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UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN
EQUATION ON q-CONVEX WEDGES

by C. LAURENT-THIEBAUT & J. LEITERER

0. Introduction.

With this paper we begin a systematic study of the tangential Cauchy-
Riemann operator 9^ on real submanifolds of complex manifolds from the
viewpoint of uniform estimates and by means of integral formulas. This
method was first applied by Henkin and Airapetjan/Henkin to 9b (see
[Hel], [He2], [He3], [He4], [AiHe]). In particular, in [AiHe] important ideas
are described in greater detail, which are basic for our study.

Concerning other methods in the theory of 9b we refer to the survey of
Henkin [He4] and the recent papers ofNacinovich [Nl], [N2] and Treves [T].

We follow the classical concept first used by Andreotti and Hill (see
[AnHil], [AnHi2]) which consists of two steps :

I. Representation of CR forms as the jump of (9-closed forms in
certain auxiliary domains (wedges).

II. Solving the 9-equation in those domains.

To get uniform estimates, both steps must be done with corresponding
estimates. That, under certain strict convexity, resp. concavity conditions,
this is possible was first announced by Henkin (see Theorem 2 in [He2] and
Theorem 8.15 in [He4]).

Key words : Cauchy-Riemann equations - Integral formula with uniform estimates -
Piecewise smooth g-convex domains - Tangential Cauchy-Riemann equations.
A.M.S. Classification : 32A25 - 32F10.
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In the present paper we prove the result which is necessary to do step
II in the ^-convex case. To state this result we use the following

0.1. DEFINITION (see (8.7) in [He4]). — Let D CC X be a domain
in an n-dimensional complex manifold X. D will be called a strictly q-
convex C2 intersection, 0 < q < n -1, if there exists a finite number of real
C2 functions p i , . . . , p^ in a neighborhood U-^ of~D such that

D={zeU-^:pj(z)<0 for l ^ j ^ N }

and the following condition is fulfilled : if z e 9D and Kk^<' • • <ke<N
with pk, (z) = • • • = pk, (z) = 0, then

d p k ^ ) ^ ' " ^ d p k , ( z ) ^ 0

and, for all A i , . . . , A^ > 0 with Ai 4- • • • + \i = 1, the Levi form at z of the
function

Alpfci + • • • + \epk^

has at least g+1 positive eigenvalues. (See Lemma 2.2 for a weaker
formulation of this condition.)

The main result of the present paper is the following :

0.2. THEOREM. — Let E be a holomorphic vector bundle over an
n-dimensional complex manifold X, and let D CC X be a strictly q-convex
C2 intersection, 0 <, q <, n - 1. Moreover suppose that D is completely
q-convex,

i.e. the following condition is fulfilled(*): there exists a real C2

function y on D whose Levi form has at least (q + 1) positive eigenvalues
at each point in D and such that

{z C D : ^p(z) <C}CCD for all 00.

Denote by B^(D, E), (3 ^ 0, r = 0,1,..., n, the Banach space of
E- valued continuous (n, r)-forms / on D such that

sup||/(^)||[dist(^9D)]^<oo,
z^D -

and denote by C^(D, E), 0 < a < 1, r = 0,1,. . . , n, the Banach space of
£'-valued (n, r)-forms which are Holder continuous with exponent a on ~D

(*) This is automatically the case if X is Stein (cf. , e.g., Theorem 5.3 in [HeLe2] and
the proof of Lemma 9.2 of the present paper).
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(cf. sect. 1.16). Further, let kerd be the space of all closed E- valued forms
on D.

Then :

i) J f 0 ^ / 5 < l / 2 , then there exist linear operators

Tr : B^(D^E) Hkerd —. Q C^-^D^E)^
0<e<l/2-^

n — q <^ r <^ n, which are compact as operators from B^(D^E) C\ ker d to
each G^rf^GD, E), 0 < e < 1/2 - f3, and such that

dT^f = f

for all n - q < r < n and f € B^(D, E) D ker d.

11) If 1/2 < f3 < 1, then there exist linear operators

Tr : B^(D^E) n kerd —— Q ̂ ^(D,^),
e>0

n — q <: r <: n, which are compact as operators from B^{D, E) D ker d to
each B^L'i172^,^), e > 0, and such that

dTrf = f

for all n - q < r ^ n and f <E B^{D, E) H kerd.

For q == n — 1 (i.e. the pseudoconvex case) and f3 = 0, this theorem
was proved by Range and Siu (see [RS]), and for arbitrary 9, but smooth
9D and /3 = 0, it was proved by W. Fischer and Lieb (see [FiLi]). For
f3 ̂  0, but smooth 9D and q = n — 1, Theorem 0.2 was obtained in [LiR]
(see also [BFi]). Passing from these more special results to the case when
1 < q < n—2 and the number N of smooth pieces of 9D is greater than one,
one meets the following new problem : the Leray map (see sect. 1.11) now
depends non-linearly on A, whereas in the piecewise strictly pseudoconvex
case considered in [RS] this dependence is linear and therefore can be
eliminated by explicit integration over A. In the literature this problem was
first discussed by Airapetjan and Henkin in [AiHe]. They observe that in
the case of non-linear dependence of A "the explicit integration with respect
to A . . . becomes a rather difficult problem" (see the beginning of sect. 1.4
in [AiHe]), and then they present a very important idea : if the Leray
map depends in a certain special rational form on A (see formula (1.4.1)
in [AiHe]), then explicit integration is also possible, using a formula (see
Proposition 1.4.1 in [AiHe]) which is called by them generalized Fantappie-
Feynman formula.
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Further, in the survey article [He4] of Henkin, one can find the
statement (see Theorem 8.12 d) in [He4]) that from the papers [He2] and
[AiHe] follows the following result, which is an important special case of our
Theorem 0.2 : ifD is as in Theorem 0.2, then, for any f C C^(D, linker d,
the equation du = f has a continuous solution on D. From the text
following Proposition 6.2.1 in [AiHe] and from personal conversations with
Henkin we understood that, writing this, Henkin had the following idea for
the proof :

1) Construct a Leray map whose dependence on A is piecewise of the
special rational form mentioned above.

2) Explicit integration with respect to A by means of the generalized
Fantappie-Feynman formula.

3) Estimation of the integrals over the moduli of the obtained inte-
grands.

After certain attempts to realize this program of Henkin, we under-
stood that this is not so easy. Therefore we modified Henkin's idea as
follows : we do not try to choose a Leray map of a special form - we take
the first one which one obtains by generalizing the constructions of Range
and Siu [RS] and W. Fischer and Lieb [FiLi], and then we prove that, in
certain infinitesimal sense, this Leray map is of the mentioned special ratio-
nal form (Lemma 7.4). Though now explicit integration with respect to A
is impossible, this enables us to get a suitable estimate for this integration
(Theorem 7.2). The key to this estimate is an auxiliary estimate (Theo-
rem 6.1) which is close to the generalized Fantappie-Feynman formula of
Airapetjan and Henkin.

This article is organized as follows : to prove Theorem 0.2 we use
an integral operator for certain special domains which we call local q-
convex domains and which will be defined in sect. 2. The construction
of this operator is given in sects. 3-4 by now well-known ideas. First, in
sect. 3, we construct the Leray map mentioned above. Then in sect. 4,
we replace the boundary integrals in the corresponding Cauchy-Fantappie
formula (see sect. 1.13) by integrals over some submanifolds of the domain.
This is necessary to include the case of unbounded forms (/3 > 0) which
we need for the intended applications to the c^-operator. Note that this
construction of sect. 4 is similar to the construction of J. Michel in
his paper [M] on C^-estimates for the 9-equation on piecewise strictly
pseudoconvex domains, where the boundary integrals are replaced by
integrals over certain submanifolds outside the domain. In sects. 5-8 we
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prove the estimates. After a first description of the singularity of the kernel
of our operator in sect. 5, in sects. 6-7 we solve the main problem : we
estimate the integration with respect to A (see above). After that it remains
to repeat the arguments of Range and Siu [RS], what is done in sect. 8. In
sect. 9 we sketch the standard arguments (Fredholm theory and Grauert's
"Beulenmethode") which lead from local results with uniform estimates
to global results with uniform estimates. Also in sect. 9 we complete the
proof of Theorem 0.2, using the Andreotti-Grauert theorem (see [AnG])
on solvability of the Cauchy-Riemann equation on completely ^-convex
manifolds.

1. Preliminaries.

1.1. For z € C" we denote by ^i , . . . ,2 ;n the canonical complex
coordinates of z. We write {z^w} = z\w\ + • • • + Zn Wn and \z\ = {z,z}1^2

for z,w G C71.

1.2. Let M be a closed real C1 submanifold of a domain fl, C C71, and
let C € M. Then we denote by T^(M) the complex, and by T^M) the
real tangent space of M at C- We identify these spaces with subspaces of
C71 as follows : if p i , . . . , PN are real C1 functions in a neighborhood U^ of
C such that M D U = {pi = • • • == RN = 0} and dpi(C) A — A dp^(C) ^ 0,
then

T^M)={teCn•.^9^)-t.=0 for j=l,...,n]
1 ^=1 o(sv 'and ^

T"(M) = {t € C" : ̂  ̂ °^W = 0 for j = 1 , . . . ,n},
1^=1 v

where a:i,..., x^n are the real coordinates on C71 with ty = x^(t) +ix^^n(t}
for t € C71 and v = 1,..., n.

1.3. Let Q C C71 be a domain and p a real C2 function on Q.. Then
we denote by £p(C) the Levi form of p at C € n, and by Fp(-, ^) the Levi
polynomial of p at ^ € f^, i.e.

^E^
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C C n, ^ <E C71, and

F(,.^^9PW(. . V-92^)^ v^ ^^ ^ z ^ ) - 2 ^ _ - ^ - z j ) - ̂  (O-^XCfc-^ fc)
J=l J j,A;=l ^ —

C € ^, z € C71. Recall that by Taylor's theorem (see, e.g., Lemma 1 4 13
in [HeLel])

(1.1) ReF^, C) = p(Q - p(z) + ^(C)(C - z) + o(|C - ̂ |2).

1.4. Let J = O' i , . . . ,^) , l < £ < oo, be an ordered collection of
integers. Then we write |J| = ^ J(z>) = (ji,...,^-1,^+1,... ,^) for
y =!,...,£, andj e J i f j C {ji , . . . ,^}.

1.5. Let N ^ 1 be an integer. Then we denote by P(N) the set of all
ordered collections K = (k^ , . . . , ̂ ), £ ^ 1, of integers with 1 < A ; i , . . . , ke <
N , and we denote by P^N) the subset of all K = ( A ; i , . . . , ̂ ) e P(N) with
A;i < • • • < ki.

1.6. Let J = (j i , . . . ,^) , 1 <; ^ < oo, be an ordered collection of
integers with 0 <, ji < • • • < j^. Then we denote by Aj (or A^...^) the
simplex of all sequences {\j}^o of numbers 0 < \j< 1 such that \j = 0
if j i J and EA^- = 1. We orient Aj by the form dA^ A • • • A d\j, if ^ ^ 2,
and by+1 i f ^ = 1.

1.7. We denote by \ a fixed C°° function

X : [0,1]—.[0,1]

with x(A) = 0 if 0 ^ A < 1/4 and ^(A) = 1 if 1/2 < A < 1.

1.8. Let A^ ^ 1 be an integer and K = (k^ . . . , ̂ ) € P^A^). Then,
0

for A <E Aoj< with Ao 7^ 1, we denote by A the point in A^r defined by

A^=^— (^=1, . . .^) .1 — Ao

1.9. Let D CC C72 be a domain. D will be called a Ck intersection,
A ; = l , 2 , . . . , o o , i f there exist a neighborhood U-^ of D and a finite number
of real C^ functions p i , . . . , p^ in a neighborhood of U^ such that

D = {z C U^ : p,{z) < 0 for j = 1,... ,7V}
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and
dpk^z) A • • • /\dp^(z) ^0

for all ( A : i , . . . , ki) e P\N) and z e 9D with p^(z) = = • • • = p^{z) = 0.
In this case, the collection (L^, p i , . . . , PA/-) will be called a Ck frame (or a
frame) for D.

1.10. Let D CC C71 be a (71 intersection and (L^-, p i , . . . , pjv) a frame
for D. Then, for K = ( A ; i , . . . , ke) € P(A^), we set

5^ = {^ e 9D : p^) = • . . = pk,(z) = 0}
if A ; i , . . . , k^ are different in pairs, and

SK=9

otherwise. We orient the manifolds SK so that the orientation is skew
symmetric in A ; i , . . . , A^, and

(1.2) 9D=^S,
j=i

and
N

(1.3) QSK=Y,SKJ
j=i

for all K C P(N).

1.11. Let D CC C71 be a (71 intersection, (L^, p i , . . . ,p^v) a frame
for D, and let SK be the corresponding manifolds introduced in sect. 1.10.

