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HARMONIC SYNTHESIS OF SOLUTIONS
OF ELLIPTIC EQUATION

WITH PERIODIC COEFFICIENTS

by Victor P. PALAMODOV

0. Introduction.

Let p == p(x, D) be a s x ^-matrix, whose entries are linear differential
operators on R72 with n-periodic coefficients, i.e. p(x + q, D) == p(x, D)
for any q e Z71, where we denote D = ( z 9 / Q x ^ , . . . ,i9/9xn), i = ^/:rT.
Assuming that p is an elliptic operator, we develop any solution of the
system

(0.1) p(x,D)u=0,

which satisfies for some a > 0 the condition

(0.2) u{x) = 0(exp(a|;r|)), \x -^ oo,

in an integral over a variety of Floquet solutions. This development is
similar to the exponential representation of solutions of (0.1) in the case
of constant coefficients [I], [2]. A decomposition of this type was given by
P. Kuchment [4] for the case s = t. Our approach gives a decomposition of
solutions of (0.1) in a global integral over a series of holomorphic families
Lk = {L/e(A), A G MJ, k = 1 ,2, . . . of finite-dimensional representations
Lk(\) of the translation group Z72. Here for each k the parameter A runs

Key words : Floquet solution - Representation of translation group - Coherent analytic
sheaf - Lasker-Noether decomposition - Noether operator for a coherent sheaf -
Approximation.
A.M.S. Classification : 35J - 43A.
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over an irreducible analytic subset Nk of the variety A of all characters of
the group in the space (0.2). Each representation Lk(\) consists of Floquet
solutions of (0.1) with quasi-impulse A and contains only one Bloch solution.
It may be thought as a Jordan cell for the given representation of the group
Z77' in the space of solutions of (0.1).

To get such a decomposition we use a global Noether operator for the
characteristic sheaf of the system (0.1). Note that a similar decomposition
obtained in [4] is more involved, since there only the local Noether operators
[9] were used. We prove in § 3 that any coherent analytic sheaf on arbitrary
Stein space admits a global Noether operator. In § 5 we state an analog of
Malgrange's approximation theorem.

1. Main result.

Let C71 the complex dual to R/1 and Zn be the subgroup of integer
vectors in C71. Then A := C^Z^ is the dual to Z72 complex Lie group
and it is a Stein variety. There is a bilinear form A x Z71 —^ C/Z, which
is written as A • q == ̂  Cj • ^ji where C, := (Ci? • • • ? Cn) ls anv pre-image of
A under the canonical surjection \ : Cn —» A. For any A G A the function
q ̂  exp(27rzA • q) is a character of the group Z71. This group is represented
in the space ^'(R^) by translation operators Tqf{x) = f(x + 9), q € Z71.
Choose an euclidean norm | • | in R71 and denote by || • || the dual hermitian
norm on C71. For any positive a we denote by Aa the image in A of the
strip ||ImC|| < a/27r, < G C71.

We assume that operator p is included in an elliptic differential
complex :

(1.1) 0-^Lo ^Li ^ L 2 — — • • • ^ 4 L ^ + i — — — , po=p^

where L^ i = 0 ,1, . . . are sheaves of G°°-sections of some finite-dimensional
trivial bundles on R72 and p o ^ i ? - - - are differential operators with n-
periodic coefficients.

THEOREM 1.1. — Any solution u of (0.1), which is defined on R71

and satisfies (0.2) for some a > 0, admits for any b > a the following
representation

r(fc)

(1.2) ^-EE/ W^WA),k ^ i ' 1 ^
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where

i) Nk, k = 1, 2 , . . . are closed irreducible analytic subsets of A, associ-
ated to the characteristic sheaf M of (0.1) (see § 3),

ii) for any k, fkj(\,x), 1,... ,r(k) are smooth functions on Nj^ x TU1,
which are holomorphic on X e N^ and satisfy the equation (0.1) on x ;

iii) for any k, X C Nk the linear span Lk(\) of functions fkj(X,'),
j = l , . . . , r (k ) is Z71 -invariant and contains a unique invariant one-
dimensional subspace; its character is equal to exp(2m\ • x ) ;

iv) Ukj are C00-densities on the set regA^ of regular points of N k ;
supp^/ej C regTVfc Fl A^. Moreover for arbitrary proper closed analytic
subsets ^lk C Nk, k = 1,... there exist densities /^-, which satisfies (1.2)
such that supp/^ C Nk H A^, \ f^ for any j and k.

Remark 1.2. — Inversely for any densities /^j, which fulfil iv), the
second term of (1.2) is equal to 0{exp(b\x\)) at infinity and satisfies (0.1).

