Ao

2 0
Pz(t)=(t 1):71'0+t27T2+tBl

and Q(t) = (i _01> Then we have Q(t)P1(t) = P(t), and |Q(t)| = 1.

Since Bimg = 0, it is clear that P;(t) and P,(t) both are on the form
(2.1)—(2.2). Observe that P(t) has the property that By = moBima.

Now we are ready to prove the main preparation theorem.

THEOREM 5.3. — Let F(t,z) be a C* function of (t,z) in a neigh-
borhood of the origin of R x R® with values in Ly, and assume that

(5.4)  0(det F)(0,0) #0 and 0F(det F)(0,0)=0, 0<k<m.

Then we may factor
n n—1
(6.5) F(t,x) =C(t,x) (Z tim; + Z thj(x)) = C(t,z)P(t,B(z))

near (0,0), where m; is orthogonal projection in C¥, 0 < j < n, such that
n

Tk = 87k and Y m; = Idy. Here C(t,x) and Bj(z) are C* functions

j=0
with values in Ly, satisfying |C(0,0)| # 0, Bj(z)m, =0 when j > k and
(5.6) B;j(0)= Y mB;(O)m Vi,

i<j<k

which implies By(0) = 0. The projections m, and matrices B;(0) are
uniquely determined by condition (5.6), and it follows that m = 3 j -

Rank 7, in (5.4). If F(t, x) is analytic in a neighborhood of the origin, ;;hen
we may choose unique analytic C(t,x) and B;(x) satisfying (5.5) and (5.6).
If F(t,x) is real (matrix) valued, then 7y is real (matrix) valued and we
may choose C(t,z) and Bj(x) real (matrix) valued.

Remark 5.4. — The rank of the projections 7 are determined by the
elementary divisors of the Taylor expansion of F(¢,0) at ¢t = 0. In fact,
let di be the determinant factors for 1 < k < N, i.e. the greatest common
divisor of the minors of order k of the Taylor expansion. Then ey = dj/dr_1
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are the elementary divisors, and Rank 7; is the number of k such that ey, is
divisible by # but not by t/*1 (see [9, § 85]). The projections 7; are harder
to compute, except for j = 0, 1, since in these cases Ker mp = Ker F'(0,0),
and

Ker mg N Ker m; = Ker [6;F(0,0) : Ker F(0,0)

+ CN/Im F(0,0) = Coker F(0,0)] .
In Example 5.2 we find that P»(t) but not P (¢) satisfies (5.6). Observe that
the projection o # 0 but 92 P;(t) = 0. In general, the projections can be
computed by the procedure in the proof of Lemma 5.5. It follows from the
proof of Theorem 5.3 that 9% B;(0) and 02C(t,0) are uniquely determined

by (5.5), Va. As before, C(t,x) and B;(z) are not uniquely determined,
but the proof of Theorem 5.3 gives C* bounds on these functions.

The proof of Theorem 5.3 relies on some simple preparatory Lemmas.

First we shall compute the projections {m}.

LEMMA 5.5. — Assume that F(t) € C*°(R) with values in Ly, such
that det F'(t) doesn’t vanish of infinite order at t = 0. Then we may write

(5.7) F(t):C(t)(fjtfnj+R(t)) near 0,
j=0

where |C(0)| # 0 and 7; is orthogonal projection in CV, 0 < j < n, such
that zn:O nj = Idy and m;m; = é;jm;. The error term R(t) satisfies
j=
(5.8) {mR(t)ﬂj =0 'When i>7
m;R(t) = O(|tP*!) as t—0, Vi,
thus R(0) = 0. If F(t) is real (matrix) valued, then we may choose C(t),
7, and R(t) real (matrix) valued.

Condition (5.8) means that R(t) is nilpotent and satisfies first part
of (5.6). In fact, R(t) maps Im7 into €D Im;, V¢, and if R(t) = 3t/ R;
then m;R; = 0 when 7 > j. < ’
Proof. — Let Ey = Ker F(0), then
F(0): Ei — ImF(0)

is a bijection. By multiplying from left by a constant, invertible system, we
may assume that F'(0) = mg, where 7 is the orthogonal projection along
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Ker F(0). If F(0) is real valued, this can be done by multiplication with a
real, invertible system, giving real my. We find

F(t) = mo + tFo(t)

near 0, where we may assume Fy(t)mo = 0. In fact, we can multiply with
C(t) = (Idy + tFo(t))_1 from left to obtain
C(t)F(t) = C(t)((Idn + tFo(t))mo + tFo(t)(Idy — o))

=mo + tC(t)Fo(t)(Idny — 7o)
near 0. When F(t) is real, we find that C(t) is real.