A Leray map for D or, more precisely, for the frame (L^-, p i , . . . , p^v)
is, by definition, a map ^ which attaches to each K = ( k \ ^ . . . , /c^) C P^N)
a C72-valued map

V^, C, A) = (^, C, A ) , . . . . ̂ , C, A))

defined for (^, ^, A) € D x SK x Aj< such that

^ M ^ C , A ) , C - ^ ) = I
for all (2;, C, A) € D x 5j< x Aj<, and, for v = 1, . . . , £,

V^(i>)(^^A) =^K(z,^\)

i f (2 ; ,C ,A) e D x S K W XA^(^) .
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1.12. We denote by B{z, ̂ ) the Martinelli-Bochner kernel for (n,r)-
forms, i.e.

1 n-l

^'c)=(2^det(lf^'d|f^2)A^lA•••A^

for all z ^ C , € C71 with z ^ C, (for the definition of determinants of matrices
of differential forms, see, e.g., sect. 0.7 in [HeLe2]). If D CC C71 is a domain
and / is a continuous differential form with integrable coefficients on D,
then we set

BDf(z)= I / (C)AB(z,C), z e D
JC,^D

(for the definition of integration with respect to a part of the variables, see,
e.g., sect. 0.2 in [HeLe2]).

1.13. Let D CC C71 be a C1 intersection, ((7-p,pi,... ,p7v) a frame
for D, and let SK be the corresponding manifolds introduced in sect. 1.10.

Further, let ^ be a Leray map for the frame (?7n, p i , . . . , RN)- Then
we set

(1.4) ^<(^C,A) = ̂ (Ao)-^—— + (1 - x(Ao))^,C,A)
Is ~ z}

for K € P'(AO and (^,C,A) € D x SK x AQK. Note that 1 - ̂ (Ao) = 0
0

for A in the neighborhood AOK\ AQJ< of Ao and therefore ^OK is of class
C1. For J^ € P^N) we introduce the differential form

i n-i
f_nW /z——A———s/———^———s\

^(z? c? A) = 727^ ̂ (^K^, C, A), ̂ ox(^C,A))AdziA...A^

defined for (2;, ̂  A) € D x 6j< x AOA-, and the differential form
1 n-l

L^(z,C,A)=^^det(^(^C,A),d^(2,C,A))A^iA.-Ad^

defined for (2^, ^, A) € D x SK x Aj< (here d denotes the exterior differential
operator with respect to all variables ^, ̂  A). If / is a continuous differential
form on D, then, for all K € P'(^V), we set

and
R^f(z)= { /(C)A^,C,A), Z C D ^

-'(C,A)65jcxAoi<

^/(^= / /(C)A%(^,C,A), z e D .r^
^ K J ^ ^ ~ I J \ ^ } ̂ ^K^^^h

f^,\)€SKX^KJ(C,\)€SK-X^K



UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 391

Then, for each continuous (n, r)-form / on D, 0 < r < n, such that df is
also continuous on D, one has the representation

(1.5) (-lY^f = dBaf-Bodf^ ^ (L^/+d</-<d/) on D.
KCP'W

This formula is basic for the present paper. It has different names
and a long history (see, e.g., the notes at the end ofch. 4 in [HeLel]), we call
it Cauchy-Fantappie formula. For more special Leray maps it was proved
by Range and Siu (see [RS]). In the case considered here, this formula was
obtained by Airapetjan and Henkin (see Proposition 1.3.1 in [AiHe]). As
mentioned by Airapetjan and Henkin, the proof of Range and Siu can be
used also in this more general case (see sect. 3.12 in [HeLe2], where this is
carried out).

1.14. Let / be a differential form on a domain D C C^. Then we
denote by ||/(^)||, z € D, the Riemannian norm of / at z (see, e.g., sect. 0.4
in [HeLe2]).

1.15. If M is an oriented real C1 manifold and / is a differential
form of maximal degree, then we denote by |/| the absolute value of / (see,
e.g., sect. 0.3 in [HeLe2]).

1.16. Let D CC C71 be a domain. Then we shall use the following
spaces and norms of differential forms :

C^(D) is the set of continuous forms on D. Set
(1.6) ll/llo=||/ | |o,D=sup||/(^)| |

ZED

for / e C?(D).

C^(D), 0 < a < 1, is the space of forms / e C^(D) whose coefficients
admit a continuous extension to D which are, if a > 0, even Holder
continuous with exponent a on D. Set

(1.7) 11/H, = ||/||̂  = H/||o^ + sup ll/(z)"^c)ll

z,^D |C-^|
•z^C

for 0 < a < 1 and / € C?(D).

BS(D),f3> 0, is the space of forms / G C^D) such that, for some
constant C > 0,

\\f(z)\\<^C[dist(z^D)}-^ z ^ D ,



392 C. LAURENT-THIEBAUT & J. LEITERER

where dist(z,9D) is the Euclidean distance between z and 9D. Set
(1.8) ||/||_^ = ||/||-/3,D = sup \\f(z)\\[dist(z^QD)f

zCD

for (3 ̂  0 and / e Bf(D).

If Ap^(D) is the space of forms of bidegree (p, r) on D, then we set
C^(D)=G,°(D)nA^(D),
G^(D)-^(D)nA^(D),

^ ^(^-^WnA^D),
0^) = Uo^<nC^(D),
%(^)=Uo<.<nG^(D),
B^{D)=Uo<r<nB^(D).

2. Local ^-convex domains.

In this section n and q are fixed integers with 0 <, q <, n — 1. Denote
by G(n, q) the complex Grassmann manifold of ^-dimensional subspaces of
C^ and by M0(n, q) the complex manifold of all complex n x n-matrices
which define an orthogonal projection from C71 onto some ^-dimensional
subspace of Cn. Sometimes we shall identify the projection P e M0(n,q)
with its image ImP e G{n,q). Observe that this identification is only of
class C°° but not holomorphic.

2.1. DEFINITION. — A collection (U, p i , . . . , p ^ ) will be called a
^-configuration in C" if U C C71 is a convex domain, and p i , . . . , p^ are
real C2 functions on U satisfying the following conditions :

(i) { z e U : p ^ z ) = ' - - = p N ( z ) = 0 } ^ 9 .

(ii) dpi (z) A • • • A dpN{z) ̂  0 for all z e U.

(hi) If X e Ai...^v (see sect. 1.6) and

P\ '•= Aipi + • • • + \N?N,
then the Levi form Lp^(z) (see sect. 1.3) has at least 9 + 1 positive
eigenvalues.

2.2. LEMMA. — Let £, e C" and let ^...,^N be real C2

functions in a neighborhood V of ̂  such that the following conditions are
fulfilled :
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(i) ^ i (OA—Ad(^v(0^0 .

(ii) (^i(0 =.. .=(^)=0.

(iii) Set y .̂ = {^ e V : (pj(z) = 0} for j = 1 , . . . , ^V , and ^ =
Ai(^i + • • • + AN^N for A € AI...TV. Then, for ail K = ( A ; i , . . . , ̂ ) C P^AQ
and A € Aj< ("see sects. 2.5 and 1.6), the Levi form 1/^(0 restricted to
T^{Y^ H • • • n Yk,) (see sect. 1.2) has at least

dime T^(Yk, H • • • H V;J - n + g + 1
positive eigenvalues.

Then there exist a convex neighborhood UCVof^ and a constant
Co > 0 such that, for ah C > Co,

(U.e0^ -l^.^ec(PN -1)
is a q-configuration in C71.

Proof. — For A € Ai...^, C > 0 and z C V, we denote by L^(z) the
Levi form at z of the function

AI^+.- .+AA^^.

It is sufficient to prove that for all A € AI...TV there exist a constant
C\ > 0, a space T\ e G(n,q + 1) and neighborhoods U\ C V of ^ and
FA C Ai...^v of A such that, for all C > C\,z C U\ and ^ e FA, the Levi
form L^(z) is positive definite on T\.

Let A C AI...AT be fixed, and let K = (k^... ,^) e P^A^) be the
collection of indices with A^ 7^ 0 for z/ = 1,... ,£ and \j = 0 if j ^ K.
Then by condition (iii)^we can find a subspace T\ of C7' such that Ly^ (^)
is positive definite on T\,

TAcr^y^n.-.ny^)
and

dime TA = dime 2f(y^ n • • • H V^) - n + g + 1.

We choose a subspace T\ e G?(7^, g + 1) so that

fA=rAnr^(y^n...ny^).
Set M = {t € TA : |t| = 1}. Since £<^(0 is positive definite on T\ and
^y^(^) depends continuously on ^ and 2:, then we can find neighborhoods
U^ C V of ^ and 1̂  C Ai...^v of A such that

7:= inf Ly^(z)t>0.
zeu^^er°^,teMnfx
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Set

«.„.)= E^
fe=l

for^eV.teC71,^!,...,^. Then
N

(2.1) L^)t = C(c^^\t^^z)\2 + L^(^)
j==i

for all C > 0, ̂  € Ai...jv, ^ € V. Set

M'^EM: inf ^(^<^-l.
t ^^,/.er^ ^v / ~ 2J

Then it follows from (2.1) that

(2.2) L^(z)t > CJ

if t C M \ M', z € ̂ , fi € F^. Further, since

^^(y^n...ny^)={tecn:t(^,0==o for ^==1, . . .^}
and by definition of the number 7,

M'nr^y^n.-.ny^O,
we have the inequality

N

t€M'
y^mjn^A.I^^OI^O.

j=i
Choose neighborhoods U\ CU^ of ^ and F^ C F^ of A so small that

^•K<^)|2^
j'=i

for t € M', z^U\^^T\. Moreover, we choose C\ > 0 with

l^)^^

for z e U\,^ C T\,t e M'. Then it follows from (2.1) that

\L°,{z)t\ > c2^

for C > C\,z € U\,ii C r\,t e M'. Together with (2.2) this implies that,
for all C > C\^z € U\ and ^ e F\ the form L^{z) is positive definite
on 7\. D
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2.3. DEFINITION. — A local g-convex domain, 0 < q < n - 1, is a
C2 intersection D CC C72 (see sect. 1.9) for which one can find a C2 frame
(U-Q, p i , . . . , p N ) satisfying the following two conditions :

(i) I f K = { k ^ . . . , k ^ e P / ( N ) a n d

U - ^ ' . = { z e U ^ : p ^ = ' " = P k , { z ) } ^

then (dpk, {z) - dp^ (z)) A • • • A (dpk, (z) - dpk, {z)) + 0 for all zeU^.

(ii) There exist a C°° map

Q : AI...TV —> M0{n, n-q-1)

and constants a, A > 0 such that

ReF^.C) >. p^(C) - px{z) + a|C - z\2 - A|Q(A)(C - z)\2

for all X e Ai...^v and z, ̂  € U-^ (for the definition of the Levi polynomial
F^(z^), see sect 1.3).

2.4. LEMMA. — Let (U, p i , . . . , p N ) be a q-configuration in C71,0 ^
q < n - 1. Then for each point ^ eU with pi(^) = • • • = p7v(0 = 0 there
exists a number R^ > 0 such that, for all R with 0 < R < R^,

D ' . = { z ^ U : p j { z ) < 0 for j = ^ . . . , N } n { z e C n • . \ z - ^ < R }

is a local q-convex domain.

Proof. — Set for R > 0,

P^(z)= z-^-R\
Dp = {z e U : p,{z) < 0 for j = 1,... ,N and p^i(^) < 0},

U^ ={zeCn:\z-(i\< 2R}.

We have to prove that, for sufficiently small R,DR is a local g-convex
intersection. First note the following : it is clear that there is R^ > 0 such
that DR is a C2 intersection and (L^ , p i , . . . , p^y, p^+i) is a frame for Dp
satisfying condition (i) in Definition 2.3 if 0 < R <: R^.

Therefore it remains to find constants a,A,^ > 0 with R^ < R^
as well as a C°° map

Q : Ai...^+i —> M0(n, n-q-1)

such that, for 0 < R < R^, z, ( C U-^ and A e AI...TV+I,

(2.3) ReF^(^, C) > p?(C) - P^z) + a|C - z\2 - A|Q(A)(C - z)\\
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where pf := \^ + ... + \^p^ + A^v+ip^.

Note that L^(^) is independent of R > 0. Denote by G'+(A),A e
Ai...;v4-i, the set of all spaces E e G(n, q + 1) such that ^n(0 is positive
definite on E. Since L^ (^) is positive definite on C71 and by condition
(iii) in Definition 2.1,

G + ( A ) ^ 0 fora l lAeAi . . .^+i .
Moreover, it is easy to see that, for all A G Ai...;v+i,G+(A) is open and
connected. Therefore, by elementary topological arguments (AI...TV+I is
contractible), one obtains a C°° map

r:Ai...^+i —G(n ,9+ l )
such that L^(^) is positive definite on T(A) for all A C Ai...jv+i.