Remark 1.3. — The space Ep of solutions of (0.1), which satisfy
(0.2), is generally an infinite-dimensional non-unitary representation of
Z71. The equation (1.2) may be considered as a decomposition of Ep
in an integral over the family of finite-dimensional subrepresentations
L/c(A). But the densities Ukj are far from being unique unlike the Stone-
Naimark-Ambrose-Godement theorem for an unitary representation, where
the spectral measure is unique.

Note that the representation L/c(A) is reducible, except for the case
dimL/c(A) = 1, but is not decomposible, i.e. Lfc(A) is not equal to a direct
sum of some invariant subspaces.

Remark 1.4. — It follows from iii) that for any k there exists an
integer d such that the identity
(1.3) [T, - exp(27rzA • q^h, (A, .) =0, V^ C Z71,
holds for any A e Nk and j = 1,... r(k). This identity implies that for any
kj

fkj{\x) = ̂  xshs(\x)ex.p(2m\•x),
\s\<d

where all the functions hg (A, x) are n-periodic on x. Hence fkj(\,x) is a
Floquet-solution of (0.1) with quasi-impulse A. Any generator, say //ei, of
the unique invariant one-dimensional subspace satisfies (1.3) with d = 1. It
is called Bloch-solution.
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2. Analytic lemmas.

Fix an integer k and consider the following family of elliptic complexes
with n-periodic coefficients (cf. [4]) :

(2.1) w^ : 0 <— W^ ̂  W^ p'^ W^ ^- • • •

where Wf denotes the Sobolev space of sections of Li on the torus T72,
which are square-summable with its derivatives up to A'-th degree,

^(0:=^(^^+27TC),

where tp means the formally adjoint operator to p, mi is the order of pi,
k(0) = 0, k{i) = k + THQ + • • • + ̂ 1-1, i > 0 and ( runs over C". This is
a holomorphic family of Fredholm complexes since (1.1) is elliptic. Denote
by W^ the sheaf of germs of holomorphic functions f : C71 —^ H^. Then
(2.1) generates the following complex of analytic sheaves on C72

(2.2) 0——Wo^ ^W^ ^...

We define an action of the group Z71 on the sheaf W^ by the formula

T^(C, x) = exp(-27rn9 • x)^ + ^, x), ^ e Z " .

Let ^ : C72 -^ A be the canonical projection; consider the sheaf ^|A of
invariant sections of W^; a section of 1^ on an open set V C A is identified
with a section (p of W^ on ^"^(V) such that

(2.3) ^(C-h^aQ =exp(27r^-^)'0(C,rr),V^ e Z71.

The following evident operator identity

p'(^ + ^) = exp(27n^ • .ry(C) exp(-27r^ • x)

implies that (2.2) generates for any k a sheaf complex

rk . n. ,___ 7^(0) PO rfc(l) P'l rfc(2)
1^ . U <—— ^o <—— 1! ^—— ^2 —— * ' '

Denote by H^ =^Hi the homology of this complex. All Hi are coherent
analytic sheaves on A, since (2.1) is a holomorphic Fredholm family (cf. [4]).
This follows, for example, from [13, Lemma 4.3]. The embedding J^4"1 —^ 1^
induces for any k sheaf morphisms hk : H^1 —> H^.

LEMMA 2.1. — For any k, hk is bijective.

Proof. — Fix C and choose a parametrix r for the complex (2.1).
This is a pseudodifferential operator in the graded space of (2.1) of degree
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1 and of order -m,, when acting on the term W ^ ' " , which satisfies the
equation

P(0+^T(C) =id+(7,

where g is a pseudodifferential operator of order -1 and of degree 0 as
an endomorphism of the complex. It defines a morphism of complexes
q : YV^ -^ >V^+1. This equation means that the compositions eq and qe
are homotopic to the identity morphisms, where e : W^1 -^ H^ is the
natural embedding. This implies Lemma 2.1.

From now on we abbreviate the notation of H^ to Hi.

LEMMA 2.2. — For any k and a > 0 there is a natural isomorphism

(2.4) ^(F(A^))-F(A^),
where H ( K ) means the homology group of a complex K.

Proof. — Consider two spectral sequences for the functor r(Aa,-)
and the complex 7^; both converge to the hyperhomology. For the first
one we have E^ = ̂ (^(Aa,^)). This term vanishes for q > 0, since
^(Aa,^) = 0, because 1^ is a holomorphic Banach sheaf [5]. Hence
the hyperhomology is isomorphic to the left-hand side of (2.4). For the
second spectral sequence we find E^ = HP(Aa,Hq). These groups vanish
for p > 0 as well, since H^ is a coherent sheaf on a Stein space and
F(A^,) ^ E^ ^ E^. This implies (2.4).