Now assume by induction, that we have found orthogonal projections
7j, 0 < j < k, and invertible system Cj(t), such that m7; = 6;;7; and

k
(5.9) Cr(t)F(t) = t'm; + Qk(t) + Ri(t)
§=0

near 0. We assume that Ry (t) satisfies condition (5.8) when 4, j < k, and
that

(510) Rk(t) = HkRk(t),
where ITy = > m;. We also assume that
J<k
(5:11)  Qu(t) = (Idy ~ TL)Qk(H)(Idy — k) = O(Jt/**).

When k& = 0 we obtain this, with

{ Ro(t) = ﬂotFo(t)(IdN )
Qo(t) = (Idx — m0)tFo(t)(Idn — o).

When II,, = Idy we get the result, since Q,, = 0.

Assume Il # Idy, and put Vi = Im(Idy — Ii). Since (Idy —
I )Cr F(t) = Qk(t), we find that Q(t) = Qk(t)(Idy — IIx) cannot vanish
of infinite order on Vj, at t = 0. Thus, we may assume that Q(t) =t Ax(?),
where v > k and Ax(0) # 0. By using the argument above with F'(t) and
C™ replaced by Ay (t) and Vj, and multiplying from left with an invertible
system C,(t) on Vi, we obtain that

Co(t)Qk(t) = tm, + Qu(t).
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Here 0 # m, is orthogonal projection on a subspace of Vi, Q,(t) =
O(|t|**1), t — 0, and Q,m, = 0. When Q(t) is real, we may choose C,(t),
7, and @, (t) real valued. By extending trivially to C"V, we obtain (5.9) with
k replaced by v, Ri(t) by Ri(t) + m,Q.(t) and Qx(¢) by (Idy — m,) Q. ().
Since we increase the rank of Il in every step, we obtain the result in
finitely many steps. ]

In order to obtain a system satisfying the conditions in Theorem 4.3,
we must multiply from the right also. Then, we have to be careful in order
to preserve the normal forms.

LEMMA 5.6. — Assume that F(t) € C*°(R), with values in Ly, is on
the form

(5.12) F(t)=) t/mj+ R(t) near 0,
7=0

where m; is orthogonal projection in CVN for 0 < j < n, such that

n
m; = Idy and myw; = 6;;m;, and R(t) satisfies (5.8). Then, we can
2 T J 3T
j=
write

(5.13) F(t) = (zn: i + G(t)) (Idy + S(1))
=0

near 0, where G(t) also satisfies (5.8) and

(5.14) G(t)me = O(|t|*) as t— 0.

We also find that S(0) = 0, and

(5.15) 7;S(t)mr  is a polynomial of degree < k — j in t.

If R(t)my is a polynomial of degree < k, ¥ k, then we obtain that G(t) = 0.
When F(t) is real valued, we may choose G(t) and S(t) real valued.

Observe that it follows from (5.15) that Y t77;5(t) satisfies condition

J
(5.6). The error term G(t) will be eliminated in Remark 5.7.

Proof. — First we observe that if S(t) satisfies (5.15), then 7, S(t)m), =
0 when j > k, so S(t) is nilpotent. Since the matrices with property (5.15)
are closed under addition and multiplication, the corresponding matrices
Idy + S(t) form a multiplicative subgroup of SL(N, C[t]).
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Now assume by induction that we have obtained (5.13) with G(t) =

> Gjk(t), where Gji(t) = m;G(t)m) satisfies
i<k

(5.16)

{Gj (=0t when jzk-u

Gje(t) = O(Itf*!) V3,

for some p > 0. When R(t)7y, is a polynomial of degree < k, V k, we assume
that G(t)my also is a polynomial of degree < k. Clearly, (5.16) holds with
G(t) = R(t) when p = 0, and will give the result when u = n, since
non-zero polynomials of degree < k cannot satisfy (5.14). Take the Taylor
expansion

k-1
Gie(t) = Y t'Gly +t*Q;n(t)
i=j+1
(observe that G%, =0 when j > k — p1) and let
Sult)y =Y t7IGY,.

