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UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN
EQUATION ON ¢q-CONVEX WEDGES

by C. LAURENT-THIEBAUT & J. LEITERER

0. Introduction.

With this paper we begin a systematic study of the tangential Cauchy-
Riemann operator 9 on real submanifolds of complex manifolds from the
viewpoint of uniform estimates and by means of integral formulas. This
method was first applied by Henkin and Airapetjan/Henkin to 9 (see
[Hel], [He2], [He3], [Hed4], [AiHe]). In particular, in [AiHe] important ideas
are described in greater detail, which are basic for our study.

Concerning other methods in the theory of 0, we refer to the survey of
Henkin [He4] and the recent papers of Nacinovich [N1], [N2] and Tréves [T].

We follow the classical concept first used by Andreotti and Hill (see
[AnHil], [AnHi2]) which consists of two steps :

I. Representation of CR forms as the jump of d-closed forms in
certain auxiliary domains (wedges).

II. Solving the J-equation in those domains.

To get uniform estimates, both steps must be done with corresponding
estimates. That, under certain strict convexity, resp. concavity conditions,
this is possible was first announced by Henkin (see Theorem 2 in [He2] and
Theorem 8.15 in [He4]).

Key words : Cauchy-Riemann equations — Integral formula with uniform estimates —
Piecewise smooth g-convex domains — Tangential Cauchy-Riemann equations.
A.M.S. Classification : 32A25 — 32F10.
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In the present paper we prove the result which is necessary to do step
IT in the g-convex case. To state this result we use the following

0.1. DEFINITION (see (8.7) in [He4]). — Let D CC X be a domain
in an n-dimensional complex manifold X. D will be called a strictly g¢-
convex C? intersection, 0 < q < n—1, if there exists a finite number of real
C? functions p;,...,pn in a neighborhood Up of D such that

D={zeUgp:pj(z) <0 for 1<j< N}
and the following condition is fulfilled : if z € 0D and 1<k;<---<k¢<N
with p, (2) = -+ = px,(2z) = 0, then
dpk, (2) A+ Ndpg,(2) # 0

and, for all A1,...,A¢ >0 with A\; + -+ A = 1, the Levi form at z of the
function

APk, + -0+ Aepr,
has at least g+1 positive eigenvalues. (See Lemma 2.2 for a weaker
formulation of this condition.)

The main result of the present paper is the following :

0.2. THEOREM. — Let E be a holomorphic vector bundle over an
n-dimensional complex manifold X, and let D CC X be a strictly q-convex
C? intersection, 0 < q < n — 1. Moreover suppose that D is completely
g-convex,

i.e. the following condition is fulfilled(*): there exists a real C?
function ¢ on D whose Levi form has at least (¢ + 1) positive eigenvalues
at each point in D and such that

{z€D:p(2) <C}cC D foral C>0.

Denote by Bgr(D, E), >0, r=0,1,...,n, the Banach space of
E-valued continuous (n,r)-forms f on D such that

sup || (2)| [ dist(z, 8D)]” < oo,
2€D

and denote by C,‘{‘,T(_D_, E),0<a<1,r=0,1,...,n, the Banach space of
E-valued (n,r)-forms which are Holder continuous with exponent a on D

(*) This is automatically the case if X is Stein (cf. , e.g., Theorem 5.3 in [HeLe2] and
the proof of Lemma 9.2 of the present paper).
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(cf. sect. 1.16). Further, let ker d be the space of all closed E-valued forms
on D.

Then :
i) If0 < B < 1/2, then there exist linear operators

T.:BS (D,E)nkerd — () C/2*(D,B),
0<e<1/2-8

n —q < r < n, which are compact as operators from BQ,T(D, E)Nkerd to
each C,ll{f:f_e(b, E),0 <& <1/2 -, and such that

dT.f=f
foralln—q<r<nand fe€BE (D, E)Nkerd.
il) If1/2 < B < 1, then there exist linear operators

T, : BS (D,E) Nkerd — (| Bo+57"%(D, B),
e>0

n — q < r < n, which are compact as operators from Bg,r(D, E)Nnkerd to
each B?**7Y*(D, E), € > 0, and such that

n,r—1
dTl,.f = f
foralln—q<r<nand f€BE, (D,E)Nkerd.