Now we pass in the spectrum I\ := F(Aa,^) to the projective limit
on k.

LEMMA 2.3. — There is an isomorphism

(2.5) u(r(A^))^r(A,,^), i.:=i^.

Proof. — A formal scheme is the same as in the previous lemma.
We compare two standard spectral sequences for the hyperhomology of
the functor Pr of projective limit and of the spectrum F^. The term
E^ = Pr^T^F^)) vanishes for p > 0 since the spectrum Hq(T,,) is
constant in virtue of Lemma 2.2. The term 2^?* = E^o is equal to the
right-hand side of (2.5).

For the second spectral sequence we have E^ = ̂ (Pr^F,,)). These
groups vanish for q > 1, since Pr9 = 0. Evidently Pr°(F^) = F(Aa,^)
hence E^° coincides with the left-hand side of (2.5). Now we verify that
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PTl({^(Aa^I^)} = 0. For this we need to show that the embedding of
Frechet spaces I^Aa,/^1) —^ r(Aa,J^) has a dense image ([6]). This
density property is easy to check, if we develop an arbitrary section of
1^ in Fourier series on x. Therefore the sequence £2 degenerates to £^°,
which completes the proof of Lemma 2.3.

For an arbitrary positive b we consider the space S^ of C°° -functions
y? on R71, which satisfy the inequality

(2.6) iDWI^G^exp^l.rl)

for any i = ( % i , . . . ,in) and b' < b. For given &' and i take the minimal
constant Cy.i = C^,^). For any V > 0 the functional C^^) is a norm
on Sb. This family of norms makes Sb a Frechet space.

The cube P = {$ C R71, 0 < ^ < 1, j = 1 , . . . , n} is a fundamental
domain for the group Z72.

LEMMA 2.4 (cf. [3]). — The formula

(2.7) ^(x) = / exp(-2^z ̂  • x)^ x)d^
J P

defines for any b > 0 an operator S : F(Ab, I) —> 6^, which is a topological
isomorphism, where the sheaf I corresponds to the trivial line bundle L.
The inverse operator S~1 can be written as follows :

(2.8) ^ x) = ̂  exp(27rz ̂  {x + q))^(x + q).
q^Zn

It follows that for any differential operator r with 77-periodic coeffi-
cients there is a commutative diagram :

Sb —^ Sb
(2.9) 4 ^ 4

r(Afcj) ^-> r(A,,J)
where the operator r', generated by the family r'^) = tr(x,D + 27r^) as
above.

Proof of Lemma 2.4. — The integral (2.7) is evidently a bounded
function of x and moreover for arbitrary 77 G R71, ||?7|| < &/27T we have

(^(a;) = / exp(-2m^-x)^(^x)d(,
JP+ir]

because of Cauchy theorem and of (2.3). Hence ip{x) == 0(exp(27r?7 • x))
for x —^ oo, which implies (2.6) for i = 0. The same conclusion is valid
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for any derivative of (/^ hence (p is an element of Sb and the operator S is
continuous.

For any function (p e Sb its inverse Fourier transform ^(^) is a
holomorphic function in the strip A^ which decreases as fast as Odd"9),
when |d —^ oo, for any q. Hence the inverse Fourier transformation may be
written as follows :

^{x)= / exp(-2m^-x)^)d^= V f exp{-2m^ • x)^)d^
J^n ^n Jp^

= ( exp(-2m^x)^x)d^
J P

where
(2.10) ^(^x)= ̂  exp(-27m9-a;)(^+^).

'Q^Zn

It is easy to see that ^ e r(Ab,J) and the operator I? : (p ^ ^ is
continuous. This formula means that R is a right inverse to 6'. If we prove
that 6' is injective, Lemma will follow. Suppose that S^ = 0 for an element
'0 C F(A5,1) and develop ^ into a Fourier series on x :

^(C^)= ̂  exp(27rzA--.r)^(C).
/cG^"

Condition (2.3) implies that ^(C+^) = ^-^(C), hence ^(C) = ^o(C-A-).
Therefore

0 = / exp(-27r^ • a;)^(^.r)^ =Y^ f exp(-2m^ - k) • x)^ - k)d^
Jp k ^

= f exp(-27r^.^o(0^.
^R71

It follows that ^o(x) = 0 and therefore '0 == 0, q.e.d.

