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PREPARATION THEOREMS
FOR MATRIX VALUED FUNCTIONS

by Nils DENCKER

1. Introduction.

Thé Malgrange préparation theorem is a usefui tool in analysis. It is
a generalization of thé Weierstrass préparation theorem to C00 functions
as follows : if f(t,x) e C°°(R x R^) satisfies

(1.1) 0=/(0 ,0)=9J(0 ,0)=. . .=ô^ l / (0 ,0) and ^/(O.O^O,

then we can factor

(1.2) f(t, x) = c(t, x)^ + an-iÇx)^-1 + . . . + a^x)t + ao(x))

near (0,0), where c(t,x), aj(x) ç C00, c(0, 0) ^ 0 and ^-(0) = 0, 0 < j < n.
A possible generalization of this resuit to matrix valued functions, is to
replace (1.1) by
(1.3)

0 = F(0,0) = <9,F(0,0) = . . . = ̂ -^(0,0) and |^F(0,0)| ^ 0,

where F(t,x) ç C00 is N x N matrix valued, and \F\ is thé déterminant.
Then we should obtain (1.2) for F(t,x), with matrix valued C00 functions
c(t,x) and aj(x), satisfying \c(t,x)\ ^ 0 and û^(0) = 0, \/j. In thé case
when n = 1 in (1.3), this was proved in [1]. But clearly condition (1.3) is
too restrictive, since it does not cover thé case when F(t^ x) = (/j(t, x)6jk)jk
is diagonal, with diagonal éléments fj satisfying (1.1) with différent n (in
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which case we can use thé Malgrange préparation theorem). More generally,
we assume that

(1.4) <9r(detF)(0,0)^0,

for some m, thus thé déterminant does not vanish of infinité order at t = 0.
Then we prove that there exists n > 0 such that

/ n \
(1.5) F^x)=C(t^)[^W]

\t=o /

near (0,0), where C(t^ x) and Aj(x) are N x N matrix valued C00 functions,
and |<7(0,0)| ^ 0. We aiso hâve

(1.6) A,(^)A,(0)=0 j > ^

and Aj(0) is a bijection Vj \—^ Vj-, where {Vj} are linear subspaces such that

(1.7) C N = ( j ) V , .
j=0

This préparation is essentially unique, up to terms vanishing of infinité
order at x == 0, under additional conditions on Aj(0). See Theorem 5.3 for
thé précise results.

In thé spécial case when
n

(1.8) CN =ffîlm^F(0,0)
^o ^-1

where Ek = Fl Ker^F(0,0), we may obtain that A^-(O) in (1.5) is
CKj^fc

thé orthogonal projection on Vj == Ej1- H Êj-i by Theorem 4.3. Observe
that condition (1.8) is invariant under left multiplication of F by invertible
Systems according to Proposition 4.1.

By duality, we obtain thé corresponding results for right préparation
of F^ i.e. left préparation of jF*, in Theorem 6.2. We aiso prove thé
generalizations ofthe Malgrange division theorem in Theorems 5.9 and 6.3.
Thé method of proof will in part follow Mather [6], with thé improvements
of Hôrmander [2, Section 7.5]. This method aiso gives C00 bounds on thé
matrices C(t,x) and Aj(x) in (1.5). We aiso include thé analytic versions
of thé results, which generalize thé Weierstrass préparation and division
theorems.
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Thé préparation theorems can be usefui when studying Systems of
partial differential équations, particularly when reducing thé symbol of thé
System to a normal form. See thé proof of Proposition 3.1 in [1] for an
application to first order Systems. '

Thé plan of thé paper is as follows. In section 2, we divide analytic
N x N Systems with matrix valued polynomials on an open set in C. In
section 3, we divide matrix valued functions in <S(R) by matrix valued
polynomials globally on R. Thé spécial préparation theorem is proved in
section 4, using thé implicit function theorem. Thé général préparation
theorem is proved in section 5, by a carefui réduction to thé spécial case.
Finally, in section 6 we prove thé dual results for right préparation.

2. Analytic division.

In what follows, let TT^ be (complex) orthogonal projections in CN,
n

0 ^ j < n, such that ^ TTj = Id^ and TTj^k = ̂ jk^k- Put
J=0

(2.1) P{t^)= ^ ^+ ^ ^A,,
0<J<n 0^j<n

with A = ( A o , . . . , A ^ _ i ) , where Aj <E CN = C(CN,CN) is a complex
N x N matrix satisfying

(2.2) AjTTk = 0 when j > k.

Let \Aj\ = det Aj be thé déterminant ofAj , and let ||A|[ = ̂  ||Aj||, where
3

\\Aj\\ is thé matrix operator norm. We are going to divide matrix valued
analytic functions with such matrix valued polynomials. Let uj be an open
set in C, let G(t) be analytic in ù7 with values in CN^ and assume that
|P(t,A)| ̂  0 on 9^ ç C1. Then

(2.3) G(t) = Q(t)P(t, A) + R(t) for t e uj,

where

(2.4) Q(t} = (27Tî)-1 ( G(s)P(s,A)~l(s-t)~lds
JQUJ

is analytic in ù;, and

(2.5) R(t)=(2m)~1 ( G(s)P{s,A)-l{P{s,A)-P{t,A))(s-t)-lds
J Qijj
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is a polynomial of degree n - 1 in t according to (2.6). When P(t,A)-1 is
analytic in uj, we find R(t) = 0.

PROPOSITION 2.1. — Thé remainder R(t) in (2.3) is uniquely deter-
mined by

(2.6) R(t)7Tk is a polynomial of degree < k, 0 < k < n
(2.7) R(t)P(t,A)-1 is analytic when t ^ È u j .

Proof. — We find from (2.5) and (2.2) that

(2.8) R(t)7Tk = (2m)-1 I G(s)P(s^ A)-1 ((^ - t^
J QUJ

+^(S3 -tj)A,7Tk)(s-t)-lds
J<k

is a polynomial of degree < k in t, which gives (2.6). In order to prove (2.7)
we observe that (2.5) gives

(2.9) R(t)P(t^A)-1 = -(2m)-1 ( G(s)P^A)-i(s - t)-1 ds t^ ̂
JOUJ

which is analytic in to. Since |P(^A)| -^ 0 near QUJ, we find R(t)P(t,A)-1

analytic there.