Denote by P(A),A e AI...TV+I, the orthogonal projection from C"
onto T(A), and set Q(A) = I - P(A). Choose a > 0 with

L^(OP(A)t>4a|P(A)t|2

for all A € AI...TV+I and t € C71. Further, choose 7?^ > 0 with R^ < R, so
small that

^(C)P(A)^3a|P(A^|2

if IC-^1 ^ P^ A e Ai...jv+i,^ G C^. Finally, we choose constants A, A' > 0
such that

L^(Qt - L^(C)P(A)^| ^ A'^A^II^A^I + |0(A)^|2)

<a|P(A)^+(^-2a)lQ(A^|2

and therefore

L^)t ̂  2a\P{\)t\2 + 2a|Q(A)t|2 - ̂ |0(A)^|2

=2aM2-^|0(A)^|2

for |C - ̂ | ^ R^ A € Ai...^v+i,t e C71. In view of relation (1.1) in sect. 1.3,
this implies that there exists a constant R^ with 0 < R^ < R'. such that

ReP^(^, C) > pf(C) - p^(z) + a|C - ̂ |2 - A|Q(A)(C - z)\2

for |C - ̂  \z - ̂  < 2R^ and A € Ai...^+i. D

Notes. — The results of this section are closely related to §3 in
[AiHe] (cp. Lemma 2.2 with Lemma 3.1.1 in [AiHe], and the proof of
Lemma 2.4 with the proof of Proposition 3.3.1 in [AiHe].
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3. A Leray map for local ^-convex domains.

In this section D CC C71 is a local ^-convex domain, 0 <^ q <^ n — 1,
and (U-^^ / ? i , . . . , p7v), a, A, Q are just as in Definition 2.3.

3.1. Construction of the Leray map '0. — Since p \ , . . . , RN are
defined and of class C2 in a neighborhood of U-^, we can find C°° functions
o!y(y = 1 , . . . , TV; k ^ j = 1, . . . , n) on U-^ such that

^MC) a
^'(0- <

QWj I 2n2
for all C G [7^. Set

PA = ^iPi + • • • + A^p^
and i . i • i •

a^ = Ala^ + • • • + A^a^
for A C AI...TV. Then

<") ^(-'"(O-^)^^!'!2

for all C € ?7p,t € C71 and A G AI...TV. Set

F^(^C) = 2^ ̂ ^(o - ̂ ) - E ^'(0(0 - ̂ )(Q - ̂ )j=i ^ fcj=i
for (z^,X) € C?^ x [/-̂ - x AI...TV. Then it follows from (3.1) and condition
(ii) in Definition 2.3 that

(3.2) Rei^C) ^ PA(C) - PA(^) + jlC - ̂ l2 - A|Q(A)« - z)|2

for all (2,^, A) 6 ?7-p x (7-p x AI...AT. Denote by QkjW the entries of the
matrix Q(A), i.e.

Q(A) = (QkjW)^ -=i (^ = cohimn index).
If (z, (,, A) £ C" x V-Q x AI...AT, then we set

w^^C.A) = 2-^-^a^(C)(Cfc-^)+A^Qfc,(A)(Cfc-^),
C1J fc=i fc=i

,(WC)

fc=i

^i ••» •^^
-,C,A),

(3.3)
w(^,C,A) = (w^^C.A),...^"^^^)),

[^,C,A)=M^C,A),C-^).
Since Q(A) is an orthogonal projection, then we have

(3.4) ^,C,A)=F^,C)+A|Q(A)(C-^)|2
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for all (z, C, A) G C71 x £/^ x Ai...7v, and it follows from estimate (3.2) that

(3.5) Re^ ,C,A)>p^(C)-^(^)+JIC-^ | 2

for all (^ ,C,A) e U-Q x U^ x Ai...^v. In particular ^,C,A) ^ 0 if
(2;, C. A) e D x 5j< x Aj< for some ̂  e P'(AQ. Therefore, by setting

(3.0) ^'^^

for (2;,C,A) e D x SK x ^K,K e P'(AO, we obtain a family ^ =
{^j^eP^N) of (^-valued C1 maps. Obviously, ^ is a Leray map for the
frame (^pi,...,^) (see sect. 1.11).

3.2. DEFINITION. — A map / defined on some complex manifold
X will be called A;-holomorphic if, for each point ^ e X, there exist
holomorphic coordinates /ii,...,^ m a neighborhood of ^ such that f
is holomorphic with respect to / i i , . . . , hk.

3.3. LEMMA.

(i) For every fixed «, A) e U-^ x AI...TV, the map w(z, C, A) and the
function ̂ (z, C, A) (see (3.3)) are (q + 1)-holomorphic in z € C71.

(ii) For each K e P\N) and all fixed «,A) e SK x A^, the map
^K{z, ̂  A) fsee (3.6)) is (q + l)-hoJomorphic in z € D.

Proof. — Assertion (ii) follows from (i). Therefore we must prove
only assertion (i). Let (C,A) € U^ x Ai...^v be fixed.

Choose complex linear coordinates h i , . . . , hn on C71 with

{^ € C" : Q(\)z =0}={zeCn: h^(z) = • . . = h,(^) = 0}.

Then the map ̂  3 z-> Q{\){( - z) is independent of h^..., hq^. This
implies that w(-, <, A) is complex linear with respect to / ^ i , . . . . /^+i, and
^(-, C^ A) is a quadratic complex polynomial with respect to / i i , . . . , hq^. D

Notes. — For N = 1 such a Leray map was first constructed by
W. Fischer and Lieb (see [FiLi]). For the general case, a similar map was
constructed by Airapetjan and Henkin (see Proposition 3.3.1 in [AiHe]).
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4. Homotopy formulas on local ^-convex domains.

Throughout this section we assume :

D CC C71 is a local g-convex domain, 0 < q <: n — 1 (see Definition 2.3);

(L^pi,... ,pjv) is a frame for D satisfying conditions (i) and (ii) in
Definition 2.3;

SK,K e P(N), are the submanifolds of 9D which belong to the frame
((T^-, p i , . . . , pjv) according to sect. 1.10;

-0 is the Leray map constructed in sect. 3.1 for the frame (L^=p p i , . . . , p^)-

We set
T^ = Bo + ^ R^

, KeP'm
and

L-r= ^ 4
KeP'W

(for the definition of the operators BD^R^ ^d ̂ , see sects. 1.12 and
1.13).

4.1. THEOREM. — Ifn— q < r < n, then, for each continuous
(n^r)-form f on D such that df is also continuous on D,
(4.1) (-l)r+n/=dr/7-r/;d/ on D.

Proof. — In view of the Cauchy-Fantappie formula (1.5), we must
prove that L^f = 0 for all K e P^AQ.

Fix K e P^N) and denote by '0}o-^'0^ the components of
the map ^ K ' Since, by Lemma 3.2 (ii), the map '0j<(^,C,A) is (q + 1)-
holomorphic in z, and since r > n — g, this implies that

d^(z, C, A) A • • • A d^{z, C, A) A dzi A . • • A dzn == 0
for all 1 <: j i , . . . ,^ ^ n. Looking at the definition of L^f now it is easy
to see that L^f =0. D

Now we are going to replace the integrals over the manifolds SK
in the homotopy formula (4.1) by integrals over certain submanifolds TK
of P.

4.2. The manifolds T K ' — For K = ( f c i , . . . , ke) G P(AQ we set

^ = {C^D^l (C)=• • •=^(C)}
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if f c i , . . . , ki are different in pairs, and U^ = 0 otherwise. By condition (i)
in Definition 2.3 each [/-Fc is a closed C2 submanifold of U-^. We denote by
p K , K C P(N)^ the function on ^-^ which is defined by

(4.2) MO-P^C) (C^f^-1,...^).

Now, for all K e P(N), we define

(4.3) F^ = {C € ̂  : ft(C) <. ?(0 < 0 for j = 1, . . . , N}.

Then it is easy to see that all TK are C2 submanifolds of D with piecewise
C2 boundary, and that

(4.4) ~D == Fi U • • • U TN
and
(4.5) QFK = SK u r^i u • • • u T K N . K e P(7V).

We choose the orientation on YK such that the orientation is skew
symmetric in the components of K, and the following conditions hold :

( F i , . . . , TN carry the orientation of C72, and
(4.6) if K C P(N) and 1 < j < N with j ^ K, then

TKJ is oriented just as —()TK.

4.3. LEMMA. — IfT'K are the manifolds defined in sect. 4.2, then
N

9TK=SK-^rKj
J=l

for all K e P ( N ) .

Proof. — Denote by SK^ K € P{N), the manifold which is equal to
SK as a set and which carries the orientation of 91̂ . Then it follows from
(4.5) and (4.6) that

N

(4.7) QTK=SK-^Ki
i=l

for all K e P{N). Therefore we must prove that SK = SK tor all
K C P(N). We do this by induction over \K\. Since 9D = 5'i + • • • + SN
(see sect. 1.10), it is clear that SK = SK if \K\ = 1.

Now let £ > 1 and assume that the relation SK = SK is already
proved for all K e P{N) with \K\ = i
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Consider K <E P(N) with \K\ = £ + 1. Set K ' = K(£^l) (see
sect. 1.4). Then by hypothesis and (4.7)

N

9^K'=SK'-^K'j.
J=l

This implies that
N

Y,QTK',=QSK'
J=l

and therefore, by (1.3),

(4.8) E^-E^-
J==l J=l

Moreover, since

E1^-0-j^=i
it follows from (4.7) that

N N

E^^-E^-j=i j=i
Comparing this with ^(4.8) we see that S K ' J = S K ' J for all 1 <, j <, N.
Hence, in particular, SK = S K - D

4.4. LEMMA. — If^K are the manifolds defined in sect. 4.2 and
Aj<, Aox are oriented simplices introduced in sect. 1.6, then
E (-l)1^!^ x Ao^)

^CP^N)

= D x A o + E (-^""^xAox- E ^ ^ X A ^•
KeP'W KeP'W

Proof.— If K = (A; i , . . . , ^ ) C P'(^V), then (in addition to
sect. 1.4) we introduce the notations
^ 3(K^=k. (.=!,...,,)

C^={l , . . . ,A^{A;i , . . . ,^}.
Then we obtain from Lemma 4.3 that
O(TK x Aoj<) = 5'̂  x Aox - E r K j x Aoj<

J'€C'J<

1^1
+ E^1)"^11^ x Ao^) + (-l)1^1!^ x A^

^==1
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for all K e P^N). Since

^K=(-l)w+I/^^),(^,
this implies that

E (-i^o^xAo^)
-RreP^N)

= E (-l^'^xAo^- E I^xA^+f^,
K ^ P ' { N } KCP'W s=l

where
AT

^=]^xAo

.7=1

and, for 2 < s <: N ,

^'^ E (-^""^(^-(^xAo^)- E (-^""r^-xAo^.
K e p ' m K e P ' ( N )

\K\=s |J<|=a-ll<l'^s jecK

Since Fi 4- • • • + r^v = D and the sets of pairs

{ ( K J ) : K E P / ( N ) ^ K \ = £ - ^ j e C K }
and

{(^0>)j(^, i.)): K e P\N)^ \K\ = ̂  i < 1. ^ ^}
are equal, this completes the proof. D

4.5. The function ^(z,<,A) and the map rj(z,^ A). — Set

PA = Aipi + • • • +\NPN for A € AI...TV,

and let ^(z, C, A) and w(z, C, A) be the maps defined by (3.3). We set

(4-9) ^C,A)=^(^,C,A)-2^(C)

for all (^ ,C,A) € C71 x £/^ x Ai...^. Then it follows from (3.5) that

(4.10) Re^ ,C,A)>-p^C)-pA(^+JK-^ | 2 ,

for all (^ ,C,A) € C71 x U^ x Ai...jv, where a > 0 is the constant from
condition (ii) in Definition 2.3. In particular, $(^, ^, A) ^ 0 if (z, C, A) e
D x D x AI...TV, and we can define the C1 map

_ 0

(4.11) r,(z, C, A) = X(\o)———— + (1 - X(AO)) '"̂ ^
Is zl $^,C,A)
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for all (z, C, A) <E D x ~D x Aoi...^v with z ^ < (for the definitions of \ and
0

A, see sects. 1.7 and 1.8). Note that

(4.12) ^,C,A)= -^—l if l / 2 < A o < l ,
Is 2;!

0

(4.13) 7?(2, C, A) = wizl^- if 0 ̂  Ao ^ 1/4,
<t?(^C,A)

(4.14) r,(z,(,\)=^^x) if Ao-0.
'•'v^? S; A)

Further we notice that, by (4.11), (4.9), (3.6) and (1.4), for all K e P'(AQ
we have the relation

(4.15) T^, C, A) = ̂ OK^ C, A) if (C, A) e SK x Ao^.

From Lemma 3.3 one immediately obtains the following

4.6. LEMMA. — For fixed (C,A) e U-^ x Ai...jy, the function
<I>(^, C, A) is (94- l)-Aoiomorphic in z € C^, and the map rj(z, C, A) is (g-hl)-
holomorphic in z e D.