To find out an inverse formula we start from (2.10) and change the
integration variables y to y + x :

,̂ x) = ̂  exp(-27m9 • a:) ^ exp(27rz(^ + i9) ' y)^p(y)dy
^^zn v

= Z^ / exp(27rz(^ • (y + a;) + ^9 • y)y{y + a;)^ = ̂  ̂ (^),
i9 J

where ^^(y) ''= exp(2mS, • (^/ + x))y{y + a;). The right-hand side is equal
to

^ (Pxdq)=^exp(2m^{x+q))^x+q),
qeZn q

since of the Poisson summation formula. The proof is complete.
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3. Noether operators.

Let A be a commutative algebra, M be a A-module. A prime ideal p
of A is called associated to M ([7], [8]), if there exists an element m 6 M,
whose annulet ideal coincides with p. M is called p-coprimary, if p is
the only ideal, associated to M; we denote it p(M). The Lasker-Noether
decomposition of M is a representation of the zero submodule of M in the
form

(3.1) o=Min...nMj,

where all M/Mi,..., M/Mj are coprimary A-modules. This decomposition
is called irreductible^ if no one of modules Mj in (3.1) can be omitted and
all the prime ideals pj = p(M/M^-), j == 1 , . . . , J are different. If A is a
Noetherian algebra, any A-module M of finite type admits an irreducible
Lasker-Noether decomposition. The set of prime ideals { p j , . . . , p j } is
defined uniquely.

Let K be a field and A be a commutative J^-algebra, M, N be A-
modules. A JC-linear mapping 6 : M —> N is called a differential operator
of order < d, if (ad^)^1^ = 0 for any b G A, where (ad 6)7 := 76 — b^f.

DEFINITION 3.1 [9]. — Let p be an ideal associated to an A-module
M ; we call v \ M —> [A/p]7" a y-Noether operator, if

i) v is a differential operator in A-modules and r < oo,

ii) Ker^ is a submodule ofM and p is not associated to Kerz/.

A Noether operator for a module M is a direct sum

^^,:M-^[A/p,]^\
j

where v^ is a pj-Noether operator, j = 1 , . , . , J and {pi,..., pj} = Ass(M).

PROPOSITION 3.1. — If A is noetherian, then any Noether operator
is injective.

Proof. — We have Ker v = D Ker Vj and Ass(Ker v) C Ass(M), since
Ker v is a submodule of M. No one of ideals p i . . . . . pj is associated to Ker v,
according to Definition 3.1 ii). Hence Ass(Ker^) is empty. This means that
Ker v == 0, because of existence of Lasker-Noether decomposition.
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Recall that analytic algebra A is a C-algebra, which is isomorphic
to a quotient of the algebra C { z ^ , . . . , Zn} for some n. It is a Noetherian
algebra.

THEOREM 3.2. — Let A be an analytic algebra, M.K.L be A-
modules of finite type, X: M -^ L, K, : M -^ K be A-differential operators
such that Ker K is an A-submodule, L is p-coprimary and X vanishes on
Ker K. Then there exist an element s <E A \ p and a differential operator
a : K —> L such that s\ = OK.

To check this statement we choose a Noether operator v : K —^ N for
K and apply the Unicity theorem of [9] to the composition y ^ : M —> N .

Let {X, 0(X)) be a complex analytic space, M, N are 0(X)-sheaves;
a sheaf morphism 6 : M -^ N is called a differential operator, if for any
point x e X the fibre morphism 6x : M^ -^ N^ is a differential operator
over algebra Ox(X); ord<5 := supord^.

Fix a point x C C71 and consider the analytic algebra A := O^C7'1)
of germs at x of holomorphic functions. Let G be an irreducible germ at
x of analytic set in C71. The ideal I(G) C A, consisting of function germs,
which vanish on G, is prime; vice versa, any prime ideal in A is equal to
I{G) for some irreducible germ G. We call such a germ G associated to an
A-module M, if so is the ideal I(G). For example, for any analytic germ
Y in C72 the germs Gi , . . . ,GK associated to A-module 0(Y) are all the
irreducible components of Y.

Now we pass to the global case and operate with closed irreducible
analytic sets in X instead of germs. Recall that a closed analytic subset Y
in a complex space X is irreducible, if there is no proper open and closed
analytic subset Z C Y.

DEFINITION 3.2. — Let (X,0(X)) be a complex space, M be a
coherent analytic sheaf on X. We call an analytic subset Y C X associated
to M, if

i) Y is closed and irreducible,

ii) for any point x G Y its germ Yx is an union of some irreducible
germs G i , . . . . GK, K > 0 associated to the 0^(X) -module My,.