To prove thé uniqueness of R(t), we observe that (2.3) implies that

Q(t) = (2m)-1 [ G(s)P(s^)-l(s-t)-lds
J Quj

-(27Tî)-1 [ R(s)P(s,A)-\s-t)-lds
J QUJ

when t <E LJ. If R(t)P(t, A)"1 is analytic in [L; we may push thé intégration
contour to infinity in thé second intégral. Since we hâve R(t)7Tk = O^t^-t)
and R(t)P(t,A)-i = E^W^^A)-1, we find from Lemma 2.2 below

k
that thé integrand is 0(\s -2). Thus Q is equal to (2.4), which gives thé
uniqueness. Q

LEMMA 2.2. — IfP(t,A) is given by (2.1), where Aj satisfies (2.2),
then we find

(2.10) 7r,P(^A)-1 = 0(1^) as |^oo.
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Proof. — To prove (2.10), we observe that P(t,A)7Tk = P/c(^A)7r/c,
where Pfc(^A) = ^Id^ + Y, ̂ Aj. Now, if we assume t ç C, such

j<k
that |P(^A)| -^ 0, then we hâve TrfeP^A^P^A)^ = 6^k, and
CN = Q) ^ M, where

CKj<n

(2.11) ^) =ImP(^A)7Tfc =ImP^A)7Tfc.

Observe that y/cM -^ ImTT/.;, which are orthogonal, as t —^ co. We obtain
that

(2.12) 7TfcP(^A)-1 =0 when j + k.
VjW

Ifaiso |Pfe(^A)| ^O.wef ind

(2.13) ^P^^-^^Pfc^A)-1 on Vk(t).

It is clear that P^A)"1 = Od^l'^) as \t\ -^ oo, so we obtain (2.10) from
(2.12)-(2.13). D

3. Polynomial division on R.

Now, we want to make thé division (2.3) when G € <S(R), depending
C00 on thé parameters x e R^. We shall aiso obtain C00 bounds on Q
and R. As before, we let {7 r / c} be fixed orthogonal projections satisfying
n
^ 7Tj = Id^v and TTi'ïïj = ̂ ij^j, thus ̂  Rank^- == N . Assume P(t, A) given
j=o j
by (2.1), where A = (Ao , . . . ,A^_i) satisfies (2.2). Let m/c = RankTTfc and

n-l
m == ^ j^ • m^, and let V Ç ^ £^v be thé set of A = ( A o , . . . , An-i)

l<^j<n j=0

satisfying (2.2). Since A/g = ^ A/g 71-̂  A^ lies in a subspace of (complex)
3>k

dimension ^ mjN of ^CTV- This implies that V ^ ç^-^^ g^cç ^ç hâve
J>Â;

n

E mj= T. 3 • ̂  = m'
0<k<j<n j=l

LEMMA 3.1. — Assume that P(^A) is ^iven by (2.1), where A =
n

(Ao , . . . ,A^_i) e V satisfies (2.2). Let m = ̂  j. Rank 7 -̂ anà p(t) =
j'-i
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detP(^A), tAen it follows that

(3-1) ^(0)^0,

ând 9m+lP = 0. If A e V satefes ||A|| = ̂  [|A,|| «^ < 1, tAen we find
that

(3-2) p(^) = o =^ ^ < ̂ A\

Observe that it follows that thé déterminant of P(t, A) is a polynomial
of exactiy degree m= ̂  j ' Rank^.

j=i

Proof. — First we note that by a (constant) orthogonal base change,
we may assume that

(3.3) ImTTfc = Ï ( Z ^ , . . . , Z N ) : Zj ^
k-l

=^ ̂  RankTT, < j < ̂  Rank7r, l, 0 < À; <
z=0 i=0

Since P(^A)7Tfc = f^ + E t3 A^k we find that
v 3<k /

9ÏPW= Y,k\^ ^0,

n.

k=0

which proves (3.1). Similarly, we obtain that Q^1? == 0.

Assume that P(^A)w = 0, where ^ ^ 0, w == J^Wj ^ 0 with
Wj = 7TjW. If we put Vk = ^w/,, we find

(3.4) ^=E^=-E(E ̂ ^^--f E ^^-'kî;=^^=-^l ^ A,
fc fe ^O^j^fcfc fe ^O^^A; / \<i^k<r, /•0^j<fc<n

since ̂ V^jW = -Y,VAjW. If \t\ > i$1/" and ||A|| < 6 ̂  1, we find

E A^t^ . E^-fE 7r^-fc) ^Ell^ll^^l-
3<k<n 7=0 v7•<A;<n / .0<j'<A;<n j=0 ^j<k<n

thus (3.4) implies that î; = w = 0. This proves (3.2). D
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PROPOSITION 3.2. — Let G(t) (E <S(R) hâve values m CN- Then we
can find Q(t,A) e C°°(R x V) and ^-(A) e (^(V), 0 < j < n, with
values in CN and depending linearly on G(t), such that Rj(A)7Tk = 0 when
j > k, and
(3.5)

n-1

G(t) = Q(^,A)P(t,A) + ̂ t^RjÇA) when ||A|| < C and t e R.
j=o

Aiso, we hâve thé following estimâtes
(3.6)

\\9^Q^A)\\<C^f(\\G\\+\\GW\\)dt^ Â ; = 3 + a + m ( | ^ | + l )

\\9^(A)\\<C^f(\\G\\+\\GW\\)dt^ Â ; = 2 + m ( | ^ | + l ) ,

for |^| < c and 0 < j < n, with m = ̂ j ' Rank^. -Hère ÔA nicans
j

differentiation with respect to thé components o f A ç V .

Remark 3.3. — If G(t^ x) € 5(R x R^) dépends on parameters x^ then
Q(t,A) e C7°°(R x V x R^) and J^(A) ç C00^ x R^), Vj. In fact, by
linearity and continuity, we may differentiate directiy on G. Observe that
by a dilation in t, we may choose any constant G in (3.5) (see thé proof
below).

Proposition 3.2 and Remark 3.3, without thé linear dependence on G
and thé estimâtes (3.6), can aiso be obtained from (1.2) in [7]. By adapting
thé proof of [2, Theorem 7.5.4], to thé matrix case, as in thé proof of
[1, Proposition A.2], we obtain Q(t,A) satisfying thé estimâtes in (3.6)
uniformiy for ail t G R.

Proof. — We shall first divide by p(t) == detP(t.A), when A ç V.
By [2, Theorem 7.5.4], we may find C00 functions Q(t,A) and Rj(A) with
values in CN^ depending linearly on G{t)^ so that

m—l

(3.7) G(t) = Q(t,A)p(t) + ̂  ^RjÇA) when ||A|| < c and t ç R

for some c > 0, since thé degree oîp(t) is equal to m by Lemma 3.1. We aiso
get (3.6) for ail t ç R by using (7.5.14) in [2], since thé coefficients in p(t)
are algebraic functions of thé éléments of A. From thé proof of [2, Theorem
7.5.4], it is clear that (3.6) aiso hoids for bigger k. By first making a dilation
s = 6t for small enough 6 and using that Aj = ̂  A^TT/c, we obtain (3.7)

3<k
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when |[A|[ < C. Since p(t) = ̂ P^A^P^.A), it oniy remains to divide
m-l

R(t^A) = ^ ^^•(A) with P(^A) in order to get thé wanted remainder
j=o

terms. For this purpose, we use (2.4)-(2.5) with G{t) = R(t,A) and uj Ç C
containing t and ail thé zéros of detP(^A), and with C1 boundary. This
gives

R(t, A) = Qo(t, A)P(^ A) + Ro(t, A) when ||A|| < C and t € R.