For ¢ = n — 1 (i.e. the pseudoconvex case) and 8 = 0, this theorem
was proved by Range and Siu (see [RS]), and for arbitrary g, but smooth
0D and B = 0, it was proved by W. Fischer and Lieb (see [FiLi]). For
B # 0, but smooth 8D and ¢ = n — 1, Theorem 0.2 was obtained in [LiR]
(see also [BFi]). Passing from these more special results to the case when
1 < ¢ £ n—2 and the number N of smooth pieces of 0D is greater than one,
one meets the following new problem : the Leray map (see sect. 1.11) now
depends non-linearly on ), whereas in the piecewise strictly pseudoconvex
case considered in [RS] this dependence is linear and therefore can be
eliminated by explicit integration over A. In the literature this problem was
first discussed by Airapetjan and Henkin in [AiHe]. They observe that in
the case of non-linear dependence of A “the explicit integration with respect
to ... becomes a rather difficult problem” (see the beginning of sect. 1.4
in [AiHe]), and then they present a very important idea : if the Leray
map depends in a certain special rational form on A (see formula (1.4.1)
in [AiHe]), then explicit integration is also possible, using a formula (see
Proposition 1.4.1 in [AiHe]) which is called by them generalized Fantappie-
Feynman formula.
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Further, in the survey article [He4] of Henkin, one can find the
statement (see Theorem 8.12 d) in [Hed4]) that from the papers [He2] and
[AiHe] follows the following result, which is an important special case of our
Theorem 0.2 : if D is as in Theorem 0.2, then, for any f € C3 (D, E)Nker d,
the equation du = f has a continuous solution on D. From the text
following Proposition 6.2.1 in [AiHe] and from personal conversations with
Henkin we understood that, writing this, Henkin had the following idea for

the proof :

1) Construct a Leray map whose dependence on ) is piecewise of the
special rational form mentioned above.

2) Explicit integration with respect to A by means of the generalized
Fantappie-Feynman formula.

3) Estimation of the integrals over the moduli of the obtained inte-
grands.

After certain attempts to realize this program of Henkin, we under-
stood that this is not so easy. Therefore we modified Henkin’s idea as
follows : we do not try to choose a Leray map of a special form — we take
the first one which one obtains by generalizing the constructions of Range
and Siu [RS] and W. Fischer and Lieb [FiLi], and then we prove that, in
certain infinitesimal sense, this Leray map is of the mentioned special ratio-
nal form (Lemma 7.4). Though now explicit integration with respect to A
is impossible, this enables us to get a suitable estimate for this integration
(Theorem 7.2). The key to this estimate is an auxiliary estimate (Theo-
rem 6.1) which is close to the generalized Fantappie-Feynman formula of
Airapetjan and Henkin.

This article is organized as follows : to prove Theorem 0.2 we use
an integral operator for certain special domains which we call local g¢-
convex domains and which will be defined in sect. 2. The construction
of this operator is given in sects. 3-4 by now well-known ideas. First, in
sect. 3, we construct the Leray map mentioned above. Then in sect. 4,
we replace the boundary integrals in the corresponding Cauchy-Fantappie
formula (see sect. 1.13) by integrals over some submanifolds of the domain.
This is necessary to include the case of unbounded forms (8 > 0) which
we need for the intended applications to the O,-operator. Note that this
construction of sect. 4 is similar to the construction of J. Michel in
his paper [M] on C*-estimates for the d-equation on piecewise strictly
pseudoconvex domains, where the boundary integrals are replaced by
integrals over certain submanifolds outside the domain. In sects. 5-8 we
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prove the estimates. After a first description of the singularity of the kernel
of our operator in sect. 5, in sects. 6-7 we solve the main problem : we
estimate the integration with respect to A (see above). After that it remains
to repeat the arguments of Range and Siu [RS], what is done in sect. 8. In
sect. 9 we sketch the standard arguments (Fredholm theory and Grauert’s
“Beulenmethode”) which lead from local results with uniform estimates
to global results with uniform estimates. Also in sect. 9 we complete the
proof of Theorem 0.2, using the Andreotti-Grauert theorem (see [AnG])
on solvability of the Cauchy-Riemann equation on completely g-convex
manifolds.