A collection of all analytic sets associated to M is denoted Ass(M). If
X is a Stein space, for any point x C X any germ G associated to M^ is a
germ of a set Y e Ass(M). This fact is contained in the following theorem
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for semi-local situation and in [10] for the general case :

THEOREM 3.3 [9]. — -For any coherent sheaf M on a complex space
X and any point x e X there exists a neighbourhood U such that the
set Ass(M\U) is finite and for any Y C Ass(M\U) there exists an 0(X)-
differential operator

vy :M ->^0(Y)

where the direct sum is finite such that the operatorz. :=n^y:M^ n ^O(Y)
Ass(M)

is a Noether operator for M^ for each x 6 U.

DEFINITION 3.3. — If Y is an analytic set associated to M, we call
Y-Noether operator for M any differential operator v '. M —^ ^0(Y),
where the direct sum is finite, such that for any point x C Y and any
irreducible component G ofYx the composition pc is a G-Noether operator,
where pc '• ̂  0(Y) —^ ̂  0(G) is the restriction morphism.

In fact the operators vy in Theorem 3.2 are Noetherian. Now we prove
the following

THEOREM 3.4. — For any Stein space X, arbitrary coherent ana-
lytic sheaf M on X and any set Y G Ass(M) there exists an Y-Noether
operator

^y:M-^0(Y),

which possesses the following property : there exists a holomorphic function
s ^ 0 on X such that for any element a G T(Y, 0(Y)) there is an 0(Y)-
endomorphism b of^O(Y), which satisfies the equation

(3.2) 5(ada)^y = hvy.

LEMMA 3.5. — Let M be a coherent analytic sheaf on a Stein space
X, Y be an irreducible component ofsuppM and 6 : M —^ ̂  ̂ (^) oe an

0{X)-differential operator. Suppose that there exists a point y G Y and
an irreducible component W ofYy such that the composition 0 := pw^y
is an W-Noether operator with the following property : for any element
a G Oy(Y) there exists an Oy(Y)-endomorphism b of ^Oy(Y) such that

(3.3) 9a = b9.
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Then 6 is a Y-Noether operator for M.

Proof of Lemma 3.5. — First we verify that the sheaf K = Ker6 is
an 0(X)-subsheaf of M. For this we consider the sheaf D(Y) of differential
operators e : M —^ 0(Y) of order < ord(^). It is a coherent sheaf ([9,
Prop. 11.3]). Let 61 : M —> 0(V), i = 1,... ,r be the components of the
operator 6 and I be the subsheaf of D(Y)^ generated by ^ i , . . . , 6r. Take
an arbitrary holomorphic function a on X and consider the subsheaf A in
D(V), generated by I and operators <^a, z = 1 , . . . , r, where a is considered
as an endomorphism of M. The sheaf A / I is coherent and its support is
contained in Y. The germ of supp(A/J) at y does not contain the germ W
since of (3.3). Hence supp(A/J) is a proper analytic subset of Y. Choose
arbitrary holomorphic function 5, which belongs to the annulet ideal of A/J,
but does not vanish identically on V. All the operators s^a are sections of
the sheaf I , hence for any i and any point x G Y

s6i a = y bj^j
with some functions germs bj at the point x. Therefore the equation
S(f) = 0 for / € Mx, x G Y implies that s6(af) = 0. This implies the
equation 6{a1f) = 0 for any a' € Ox(X), since functions a e F(X^O(X))
are dense in Ox(X) in m^-adic topology and any differential operator is
continuous with respect to this topology. Therefore K is 0(X)-sheaf.

This sheaf is coherent in virtue of [9, Th. 2]. Hence supp K is a closed
analytic subset of supp M. We need only to check that supp K does not
contain Y. Since Y is irreducible, it is sufficient to show that the germ
of suppJC at y does not contain W. We have (snppK)y = svippKy C
supp My, At the other hand supp Ky is the union of all germs V, associated
to the Oy(X)-modme Ky. It follows from the condition of Lemma that the
germ W is not associated to the Oy(X)-modme Ky. There is no other
germ V D W associated to snppKy, since W is an irreducible component
of supp My. Hence suppKy does not contain the germ W, q.e.d.

Proof of Theorem 3.4. — We may assume that X = suppM. Other-
wise we shrink X to suppM. Let Xj, j G J be the irreducible components
of the space X (cf. [II], ch. V]). Each of them is a Stein space and the cov-
ering X = UXj is locally finite. Therefore it is sufficient to prove Theorem
for each sheaf M 0 0{Xj)\X^ j e J and we may suppose that suppX is
an irreducible Stein space.

Fix a point x e X and an irreducible component Y of the germ X^ -
Since of Theorem 3.3 there exists a V-Noether operator IJL : M^ —> Y^ 0(Y).
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Consider the coherent sheaf D(X) of germs of differential operators 6 :
M -^ 0(X) of order ^ ord(/^). Let 61, i = 1,. . . ,r be its sections on X,
which generate this sheaf at x. Consider the following operator

<5:M^[0(x)r; ^(/)=(^(A...A(/)).