Since P^f^A) is analytic in (LJ, we obtain from Proposition 2.1 that thé
remainder Ro(t,A) is unique, satisfying (2.6). Thé derivatives of Qo(^A)
and Ro(t^A) can be estimated by derivatives of J?(^,A), which in turn can
be estimated by (3.6). D

4. Left préparation.

Now, let F(t) be a C00 function on R with values in CN- Put
E^=CN and

(4.1) Ek= F| Ker^P(O), A - ^ 0.
0<J<^

Thèse spaces are invariant under left multiplication of F(t) by invertible
Systems, according to thé following

PROPOSITION 4.1. — If

(4.2) CN =(^Im9{F(0)
j=0

Ei-i

then it follows that En = {0}. We find thaï thé spaces Ek, 0 < k < n, and
condition (4.2) are invariant under left multiplication of F(t) by invertible
Systems.

Proof. — Assume that C(t) is an invertible System, then Ker CF(0) =
KerP(O). Now, we hâve by Leibniz' ruie

^(CF)(0) = ̂  (k.} Q^CWQîFiO),
j=0 v " /
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so by induction we obtain

F| Ker(9f(C7F)(0)= ( Ç] Ker^F(O)^ n Ker^(CF)(0)
O^j^k \<j<k /

= Q Ker^F(O),
o^j^/c

which gives thé invariance of £/^ V^- We aiso obtain that

(4.3) Im^(CF)(0)| =C(0)Im^F(0)
l^fc-i -Kfe-i

Since |C7(0)| 7^ 0, this gives thé invariance of condition (4.2).

It remains to prove that dim£n == 0. Let m/e = dim£/c, so that
m-i = N. Then, we find

dimflm^F(O) ) = dim^_i-dim(Ker^F(0)| ) = m^-i-m/,.
\ Ek-i/ \ \Ek-i/

Thus, we obtain from (4.2) that
n

N < ̂ (mfc-i - mk) = N - mn.
j=o

This means that rrin < 0, which proves thé resuit. D

Observe that thé proof of Proposition 4.1 aiso works if we hâve

CN =^Im^F(0)
j=o ^-i

in fact, this condition implies (4.2). Thé spaces Ek will be used to construct
thé orthogonal projections TTk in thé préparation. Let E^r be thé orthogonal
complément of Ek.

PROPOSITION 4.2. — Let C^ = ^-i D EQ D . . . 3 En = {0}, ând
let TTk be thé orthogonal projection on E^r Ç} E^-i for 0 < k <^ n. Then it
follows that TTjTT/c = ôjkTTk, and

k

(4.4) (f)ïm7Vj=E^ 0<k<n.
j=0

n
In particular, we obtain Q) Imprj ==0^, which implies ^ TTJ = Id^v-

0<j<n j=0
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Proof. — Clearly, Ker^ = (ImTT^ = £/, (B^-i, implying

ïmTTj C E j ^ C E k C K e r T T k if J > k.

Thus, TT/cTT^ = 0 when j > k, and by taking adjoints we obtain this when
j < k, which implies T^-Tr/e = ôjk^k-

By taking orthogonal compléments, we find that (4.4) is équivalent
to

A;

(^S) Ç}KeT7Tj=Ek, 0<:k<n.
j=0

We find KerTTo = EQ © E^ = EQ. Assume by induction that (4.5) hoids
for some k > 0. Then we find that

F) Ker TT, = Ek Ç}(E^i C E^) = E^
o<j<fc+i

since ̂ +1 c Sk, thus by induction we obtain (4.5) for ail k. Since En = {0}
Tt / Ti \ '2 Tt,

we find that ^ 7 -̂ is bijective, and since ( ^ 7r^) = ^ TT., it is equal to
j=o S=o / j=o

thé identity. Q

When Ek = Ç} KerôfF(O) we find that TT/, is an orthogonal pro-
3<k

jection into Ek-i, such that KerTT/, = Ker<9^F(0) = ̂ . Now,
^fc-i Ek-i

we can prove thé following generalization of thé Malgrange préparation
theorem.

THEOREM 4.3. — Let F(t, x) be a C00 function of (t, x) m a neigh-
borhood of thé origin o f R x R ^ , with values in CN, and assume that

(4.6) CN =^lm9fF(0,0)
j=o E,-i

where E^ = C^ and Ek = n Ker 9fF(0,0). Let ̂  be thé orthogonal
0<j<k

projection on E^ H Ek-i for 0 < k < n. Then, we may factor

/ n n—1 Kn n-1

^ .TJ = C;̂  ̂ ) ( ̂  ̂ TT, + ̂  ̂ A,(^) ) = C^ X)P(^ A(X)

'̂=0 j=0

(4.7) F^ x) = C{i, x) ( ̂  t^, + ̂  t^A,(x) ) = C(^ x)P(^ A(x))
^l=[} i-O ^

near (0,0), wAere C7(^.r) and Aj(x) are C00 functions with values in C,
satîsfying Aj{x)^k ^ 0, j ̂  k. We aiso find |C(0,0)| ^ 0, and A^-(O) = 0

. j ^ j aie ^00 functions with values in C^,
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for 0 <: j < n. ïf F(t, x) is analytic in a neighborhood ofthe origin, then we
may choose unique analytic C(t,x) and Aj(x) satisfying (4.7). IfF(t,x) is
real (matrix) valued, then thé projections TVk are real (matrix) valued and
we may choose C(t,x) and Aj(x) real (matrix) valued.

Thé projections TT^ are chosen orthogonal in order to get uniqueness.
As in thé scalar case, we find that C(t,x) and Aj(x) are not uniquely
determined, but thé proof gives C00 bounds on thèse functions, depending
on F(t^x). Since (4.7) implies

n

FM) = 0^,0) ̂ ^-,
j=0

we obtain from Proposition 4.1 that condition (4.6) is necessary for thé
préparation (4.7). It is not hard to prove that (%A^(0) and 9^C(t,0) are
uniquely determined by (4.7), Va.