4.7. The kernels G(^, C, A) and H{z, C, A). — Let rj(z, C, A) be the
map defined by (4.11). Then, for all (z, ̂  A) e D x ~D x AOI...N with z ^ C
we introduce the continuous differential forms

1 n-l

(4.16) G{z, C, A) = .—— del (^^,d^C,A)^ A dzi A • • • A dzn

and
n

(4.17) ^^A)=-^^de t (d^ ,C ,A) )A^ iA- . -A^^

where d is the exterior differential operator with respect to all variables
z, C, A (for the definition of the determinants, see, e.g., sect. 0.7 in [HeLe2]).

Then it is easy to see that

(4.18) dG=H.

Further, it follows from (4.12) and the definition of the Martinelli-Bochner
kernel B (see sect. 1.12) that

(4-19) GiDxDxAo^'



404 C. LAURENT-THIEBAUT & J. LEITERER

and it follows from (4.15) and the definition of the Cauchy-Fantappie
kernels RK (see sect. 1.13) that, for all K C P\N),

W ^x^xAo.=(-l)'^.

We omit the simple proof of the following

4.8. LEMMA. -^Denote by [G(z, <, \)]^x=k and [H(z^ C, X)]^x=k
the parts of the forms G(z, <, A) and H(z, C, A), respectively, which are of
degree k in A. Then the following statements hold :

(i) The singularity at z = < of the form [G(z, C, A)]deg x=k is of order
^ 2n-2k- 1.

(ii) The singularities at z = C of the first-order derivatives with
respect to z of the coefficients of [G(z, <, A)]deg \=k are of order <2n-2k.

(iii) The singularity at z = C of the form [H(z, C, A)]deg \=k is of order
^ 2n-2A;+l .

4.9. LEMMA. — Let G(z, C, A) be the form defined by (4.16). Then
the following two statements hold :

(i) Iffe G^(D) with n-q^-l<r<,n, then

t / ( C ) A G ( ^ C , A ) = 0
^(C^erKxAx

for all K C P^N) and z € D.

(ii) IffeC°i^(D),then

d. I / ( C ) A G ( ^ C , A ) = 0
^(C,A)€rKXAK

for allz e D and K e P^N), where d^ is the exterior differential operator
with respect to z C D.

Proof. — Denote by [G(z, C, A)]^ the part of G(z, C, A) which is of
bidegree (nj) in z, and let K C P^N). Then

/ fW A G(^ C, A) = I /(C) A [G(z, C, A)],-i, z C D,
^ F K X A K J r K X / ^ K

if / ^ c'^r(JD)• c)n the other hand, since, by Lemma 4.6, r](z, C, A) is (^+1)-
holomorphic in z if Ao = 0, we see that

[G(2;,C,A)]^-i =0 on D x F K x A K
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if r > n — q + 1, and

^[G(^,C,A)]n-^-i=0 on D x r ^ x A x .

Together this implies assertions (i) and (ii) of the lemma. D

4.10. The operator H. — Let / <E B^(D),0 < f3 < 1 (see
sect. 1.16). Then, for all K e P^N), we define

(4.21) HKf(z)= { / (C)A^C,A), z e D .
^(C,A)crKxAoK

It follows from Lemma 4.8 (iii) that these integrals converge and the so
defined differential forms H^f are continuous on D. We set

(4.22) ^/= E (-1)IKIW
KeP'm

for/eB^(D),0 </?<!.

Now let / (E B^(D),0 < /3 < 1,0 < r < n. Since H(z,^X) is of
degree 2n and contains the factor dz\/\' - '/\dzn and since dime FKX^OK =
2n+ 1, then only such monomials of H(z^ ̂  \) contribute to the integral in
(4.21) which are of degree (n+l—r) in (C, A) and hence ofbidegree (n, r—1)
in z. This implies that B.KJ = 0 i f r = 0 o r n + l — r < \K\ = dimn Aox-

Hence, for / C B^(D),0 ^ (3 < 1,0 < r < n, we have

( H f = ^ (-l)^'^/,
(4.23) ^ ^N^

[ Hf = 0 if r = 0, and Hf € C^_i(.D) if 1 < r ^ n.

4.11. THEOREM. — Letn-q^r <,n and 0 < f3 < 1. Then

(4.24) f=dHf+Hdf on D

for all f € B^(D) such that also df € B^(D).

Proof. — First consider a form ^ C C^(D). Then by (4.18)

^C,A(^ A G) = dg A G - d^g A 6) + (-1)^ A H

and it follows from Stokes'formula (which can be applied in view of
Lemma 4.8) that

/ 9/\G= f d g ^ G + d f g A G + (-1) '̂̂
JQ{YK^^OK) JFKX^OK JFKX^OK
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for all K e P ' { N ) . In view of Lemma 4.4 this implies that

/ ^ A G + ^ (- l )W^ ^ A G - ^ / g ^ G
JDx/\o KeP'W JSKXAOK K^p^N)^1^^^

= E (- l )^ ' ) / d g ^ G + d [ g^G+^ir^HKg}.
K ^ P ' { N ) \J^KX^OK JFKXAoK )

Taking into account (4.19) and (4.20) as well as the definitions of T^ and
H^ this can be written

r^- E / -^^ E (-l^lf/' dg^G
^eP /(N) t /^KXAJ:<: K ^ P ' { N ) \J^KxAoK

(4.25) + d /l p A 6) +(-l)n+^.
JFKX^OK )

Now we consider^ form / € C^(D) with n-q <r <n such that
d/ is also continuous on D. Setting g = df m (4.25) and taking into account
Lemma 4.9 (i), we obtain that

T^df= ^ (-l)1^/1 d/AG-^-l)^^1^/.
KeP^N) ^KXAOK

Setting g = f in (4.25), applying d to the resulting relation and taking into
account Lemma 4.9 (ii), we obtain that

dT^f= ^ {-^df d/A^-l)^^/.
K e P ' { N ) ^rKxAoK

Together this implies that

dT^f - T^df = (-l^^dHf + Hdf),
and hence, by Theorem 4.1,

(4.26) / = dHf + Hdf.

Finally we consider the general case. Let / € B^(D),0 < (3 <
1, n - q < r < n, such that also df C B^(D). Choose e > 0 with /? + e < 1.
Then, by local shifts of / and a partition of unity argument, we can find a
sequence of forms /;, € C°,^(D) such that also the forms df^ are continuous
on D and

fy —> f and dfy —> df

in the space ^"^(D). By Lemma 4.8 (hi), then

Hfy —> Hf and Hdf^ —^ Hdf
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uniformly on the compact subsets of D. Since, by (4.26),

f^=dHf^Hdf^
this implies that

/ = dHf + Hdf. D

4.12. THEOREM.

(i) Let 0 < /3 < 1/2,0 < e < 1/2 - /?, and 1 ̂  r ^ n. Then

H(B^(D)) C C^-^D)

and the operator H is compact as operator between the Banach spaces
B^andC^-^D).

(ii) Let 1/2 ^ (3 < 1,0 < e ̂  1 - /?, and 1 <, r < n. Then

H(B^(D))CB^_-^(D)
and the operator H is compact as operator between the Banach spaces
B^(D)andB^\D).

The following sects. 5-8 are devoted to the proof of this theorem.

5. A first description of the singularity of the kernel of H.

In this section we assume :

D CC C12 is a local g-convex domain, 0 < q < n — 1 (see
Definition 2.3);

((7^-, p i , . . . , p^v) is a frame for D satisfying conditions (i) and (ii) in
Definition 2.3;

F K , K € P{N), are the submanifolds of ~D which belong to the frame
(?7-^,pi,... ,pjv) according to sect. 4.2;

^{z, C, A) is the function defined for (z, C, A) e C71 x U^ x Ai...jv by
(4.9) in sect. 4.5.

5.1. DEFINITION. — Let K e P'(7V) and let s be an integer.

A form of type Os for of type Os{z,^X)) on D x FK x AQX
is, by definition, a continuous differential form f(z,^\) denned for all
(^ ,C,A) C D x FK x ^OK with z ^- C, such that the following conditions
are fulfilled :
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(i) All derivatives of the coefficients off(z, C, A) which are of order 0
in C, of order < 1 in z, and of arbitrary order in A are continuous for all
0, (,\) e D XFK x Aojc with z ^ <.

(ii) Let V^ = 0,1, be a differential operator with constant coeffi-
cients which is of order 0 in (, of order K, in z, and of arbitrary order in A.
Then there is a constant C > 0 such that, for each coefficient (p{z, C, A) of
the form f(z,^\),

iv^c,A)i^Gic-^r"
for all (z, C, A) € D x FK x Ao^ with z ^ (.

(iii) There exist neighborhoods UQ, UK C Aox ofAo and Aj<, respec-
tively, such that f{z, C, A) = 0 for ah (z, C, A) € D x TK x (UQ U UK).

The symbols 05(2:, C, A) and Os will be used also to denote forms of
this type, also in formulas. For example :

f = Os means : / is a form of type Os.
Os A / = Ok A g + Om means : for each form h of type Os there exist a
form u of type Ok and a form v of type Om such that hf\f=u/\g^-v.

The equation

W)- / 0.(^C,A)A/(^C,A)
Ac^e-SKxAox

means : there exists a form E of type Os such that

Ef(z)= I ^C,A)A/(^C,A)
^(C^e-S'KXAoK

for all /.

5.2. DEFINITION. — Let m > 0 be an integer. An operator of
type m is, by definition, a map

E : \J B^D)-^C^(D)
0<(3<1

such that there exist

- an integer k >_ 0,

- K e P'(AO,
- a form E(z, C, A) of type 0|jq_2n+2/c+m on D x TK x ^OK such

that, for all f e B^(D), 0 < /?<! ,

E f ( z ) = [ ^^^C.A)Ae(C)
./(C,A)er;<xAoj< <|)A;+m/^ /- ^
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where / C B^(D) is the form with

/ ( C ) = / ( C ) A d C l A • • • A d C n ,

and for Q holds the following :

i f m = 0 , then 9=1;

ifm>,l, then there exist indices z i , . . . , i^ C K such that either

Q = Qp^ A • • • A 9p^ or Q= 9pi, A Qp^ A — A Qp^
0

(for the definition of A, see sect. 1.8).

5.3. LEMMA. — Let E be an operator of type 0, let 0 < f3 < 1
and 0 < e < 1 - f3. Then E(B^(D)) C C^-^D) and there exists a
constant C > 0 such that

(5J) \\Ef\\^_^ < C\\f\\.^

forallfeB^(D).

Proof. — In this proof we denote all positive constants by the same
letter (7, and we use the abbreviations

and P\ = Aipi + • • • + \N?N, A e AI...TV,
d{z) =dist(z,9D), z C D.

Further, let RK be the function on TK denned by PK^) = pj(() for j e K
and ( ^ T K (see (4.2)). Note that

(5-2) d(()>c\pK(Q\ for cer^
(5.3) \Px(z)\^Cd(z) for (^, A) e D x Ai...^,
and
(5.4) p^)=^(C) for ( C , A ) e r ^ x A ^ .

In view of (5.3) and (5.4) it follows from (4.10) that

(5.5) |^(z, C, A)| > C{\pK^}\ + d(z) + |C - z\2)

for all (z, C, A) € D x FK x (^OK ^ Ao).

Now we first consider the case that the integer k in Definition 5.2 is
zero. Then it follows from (5.2) that

(5.6) ||/«)Ag(.,e.A)||,^^ll_^^,
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and, if Vz is one of the operators Q/Qzj^ 9/cfz^

(5.7) ||V,/(C)AE(z,C,A)|| ^ i^^^^^^,^

for all / € B^(D) and (2;, C, A) 6 D x FK x AOJC. Set

Wz,w)= f /(OA^C.A)j(C^)er^xAo^-
|C-;e|<|z-w|

- / /(C)A^(w,C,A)
, 7(C,A)6r^xAoKand ic-wi<|z-w|

72(/,.,w) = /^^ /(C) A (^,C,A) - ̂ (w,C,A))
|C-z|,|C-w|>|z-w|

for all / e B^(D) and z,w € D. Then

(5.8) ^/(^) - E/(w) = A(/^,w) +J2(/,^w)

for all / € B^^{D) and z^w e D. Since /?j< is a local coordinate on TK^ it
follows from (5.6) that

„,-,. Mi^^ur i l /' ^1 A •••A^2n-|A:|+l
||Il(/^w)|| ^ C||/||-^^_,^^ ————,^|^n-|K'|

(5.9) iti<i^-wi i 1 1 i i

^q^-wi^ii/ii-^
for all / e B^(D) and z,w e D. Further, it follows from (5.6) that

\\J?f( Ml <- ^11 ^11 /* df lA- 'Adt2n- |K|+l(,.10) " / ( ) " < ̂ ^"-^y-^.^ i^hti-i-i
< C\\f\\,^D

for all / G B^(D) and 2: € D. From (5.7) it follows that

||/(C) A (£(., C, A) - ̂ (w, C, A)) || ^ î '̂î 'filn l̂̂

c^-w^-w,^
~ \PK(W<: - z\2n-w+l-t;l-e

for all / € B^(D),z,w 6 £> and (C,A) 6 TK x AOK with |C-z|, |C-w| >
[2;—w|. Hence

|^J.(f...w)||<C|.-w|l-^||f||-^^,,,,rit.-^
- |t|<C I 1 1 I I

(5•ll) ^ci^-wl1-^!!/!!-^
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for all / e B^(D) and z,w e D. Now it follows from (5.8), (5.9) and
(5.11) that

\\Ef{z) - Ef(w)\\ < C\z - wl1-^!!/!!.̂
for all / € B^(D) and z . w ^ D . Together with (5.10) this implies (5.1).