LEMMA 3.6. — The composition <5y := py^> is an Y-Noether oper-
ator.

Proof. — First we check that Ker^y is an Oa;-submodule of M^.
Take arbitrary element m € Ker^a; and function germ a C Ox. Choose an
embedding of the germ X^ in (C71, 0) and a function b on the germ (C71,0)
such that 7r(&) == a, where TT : (^(C72) —^ 0^(X) is the canonical surjection.
Then we can write according to the Leibnitz formula (cf. [9, Prop. 3.1])

^y(am) = ̂ (^-^(^(ad^M^)

where z == (2:1, . . . , 2^) are coordinates on C72 and (ad 2^ means

(ad^) ^ l . . . . . (ad^) ^ T l .

We have (ad^y = ry(ad^)^ and (ad^ : M -^ Y,0(X) is a
differential operator of order <, ord(<5) < ord(^). Hence (ad z) ̂ y (777,) = 0
for each z. This implies that <5y(am) == 0 and our assertion follows.

We have the inclusion Ker/^ D Ker<5y, which follows from the fact
that any component of {i belongs to 0^(X)- envelope of the set {^, z =
1,... ,r}. This inclusion implies that the germ Y is not associated to the
Ker^y, hence 6y is a V-Noether operator for the module Mx.

Lemma 3.6 implies that 6 is a X-Noether operator for M. Set
K '.= Ker<5; this is a coherent subsheaf of M and for any point x^ Ox{X)-
module Kx has no associated germs Z, dimZ = dimX. Now we argue
using the induction on the number dimsupp.F, hence may suppose that
Theorem 3.4 is true for the sheaf K.

LEMMA 3.7. — The equation Ass(M) = {X} U Ass(K) holds.

Proof. — One has the trivial inclusion Ass(-?f) C Ass(M). For any
point x G X any component of the germ X^ belongs to Ass(M^), since 8 is
a X-Noether operator for M. Hence it remains to check that for any point
x € X any germ Y 6 Ass(M^), which is not a component of the germ Xp,
belongs to Ass(JCc). Choose an element m € M^-, whose annulet ideal is
equal to I (Y ) . We claim that m C Kx. In fact the equation am == 0 implies
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in view of Leibnitz formula that a^m) = 0, for k = ord(<5) + 1. It follows
that 6(m) = 0, since a^ is not a zero-divisor in Ox(X). This means that
m G KX-) which implies that Y € Ass(^), q.e.d.

To prove Theorem 3.4 we choose for any Y C Ass(M) a regular point
y e Y and a V^-Noether operator vy for M. Consider the sheaf D(Y) of all
differential operators M —> 0(Y) of order < k :== ord(z^y). It is a coherent
sheaf on Stein space X. Choose a finite set {^ i , . . . ^} C F(X,D(Y)),
which 0^(y)-envelope is equal to the stalk D(Y)y. Consider the differential
operator e(Y) : M —> ^0(Y) with the components e ^ , . . . , E r , and the
sheaf G == Kere(Y). The stalk Gy is an 0^(y)-module of finite type and
the set Ass(Gy) does not contain the germ Yy. This can be proved by the
arguments of Lemma 3.6. Hence the germ of e(Y) at y is a Y^-Noether
operator, satisfying (3.3). Lemma 3.5 implies that e(Y) is a V-Noether
operator for M.

To check the property (3.2) we choose an arbitrary function a 6
r(V, 0(Y)) and for any i = 1, . . . , r consider the operator e^a : M —^ 0(Y).
It belongs to the C^-envelope of the operators £1,.. . ,^ since of the
construction. It follows that there exists a function s G T(Y^O(Y)) such
that the operator scia belongs to F(Y, 0(Y))-envelope of ^ i , . . . ,^ (see
proof of Lemma 3.5). Therefore the operator ^(ada)^ = seia—saei belongs
to this envelope as well. This prove (3.2).

THEOREM 3.8. — Let M be a, coherent sheaf on a Stein space X ,
UN for each N G Ass(M) be a N-Noether operator for M and S(N) be
an arbitrary proper closed analytic subset ofN such that smgN C S{N).
Then for any open set U C X the linear operator

v =\\VN :r(U,M) —>'[[{^F(UnN\S(N),0(N)), N ^Ass(M)}
is an isomorphism onto its image, when the second space is endowed with
the topology induced from the distribution spaces D'(U H N \ S(N)).