1. Preliminaries.

1.1. For z € C™ we denote by 2p,...,2, the canonical complex
coordinates of z. We write (2, w) = zjw; + - + 2,wy, and |2| = (z, 2)!/?
for z,w € C™.

1.2. Let M be a closed real C! submanifold of a domain Q C C?, and
let ¢ € M. Then we denote by TE (M) the complex, and by T§(M) the
real tangent space of M at (. We identify these spaces with subspaces of

C™ as follows : if pi, ..., pn are real C! functions in a neighborhood U, of
¢ such that M NU ={p; =---=pn =0} and dp1({) A--- Adpn({) # 0,
then
n . N 905(C ,

TCC(M)= {tEC :Z%t,:o for j =1,...,n}

and ";1 ©
= 9p;(¢ ,
TR(M) = ey IR (8) =0 f =1,...,n¢,
¢ (M) {teC u};laxux() or j n}

where z1, ..., T2, are the real coordinates on C™ with t, = z, () +iZy4n(t)

forteC*andv=1,...,n.

1.3. Let Q C C™ be a domain and p a real C? function on 2. Then
we denote by L,({) the Levi form of p at ¢ € 2, and by F,(-,{) the Levi
polynomial of p at ¢ € , i.e.

— 9p(¢) -

Loyt =3 Lol
chZ=1 a{]ack 7
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(e, teC™ and

n n 2
P =23 B8 G -5 - Y 5B G - )6 -
j=1

¢ € Q, z € C™. Recall that by Taylor’s theorem (see, e.g., Lemma 1.4.13
in [HeLel])

(11)  ReFp(z,0) = p() = p(2) + Lp(¢)(C = 2) +o(I¢ — 2I*).

1.4. Let J = (J1,..-,7¢),1 < £ < oo, be an ordered collection of
integers. Then we write |J| = ¢, J(®) = (J1,---,Jv—1,Jv+1,---,Je) for
v=1,...,¢0and j € Jif j € {j1,...,7e}-

1.5. Let N > 1 be an integer. Then we denote by P(N) the set of all
ordered collections K = (ky,...,k¢),¢ > 1, of integers with 1 < ky,..., kg <
N, and we denote by P’(N) the subset of all K = (kq,...,k) € P(N) with
ki < < ks

1.6. Let J = (j1,...,7¢), 1 < £ < 00, be an ordered collection of
integers with 0 < j; < --- < jy. Then we denote by A; (or Aj,...5,) the
simplex of all sequences {);}52, of numbers 0 < A; < 1 such that A\; =0
if j ¢ J and ¥\; = 1. We orient A by the form dAj, A--- AdAj, if £> 2,
and by +1if £ = 1.

1.7. We denote by §< a fixed C'*° function
X :[0,1] — [0,1]
with (A) =0if 0 <A <1/4and x(\) =1if1/2< A< 1.

1.8. Let N > 1 be an integer and K = (ky,...,k¢) € P/(N). Then,
for A € Aok with A\g # 1, we denote by A the point in Ag defined by

1.9. Let D cC C™ be a domain. D will be called a C* intersection,
k=1,2,...,00, if there exist a neighborhood Uz of D and a finite number
of real C¥ functions pi,..., pn in a neighborhood of Uz such that

D={z€Ug:pj(2) <0 for j=1,...,N}
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and

dpkl (Z) ASERRA dpke(z) 7é 0
for all (k1,...,ke) € P'(N) and z € 0D with pg,(2) = -+ = pg,(2) = 0.
In this case, the collection (Ug;, p1, ..., pn) will be called a C* frame (or a

frame) for D.

1.10. Let D cC C™ be a C! intersection and (Up, p1,---,pN) & frame
for D. Then, for K = (ki,...,ke) € P(N), we set

Sk ={2€0D: pg,(2) = = p,(2) =0}
if k1,..., ke are different in pairs, and
Sk =10

otherwise. We orient the manifolds Sk so that the orientation is skew
symmetric in kq, ..., ke, and

N
(1.2) oD =Y S,
j=1
and
N
(1.3) 0Sk =Y _ Sk;
j=1

for all K € P(N).