Now we consider the case that k > 1.

In view of (5.2) and (5.5) then we obtain that

|| f(C) A E(Z?C;A) || < GII/11-^D

" ^^c^)1 1^^^^-^2 7 1"^1

for all (z,^X) e D x FK x ^OK' By the same arguments as in the case
k = 0 this leads to estimate (5.10). Farther we see that now, since k >: 1, Ef
is of class C1 and, if V^ is one of the operators 9/9zj and Q / 9 z ] , then

||V^/(z)||<C||/||_^ f —————————daK^—————————
<Ac^)€rj<xAoK ^(Oh^^C^IIC-^l271--!^!-2^

+C||/||_^ [ —————————^A—————————
J(C.^TKX^OK IpjctOPl^^^^^llC-^l271-!^!-2^1

for all / € B^(D) and z € P, where daKx^ is the Euclidean volume form
on FK x Aoj<. In view of (5.5) this implies that

l|V^/(z)||<C||/||_^ / —————————————da^—————————————
AerK|p^(C)|^(lpK(C)l+^)+|C-^|2) IC-zl271-^!-2

+C-||/||-^^ /' —————^——————^———.————————
A€^KlpJ<(C)l/3(lpK(C)|+^)+|C-^|2)lC-^|2—l^l-i

for all / € B^(D) and 2: C D. Since /?;< can be used as local coordinate
on r^, this implies that

||V^/(.)|| < C\\f\\.^ ( —————^'••^n-^l—————
JtCR^-^W |tlP(|^l| + d(z) + |^|2) 1^2^-1^1-2

+C'||f||- ( dtl A ' ' ' A dt2n-^J<l+l

' JtCR^-m^ |^P(|^|+d(^)+^|2)|t|2n-W-l

for all / C B^^(D) and z e D. After integrating over ^i, one obtains

||V,£/(.)|| ̂  G||/||_,^ / ^A.-.A^.^i
7(6R2n-|^| (d(z) + |t|2)l+p|t|2n-|A'|-2

+ Cll/11-^ / dt^-Adt^
JteR^-m (d(z) + l^)^172)^-!^-!
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for all / e B^(D) and z e D. Hence

r r00 r^r />00 <7rlivens cii/ii,,,̂  w^^-^i w^v^
(5.12)

<G||/||-^[^)]-^

for all / C B^{D) and ^ C D. (5.10) and (5.12) together imply estimate
(5.1) (cp., e.g., Proposition 2 in [HeLel]). D

Remark. — This proof shows that in the case k > 1 estimate (5.1)
holds even with e = 0.

5.4. THEOREM. — The operator H defined in sect. 4.10 is a finite
sum of operators of type m (for certain integers m >, 0 - see Definition 5.2).

Proof. — It is sufficient to prove that each of the operators H^, K 6
P'(A^), is a finite sum of operators of type m. Let K G P ' { N ) be fixed. By
(4.23) we may assume that £ <: n.

We use the same notations as in sects. 3 and 4. Set

W=W(z^^\)={w(z^^^dQ
and i7 -~z dC\M=M^a=\^L

for (z, ̂  A) € D x FK x ^OK ^ Ao, where

and

M^C,A),dC)=^w^(^C,A)dO
j=i
n

(C -^<)=^(0 -^0.
J==l

Further, we use the abbreviations w == w(^ , ^ ,A) , ^> = ^>(^ ,^ ,A) , 77 ==
^,C,A), x = x(Ao). Then, by (4.11),

( C—~z w\ o o C —~z , o. dw ,o . w^=(|fr^-$)^+^d^-,F+( l-^^+^- l)^A^
and therefore

(5.13) (^dC}=(^-M)Adx+^M+(l-x)^+(l-x)^A^,

for all (z^,\) ^ D x D x AOI...A/- with z ^ ^ where (dr], d(^) == dr)1 A d^ +
• • • + drf^ A d^ and r ] 1 , . . . , r^ are the components of 77.
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In the following all differential forms which are denned on D x ~D x
AOI...TV will be regarded as forms restricted to D x FK x ^OK- If 9 is such
a form, then we denote by [g]deg\=r the part of g which is of degree r in
A. Then the forms d^> and dW are obtained by lifting from D x FK x Aj<
with respect to the map (z, C, A) -^ (z, <, A). Since diniR A^ = i - 1, this
implies that

[W^egA^ = [(dW)8 A ^]degA=, =0 for S = 1,2, . • . .

Therefore it follows from (5.13) that

[(^dC)nA^A..•A^]^^=n(^-M)AdxA[(^M+(l-^)^

/, o.WAc^x^-1-!
+(1-^-^J Leg^-l^1^-^

on D x rj< x Ao^. Since (drj.d^ A c^i A • • • A dzn contains the factor
d<j A • • • A dCn A dz\ A • • • A d^yi, in this relation dW and d<I> may be replaced
by d\W + 9^^W and d^^ 4- ̂ ,c^. Hence
[(drj, d^ A d^i A • . • A dzn]^^

-AT-^-^^^^-^^^r
( o d),W o , T V A d A ^ \ < - i ,

A^l-x)-$-+(l-^)——$2——) ^ d z ^ / \ - - - / \ d z n

on Z)^< rjc x AOAT. Since c^ = Oo, Oo A M = 0_i, Oo/\dM = 0_2 and
Oo A <9z^iy = Oo on D x FK x Aox, this implies that
[(di], dC)" A dzi A • • • A d^] ̂  ̂ ^^

=OoA(^+^)A(o_^+gAH-A^)""

A(^ A dA^V + (— A TV A riA^)^1

on D x FK x AOX. Taking into account that W A W = 0, it follows that
(5.14) [{dri, dC)" A dzi A • • • A dzn}^^ = Ei + • • • + £4,

where £'1,..., E^ are forms on D x TK x Aoj< with

^=|^A(0_.+^)""A(<W-

^=^A(0_^)"-\(^)-

^3 = |̂ T A (0_2 + ̂ l)""'"1 A (dAlV)^1 A ̂ A^$

£4 = J ̂  A (0_2 + ̂ )"-< A (ri^)'-2 A W A ̂ $ if ^ > 2
l O iK=l .
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Now for / € B^(D), 0 ̂  f3 < 1, we denote by / the form in B^(D) with
/(C) = /(C) A dCi A • • • A dCn. Then

(5.15) /(C) A H(z, C, A) = /(C) A n{~}'>~2~ {^, <)" A ̂ i A • • • A d .̂
^Z7n;

Since dimp Aoj< = ^, it follows from (5.15) and (5.14) that HK =
EI + • • • + £4, where

E,f(z)= ( /(C)AE,(^C,A), ^CD,
^(C^)erKxAoK

for all / e <*(P),0 ^ /? < 1, (j = 1,... ,4).

From the definition of w and ^ (see (3.3) and (4.9)) it follows that

(5.16) Oo A W = ̂  Oo A c^-(C) + Oi,
jex

(5.17) Oo A dxW = ̂  Oo A ^-(C) + Oi,
J6K

Oo A ̂ ,̂  = ̂  Oo A 9p,(C) + Oi
j'eK

on D x FK x AOJ< and therefore

Oo A {d^WY-1 = ^ 0,-i-^ A c^(C) A ... A 9^(0,
0^m^<-l

il,...,im€K

Oo A (^TV)'-1 A TY = ^ Oe-m A ̂ ,(0 A . . . A 9p^(C),
o^m^e

il,...,tm€K

Oo A (dA^)^1 A TV A 9,^

Y^ Q-mA^i, (C) A • • • A 9p^ (C)A^^^, (C)
0<m«

» l > - - - ^ m + i e ^

+ ^ o,-^+i A ap^ (c) A ... A 9p^ (c)
0<m^<

il,...,im€K

= ^ 0,-̂ +i A ̂ , (C) A 9pi, (C) A ... A 9p^ (C)
l<,m^€+l

il,...,i^€K

4- ^ O^+i A 9p^ (C) A ... A 9p^ (C)
0<m«

il,...,im6A-
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on D x FK x Aoj<. This implies that
7? V^ ^-2n+2(^-l+a-m)+m ^ ,.. ^ / .
£/1 = 2-. ——^-1+s-m^m——— A ̂ 1 (0 A • • • A 9pi^ (C),

0^s<n-<
0<m^-l

il,---,im€K

7? V^ 0^_2n+2(^+s-m)4-m . ^ ,.>. ^ Q ,,.
£;2 = 2^ ——^s-m^m——— A ̂ i(0 A • • • A ^m(C),

0<s<n-<
0^m^<

<l,...,tm€K

Z? V^ ^-2n+2(^+l+s-m)+m . ̂  /^\ * o /.x , ^ ,.^
E3 = 2^ ^1^-m^m A ̂ 1 «) A ̂ 2 (C) A . . • A 3p^ (C)

0<s^n-<-l
l^m«+l

il,...,tmeK

i \^ ^_2n+2(^+l+s-m)+m . r. , ̂  . ., ^ ,.v+ <L ^+i+,-^)^—— A c^(C) A . . . A 9p^(C)
0^s^n-<-l

0<m^<
il,---,im€K

on D x rj< x AOJ<. Hence each of the operators £'1, E^ E^ is a finite sum
of operators of type m (with 0 < m < ^ + l ) . I t remains to prove that this
is true also for £"4.

Since £4 = 0 if i = 1, we may assume that t > 2. For j € J^, we
denote by 9/9\j the partial derivative on Aox with respect to \j as a
member of the system of coordinates A^, i e K. Then it follows from (5.16)
that

OoAWAd^= ̂  I^OoA^+V^Oi
zj€^ d^ ,eJ< d^

on D x SK x ^OK' Together with (5.17) this implies that

Oo^WY-^W^d^ = ^ |?-0^-i-mA9^(C)A...A9^(C)
0<m«-l OA3

tl,....tm.j€K

on D x Fj< x Aoj<. Hence
/ c i o \ ^ V^ ^ 0^-2n+2(^+g-l-m)+m ^ ^ ,.. /. / .
(5.18) ^4 = ^ ^-———————-^———————A<9/^(C)A. • •A^^(C) .

0^s^n-€ 3
0<:m<i-l

il,---,imJeK

Now let 5, m, z i , . . . , imj be as in (5.8). Then £-{-s>,2 and therefore

^ 1 - (i ^ c } 9 ( 1 ^>
^^+s v ^A^^+^-iy

Moreover, then

{A € Aoj< : A^ = 0} = AOJ^) and ^A C ^OK : A^ == 1 - ̂  A,} = A^.
z^A:



416 C. LAURENT-THIEBAUT & J. LEITERER

By partial integration with respect to \j and taking into account that
90k/9\j = Ok for all integers A:, and that forms of type Ok vanish for A in
a neighborhood of Aj<, this implies that
f !f/-\ A ^ ^-2n+2(-^+s-l-m)+m . 0 , ^ . . ^ ,^
/ /^ A 7n~————s^Vs——^— A ̂ 1(0 A • • • A ^m(C)

JrKXAoK dx^ ^

[ !f/-\ A u^-2n+2(^+s-l-m)+m . 0 //-\ A A ^ //-\
= / /(C) A ————^s-l———— A ̂ i(0 A — A (9p^(C)

JFKXAoK -*-

i f !f/-\ A ^-2n+2(^+s-l-m)+m . .. , ^ . . ^ ,^
+ / /(C) A ——————^s-1————— A ̂ 1 (C) A • • • A 9/)^ (C)

JrjcxAoK(j) -'-

for all / € B^^(D),0 < /3 < 1. In view of (5.18) this implies that £4 is a
finite sum of operators of type m (with 0 ̂ m < £ — 1). D

6. An auxiliary estimate.

In this section we assume :

£ > 2 is an integer;

AK^K G P'{^\ are the simplices introduced in sect. 1.6, and we set
d\K = d\^ A • • - A d\k, for K = ( A ; i , . . . , kr) C P'(^) and A 6 Aj<;

C^, ^, £• are positive numbers;

^ i , . . . , ̂  are complex numbers with

(6.1) Re^>6+£ ( j= l , . . . ^ ) .

If i^j 6 {1 , . . . ,^} with i -^ j, then V1 denotes the partial derivative
9/9\j with respect to Aj as a member of the system of coordinates
Ai, • • • • • • , A^ on Ai...^; and we write

z
\/il"'^s = V11 • -V^v 3 r - - 3 s v Ji - J s

for s == 2,3, • • • and 1 <: ^,j^ <: s with %^ 7^ jv(y = 1,... ,5).