j<i<k<n
0<j<k—p

Then we obtain that S,(0) =0, S,(t) satisfies (5.15), and

(5.17) F(t)(Idy +S(t) "' Idn — Su(t) = Xn: i+ t*Qk(t) + Ru(t),

j=0 i<k
where
R.(t)=— Y Giy(HGHt".
i<j<k<l
j<l—p

Thus, we find that 7jR,m, = 0 unless j < k — (p + 1), and R, (t) =
O(|t}?*2). In the case when G(t)7y is a polynomial of degree < k, Vk, we
obtain that Q;x(t) = 0 and R, (t)7 is also a polynomial of degree < k. This
proves the induction step. When F'(t) is real valued, we obtain recursively
that Gx(t), Q;x(t), S.(t) and R,(t) are real valued. O

Remark 5.7. — If F(t) is on the form (5.13) with G(t) satisfying (5.8)
and (5.14), then by multiplication from left by an invertible system, we may
obtain G(t) = 0. In fact, assume by induction that G;x(t) = m;G(t)m, =0
when 7 > k — p for some g > 0, which is true for o = 0. Take
Rji(t) = t7%G,(t) for j < k — p with Gjx(t) € C*°, then

(IdN— 3 Rjk(t))F(t)(1dN+5(t))‘1 =Y tm— Y Ru(®)Gul),
J

I<k—p J<k—p<l—2p
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which proves the induction step, since y > 0. When p = n we obtain
G(t) =0.

Proof of Theorem 5.3. — By Lemmas 5.5-5.6 and Remark 5.7, we
may write

(5.18) C(t)" F(t,0)(Idy + S(t))~ Zt 7,

n
where |C(0)| # 0, and 7; is orthogonal projection, such that > m; = Idn
j=0
and m;m; = 8;;m;. It is clear that (5.18) satisfies condition (4.6). By the left
invariance, we find that F(¢t,z)(Idy + S(t))~! also satisfies (4.6). Thus by
Theorem 4.3, we can factor

(5.19)
F(t,z)Idy+S(t)~! = Co(t, z) tajﬂ'jﬁ—ztjAj (x)) = Cy(t,z)P(t, Al)),
j=0 §=0

where |Cy(0,0)| # 0, A(0) = 0, and A;(z)m, = 0 when j > k. Here, the
projections 7y are the same as in (5.18). Since S(t) is a polynomial, we
get analytic Co(t,xz) and A(z) in (5.19), when F(¢,x) is analytic near the
origin. Now, we obtain (5.5) with

(5.20)  P(t,B(z)) ZHW + Zt]B P(t,A(z))(Idy + S(t)),

which means that

(5.21)
S UBi@) = Y A+ Y PmSE)+ Y tA;(z)S().
0<ji<n 0<ji<n 0<j<n 0<j<n

Composing (5.21) with 7, from right gives
Z tjAj(Q?)ﬂ'k + Z thjk(t) + Z tiAi(x)Sjk(t),
0<j<k 0<j<k 0<i<j<k

which is a polynomial in t of degree < k, since S;i(t) = 7;S(t)my is a
polynomial of degree < k — j. Since A(0) = 0 and S(0) = 0, we find from
(5.21) that

Ur Z tzBZ(O)ﬂ'k Ethjk(t)

0<i<n
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only contains terms of order greater than j and less than k, which gives
(5.6). By choosing orthogonal basis in CV such that (3.3) holds, we obtain
P(t,(0)) on upper diagonal form. Then, we obtain that m =} j-Rank;

J

in (5.4). When F(t, ) is real valued, we may choose mx, C(t) and S(t) real
valued in (5.18). By Theorem 4.3, we may choose Cy(t,z) and A;(x) real
valued, which gives real valued Bj(z).