Proof. — By Proposition 4.1, we find that En = {0}. Since TT^ is thé
orthogonal projection on E^Ç\Ek-i, we obtain from Proposition 4.2 that

n
TTjTTk = 6jk^k and ^ TTj = ÏÔ.N • Let

j=0

P(t,A)= ^ ̂ + ̂  ^A,,
0<,j^n 0^j<n

where A = ( A o , . . . . An-i) satisfies Aj^k = 0 when j ^ k, i.e. A e V ^
n

QmN ^ j^çpç ̂  ̂  S J • ̂ j and rrij = Rank^-. Since thé resuit is local, we
j=i

may assume F <E Cg°. By using Proposition 3.2 and Remark 3.3, we get

n-i
(4.8) F(t, x) = Q(t, x, A)P(t, A) + ̂  t3Rj (x, A)

j=0

near (0,0,0) G R x R^ x V. Hère Q and Rj are C°° functions, satisfying
Rj{x^ A)7Tfc = 0 when j > k, thus (Rj(x, A))^- has values in V. Now we need
thé following

LEMMA 4.4. — Assume that F(t,x) satisfies (4.6) and (4.8), where
Q and Rj are C00 functions, satisfying RjTTk = 0 when j > k. Then, we
obtain

(4.9) |Q(0,0,0)|^0

(4.10) ^.(0,0)=0, 0<j<n.
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End of proof of Theorem 4.3. — Differentiation of (4.8) with respect
to thé components of A, when A = 0 and x = 0, gives

n n—1 n—1

(4.11) 0 = dA<3(t, 0,0) ̂  t^, + Q(t, 0,0) ̂  f^A, + ̂  ̂ (4^(0,0).
.7=0 j=0 j'=0

By composition with 7r/c, we obtain from (4.11) that

Q(t, 0, 0) ̂  ̂ dA^ = -^AQ(^ 0, 0)^7Tfc - ̂  ̂ A-RJ (0, 0)7Tfc.

j<fc j<k

Since Q is invertible in a neighborhood of thé origin by Lemma 4.4, we find
that

^,0,0)^^=0(1^) ^0,
j<k

implies Bj = 0, 0 < j < k. Thus, thé differential of thé mapping

(4.12) V 3 A ̂  R = (Ro , . . . . J^_i) e V ^ C^

is bijective at (0,0). By thé implicit function theorem and Lemma 4.4, we
find that thé équation

IR(a-,A) = 0

defines a unique C00 function A(x) of x in a neighborhood of thé origin of
R^, with values in V, such that A(0) = 0. Naturally, thé unique function
A(x) dépends on thé choice of Q(t,x,A) in (4.8). Since

F(^) = Q(t,a;,A(.r))P(^,A(^)),

we obtain (4.7) with C(t,x) = Q(t, x,A{x)). When F(t, x) is real, we find
that 7Tj is real, 0 < j < n. Then, we may take Q and Rj real, and use thé
implicit function theorem with A e ReV ^ R/^.

In thé case when F is analytic near thé origin, we choose e > 0 so
that F is analytic in a neighborhood of {\t\ ^ e A \x\ < e}. By using
(2.4)-(2.5) with QUJ = {\t\ = e}, we get (4.8) when ||A|| < 5n, \t\ < e
and \x\ < e, by Lemma 3.1. By Proposition 2.1 we find that Rj and Q
are uniquely determined, since P^^A) is analytic in (L;. Since Q and Rj
dépend linearly on F(t^ x)^ they are analytic in x too. By using thé implicit
function theorem in thé analytic case, we obtain unique analytic A(x) and
C ( t ^ x ) = Q(t^x^A(x)) in (4.7), with thé required properties. D
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ProofofLemmâ 4.4. — By taking x = 0 and A = 0 in (4.8), we obtain

n n—1

(4.13) F(t,0) = Ç(ï,0,0)^^- + ̂ ^(0,0).
j=0 j=0

Differentiation with respect to t gives
(4.14)

k / i \

^F(0,0) - ̂  ( . j 9^0(0,0,0)j!7r, + /c!J^(0,0) when k < n,
j=0 ^ ^

implying

(4.15) Im(9^F(0,0)7Tfc =ImQ(0,0,0)7TA; when k < n,

since R^k = 0. We aiso find from (4.14) that J^(0,0)^- = Q^F(0,0)7Tj/k\ =
0 for j > k, since Im7r^ Ç ̂ _i Ç Ker9^F(0,0) then. Since Rk^j = 0 when
j ^ k, we find ^(0,0) = 0, VA:.

Now, condition (4.6) is équivalent to
n

(4.16) C^ = (])lm(9fF(0,0)7r,^^/ i j ,
j=o

since Im^- = ^-L n^j-i and ^^(0.0) ^ 0. We find from (4.15)-(4.16),
E3

that
n

0^=^^0(0,0,0)^,
j=o

thus Q(0,0,0) is bijective. D

Example 4.5. — Let F(t, x) be a C00 function with values in CN, and
assume that

(4.17) |9^F(0,0)|^0 and ^'F(0,0)=0, 0 < j < n.

Then we obtain from Theorem 4.3

(4.18) F^x)=C^x)(tnïdN+ ^ ^A,(^)V
0<,j<n

where C(t,x) and Aj(x) are C00 functions with values in CN, satisfying
|C(0,0)| ^ 0 and A^-(O) = 0 for 0 < j < n. (Thé case when n =-1 was
proved in [1, Theorem A. 3].)



878 NILS DENCKER

5. Thé préparation theorem.

Now, condition (4.6) in Theorem 4.3 is still too restrictive. In fact, thé
Systems P(t,A(x)) in (4.7) do not satisfy condition (4.6) when A(0) ^ 0
satisfies (5.6), but will be acceptable normal forms when A(x) e V, i.e.
Aj(x)7Tk = 0 for j > k. As before, we assume that TTJ is orthogonal

n
projection in C^ for 0 ^ j < n, such that ^ TVj = Id^v and TT^- = 6ij7Vj.

3=0
First, we consider thé necessary conditions for such a préparation.

PROPOSITION 5.1. — Let F(t) G C°°(î{) with values in CN, and
assume that

( n n—1 \

(5.1) F(t) = C(i) ^ ̂ TT, + ̂  VA, ) = C{t)P(t, A)
J=0 j=0 /

where 1^(0)1 •^ 0 and AjTr/c = 0 when j> k. Then it follows that

(5.2) an^^X0)^0.

for some m. We aJso ^nd

(5.3) En= |̂  Ker^F(0)={0}.
0<A;<n

Proof. — Since thé spaces jE^ are invariant under multiplication from
left by invertible Systems by Proposition 4.1, we may replace F(t) by P(t^ A)
in (5.3). Now ^P(0,A) = k^k 4- A^), where A^ = E ̂ j- Thus, we

k<j
find that Ker9^P(0,A) = KerTT^. By induction we hâve

n / n \ n

F) Ker (TTj + Aj) = [ Ç} Ker^ ) n Ke^Tr/, + A/,) == Q Ker^,
j=/c S-=A;+1 / j=k

for 0 ^ k < n, which proves (5.3). It is aiso clear that condition (5.2) is
invariant under multiplication by invertible Systems. Thus, it follows from
Lemma 3.1 (but not necessarily with thé same m as in (3.1)). D

Thé factorization (5.1) is not unique, according to thé following
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Example 5.2. — Let

W=(t ^^ Ids+Ao
\ U L f

P2(t)=(t2 ° ) = ^o+^2+^i
\ " 1 /

and Q(t) = Q "^y Then we hâve Q(t)P^(t) = P^(t), and |Ç(t)| = 1.