Proof. — Firstly we suppose that U is a closed subspace of the
open unit polydisc A in a coordinate space ̂  and there is a morphism
a : K —^ L of free coherent (^(C^-sheaves on A such that Coka ^ M.
This implies the following exact sequence

r(A,^) ^->r(A,L) ^F(A,M)—.0,
where the canonical surjection TT is an open operator. For any N e Ass(M)
the composition

^TT : F(A, L) —— [J ̂  F(A n N^ 0(N))
N
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is a differential operator on A. It may be written in the following explicit
form :

VN^(U) = Va^D'u,

where a, G r(A,I/), Lf •= Hom(L, ̂  0(AQ) and a, = 0 if |z| > deg^y
(cf. [9]). Each operator D1 acting on C" is continuous since of the Cauchy
inequality. Therefore ^TT is continuous. The same is true for v^, because
TT is open.

In the general case the topology of Y(U,M) is the supremum of
topologies, induced from the spaces F(A, ̂ (M|V)), where (V, ( p ) runs
over a set of analytic polyhedrons, which covers U, and (p : Y -^ A is
a closed embedding. Hence the general case is reduced to the case X = A,
M ̂  Coka. It is obvious that v is still continuous in this case. To prove
the openness of v we use

LEMMA 3.9. — For any point z C A and its neighbourhood U CC A
there exist a neighbourhood V c U o f z ^ a neighbourhood W(N) of S{N)
and a constant C such that for any f e F(U, L) there exists a section
g G r(V, K), which satisfies the inequality

f34) ^pdy+^h ̂ Y)
^C7max{sup(|^/(^)[, z ^ U H N \ W(N)), N e Ass(M)}.

The maximum in the right-hand side is well-defined since U U N
is empty, except for a finite subset of Ass(M). Lemma 3.9 implies The-
orem 3.8, since we can choose a polyhedral covering for X, consisting
of neighbourhoods V, which satisfy (3.4) and the sup-norm in the right-
hand side is majorized by the topology induced from the distribution space
D / ( U ^ } N \ S ( N ) ) .

Proof of Lemma 3.9. — In fact it is proved in [1, ch. IV] for a special
Noether operator A, \N : M -> ̂ O(N). We have for any N

(3.5) ATV = s~1 ̂  O-TVA^A ,

where according to Theorem 3.2 ONA •• E °W -^ E °W is a differential
operator in a neighbourhood of z and s e 0(JQ\J(A^). Note that O-TVA 7^ 0
only if N C A, since ONA is a differential operator. Applying [I], we get the
estimate

(3.6)
sup(|/+ag|, ze V)

<Cmax{sup{\\Nf\,zeU'nN\W(N)), N e Ass(M)}
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for a section g of the sheaf K, some neighbourhoods V, U ' CC U of z. We
may assume that the set S ( N ) contains s'^O). Then we need to prove the
inequality

SMp{\\Nf^z^U^N\W{N)}
^G'max{sup( |z/A/ | , ^ e UnA\W(A), A D TV}.

Combining it with (3.6), we get (3.4). To prove (3.7) we use (3.5), the
inequality \s~l\ < const on the set U F) N \ W(N) and the estimate

sup {|<7A,A/i|, z G U ' n N \ W(N)} ^ Csup{|^|, z e U n A \ W(A)}

for any holomorphic function h on U Fl A. To check this estimate we apply
the Cauchy inequality. Lemma 3.9 and hence Theorem 3.8 are proved.

4. End of the proof of Theorem 1.1.

Now we apply Theorem 3.4 to the sheaf M := HQ = Cokpo? denoting
TVi, TV's , . . . all the elements of Ass(M). Thus for any k there exists a 7V/c-
Noether operator

^ : r(A,M) —— ^r(A^,0(7v,)),

possessing the property (3.2). Moreover Theorem 3.8 implies that the
continuous operator

v = [J ̂  : r(A,, M) -^ n ̂  r(A, n N^ O(TV,))
k

is an open mapping onto its image, when the first space is equipped with
the canonical topology and the second one is endowed with the topology
induced from nZ^'^ l^l Nk \ ^/c), where D\') means the space of
distributions and f^ is any proper closed analytic subset of N^ such that
sing Nk C f^/c. We may assume that for any k this set satisfies the condition :
s -^ 0 on Nj^ \ ^fc? where s is holomorphic function, which appears in (3.2).
Combining this mapping with the morphism TT : r(Aa, Io) —>• r(Aa, M), we
get for any a > 0 the complex