7 and r are complex C°° functions on Ai...^ such that

(6.2) |7(A)| < ̂

(6-3) lv^^^(A)l ̂  i-
(6.4) |r(A)|<(7.,

(6.5) ^::y(X)\<C.Z l - ' - Z s
J r ' - j s ^
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for all A € Ai...^ and 1 ̂ s^+2,1^^,^ ̂ with^ j^ = 1,... ,s).

6.1. THEOREM. — Set Cp = (3p)!27^ for p = 0,1, • • •. Then

(6.6) r(A)dAi. CpC+1 __— ^. .^ —. •j.-"<.__ ^ '-^p'-^.f

^•(i^.^m}''^'*/Ai

\ j=l /

for all integers p ^ 0, and

(67) /• r(A)dAi...,/• r(\)d\i...e CpC,yAl((EA,.,^(A))p-^J^l(^^'
^'=1 /

for all K € P7^) and all integers p > \K\ 4-1.

Proof. — Estimate (6.6) follows immediately from (6.1), (6.2) and
(6.4). To prove (6.7) we may assume that
(6.8) | ^ i |>—>|^ |
and K = (1,. . . , r) for some fixed r <, L Let also p > r + 1 be fixed.

We introduce the following notations :

(7)5 and (r)s, s = 1,... ,£ + 2, are the sets of all functions of the
form

v^^ ^P- v^y-
where 0 ^ m ̂  s and 1 ̂  ̂ , jy <, t with z^ -^ ^(y = 1,..., m);

Xs, 5 = 0 , . . . , i, is the set of functions defined as follows : XQ = {F}
and, for 0 < 5 <: i — 1, Xg+i is the set of all functions which are of one of
the forms

b W^7 b -
bT^y^ (6+V}7)2^ or b^-^^

where y? € Xg, 1 < z , j < £ with z 7^ j, and 6 is a complex number with

(6.9) H > |.

It is easy to see that each function in Xg, 0 < s < t^ is the sum of not more
than (3s)! functions of the form

b r " b ^ " ' ^
(&l+^l) l + Q l•••(^+^) l + Q^

where /^,^,ai , . . . ,o^ > 0 are integers with 0 <: /^ + ^ < 2s and
ai + • • • + Op, = ^, & i , . . . , b^ are complex numbers with

N > | (z= l , . . . , / . ) ,
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^ € (7)s+i(l < i ̂  v),^ € (F),, and y. € (7)1(1 ^ i ^ fi). In view of
(6.3)-(6.5), this implies that

(6-10) KA)| ^ (S^^C.
for all y 6 Jf,, 0 ^ s $ ̂ , and A e Ai...<. Now, for 0 $ s < r we formulate
the following

STATEMENT (s). - If K = (Ai,..., k^) € P'(^) with m > r - s
and if y e X,, then

(6.11)

where Kr-s '•

f ^WdXK
y A J C(EA^•+7(A))p" s

^j€K f

= (A; i , . . . , kr-s).

(3p)!27P-3SG.
- 11 \W+e)P-

jeK^.

In view of (6.8), statement (0) (setting K = (1,... ,£) and y = F)
implies estimate (6.7). Statement (r) is true by (6.6). To complete the proof
of the theorem, it is therefore sufficient to prove the implications

Statement (s + 1) => Statement (s), 0 < 5 < r - 1.

Assume that 0 < s < r - 1 such that statement (s 4- 1) is true.
Further, let K = (A; i , . . . , km) E P'(^) with m > r - s be given. To prove
(6.11) we distinguish two cases.

First case. — |̂  - ̂ .| ̂  1/2|^J for all j e K. Since E ^ = 1
for A e Aj<, then ^K

-3^3
3^K
E ̂  ^i+ E ^•(^-^i)|>1^̂fcil~ T3^K(z)

for all A C Aj<. By (6.1) and (6.2), this implies that

EA^+^A)|>ll^ll
j€K ^

for all A € Aj<. Together with (6.10), (6.8), (6.1) this implies (6.11).

Second case. — There exists r € {1 , . . . , m} with

(6J2) <^-<^ >ji^j.
Set 6=^-$^,

,^-.i._i.6 W^^———//, /.,- — ^ifel /

^^tr^^i
b+^

•k—V, V>2 =
(b+^)2
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Then, by (6.12) and (6.1), ^1,^2,^3 e Xs+i. Further, since

^A^=^ i=^+ ^ A,(^-^J
3^K J€^(r)

for A G Aj<, then we have the relation

v^E^^6
J€X

for A € AT<, whence
^(1-p+^MA) ^ _____(^i(A)_____

( \ P — S fcl / v p—3—1

EW-4-7(A)) (EA,^+7(A))
jex / ^jeK /

^2(A) y?3(A)+
)p"s~l (EA^+^A))""5"1

^j'ex / ^jeK /( E A^- +7^))^" ( E W- +7(A))" s-
v-»'(=/< / \ iCV /

for all A € AK. Since, for each C1 function / on Aj<,

/' ^fWd\K=±f f(\)d\^± [ fWd\K(r),
J ^K J^K(^) J^K(T)

this implies, in view of Statement (s 4-1), that

f vWd^
• ' I / \p~s

^(EA^+^A))""
' J S K '

JAk- I \~^ \ /h i ^f\\\

1 1 2 ^ (3p)!27P-3s-3G,
^ 1 TT I-X. 1 ~1 T-T 1 ' K I 1 'n i^-i n i^-i n 1^17 (s^e)p-r ?

J'€Ji j€J2 jGK^-s-i /

where Ji == (^2, . . . ,fcr-s),^2 = ( f c i , - - - . • • • . f cy . - s ) if T < r - s, and
J2 = ( A ; i , . . . , kr-s-i) if r > r - s. Since, by (6.12) and (6.8),

\b\>^\

for all j € ^, this implies estimate (6.11). D

7. Estimation of operators of type m > 1 by A-free bounds.

In this section we assume :

D CC C71 is a local ^-convex domain, 0 <: q < n - 1 (see
Definition 2.3);
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(U-Q, p i , . . . , PN) is a frame for D satisfying conditions (i) and (ii) in
Definition 2.3;

t^KiK e P'{N)^ are the submanifolds of D which belong to the
frame (L^-, p\,..., pjv) according to sect 4.2;

if z , j ' e { 0 , . . . , N} with z 7^ '̂, then V^- denotes the partial derivative
9/9\j with respect to Aj as a member of the system of coordinates
Ao, • • • • • • , ATV on AO...N? and we write

z

V^'"18 = V11 • • • V13
v j r - ' j s ' 3 1 3 s ' 1

for s = 2,3, • • • and 0 < i^.jy < N with iy -^ j^(y = 1,..., s) ;

^>(z,^\) is the function defined by (4.9) in sect. 4.5;

C^_(D) is the space of continuous non-negative functions on JD;

?(0 := Pj(C) for K € P^IV)^ ^ ^K and j € ^ (see sect. 4.2)
d(z) := dist(^, 9D) for 2? e D.

Further, we use the following conventions : the letter d stands for
d(z)^pj and PK stand for pj(C) and p^(C)? and / stands for /(€)•

7.1. DEFINITION. — A A-free bound (of first or second kind) is,
by definition, a map

M: J B^D)-^C°^D)
0</3<1

such that : there exist a number C > 0, a monomial a in Aj,.. . ,d^n,
^Ci. • • • ^Cn^ a multiindex K e P^AQ, an mteg-er 0 < s ^ |Jf|, and (if
s >1) points A 1 , . . . , A8 e Aj< such that if we use the abbreviations

^Im^C.A^)
and

d^^Im^C.A1'),

then M is defined by one of the following equations : If s = 0, then

(71) M f ( z ) = c f _______f\^^dpK_____
v / n / Aer.d^l+rf+IC-^K-^l271-^-15

/7 ̂  ^^^ _ c ( ______f\\\^^dpK______(7.2) MM - Cj^ (^|+^^_,|2)|^_^-W

or

(7.3) Mf(.)=cf \\f\\\^^\
JWK {\PK\ + d + |C - 2|2) |C - z^-W-1
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for f e Bf(J9),0 < f3 < 1, and z € D. Ifs ^ 1, then
s

||/||<rAdpjfA/\A,

(7.4) Mf(z) = cf ————————————-^———————i^l
J^TK /rl^„l-i-/7-l-l/h_^l2^ 17 (\+ 1 1 / 7 1 1 ^^rK (ipKi+d+ic-^i2) n (i^i+rf+ic-^i^ic-^i271-^'—1

=1
or

5

cr A dpK A A dti/• A
i/=l(7.5) Mf(z)=c[

./<:</<€rK (ip^-H^HC-^l2) n (M+^IC-^IC-^I271--'^-^1v 2

I/=l

for / €Bf(D), 0^ /3 < 1, andzeD.

In the cases (7.1) and (7.4), M will be called a X-free bound of first
kind, and in the cases (7.2), (7.3) and (7.5), M will be called a X-free bound
of second kind.

7.2. THEOREM. — Let E be an operator of type m with m > 1
(see Definition 5.2). Denote by V^ one of the operators Q / Q z ^ , . . . , 9/9zn,
o / 9 z \ ^ . . . ̂ Q / o z n ' Then there exist a finite number of X-free bounds of
first kind Mi, . . . , M^, and a finite number of X-free bounds of second kind
M[,..., M^ such that

^ IIJ^II^Mi^+.-.+M^)
||V^/(^)||<M^)+...+M^)

for all f C BS(D), 0 ̂  /3 < 1, and z € D.

For the proof of this theorem we need some preparations.

7.3. DEFINITION. — Let a be the positive constant from condi-
tion (ii) in Definition 2.3. An admissible collection of corners is, by defini-
tion, an ordered collection (A 1 , . . . , X^) of points A 1 , . . . , X^ C Ai...^ such
that the following conditions are fulfilled :

(i) A 1 , . . . , A^ are linearly independent as vectors in R1.

(ii) There exists K = ( f c i , . . . , ̂ ) € P ' ( N ) with X\..., A^ <E Aj<.

(hi) For all {z, ̂  u) e C" x U^ x Ai...^, the function
i t

(7.6) ^ C, ̂ ) := ̂  (z, C, ̂  ̂ A^) - ̂  ̂ (z, C, A1-)
i/=i î ==i
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satisfies the estimates
a,

(7-7) l7(^C^)|<^|C-^|2

and

(7-8) :̂::̂ (.,c )̂ ^Jic-^i2

for aJM < 5 < i + 2 and 1 < i^J^ < £ with ̂  ^ ̂ (1 < v < £).

If (A 1 , . . . , A^) is an admissible collection of corners, then we denote
by A(A\ . . . , A^) the simplex spanned by A 1 , . . . , X^ i.e.

t
A(A\...,A^):={^^:^eAi...,}.

i/=i
An admissible simplex is, by definition, a simplex A such that, for certain
admissible collection of corners (A 1 , . . . , A^), A = A(A\ . . . , A^).

7.4. LEMMA. — There exists e>0 such that: ifK = ( f e i , . . . , ke) C
P'(7V) and A^. . .^^ € AK are linearly independent (as vectors in R1)
points with

(7.9) | A ^ - A ^ | < ^ ( l ^ ^ , / ^ ^ ^ ) ,

then (A 1 , . . . , A^) is an admissible collection of corners.