Since B^Q = 0, it is clear that P^(t) and P^{t) both are on thé form
(2.1)-(2.2). Observe that P^t) has thé property that Bi == 71-0.81^2.

Now we are ready to prove thé main préparation theorem.

THEOREM 5.3. — Let F(t,x) be a C00 function of(t,x) m a neigh-
borhood ofthe origin o f R x R ^ with values in CN, and assume that

(5.4) ^(det F) ( 0 ,0 )^0 and ^(detF)(0,0) = 0, 0 < k < m.

Then we may factor

(5.5) F(t^)=C^x)(^7r^^t^B,{x)\ = C(t^x)P(t^(x))
S'=0 j=0 /

near (0, 0), where TT^ is orthogonal projection in C^, 0 < j < n, such that
n

TTjTVk = Sjk^k and ^ TTJ = Id^v. Hère C(t,x) and Bj(x) are C00 functions
j=0

with values in CN, satisfying \C(0,0)| -^ 0, Bj(x)7Tk = 0 when j >k and

(5.6) B,(0) = ̂  7r,B,(0)7Tk Vj,
î<j<A;

which implies Bo(0) = 0. Thé projections TT^ and matrices Bj(0) are
uniquely determined by condition (5.6), and it follows that m = ̂ j '

RankTr^ in (5.4). IfF(t,x) is analytic in a neighborhood of thé origin, then
we may choose unique analytic C(t, x) and Bj{x) satisfying (5.5) and (5.6).
If F(t, x) is real (matrix) valued, then 71-;, is real (matrix) valued and we
may choose C{t,x) and Bj(x) real (matrix) valued.

Remark 5.4. — Thé rank of thé projections TT/, are determined by thé
elementary divisors of thé Taylor expansion of F(t,0) at t = 0. In fact,
let dk be thé déterminant factors for 1 < k < N , i.e. thé greatest common
divisor ofthe minors oforder k ofthe Taylor expansion. Then e^ = d k / d k - i
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are thé elementary divisors, and RankTn, is thé number of k such that e/c is
divisible by i3 but not by ^+1 (see [9, § 85]). Thé projections nj are harder
to compute, except for j = 0, 1, since in thèse cases KerTi-o = KerF(0,0),
and

KerTTo nKerTTi = Ker [9fF(0,0) : KerF(0,0)
^ C^/ImF^.O) = CokerF(O.O)] .

In Example 5.2 we find that P^Çt) but not P\(t) satisfies (5.6). Observe that
thé projection 7T2 ^ 0 but o^P\{t) = 0. In général, thé projections can be
computed by thé procédure in thé proof of Lemma 5.5. It follows from thé
proof of Theorem 5.3 that cÇI^(O) and 9^C{t, 0) are uniquely determined
by (5.5), Va. As before, C(t,x) and Bj{x) are not uniquely determined,
but thé proof of Theorem 5.3 gives C00 bounds on thèse functions.

Thé proof of Theorem 5.3 relies on some simple preparatory Lemmas.
First we shall compute thé projections {^k}-

LEMMA 5.5. — Assume thaï F(t) e C^CR) with values m CN, such
that detF(t) doesn^t vanish of infinité order at t = 0. Then we may write

n

(5.7) F(^)=C7(t)(^^7r,+J?(^)) near 0,
j=o

where [C(0)| 7^ 0 and TTJ is orthogonal projection in C^, 0 < j < n, such
n

that ^ TTj = UN and TT^ = è^y. Thé error term R(t) satisfies
j=0

' 7riR(t)7Tj = 0 when i > j

^,R{t)=0(\t\^1) as t ^O, Vj,
(5.8)

thus R(0) = 0. If F(t) is real (matrix) valued, then we may choose C(t),
7r/c and R(t) real (matrix) valued.

Condition (5.8) means that R(t) is niipotent and satisfies first part
of (5.6). In fact, R(t) maps Im^ into Q) Im^, V^, and if R(t) = ̂ t3 Rj

J<k j
then TTiRj = 0 when i > j.

Proof. — Let EQ = KerF(O), then

F(0) : E^-F—.ImF(0)

is a bijection. By multiplying from left by a constant, invertible System, we
may assume that F(0) = 71-0, where 71-0 is thé orthogonal projection along
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KerF(O). If F(0) is real valued, this can be done by multiplication with a
real, invertible System, giving real 71-0. We find

F(t)=7To+tFo(t)

near 0, where we may assume Fo(t)7Vo = 0. In fact, we can multiply with
C(f) = (ïdN + tFo(t))~1 from left to obtain

C(t)F(t) = C(t)((ïdN + tFo(t))7ro + tFo(t)(ïdN - TTo))

=7Vo+tC(t)Fo(t)(ïdN-7To)

near 0. When F(t) is real, we find that C(t) is real.

Now assume by induction, that we hâve found orthogonal projections
7^ 0 ^ j ^ k, and invertible System Ck(t), such that TT^ = (^•T^ and

k

(5.9) Ck(t)F(t} = ̂  t^, + Q,(^) + Rk(t)
j=0

near 0. We assume that Rk(t) satisfies condition (5.8) when z, j ^ A-, and
that

(5.10) Rk{t)=HkRk(t)^
where Tl^ = ̂  Ti-j. We aiso assume that

j<k

(5.11) Q^(^ = (Id^ - Hk)Qk(t)(ïdN - Hk) = 0(\t\^1).

When k = 0 we obtain this, with

(Ro(t)=7VotFo(t)(ïdN-7To)

\ Qo(t) = (ïdN - 7To)tFo(t)(ïdN - TTo).

When Un = UN we get thé resuit, since Qn = 0.

Assume II/c ^ Id^, and put Vk = Im(Id^ - 11^). Since (Id^v -
n/,)C7/,F(^) = Qk{t), we find that Qk(t) = Qk(t)(ïdN - n/,) cannot vanish
of infinité order on Vk at t = 0. Thus, we may assume that Qk(t) = ̂ Afc(t),
where v > k and A/,(0) 7^ 0. By using thé argument above with F(t) and
CN replaced by Ak(f) and Vk, and multiplying from left with an invertible
System C^(t) on Vk, we obtain that

C^t)Qk(t)=t^^Q,(t).
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Hère 0 7^ ^y is orthogonal projection on a subspace of V/^ Qv(t) =
0(|^+1), t -^ 0, and Q^ = 0. When Qk(t) is real, we may choose C^(t),
TT^ and Q^(t) real valued. By extending trivially to CN, we obtain (5.9) with
k replaced by v, Rk(t) by Rk(t) + 'ïïyQ^(f) and Qk(t) by (Id^ - ̂ y)Qu(t).
Since we increase thé rank of II/c in every step, we obtain thé resuit in
finitely many steps. D

In order to obtain a System satisfying thé conditions in Theorem 4.3,
we must multiply from thé right also. Then, we hâve to be carefui in order
to préserve thé normal forms.