(4.1) r(A,,Ji) ^r(A,,Jo) ^Y[^T{A^N^O(Nk)).
k

It is exact, since KerTr = Impo? because of Lemma 2.3 and of Proposi-
tion 3.1. The composition Z/TT is an open operator onto its image, since TT is
open by the definition of the topology of r(Aa, M) and v is open, because
of the aforesaid.
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Now take an arbitrary solution u of (0.1), which satisfies (0.2). It
may be considered as a functional on Sb for arbitrary b > a. This functional
vanishes on Im^p. Let 6'* be the adjoint to the operator 5" (see Lemma 2.4).
Then S*(u) is a continuous functional on r(Ab,Jo)) which vanishes on the
subspace Impg = Kerz^Tr, because of (2.9). Consider the operator

p : r(Afo, Jo)/ Ker ^TT —> Im I/TT,

generated by z^zr. It is a topological isomorphism, since Z^TT is open, hence we
may consider a continuous functional v := (p~lyS*(u) on Imz/Tr. Applying
Hahn-Banach theorem, we take a continuous extension w of v to the space
I~[ ̂  F(Ab n Nk, 0(Nk)). It can be written as a finite sum

r(/c)
w=^^w^-,

k j=l

where Wkj is a continuous functional on r(A^ D 7V/c, 0(A^;)). Then we use
Hahn-Banach theorem once more to extend Wkj to a continuous functional
Wkj on the space D^A^ Fl Nk \ ̂ k) and write it as an integral

^^(f) = j fl^kj

with a smooth density fJikj such that supp/^j C A;, D N^ \ ̂ k- Hence

(4.2) u(^) = vW = w(z/7r(^)) =Y^ ^kj^W^kj,
kj

where (p G S'̂ ,, ^ := S~l((p) and

^• : r (A,M)——r(A^,0(^)) , j = l , . . . , r ( f c )

are components of z//c. The equality (4.2) coincides with (1.2) if we set

A,(A,^) :== ̂ ^w, ^ := ^-TT : r(A,Jo) — r(^,o(^)),
where /^-(A,^) means the value of the distribution /^-(A,-) on a test
function (p and 6\ denotes the delta-distribution supported by the point
A G Nk. The distribution /fcj(A, •) satisfies (0.1) since it may be written in
the form (4.2) with ^^j ' '= ^\- This a smooth function on re € R71, since
the equation (0.1) is elliptic. This solution is weakly holomorphic on (^ and
therefore is a smooth function on N^ x R71. This implies ii). Properties i)
and iv) were proved earlier.

To check iii) we choose arbitrary q ^7/1 and compute for arbitrary k
and j

Tqfk,{\^) = /^(A,r_,(^)) = 6x6kj(e^), e,(A) := exp(27rzA • q),
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^kj(e^) = eq6kjW + (ade^)^-(^).

The operator 7 := 5(ade^)^j belongs to the linear span of operators 6^,
i = 1,.. . ,r{k) over algebra r(A,0(A)) since of (3.2) and ord7 < ord^.
We have

sW6x6kj(eq ' ^) = s{\)eq(\)6x6kjW + 6^W,

therefore for any A G N^ \ ̂ k whe have

rj^-(A, tp) = e,(A)/^(A, ̂  + sW-^^)^

hence
[̂  - exp(27rzA . q)] /^-(A, •) = ^(.),

where ^ is an element of the linear span of functions ./^(A, •), i =- 1 , . . . , r(k).
Applying this computation to g and so on, we come to (1.3), which implies
iii). The proof is complete.

5. Approximation.

THEOREM 5.1. — Suppose that a set <3> C A has a non-empty
intersection with N^ for each k. Then the set of Floquet solutions of (0.1)
with quasi-impulses A C <I> is total in the space of all solutions, which
satisfies (0.2) for some a > 0.

Remark. — The similar result for differential equations with cons-
tant coefficients is due to Malgrange [12].

Proof. — The statement is equivalent to the following : for ^ G
r(Aa, Jo) the system of equations

(5.1) 7^) =0, A G ̂

implies that (p G Impo, if 7^ runs over the set of linear functionals over
r(A,Jo) supported at A, which vanish on the image of the operator p'Q in
(4.1). To prove this implication we note that for any k, any A G ^ H Nj^
and any functional 6 over ^r(7Vfe,0(A^)) supported at A, the functional
7^ := 6vk^ vanishes on Impo- Hence the system (5.1) implies the equation
6(i^k7r(^) = 0 for any 6. This means that the image of Vk^(^) m ̂  0\(Nk)
vanishes, where the symbol ^ denote the completion in m^-adic topology.
If follows that the germ at A of the function ^7r(^) is equal to zero, since
the canonical mapping F\ -^ F\ is an injection for any coherent sheaf F.
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This implies the equalities ^7r((^) =0 , k = 1, . . . , since Nk is irreducible
for any k. Therefore (p C Impo because (4.1) is exact and Theorem 5.1
follows.
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