To prove uniqueness of the projections and the matrices B;(0), we
assume that

(5.22) F(t (Zt%r +Zt A; ) Ca(t) (th%j+ztj3j),
J J

where |Cr(0)| #0for k=1,2, Aj = > mAjmpand B; = >, 7;B;7y,
i<j<k i<j<k

v j, where 7; is orthogonal projection satisfying m;7; = 6;;7;. By using

Lemma 5.6, we obtain

()Y t/m;(ldn + Si(t) = Ca(t) Y 7, (Idy + Sa(t)),

J J
where Si(t) satisfies (5.15), and Sk(0) = 0 for k = 1, 2. Thus, we find
(5.23) Q) =C(t)Y_ t/m = t7;(Idn + S(t)),
J J

where |C(0)| # 0 and S(0) = 0. We find from (5.23) and Proposition 4.1
that

(5.24) ﬂ Ker 8 Q(0) m Kerm;, Vk,

0<j<k 0<j<k

and (4.3) gives

(5.25) Im 07 Q(0) o = COImm, Yk,
k—1
where Ej, = () Ker 8/ Q(0). Similarly, we obtain from Proposition 6.1 that
J<k
(5.26) > mdlQ)= @ Im7;, Vk,

0<j<k 0<j<k

and (6.8) gives

(5.27) Ker9FQ(0 (modZIm&’Q ):Ker%k, Vk,

i<k



886 NILS DENCKER

since S(0) = 0. From (5.25)—(5.26) we obtain

(5.28) c0) @ mmc P m7;, vk,

0<j<k 0<j<k

and (5.24), (5.27) gives

(5.29) (] Kerm; C (] Ker#;, Vk.
0<i<k 0<i<k

By combining (5.28) and the orthogonal complement of (5.29), we obtain

(5.30) c0) @ Imm € @ m7, C P Imm;, V.

0<j<k 0<j<k 0<j<k

Since |C(0)] # 0, the spaces in (5.30) all have the same dimension, thus

they are equal. Since the projections are orthogonal, we find that m = 7,
Vk.

We also have to prove that A; = Bj, Vj, in (5.22). It is clear that this
holds <= S;(t) = Sa(t) <= S(t) = 01in (5.23). Since 7, = T, V k, we find
that S(t) satisfies (5.15). Let Cji(t) = m;C(t)m, and Sji(t) = 7,;S(t)7m.
We obtain from (5.23) that

Cix()tF = S;x()t? when j <k,

since m, = Tk, V k. Since the right hand side is a polynomial of degree < k,
we obtain Cjx = Sjr = 0, when j < k. We also obtain ij(t)tj = wjtj from
(5.23), making Cj;(t) = m;, Vj. Finally, we get Cjx(t) = 0 when j > k.
Thus, C(t) = Idy and S(t) = 0, which proves the uniqueness of B;(0), V j,
in (5.5). When F(t,x) is analytic, we obtain unique analytic B(z), since
A(z) and S(t) in (5.21) are unique and analytic. O

By multiplication from right with invertible systems, we may also
obtain that mxB;(z) = 0 when k < j, and B(0) = 0 in (5.5), according to
the following

PRrROPOSITION 5.8. — Assume that 7; is orthogonal projection in cV

n
for 0 < j < n, such that mjm, = é;pm and ) m; =Idy. Let
i=0

(5.31) P(t,A(z)) = Xn: thm + ni t1 Aj(z)
j=0 j=0
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where Aj(x) is C*° function with values in Ly, satisfying A;(z)m, = 0
for j > k. Then we may find C(t,x) € C* with values in Ly, such that
|C(t,z)| # 0 and

(5.32) P(t,A(z))C(t, x) = P(t, B(z)),

where mBj(xz) = Bj(x)my = 0 when j > k. For those xo satisfying
mkAj(xo) = 0 when k > j, we obtain that Bx(x¢) = 0,V k. When P(t, A(z))
is real (or analytic), we may take C(t,z) and B;(x) real (or analytic).

Proof. — By induction over 0 < p < n, we shall prove that there
exist invertible C,(t,z) € C* with values in Ly, such that

(5.33) P(t,A(z))Cy(t, z) = P(t,B(z)) + »_ ' R;(x)
where
(5.34) Rj(x)m, =0 when j>k—p,

and myBj(x) = Bj(z)m, = 0 when j > k. Clearly, this holds for x4 = 0
with Cy = Idy, B; =0 and R; = A;. It implies (5.32) when p = n, since
Rj(z) =0 then.

Assume that the induction hypothesis holds for some 0 < p < n. Put
E(t,z)=Idy — Y mRp(x)t",
0<j<k<n
then E(t,z) is invertible. In fact, since R;m, = 0 when j > k, we find
that F(t,z) — Idy maps Imm into @ Imm;, thus it is nilpotent. Let
j<k
Cuti(t,z) = Cu(t,z)E(t,x), then we find from the induction hypothesis
that

P(t, A(z))Cpy1(t,z) = P(t,B(z)) +Z(Zm>Rj(x)tj

i>]

- Z Ri(l')ﬂij(.’IJ)tk_J+l — Z Bi(.r)?Tij(iL‘)tk_j_‘_i.