1.11. Let D cC C™ be a C! intersection, (Up,p1,--.,pN) a frame
for D, and let Sk be the corresponding manifolds introduced in sect. 1.10.

A Leray map for D or, more precisely, for the frame (U, p1, ..., pnN)
is, by definition, a map v which attaches to each K = (k1,...,k¢) € P'(N)
a C™-valued map

VK (2,6,0) = (Vi (2,6N), -, ¥k (2,6, N))
defined for (z,(,\) € D x Sk x Ak such that
WUk (2,¢A),(—2) =1
for all (2,{,\) € D x Sk x Ak, and, for v =1,...,¢,
Vi) (2,CA) = ¥r(2,(,A)
if (2,¢, ) € D x Sk(p) X Ag(s)-
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1.12. We denote by B(z,¢) the Martinelli-Bochner kernel for (n,7)-
forms, i.e.

1 n—1
N ———

~ 1 (—Z (—-Z
B(z,¢) = — det ,d ANdzy AN---Nd
(9= Griyr % ( =2 =P ) “ &

for all z,¢ € C™ with z # ¢ (for the definition of determinants of matrices
of differential forms, see, e.g., sect. 0.7 in [HeLe2]). If D cC C™ is a domain
and f is a continuous differential form with integrable coefficients on D,
then we set

Bpf(z) = /C _JOABEQ, zeD

(for the definition of integration with respect to a part of the variables, see,
e.g., sect. 0.2 in [HeLe2]).

1.13. Let D cC C" be a C! intersection, (Ug, p1,--.,pN) a frame
for D, and let Sk be the corresponding manifolds introduced in sect. 1.10.

Further, let 4 be a Leray map for the frame (Ug, p1,...,p~). Then
we set

(1.4) Yok (z,(,A) = X()\o)

Ic— lz +(1- )OC()\O))dJK(z,C,j\)

for K € P/(N) and (2,{,)\) € D x Sk x Aok. Note that 1 — x(Ag) = 0

for A in the neighborhood Apg\ Apk of Ay and therefore Yok is of class
C!. For K € P'(N) we introduce the differential form

. S A
Rie(,6,0) = " det (Yor(2,€,X), Wox (5,6, X)) Ady A Az

defined for (2,{,\) € D x Sk %X Aok, and the differential form

1 n 1

—— det (1/1K(z G, Wk (2, (,A)) ANdzy A+ Adzn

K(z C’)‘) ( )

defined for (z,¢,\) € D x Sk x Ak (here d denotes the exterior differential
operator with respect to all variables z,(, ). If f is a continuous differential
form on D, then, for all K € P'(N), we set

RYf(2) = / FOARL(GN), zeD,
a.nd (Ca)‘)GSK XAok

LY f(z) = / FO ALY (2,¢,)), zeD.

($,A)ESK XAk
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Then, for each continuous (n,r)-form f on D, 0 < r < n, such that df is
also continuous on D, one has the representation

(15) (-1)*"f = dBpf—Bpdf+ 3. (L}‘;f+dRﬁf—R}Qdf) on D.
KeP'(N)

This formula is basic for the present paper. It has different names
and a long history (see, e.g., the notes at the end of ch. 4 in [HeLel)), we call
it Cauchy-Fantappie formula. For more special Leray maps it was proved
by Range and Siu (see [RS]). In the case considered here, this formula was
obtained by Airapetjan and Henkin (see Proposition 1.3.1 in [AiHe]). As
mentioned by Airapetjan and Henkin, the proof of Range and Siu can be
used also in this more general case (see sect. 3.12 in [HeLe2], where this is
carried out).

1.14. Let f be a differential form on a domain D C CV. Then we

denote by || f(2)|l, z € D, the Riemannian norm of f at z (see, e.g., sect. 0.4
in [HeLe2]).

1.15. If M is an oriented real C' manifold and f is a differential
form of maximal degree, then we denote by |f| the absolute value of f (see,
e.g., sect. 0.3 in [HeLe2]).