LEMMA 5.6. — Assume that F(t) ç C°°(R), with values m CN, is on
thé for m

n

(5.12) F(t) = ̂ t^j + R(t) near 0,
j=0

where TTJ is orthogonal projection in CN for 0 < j < n, such that
n
^ TTj = Id^ and Tr^Ti-j = ^ij^j, and R{t) satisfies (5.8). Then, we can
j=0
write

(5.13) F(t) = (^^TT, + G(t)){IdN + S{t))
j=o

near 0, where G(t) also satisfies (5.8) and

(5.14) G(t)7Tk = 0^) as t-^0.

We also find that S(0) = 0, and

(5.15) 7TjS(t)7Tk is a polynomial of degree < k — j in t.

If R(t)7Tk is a polynomial of degree < k, \/ k, then we obtain that G{t) = 0.
When F(t) is real valued, we may choose G(t) and S(t) real valued.

Observe that it follows from (5.15) that ̂ t^jSÇt) satisfies condition
j

(5.6). Thé error term G(t) will be eliminated in Remark 5.7.

Proof. — First we observe that if S(t) satisfies (5.15), then 7TjS(t)7Vk =
0 when j > k^ so S(t) is niipotent. Since thé matrices with property (5.15)
are closed under addition and multiplication, thé corresponding matrices
Id^y + S(t) form a multiplicative subgroup of SL(7V, C[t}).
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Now assume by induction that we hâve obtained (5.13) with G(t) =
Y, Gjk(t), where Gjk(f} = ̂ jG(t}-n:k satisfies
3<k

(516) (G^W=0(\t\k) when j > k - ^
\G^t)=0(\t\^1) Vj,

for some ^ ^ 0. When R{t}'nk is a polynomial of degree < k, VA;, we assume
that G(t}'ïïk aiso is a polynomial of degree < k. Clearly, (5.16) hoids with
G(t} = R(t) when /x = 0, and will give thé resuit when ^ = n, since
non-zéro polynomials of degree < k cannot satisfy (5.14). Take thé Taylor
expansion

k-l

G,k(t)= ̂  t-G^+t^^t)
Î=J+1

(observe that G^ = 0 when j > k — ji) and let

W= ^ f-^5,.
j<i<k<n
0<,j<k-^

Then we obtain that 5^(0) = 0, ^(t) satisfies (5.15), and

(5.17) F(t)(Id^+^))-l(Id^-^)) =^^^tkQ^t)+R^t)^
3=0 j<k

where

^W=- E G )̂G'̂ .
î< j< fe<Z

J < l - P-

Thus, we find that TTjR^k = 0 uniess j < k - (^ 4- 1), and 7TjR^(t) =
Od^l-^2). In thé case when G{t)^k is a polynomial of degree < k, VA:, we
obtain that Qjk(t) = 0 and R^(t)7Tk is aiso a polynomial of degree < A:. This
proves thé induction step. When F(t) is real valued, we obtain recursively
that Gjk(t), Qjk(t)-> S^(t} and R^(t) are real valued. D

Remark 5.7. — If F(t) is on thé form (5.13) with G(t) satisfying (5.8)
and (5.14), then by multiplication from left by an invertible System, we may
obtain G(t} = 0. In fact, assume by induction that Gjk(t) = 7TjG(t)7Tk = 0
when j > k - IJL for some [i > 0, which is true for [L = 0. Take
Rjk(t) = t^GjkW for j < k - [i with Gjk(t) e C00, then

(id^- ̂  R,k(t))F(t)(ïd^S(t))~1 =^7r,- ^ R,k{t)Gki(t)^
J<k-l^ j j<k-p,<l-2^
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which proves thé induction step, since [i > 0. When fi = n we obtain
G{t) = 0.

Proof of Theorem 5.3. — By Lemmas 5.5-5.6 and Remark 5.7, we
may write

n

(5.18) CW-^MXIdTv +^))-1 = ̂ ^
j=o

n
where |C(0)| ^ 0, and TT^ is orthogonal projection, such that ^ TTJ = Id^v

j=o
and TTiTVj = SijTTj. It is clear that (5.18) satisfies condition (4.6). By thé left
invariance, we find that F(t,x)(ïà.N + S(t))~1 aiso satisfies (4.6). Thus by
Theorem 4.3, we can factor
(5.19)

F(^x)(ïd^S(t))-1 =C^x)(^7r^^A,(x) = C^x)PÇt^(x))^
\=o j=o /

where |C7o(0,0)| ^ 0, A(0) == 0, and Aj(x)7Tk = 0 when j > k. Hère, thé
projections TTk are thé same as in (5.18). Since S(t) is a polynomial, we
get analytic Co(t^x) and A(x) m (5.19), when FÇt^x) is analytic near thé
origin. Now, we obtain (5.5) with

n n—1

(5.20) P(t,M(x)) = ̂ TT, + ̂ t^Bj(x) = P(t,A(x))(îdN + S(t)),
j=0 j=0

which means that
(5.21)

^ t^B,(x)= ^ t^A,(x)+ ^ t^,S(t)+ ^ t^A,(x)S(t).
0<j<n 0<j<n 0<j'<n 0^j<n

Composing (5.21) with TT^ from right gives

^ t^A,(x)^+ ^ t^S,k(t)+ ^ ^A^xWt),
0^j<k 0<j<k 0^i<j<k

which is a polynomial in t of degree < À", since Sjk(t) = 7TjS(t)7rk is a
polynomial of degree < k — j. Since A(0) = 0 and S(0) = 0, we find from
(5.21) that

7Tj ^ t^^k^t^Sjkd)

0<i<n
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oniy contains terms of order greater than j and less than k, which gives
(5.6). By choosing orthogonal basis in CN such that (3.3) hoids, we obtain
P(^B(0)) on upper diagonal form. Then, we obtain that m = ^j'-Rank^-

in (5.4). When F(t,x) is real valued, we may choose TT/,, C(t) and S(t) real
valued in (5.18). By Theorem 4.3, we may choose Co(t,x) and Aj(x) real
valued, which gives real valued Bj(x).