0<j<k<n 0<i<j<k<n
i<j—p

Thus, B;(z) is replaced by B;(x)+ Z mR;(x), and Z t' R;(z) is replaced
i=j+1
by

= Y Ri@)mRe(x)t* 9= N~ Bi(z)m;Ri(x)th I

0<j<k<n 0<i<j<k<n
i<j—p
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Now, we find that

Ro(t,z)m, = — _5_ R;(x)mj Ry, (x)wyt’“"j“
0<i<k<v—n
i<j—p

- Y. Bi@mR(@)m T,
0<i<j<k<v—p
is a polynomial of degree < v — p — 1. When P(t, A(z)) is real valued, we
may take R;(x), C,(t,x) and By(x) real valued. This proves the induction
step. If we start with analytic R; = A;, Cp = Idy and B; = 0, we obtain
analytic R;, C, and By, in each step.

By differentiating (5.32) with respect to ¢t when ¢ = 0, we obtain that
j . .
D (i + Ay(@)d7'C(0,2)/(j — i) = 7; + Bj().
i=0
At the points xo where myA;(xo) = 0, k > j, we find that m,B;(z0) = 0,
k > j. Since myBj(z) = 0 when k < j, we obtain that B;(zo) =0,V . O

We also obtain the following generalization of the division theorem.

THEOREM 5.9. — Let F(t,x) satisfy the hypothesis in Theorem 5.3.
If G(t,z) is a C* function in a neighborhood of (0,0) with values in Ly,
then we can write

n—1
(5.35) G(t,z) = Q(t,x)F(t,z) + Y _t'R;()

j=0
near (0,0). Here Q(t,x) and Rj(x) are C*° functions with values in Ly,
satisfying R;(x)m = 0 when j > k, for the projections m in Theorem 5.3.
When G(t,z) and F(t,z) are analytic near the origin, we may choose unique
analytic Q(t,x) and R;(x).

It follows from the proof that the neighborhood in which (5.35) holds
only depends on F(t,z), not on G(t, z). As before, Q(t,x) and R;(x) are not
uniquely determined in general, but the proof gives C*° bounds similar to
(3.6) on these functions. It is not hard to prove that 0% R;(0) and 93 Q(t,0)
are uniquely determined by (5.35), V a.

Proof. — By Theorem 5.3, we may assume that

n n—1
(5.36) F(t,z) =Y t'm;+ > tA;(z) = P(t,Ax)),
Jj=0 j=0
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where Aj(z)m, = 0 when j > k, and A;(0) satisfies (5.6). Since it is
no restriction to assume G(t,z) € C§°, the first statement follows from
Proposition 3.2 and Remark 3.3. (When F(t,z) satisfies (4.6) also, we
find that 7 is the orthogonal projection on Ej- () Ej_1.) When F(t, )
is analytic near the origin, we may choose unique analytic A(z) in (5.36).
Then, we may use the analytic division (2.3)—(2.5), with dw = {|t| = ¢}
for small enough ¢, in order to get analytic Q(t, ) and R;(x). Since A;(0)
satisfies (5.6), we find that det P(t,A(0)) = t™, where m =} j - Rank ;.

J
(In fact, by choosing coordinates so that (3.3) holds, we obtain that
> t/A;(0) is upper triangular.) Thus P(¢, A(z))™" is analytic when |t| > ¢

J
and |z| < 6, for § > 0 small enough. By Proposition 2.1, the remainder
"t/ R;j(x) is unique, thus Q(t,z) is unique. O
J

6. Right preparation.

In Theorems 4.3 and 5.3, we have only done left preparation of matrix
valued functions. By taking transposes we also obtain the corresponding
results for right preparation. We first examine what condition we get on
F, when (4.6) holds for F*. Let F(t) be a C* function on R with values
in Ly, put E*; = CV, and

(6.1) E;= () Kerd/F*(0), k=>0.