Proof. — Let A 1 , . . . , A^ € AA:. Then it follows from the definition
of the function $ (see (4.9) and (3.4)) that

^,C,A)=F^(z,C)+A|Q(A)(C-^)|2

and therefore, since, for each A, Q(A) is an orthogonal projection in C71,

^ ,C,A)=F^(z ,C)+A<0(A)(C-^) ,C-^

for all {z, C, A) e C71 x U-^x AI...JV. Since F^ (^, <) depends linearly on A, this
implies that if 7(2;, C,/^) is the function defined by (7.6) in Definition 7.3,
then

(7.10) 7(^C^)=A([o(^^A I /)-^^0(A^ /)](C-^,C-^
^=1 ^==i

for all (2:,C,/^) e C71 x U^ x Ai...^. Since

t
V}^^A I /=AJ-A ^

i/==i
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for fi e Ai...^ and 1 < ij < i with i ̂  j, and since Q is of class C00, we
can find C > 0 (independent of A 1 , . . . , A^) such that

(7.11) ^KQ(E^)\ < Cm^W - A1]
1 ' • 1 ^>t<_7 ^><-

for all /^ e Ai...^, 1 < s < i + 2 and 1 < ̂ ,^ <, t with iy ^ j^(l < v < s).
Let C be chosen so that moreover
(7.12) {QW-Q^^C^X-X^
for all A, A' € Ai...jv. Set

a
e= 16CA

and assume that condition (7.9) is fulfilled. Then (7.10) and (7.12) imply
(7.7), and from (7.11) it follows that

v?,.^(E^)|^-(7.13)
l/=l

for p, € Ai...^, l < s < ^ + 2 a n d l < i^J^ < (, with ^ ^ ^(1 <, v <, s).
Moreover, since

v^^v. ofx^-f^^-^^ [fs=l
^•^^^^^-to if.>2,1^=1

it follows from (7.12) and (7.9) that also
t

VKE^^) ^1^4
l/=l

for all ^ € Ai...^, ! < 5 < ^ + 2 a n d l < i^J^ < £ with ̂  ^ j^(l < i/ < s).
Together with (7.10) and (7.13) this implies (7.8). D

7.5. LEMMA. — Let j^=(fc i , . . . ,^ ) €P / (7v ) , and te tAl , . . . ,A^e
Aj< such that A 1 , . . . , A^ are linearly independent as vectors in R^. Further
let a be a monomial in d<j , . . . ,dCn,riCi, • • • ^Cn- we set

^•=Im^,C,A^)
and

c^=rf<Im^,C,A^),
and we use the following definition : if / is a differential form on TK and
/ is the part of f which is of degree dim? Fj<, then by |/| we denote the
absolute value of f. Then there exists a constant C > 0 such that, for all
h,...,imeK,

^A/\9pJ+ aA9/^A/ \^ ^C\(TQ^dpK\\^-z\rn-l

i/=i i/=2

(7.14) + C ̂  <TJ^dpK^ f\ dt, [C-^—1-!^
J€JJeP7^)

|J|^m-l
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for all z € D^and < e TK, where o-o and o-j are some monomials in
^Cl,...,^Cn^Ci,...,rfCn.

that
Proof. — It follows from the definition of ^ (see (4.9) and (4.3))

Îm ,̂̂ ') - i(9p^(Q - 9^(0) + 0(|C - z\)

for (z,C) e C71 x U^ and |C - z\ -^ 0 (1 ^ j < n). Since ^(Q = p^ for
C ^ r^r, this implies that

(7.15) Qp^ |r^ = Jdp^ + ^dtj + 0(|C - ̂ |)
and

— 1 i9P^ \FK = ̂ dpk - ̂ dtj + 0(|C - ̂ [)(7.16)

for (z, C) e C71 x rj< and |C-2:| -> 0 (1 < j ^ n). Since the points A 1 , . . . , ̂
belong to A^ and are linearly independent as vectors in IR71, we can find
numbers fy- with

f.
^=^^\3 ( 1 ^ ^ ^ ^ ) .

.7=1

Since p^ depends linearly on A, then
i

P^-^^Px. (1^^)
j=i

and it follows from (7.15) and (7.16) that
i

QP^K = ̂ ^(2^ + ̂ ) + °(1< - ̂ D
and J=l

- ^ i •
^Jr^=^/3;(^+^)+0(|C-^|)

j=i vz z /

for (2:, C) e C71 x rj< and |C - 2;| -^ 0 (1 < v < f). Hence, for some constant
Ci>0,

^ m

^A /\ 9 ,̂ + aA9^ A /\ 9^ < Gila^jC-zl7"
i/=i i^=2

(7.17)
+Gl[a2AdpK||C-^^-l

+Ci ^ ^Adp^A^^JlC-^771-1-!7!
JdP'W

\J\<,m-l
jeJ

+^1 E ^A^^lic-^r-i^i
jep'w j-ej
|J|<m
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for all (2;,C) € P x r^,jwhere a1,^2,^ and a^ are some monomials
in dCi , . . . , d(^n, ^<i, • . • , ck^. Moreover, since pj< can be used as a local
coordinate on F K , for some 62 > 0, we have the estimates

cr^/\dtj <C^^^dpK^ f\ dt,
j ^ J ^eJ j'eJ(K)

where a^ are again some monomials in Aj^ • • ^Cn^Ci, • . • , ^Cn- Together
with (7.17) this implies (7.14). D

7.6. Proof of Theorem 7.2. — We use the same notations as in
Definition 5.2. Let K = ( A ; i , . . . , ki). We may restrict ourselves to the case
that, for some 1 < j\ < ' ' ' < j^ < n,

E{z, C, A) = i9(z, C, \)d\o A d\k^ A • • • A d\k, A d^ A • • • A d^,
where i9(z, <, A) is a complex function of type 0^_2n+2fc+m on D x TK x
^OK- Fix a number 0 < $ < 1 such that ^,C,A) = 0 for all (^,<,A) e
Aoj< with $ < Ao < 1.

In addition to the notations introduced at the beginning of this
section, in this proof we shall use the following notations :

V^ is one of the operators 9/9zi,..., Q/Qzn, Q/9zi,..., 9/ffzn ;

if / € B^(D),0 < /3 < 1 and I = (ai, . . . ,o^) e P'^), then fi
denotes the coefficient of the form / at the monomial d^i A • - - Ad<n Ad^c, A
•••A^J

Aoj< = {A C AOK : 0 < Ao ^ ^} ;
dAj< == dA^ A • • • A d\k^ ;

or == <i A • • • A d^ A dC^ A • • . A dC,, ;

fi = /z(C) and 9 == 6(0.
Then
{718) Ef(z)= Y^ /' /jr^(^, <, A)Q A a A dAp A d\K

i^P^n) ^«^)erj<xAoj< ^A;4-m^ /• ^\
|J|=2n-<+l-K-m v /

for all / € B^(D), 0 < /3 < 1, and z € D. Now we fix some I € P'(n) with
|J |=2n-^+l-/t-m, and an admissible collection of corners (A 1 , . . . , A^)
with A 1 , . . . , A^ € Aj<, and set

A^AeAo^A^A1,...^)}

and ?^^_ /* fI^^X)Q^a/\d\Q^d\KEf(z) = /
^rc(C,A)erj<xA ^fc+m^ /• ^\
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for / e B^(D),0 < /3 < 1, and z e D. Since, by Lemma 7.4, A^
can be divided into a finite number of admissible simplices, and since
(7.18) holds, it is sufficient to find a finite number of A-free bounds of
first kind Mi,.. . , M^ and a finite number of A-free bounds of second kind
M{, . . . ,M^/ such that
(^S) \\Ef(z)\\ < M,(z) + • . . + M^z)
and

(7.20) l|V.E(z)|| < M[(z) + ... + M^(z)
for all / e B^(D), 0 < /? < 1, and z e D.

Set
/ t e

^ /.) = (r, (1 - r) ̂  ̂ A^,. . . , (1 - r) ̂  /..A")
1^=1 v=i

for 0 ̂  T < ^ and /A € Ai...^. Then </? is a diffeomorphism from [0, ̂ ] x Ai...^
onto A. Denote by a(r), 0 < r <, 6, the function with

(• £

(1 - rY-^dr A ( ̂  A^/,,) A ... A ( ̂  A,"̂ ) = a(r)dr A d/ii..^
i/=i i/=i

on [0,$} x Ai...^, where d^...(, :=.d^ A • • • A d^. Set

r(z,C,T,/.)=a(r)^^,C,^(T,/.)),

r'(^, C, r, p) = a(r)V^ (^ C, ̂ (r, /x)),

^
^//(^C,T,/.) == -(k+m)a(r)^z^^(r^))^^(z^^^)^

i/=i
t i

7(^ C, /x) = ̂  (^ C, ̂  ̂ A") - ̂  /2^(^, C, A")
i/=i i/=i

for (z,C,r,^) e D x r^ x [0,^] x Ai...^, and

n ,̂ c, r) = [ r(^,c,r,/ î...,
^€A1 -(E^^^^+^c,^))^'

v 1^=1 /

^(^^r)= [ r{z,<:,r^)d^...j

^-(E^^C.^+^^C,^))^'
v l/=l /

^"(z < r) = / ___r^^.c.T,^)^!..^___
'^-(E^^C.^+^C,/.))^1'v I/=l /
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for Gz,C,r) e D x TK x [0,$]. Then

(7.21) \\Ef(z)\\<^ ( max|^,C,T)|||/|||9Aa|
^CerK ̂ -^

and

(7.22) ||V^/(^)|| ̂  / max |^(^C,T)+^(^C,T)|||/|||eA(7|
./Cerj,: o<r<^

for all / € B^(D),0 < /? < 1, and z € D. Since i9(^,C,A) is of type
0^-2n+2A;+m5 and ^z^(z,^X) is of type Oo on AOA:, there is a constant
^"i > 0 such that

(7.23) |r(.,c,T,/.)|jv^r(.,c,T^)| < ̂ _^_^

(7.24) ir^^^^^ljv^^r-^c^^)! < ̂ _^L.-^i^

(7.25) in^^^^ijv^^r^^^T^)! < ̂ _^_^
for all (z,^r,fi) e D XTK x [0,$] x Ai...^ and for all 1 < s < £ + 2 and
1 < iyijv <. i with iy -^ j^(l < y < s). (The operators V '̂.'.'.̂  here are
considered with respect to the variable /A.)

Now we are going to estimate n,^',^ by means of Theorem 6.1.
First note that p\v (^) = PK for all <^ € FK and 1 <: v <, i^ and that there
is a constant CQ > 0 such that —p\v (z) ^ CQ(I for all z € D and 1 < v <, £.
Therefore it follows from estimate (4.10) that

(7.26) Re^,^) > co(M +d) + jlC - z\2

for all (^,<) € D x FK and 1 < v <t.
/^ y {/' ^|-2n4-^4-2fc+mC^ = Ai)C» — 2;]

Ol
6 = co(\pK\ -h d) and £ = ^|C - z\2,

^=^(z^^){ovj=l,..^^

7(^) = j(z, C, T, ̂ ) and F(^) == F(z, <, r,̂ ) for p, € Ai...^,
then, by (7.7), (7.8), (7.23) and (7.26), conditions (6.1)-<6.5) are ful-
filled (with [L instead of A) and it follows from Theorem 6.1 that with
Cp := (3p)!27^

( Cfc+iC* .
{6+e)W l f m = l

^^< min ck+mc- ifm>2
.^.^^l^^)^-1^ >
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In the same way (using (7.24) and (7.25)) then one obtains
( Ck+iC^-z\-1

(g+^+i lfm=l

1"W,T)|^ . Ck+mC^-Z\-1

A n\^\(6+e)^rn-w i fm>2
|J|<fc+m-l A A ^ 1 J l v /

and

I^^GT)!^

^+2^*

((S+e)^2

Cfc+mC*

^%) n 1^7•l(^+^fc+m~IJI+l
Ul^fc+m 1A^1 • 7 1 V /

if m = 1

if m > 2.

Setting tj = Im^^,^,^) and taking into account that then, by (7.26),

|<^,C,A^)| > min (l,co, J)(|^| + \PK\ + d+ 1C - ̂ l2),

this implies that there is a constant K^ > 0 (depending only on Jfi, Co, o', fc
and 771) such that

(7.27)

^^I^C^)!
^|^_^|-2n+^l

1^1+^+IC-^I2
if m=l

^|^-^l-2n+^-m+2|J|+2

.^ (^i+d+ic-^2) nd^ i+d+ic -^ i 2 ) i f m > 2 5
|j|<fc+^-i ^.^^

^nia^|^,C,T)|

(7.28)

K^-zi-2^
|px|4-d+|C-^|2

^IC-^I-271^4'1

(IpKl+ri+IC-^l2)2

^J^ - ̂ l-2n+^-m+2|J|+3
mm,^;(^ (i^i^+K-^i2)2 nd^i+d+ic-^i2)|j|<fc+m-2 ^.^^

ifm=l

ifm=2

ifm>3

and
^^|^C,r)|

(7.29)
j^K-^l"27^1

i f m = l
(|pK|+^+|C-^|2)2

^|/'_^|-2n+^-m+2|J|+2

^) ^ (l^l+d+IC-^l^^d^l+d+IC-^l2) if m ̂  2'
|Jl$fc+m-l .̂g^
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for all (z, <) e D x FK with z ^ <^ By Lemma 7.5 there are monomials OQ
and crj in dCi» • • •»A^ riCi? • • • ? ^Cn ^d a constant ^3 > 0 such that on
TK one has the estimate

(7.30)

|eAa|

K^\(TQ A dpK\ ifm==l

<^ Xsl^oA^IIC-^l771-1^-^ Y, \^j/\dpK/\/\dtj ^-z^-^ ifm>2
J^P'W
|J|<m-l j'eJ

Together with (7.27) and (7.29) this implies that, if K^ = K^ then

max |^,C,r)||eAa|<^4______l^^^^l______
0<r<^' v 5 S 5 / 1 1 '- ^Ip^l+d+l^-^l^^n-,-!