To prove uniqueness of thé projections and thé matrices B^(0), we
assume that

(5.22) F(t,0)=Ci(t)(^^+^A^=C^t)(^t^+^B\^ 'Z^ ^3 ) - ̂ 2^n/ ^" l^-T /^^-Dj

3 3 / v 3 3
v i l / ^ i „ /

where |C^(0)| ^0 for A- =1 ,2 , Aj = ^ Tr.A^fc and Bj = ^ 7r,B,7r^
i<j<k i<j<k

Vj, where TT^ is orthogonal projection satisfying TT^- = 6ij7Tj. By using
Lemma 5.6, we obtain

C,(t) ̂ 7T,(ïdN + S,(t)) = C^t) ̂ 7r,(ïdN + ̂ W),

^ J

where 6'/,(^) satisfies (5.15), and 6'fc(0) = 0 for k = 1, 2. Thus, we find

(5.23) Q(t) = C(t)^7r, = ̂ Tr^ïdN + ̂ )),
j j

where |C(0)| ^ 0 and 6'(0) = 0. We find from (5.23) and Proposition 4.1
that

(5.24) F) Ker9fQ(0)= Ç} KerTr,, VA:,
0<j^k 0<J<k

and (4.3) gives

(5.25) Im^Ç(O) =C7(0)Im7Tfc, V/c,
Ek-i

where Efc = H Ker<9fQ(0). Similarly, we obtain from Proposition 6.1 that
j<k

(5.26) ^ Im9|Q(0)= ̂  Im7r,, VA;,
0<,j<k 0<J^k

and (6.8) gives

(5.27) Ker^Q(0)(mod^Im^Q(0)) = Kerîfc, VA;,
3<k
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since 6'(0) = 0. From (5.25)-(5.26) we obtain

(5.28) C(0) Q) Im7r, Ç )̂ Irn .̂, VA-,
0<j<k 0<j<k

and (5.24), (5.27) gives

(5.29) Q Ker^-Ç Q Kerï,, VA'.
0<j<k O^j^k

By combining (5.28) and thé orthogonal complément of (5.29), we obtain

(5.30) C(0) (]) Im^Ç (]) Im7r,Ç ^ Im^, VA;.
O^J'^fc 0<j</c 0<j^k

Since |C7(0)[ ^ 0, thé spaces in (5.30) ail hâve thé same dimension, thus
they are equal. Since thé projections are orthogonal, we find that 71-^=^,
VA;.

We aiso hâve to prove that Aj = B^ Vj, in (5.22). It is clear that this
hoids 4=^ S^(t) =. S^t) 4=^ S(t) = 0 in (5.23). Since ̂  = TT/,, V A;, we find
that S(t) satisfies (5.15). Let C^(t) = ̂ -C^)^ and Sjk(t) = TT^^)^.
We oblain from (5.23) that

C^t^ -=S^(t)t3 when j < k,

since TT}, = TT/.;, VA;. Since thé right hand side is a polynomial of degree < A;,
we obtain C^ ^ 5^ = 0, when j < k. We aiso obtain Cjj(t)t3 = TTjt3 from
(5.23), making C^(t) = 7^, Vj. Finally, we get C^(^) = 0 when j > k.
Thus, C(t} = Id^v and S(t} = 0, which proves thé uniqueness of ^(0), Vj,
in (5.5). When F(t,x) is analytic, we obtain unique analytic ffî(a;), since
A(a;) and S(t) in (5.21) are unique and analytic. D

By multiplication from right with invertible Systems, we may aiso
obtain that TTkBj(x) = 0 when k < j, and ffî(O) = 0 in (5.5), according to
thé following

PROPOSITION 5.8. — Assume that TT^ is orthogonal projection in CN

n
for 0 ^ j ^ n, such that Tr^k = ôjk^k and ^ ̂  = Id^. Let

j=o

(5.31) P^A(x)) = f^TT, ̂ ^t^A^x)
j=o j=o
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where Aj{x) is C00 function with values in CN, satisfying Aj(x)7Tk = 0
for j > k. Then we may find C(t,x) G C00 with values m CN, such that
\C(t,x)\ ̂ 0 and

(5.32) P(t, A(x))C(t^ x) = P(t, ffî(^)),

where TTkBj(x) = Bj(x)7Tk == 0 when j > k. For those XQ satisfying
TTkAj(xo) = 0 when k > j, we obtain that Bk{xo) =0,\/k. When P(t, A(^))
is real (or analytic), we may take C(t,x) and Bj(x) real (or analytic).

Proof. — By induction over 0 < ^ < n, we shall prove that there
exist invertible C^(t,x) e C00 with values in CN, such that

n-l

(5.33) P^A(x))C^x) = PWx)) + ̂ ^(^
j=o

where

(5.34) Rj(x)7Tk == 0 when j > k - /^,

and TTkBj(x) = Bj(x)7Tk = 0 when j > k. Clearly, this hoids for [i = 0
with Co = Id^, Bj = 0 and Rj = Aj. It implies (5.32) when ^ = n, since
Rj(x) =0 then.

Assume that thé induction hypothesis hoids for some 0 ^ ^ < n. Put

E ( t ^ x ) = ï à N - ^ ^RkÇx^-^
0<j<k<n

then E(t,x) is invertible. In fact, since Rj^k ^ 0 when j > k, we find
that E(t,x) - UN maps Im^ into Q) Im^, thus it is niipotent. Let

3<k
C^i{t,x) = C^(t,x)E(t,x), then we find from thé induction hypothesis
that

P{t^(x))C^^x) = PWx)) + ̂ (^^R,(x)t^
j=0 ^i>j ^

- ^ R^MX^-^ - ^ B^MX^-^.
o^j<k<n Q<i<j<k<n

KJ-IJ. ~~

n
Thus, Bj{x) is replaced by Bj(x)+ ^ 7TiRj(x), and ̂  t3Rj(x) is replaced

î=J+l 3
by

Ro^x)=- ^ R^^R^x^-3^- ^ B^^R^x^-3^.
o^j<k<rz 0<i<j<k<n

i<3-^ - "-
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Now, we find that

Ro(t,x)^ =- ^ R^x^RkÇx)^-3^
0<j<fc0-^

i<J—P'

^ BiÇx^RkWTv^-^,
0<i<j<k<i/-/j,

is a polynomial of degree < v — [i — 1. When P(t^ A(rr)) is real valued, we
may take Rj{x\ C^Çt^x) and Bk(x) real valued. This proves thé induction
step. If we start with analytic Rj = Aj, CQ = Id^v and Bj = 0, we obtain
analytic R^ C^ and B^ in each step.

By differentiating (5.32) with respect to t when t = 0, we obtain that

^(TT, + A,(;c))<5r^(0,a-)/(j - i)\ = TT, + B,(x).
î==0

At thé points XQ where ^kAj(xo) = 0, k > j, we find that T^kBjÇxo) = 0,
k > j . Since Tr^Bj^x) =. 0 when k < j , we obtain that BjÇxo) = 0, Vj. D

We aiso obtain thé following generalization of thé division theorem.

THEOREM 5.9. — Let F(t^x) satisfy thé hypothesis m Theorem 5.3.
IfGÇt^x) is à C00 function m a neighborhood of(0,0) with values in CN^
then we can write

n-l

(5.35) G(t,x) = Q{t,x)F(t,x) + ̂ t^R^x)

near (0,0). iïere Q(t^x) and Rj(x) are C00 functions with values m CN,
satisfying Rj(x)7Tk = 0 when j > k, for thé projections TT^ in Theorem 5.3.
When G(t^ x) and F(t, x) are analytic near thé origin, we may choose unique
analytic Q(t^x) and Rj{x).