0<j<k

Let Fj be the mapping
(6.2) F.: CVNs>wr— 0fFF(0)w  (mod I_;) for k>0,
where I_; = {0}, and

L= Y Imd/F(0), k>0,

0<j<k

ProprosiTioN 6.1. — The condition

(6.3) CcV =P mofF(0)
k=0

*
Ek—l

is equivalent to

(6.4) {0} = ﬁ Ker Fg,
k=0
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where F}; is given by (6.2), and implies
(6.5) CcV =) "ImofF(0) =

We find that condition (6.4) and the spaces I, = 5. Im & F(0),0 < k < n,
0<j<k
are invariant under multiplication of F(t) by invertible systems from right.

Proof. — We have by duality that

(6.6) = Y Imd&F(© ( () Kerd!F*(0 ))l:(E,’;)L.

0<j<k 0<j<k

Let m; be the orthogonal projection on Iy (Ii-, = (Ef)* () E;_,, then
we find Ker F}, = Ker m,0F F(0) and

(67)  ImdfF*(0)|  =ImdfF(0)m; = (Ker m,d0F F(0)) ™
k—1

By Proposition 4.1, condition (6.3) is invariant under multiplication of F'(t)
by invertible systems from right, and it is equivalent to (6.4) by (6.7)
and the proof of Proposition 4.1. We also obtain from Proposition 4.1
that the spaces Ef = I;- are invariant under multiplication of F(t) by
invertible systems from right. Since condition (6.3) implies E = {0} by
Proposition 4.1, we obtain (6.5). d

Let ﬁ(t) = FC(t), where C(t) is an invertible system. Then Leib-
niz’rule gives

(6.8) Ker Fy, = C(0)~! (Ker Fy),

as in the proof of (4.3).

Now we obtain from Theorems 4.3 and 5.3 the following result :

THEOREM 6.2. — Let F(t,z) be a C* function of (t,x) in a neigh-
borhood of the origin of R x R?% with values in Ly satisfying (5.4). Then
we may factor

(6.9) F(t,z) (ZtJnJthﬂA ) t,z) = P(t,A(z))C(t, z)
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near (0,0), where 7; is orthogonal projection in CN, 0 < j < n, such that
n

mimk = 6k and ) w; = Idy. Here C(t,x) and Aj(z) are C* functions

7=0
with values in Ly, satisfying |C(0,0)| # 0, mxAj(xz) = 0 when j > k, and
(6.10) 400 = Y mA;(0)m,
i>j>k
which implies Ag(0) = 0. The projections 7, and matrices A;(0) are

uniquely determined by condition (6.10), and it follows that m = ) j -

J

Rankm; in (5.4). If also condition (6.4) is satisfied, we find that A;(0) =0,

0 < 7 < n, and 7 is the orthogonal projection on I}, ﬂIkL_l for0 < k <n,

where I_; = {0}, I, = Y. Im&/F(0,0). If F(t,z) is analytic in a
0<j<k

neighborhood of the origin, then we may choose unique analytic C(t,x)
and Aj(z) satisfying (6.9) and (6.10). If F(t,x) is real (matrix) valued,
then m; is real (matrix) valued and we may choose C(t,x) and A;(z) real
(matrix) valued.

It is clear that condition (5.4) is necessary for the preparation (6.9),
and condition (6.4) is necessary when A(0) = 0. Observe that in the proof
of the analytic case, we apply Theorem 5.3 to the transpose !F, which is
analytic. Since (*r)* = 'r, we obtain unique orthogonal projections. The
preparation is unique up to functions vanishing of infinite order at {x = 0}.
We also get C*° bounds on C(t,z) and A;(x). We obtain the following
version of the division theorem from Theorem 5.9 by duality.

THEOREM 6.3. — Let F(t,z) satisfy the hypothesis in Theorem 6.2.
If G(t,z) is a C* function in a neighborhood of (0,0) with values in Ly,
then we can write

n—1

(6.11) G(t,z) = F(t,z)Q(t,z) + Y _t'R;(x)

Jj=0

near (0,0). Here Q(t,z) and R;(z) are C* functions with values in Ly,
satisfying mpR;(x) = 0 when j > k, for the orthogonal projections m in
Theorem 6.2. When G(t,z) and F(t,x) are analytic near the origin, we
may choose unique analytic Q(t,z) and R;(z).

As before, the neighborhood in which (6.11) holds only depends on
E(t,x), not on G(t,z). The division is unique up to functions vanishing of
infinite order at {z = 0}. We also get C*° bounds on Q(t,z) and R;(x).
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