(7.31)
+

aj A dpj<: A y\ d -̂

j€JK, ^^. dp^i+d+ic-^i2) na^i+d+ic-^ic-^i271-^!-1
J^r ( t )
|J|$m-l ^€-'

and

max |n"(^,C,T)||eA<T| < A:4______I'^'^l______
0<r^' ^ ' ' " - " 1 1 - 4 (\p^\+cl+\<;-zm<: - Z\^-t-l

(7.32) crj A dpK A y\ d^

+^ E j'eJ
r~f^. (ipKi+rf+ic-^i2)2 nd^i+^+K-^i^ic-^i271-^-!-71-1
J€- (€) -i-c 7
|J|<m-l ^6J

for all (2;, Q e DxTK with ^ ^ <. Finally, we observe that from (7.30) one
can obtain also the following (weaker) assertion : there exist monomials <JQ
and a'j in Aj ? • • - 5 ^Cn, dCi ? • • • ? ^Cn ^d a constant "̂3 > 0 such that

|9Aa| <

K^\a'Q/\dpK\
K^dpK^-zr-2

i f m = l , 2

+^3 E ^Ad^AAdtJIC-^l771-2-1-71 ifm>3.
J6PW . . I
|J|<m-2 •^V::J

Together with (7.28) this implies, if K^ = K^K'^ then
______I o-o A dp K |max |Q/(2:,C,T)||eAa[ < J<4——————' ° t j v '——————

0<r<^ v ' s ' - " ' I- 4(|p^|+d+|^_^|2)|^_^2n-^

(7.33)

\aQ/\dpK\+K.
(IpKl+rf+IC-^IC-^l271-^--1

^j ^dpK/\ /\ dtj
jeJ^4 E,^ (IpKJ^+IC-^l2)2 nd^l^+IC-^l2)!^!271-'-171-1

Jt-r (<;;
|J|<m-2 ^ej
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for all (^C) € D x TK with 2? 7^ C. Now (7.19) follows from (7.21) and
(7.31), and (7.20) follows from (7.22) and (7.32), (7.33). D

8. The Range-Siu trick and end of proof of estimates
(i.e. of Theorem 4.12).

8.1. LEMMA. — Let M be a A-free bound of first kind (see
Definition 7.1), let 0 < (3 < 1 and e > 0. Then there exists a constant
C > 0 such that
(8.1) \\Mf(z)\\ < CII/MI + [dist^D)]1/2-^)
for all f € B^{D) and z € D.

Proof. — We use the same notations as in Definition 7.1, we set
t :== )-K'|, and we denote all positive constants by the same letter C. Since
dist«, 9D) < C\pK\ for < G TK and since M is of the form (7.1) or (7.4),

\PK\~0 af\dpK/\ /\dt,

I.\\Mf(z)\\<C\\f\\,ft
/cer^ (Ipjd+rf+IC-^P) IPM+^IC-^IC-^-'-5-1

i/=i

for all / € B^(D) and z € D, where s = 0 if M is defined by (7.1).

Since RK can be used as local coordinate on Fj<» now we can apply
the Range-Siu trick (see the proof of Proposition (3.7) in [RS], where
this is described in detail) which consists in replacing the functions ty by
appropriate quadratic polynomials in local coordinates containing RK- In
this way one obtains that

\^ f l^il'^^iA-'A^n-e+i\\Mf(z)\\<C\\f\\.^f^
K=I J ̂ T1 f[ (1^1 + d + jyl2)!^-^

^==1
for all / € B^(D) and z € D. Since we may assume that f3 > 0, this implies
that

a+i .
\\Mf(z)\\<C\\f\\,^J,

dyi A • • • A dy^n-e
y^ft^n-t t—l

^l-7 l»l<c (c(+|yp)<3 ]-[(|y,|+d+|y|2)|i/|2"-(-»
1^=1

V^ / [1 + \tn{d + lyl2)!]"-1^! A . • • A dy2n-€-.
S+l

< ^11/H-
0̂ ̂  jy^rz-t-^l (d + WW^-^^H2n-^-K+l (d + |2/|2)^|y)2n-^-^

^=1 \y\<c
rC

\\-0 I
Jo

dr
<C\\f\\-0

o (d+r2)^
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for all / e B^(D) and z e D. Since we may assume also that f3 4- e -^ 1/2,
this implies (8.1). D

8.2. LEMMA. — Let M be a X-free bound of second kind (see
Definition 7.1), let 0 < {3 < 1 and e > 0. Then there exists a constant
C > 0 such that

(8.2) \\Mf{z)\\ ̂  C||/||-^[dist(^D)]-1/2-^

for all f e BS(D) and z e D.

Proof. — If M is denned by (7.2), then as in the proof of Lemma 8.1
we obtain that

\\Mf(^\\\^r'\\f\\ [ Ij/il-^ch/iA—Ad^n-^+iHM/(.)t| < C\\f\\,,j^^ (|̂ ^p)|̂  •

Since we may assume that (3 -h e < 1, this implies that

\\Mf(^\\\ <- r'\\f\\ f l^il'^ch/i A • • ' A ch/2n-wiMfw ^11/11-, y.̂ , (i,j+^[,p)i,p»-<-.
^ fll/ll-</...„-. dv^ds<'•:' < cw-^-

\y\<c lt/l

for all / € B^(D) and ^ € P. If M is defined by (7.3) or (7.5), then as in
the proof of Lemma 8.1 we obtain that

1|M/(.)|| ̂  C\\f\\., ̂  / —————yi|-^A...A^_^—————
^i^eR2"-<+i (]^|+d+|y[2)2 nd^l+ri+li/l2)^2"-^-''

f=2

for all / e B^(D) and z € D, where s = 0 in the case (7.3). This implies
that

HAW)) ^ C\\f\\., ̂  [ ——————^-^^n-e———————
^lJ»6R2"-< (d+[y|2)l+^ ]-J(|^]+rf+[y|2)|y|2n-<-^

f=2

îmi \^ /' [1 + \tn(d + lyj2)!]'1-1^! A • • • A dy2n_^_^+i
^ ̂ ^"-^ ̂  j^.,,^ ——————(d+h/|^+W"-<--——————

< ̂ ii/n-^ ̂  (d+^e < cm-^'2-^

for all / 6 B^D) and z € D. D
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Proof of Theorem 4.12. — We denote all positive constants by the
same letter C. By Theorem 5.4, ft is a finite sum of operators of type m.
By Lemma 5.3 and Ascoli's theorem operators of type 0 admit estimates
which are even stronger than those stated in Theorem 4.12. Therefore it
is sufficient to prove that Theorem 4.12 holds for all operators of type m
with m > 1 (at the place of H).

Let E be such an operator and 0 < /? < 1. Then, by Theorem 7.2,
E can be estimated by a finite sum of A-free bounds of first kind. Hence, if
e > 0, then by Lemma 8.1
(8.3) \\Ef(z)\\ < C\\f\\^(l + [dist(z,(9P)]1/2-^)
for all / 6 B^^(D) and z € D. Further let V^ be one of the operators
<9/&zi, . . . , 9/9zm <?/<9^i, • . • , 9/ffzn' Then, by Theorem 7.2, V\E can be
estimated by a finite sum of A-free bounds of second kind. Therefore
Lemma 8.2 implies that if e > 0, then
(8.4) \\^.Ef{z)\\ < C||/||-^[dist(z,9D)]-1/2-^
for all / € B^(D) and z 6 D.

Now let 0 <, (3 < 1/2. Then (8.3) in particular implies that
(8.5) l^/llo < C\\f\\,0
for all / € B^(D). It is well-known (see, e.g., Proposition 2 in Appendix
1 of [HeLel]) that (8.4) and (8.5) together imply that

E{B^{D))C n C^-CD)
0<£<1/2-/3

and that E is bounded as operator from B^,^{D) to each C^/!~(3~E(D)^0 <
e < 1/2 — /3. By AscolFs theorem it follows that E is even compact as
operator from B^(D) to each C^'^CD)^ < e ̂  1/2 - /3. Hence part
(i) of Theorem 4.12 is proved.

To prove part (ii), we assume that 1/2 < /?<! . Then by (8.3)
E(B^(D))C^B^£-1/2(D)

£>0

and E is bounded as operator from B^^(D) into each -B^4'6"1/2^),
e > 0. Moreover, it follows from (8.4) and Ascoli's theorem that, for
each domain fl, CC D, E is bounded as operator from B'^^{D) to C^ ^(^).
Together this implies that E is compact as operator from B^, ̂ (D) to each
B^-"\DYe>Q. D
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9. Globalization.

In this section E is a holomorphic vector bundle over an n-
dimensional complex manifold X , and D CC X is a strictly g-convex
C2 intersection, 0 < q < n - 1 (see Definition 0.1). Further, we denote
by C^(D,E),B^(D,E) etc. the Banach spaces of ^-valued differential
forms on D which one obtains canonically extending the definitions from
sect. 1.16.

9.1. THEOREM. — There exist linear operators

Tr: |j B^E)-.C°^_^E)
and w

K r : \J B^E)-.C°i^D^E)
0</3<1

for n - q < r <, n such that the following holds :

(i) Ifn - q <, r < n, then

(9-1) / = dfrf + fr+ldf + Krf

for all f € B^.(D,E),0 ^ /? < 1, such that df also belongs to B^{D,E).
(For r =n, the term Tr^df must be omitted.)

(ii) J r f 0 < / ? < 1/2 and 0 < e < 1/2-/3, then, for all n-q < r ^ n,fr
and Kr are compact operators from B^ ̂ {D, E) into C^Z^CD, E) resp.
C^-^D^E).

(iii) If 1/2 ^ /3 < 1 and e > 0, then, for all n - q < r < n, fr
and Kr are compact operators from B^(D, E) into B^e_~^/2(D, E) resp.
D/5+£-l/2^ ^
-Dn,r {UyJb).

Proof. — By Lemma 2.4 there exists a finite number of open sets
Ui,..., Um <= X such that ~D C U^ U • « • U Um and each Uj H D, 1 <, j < m,
is a local g-convex domain. Moreover, we may assume that E is trivial over
some neighborhood of each Uj D D, 1 < j < m. Let Hj be the operators
which are induced in u <*(A^)

0</3<1

by the operators which exist by sect. 4 for each UjF}D. Choose non-negative
C°° functions \j with compact support in Uj such that ^i + • • • + \^ == 1
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in a neighborhood of ~D. Set

^f^^xM^D)j=iand m
Krf =E^ AJf,(/|^.nD)

J==l
for n - g $ r < n,f € B^(D),0 < (3 < 1. D

9.2. LEMMA. — For each neighborhood QCX of9D there exist
a neighborhood U C Q of 9D and a real C2 function p on U whose Levi
form has at least q 4-1 positive eigenvalues at each point in U such that
(9.2) {z C U : p(z) < -1} U (D \ U) CC D CC {z € U : p(z) < 1} U D.

Proof.— Let p i , . . . , p 7 V be the functions from Definition 0.1.
Choose /? > 0 and set

^i =Pi, y?2 =max(pi,p2),... ,<^ = max(y?7v_i,/97v),
P /3

where max(-, •) is defined as in Definition 4.12 in [HeLe2]. Then it is easy to
compute that the Levi form of (pN-i has at least q+1 positive eigenvalues at
each point in U. Further, it is easy to see that (9.2) holds if (3 is sufficiently
small and, for some positive number G, p := C^_i. D

9.3. LEMMA. — Let n - q <, r < n,0 < /3 < 1, and let
f C B^(D, E) be a form which is exact on D. Then :

(i) I f 0 < ( 3 < 1/2, then there exists u € D C^rf'^D, E)
0<e<,l/2-f3

with f = du.

(ii) Jfl/2 ^ /? < 1, then there exists u € D B^£_\1/2(D,E) with
- , 5>o '
/ = du.

Proof. — By means of Theorem 4.12 and Grauert's "Beulenmeth-
ode" (see, e.g., the proof of Theorem 2.3.5 in [HeLel]), we find a closed
continuous E-valued form / in a neighborhood of P as well as a form

^ ^ D ^--f- ,̂ E) resp. u e Q B^\D^ E)
0<E<l/2-f3 e>0

such that / - du = f on D. Since /, and therefore / is exact on D, then
it follows from Lemma 9.2 and classical Andreotti-Grauert theory (see,



UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 435

e.g., Theorem 12.14 in [HeLe2]) that the equation dv = f has a Holder
continuous (with each exponent < 1) solution v in some neighborhood of
D. Set u = v — u. D

9.4. Proof of Theorem 0.2. — The proofs of parts (i) and (ii) are
analogous; we restrict ourselves to part (i).

Let Ty., Kri n — q < r <: n, be the operators from Theorem 9.1. Then,
by (9.1), dfr = I - Kr on B^(D, E) H kerd. Since the operators Kr are
compact, this implies that the operators dTr restricted to B^ y.(D, E)nkerd
are Fredholm operators with zero index. Therefore we can find finite
dimensional linear operators Lr : B^ y.(D, E) H ker d —> Bf^ y.(D, E) H ker d
such that the operators dTr 4- Lr are invertible.

Moreover, by the Andreotti-Grauert theorem (see [AnG] or, e.g.,
Theorem 12.16 in [HeLe2]), all forms in B^(D,E) H kerd are exact.
Therefore, by Lemma 9.3, we can find finite dimensional linear maps

Fr : <,(D, E)nkeid-. Q C^-^D, E)
0<e<l/2-(3

such that Lr = dFr. It remains to set

Tr=(fr+Fr)(dfr^Lr)~1. D
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