It follows from thé proof that thé neighborhood in which (5.35) hoids
oniy dépends on F(t, x)^ not on G(t, x). As before, Q(t^ x) and Rj(x) are not
uniquely determined in général, but thé proof gives C00 bounds similar to
(3.6) on thèse functions. It is not hard to prove that cÇJ^(O) and 9^Q(t, 0)
are uniquely determined by (5.35), Va.

Proof. — By Theorem 5.3, we may assume that
n n—1

(5.36) F(t,x) = ̂ t3^ + ̂  t^jÇx) = P(t,A(x)),
3=0 3=0
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where Aj{x)^k = 0 when j > A", and A^-(O) satisfies (5.6). Since it is
no restriction to assume G(t,x) ç Cg°, thé first statement follows from
Proposition 3.2 and Remark 3.3. (When F(t,x) satisfies (4.6) aiso, we
find that ^k is thé orthogonal projection on E^Ç}Ek-i.) When F(t,x)
is analytic near thé origin, we may choose unique analytic A(x) in (5.36).
Then, we may use thé analytic division (2.3)-(2.5), with QUJ = {\t\ == e}
for small enough e, in order to get analytic Q(t,x) and R^(x). Since A^(0)
satisfies (5.6), we find that detP(^A(0)) = t^, where m = ̂ j • Rank^-.

3
(In fact, by choosing coordinates so that (3.3) hoids, we obtain that
Y^t3 Aj(fS) is upper triangular.) Thus P(t,A(x))~1 is analytic when \t\ ^ e

3
and \x < 6, for 6 > 0 small enough. By Proposition 2.1, thé remainder
^t^RjÇx) is unique, thus Q(t,x) is unique. D

3

6. Right préparation.

In Theorems 4.3 and 5.3, we hâve oniy done left préparation of matrix
valued functions. By taking transposes we aiso obtain thé corresponding
results for right préparation. We first examine what condition we get on
F, when (4.6) hoids for F*. Let F{t) be a C00 function on R with values
in CN, put E^ = C^, and

(6.1) E^= F| Ker<9i'F*(0), k ̂  0.
0<j^k

Let Fk be thé mapping

(6.2) Fk : CN 3 w i—> <9^F(0)w (mod 4_i) for k ̂  0,

where Z-i = {0}, and

1^ = ^ Im^'F(O), A - ^ 0 .
0<j<fc

PROPOSITION 6.1. — Thé condition
n

(6.3) CN =^)lm^F*(0)
/c=0 1^-1/c=0

is équivalent to
n

(6.4) {0}= HKerF,,
/c==0
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where F^ is given by (6.2), and implies

n

(6.5) CN = ̂ Im^F(O) = In.
k=0

We find that condition (6.4) and thé spaces h = E Im ̂ (^ 0 ^ A; < n,
O^j^k

are invariant under multiplication of F(t) by invertible Systems from right.

Proof. — We hâve by duality that

(6.6) h= ^ Im^F(0)=[ H Ker^F*(0)) ={E^.
0<j<k ^<3<k /

Let TTk be thé orthogonal projection on IkÇ}Ij^_^ = (E^)~L Ç}E^_^, then
we find KerF/, = Ker7r/,^F(0) and

(6.7) Im^F*(0) = Im^F*(0)7Tfc = (KerTr^F^))^.
^-i

By Proposition 4.1, condition (6.3) is invariant under multiplication of F(t)
by invertible Systems from right, and it is équivalent to (6.4) by (6.7)
and thé proof of Proposition 4.1. We aiso obtain from Proposition 4.1
that thé spaces E^ = I^~ are invariant under multiplication of F(t) by
invertible Systems from right. Since condition (6.3) implies E^ = {0} by
Proposition 4.1, we obtain (6.5). D

Let F(t) = FC(t\ where C(t} is an invertible System. Then Leib-
niz'ruie gives

(6.8) KerF^C^or^KerF^

as in thé proof of (4.3).

Now we obtain from Theorems 4.3 and 5.3 thé following resuit :

THEOREM 6.2. — Let F(t, x) be a C00 function of (^ x) in a neigh-
borhood of thé origin o f R x R^ with values in CN satisfyîng (5.4). Then
we may factor

. n n-i x
(6.9) F(t,x) = ̂ ^t^j+^^Aj^jCÇt.x) =P(t,A(x))C(t,x)

^j=0 j=0 ^
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near (0,0), where TTJ is orthogonal projection in CN, 0 < j ^ n, such thaï
n

TTjTTk = 6jk7Tk ^nd ^ TTj = Id^y. Hère C(t,x) and Aj(x) are C00 functions
j=0

with values in CN, satisfying |C(0,0)| 7^ 0, 7TkAj{x) = 0 when j ^ k, and

(6.10) A,(0) = ̂  ^A,(O)TT,,
i>j>k

which implies Ao(0) == 0. Thé projections TTk and matrices A^-(O) are
uniquely determîned by condition (6.10), and it follows that m = ̂ j-

3
RankTTj in (5.4). Ifaiso condition (6.4) is satisfied, we find that Aj(0) == 0,
0 <: j < n, and TTk is thé orthogonal projection on 1^ Ç} I^_^ for 0 ̂  k < n,
where J_i = {0}, h = E Im^F(0,0). If F(t, x) is analytic in a

0<j<k
neighborhood of thé origin, then we may choose unique analytic C(t^ x)
and Aj(x) satisfying (6.9) and (6.10). If F(t,x) is real (matrix) valued,
then TTj is real (matrix) valued and we may choose C(t^x) and Aj(x) real
(matrix) valued.

It is clear that condition (5.4) is necessary for thé préparation (6.9),
and condition (6.4) is necessary when A(0) = 0. Observe that in thé proof
of thé analytic case, we apply Theorem 5.3 to thé transpose ^F, which is
analytic. Since (*7r)* = ^TT, we obtain unique orthogonal projections. Thé
préparation is unique up to functions vanishing of infinité order at {x = 0}.
We aiso get C00 bounds on C(t^x) and Aj{x). We obtain thé following
version of thé division theorem from Theorem 5.9 by duality.

THEOREM 6.3. — Let F(t,x) satisfy thé hypothesis in Theorem 6.2.
IfG(t^x) is a C00 function in a neighborhood of(0,0) with values in CN,
then we can write

n-l

(6.11) G(t,x) = F(t,x)Q{t,x) + ̂ t^R^x)
j=0

near (0,0). Hère Q(t,x) and Rj(x) are C00 functions with values in CN,
satisfying TTkRj(x) = 0 w-hen j ^ k, for thé orthogonal projections TT^ in
Theorem 6.2. When G(t,x) and F(t,x) are analytic near thé origin, we
may choose unique analytic Q(t,x) and Rj(x).

As before, thé neighborhood in which (6.11) hoids oniy dépends on
F(t,x), not on G(t,x). Thé division is unique up to functions vanishing of
infinité order at {x = 0}. We aiso get C00 bounds on Q(t,x) and Rj(x).
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