1.16. Let D CC C™ be a domain. Then we shall use the following
spaces and norms of differential forms :

C%(D) is the set of continuous forms on D. Set

19 1710 = I7lo.0 = sup 172}
for f € CO(D).

C%(D),0 < a < 1, is the space of forms f € C?(D) whose coefficients
admit a continuous extension to D which are, if a > 0, even Holder
continuous with exponent o on D. Set

A7) fla=1flap=1flop+ sup 1L =TI
z2#¢

I¢ = 2|
for 0 < @ < 1 and f € C¥(D).

B?(D),8 > 0, is the space of forms f € C%(D) such that, for some
constant C > 0,

I£(2)]l < Cldist(z,0D)]™%, 2 € D,
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where dist(z,0D) is the Euclidean distance between z and 8D. Set
(1.8) Ifll-8 = Ilfll-5.0 = sup 17 (2)l[dist(z, 8D))”

for 3> 0 and f € B?(D).
If Ap (D) is the space of forms of bidegree (p,r) on D, then we set
€0, (D) = CY(D) N Ay (D),
Cg.(D) = CZ(D)N Ay (D),
B(D) = B(D) N Ay (D),
Cp+(D) = Uo<r<nCy (D),
Cpo(D) = Uo<r<nCy. (D),
B}.(D) = Us<r<n By, (D).

and

2. Local g-convex domains.

In this section n and ¢ are fixed integers with 0 < ¢ < n — 1. Denote
by G(n, q) the complex Grassmann manifold of g-dimensional subspaces of
C™, and by MO(n, q) the complex manifold of all complex n x n-matrices
which define an orthogonal projection from C™ onto some ¢-dimensional
subspace of C™. Sometimes we shall identify the projection P € MO(n,q)
with its image Im P € G(n, q). Observe that this identification is only of
class C* but not holomorphic.

2.1. DEFINITION. — A collection (U, p1,...,pn) will be called a
g-configuration in C™ if U C C" is a convex domain, and p1,...,pN are
real C? functions on U satisfying the following conditions :

(i) {z€U:pi(z)="---=pn(2) =0} #0.

(ii) dp1(2)A---Ndpn(2) #0 forall z€ U.
(iil) If X € Ay..ny (see sect. 1.6) and

px = Aip1+ -+ Anpn,

then the Levi form L, (z) (see sect. 1.3) has at least q + 1 positive
eigenvalues.

2.2. LEMMA. — Let & € C™ and let ¢1,...,oN be real C?
functions in a neighborhood V' of £ such that the following conditions are
fulfilled :
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(i) dpi(§) A~ Adpn(§) # 0.

(ii) @1(§) =+ =n(§) =0.

(ili) SetY; = {z € V : pj(z) = 0} for j = 1,...,N, and ¢, =

Apr+ -+ )\N<pN for X € Ay...n. Then, for all K = (ki,...,k¢) € P'(N)

and A\ € AK (see sects. 1.5 and 1.6), the Levi form L, (§) restricted to

TE (Ye, N---NYy,) (see sect. 1.2) has at least
dichEC(Yklﬂ--'ﬂYke)—n+q+1

positive eigenvalues.

Then there exist a convex neighborhood U C V of £ and a constant
Co > 0 such that, for all C > Cy,

(U,eC%1 —1,... €598 —1)

is a g-configuration in C™.

Proof. — For A € A,..Ny,C > 0 and z € V, we denote by Lf(z) the
Levi form at z of the function

)\lec'% 4ot )\NeCQPN.

It is sufficient to prove that for all A € A;...; there exist a constant
Cy > 0, a space T\ € G(n,q + 1) and neighborhoods Uy C V of £ and
I'x € A;...y of A such that, for all C > C\,z € Uy and u € Ty, the Levi
form LS (z) is positive definite on T}.

Let A € Aj..ny be fixed, and let K = (ky,...,k¢) € P'(N) be the
collection of indices with Ay, # 0 for v =1,...,Zand \; = 0if j ¢ K.
Then by condition (iii) we can find a subspace T of C™ such that L,, (&)
is positive definite on T)\,

T\ CTE(Yi,N---NYy,)
and
dime T = dime TE (Yi, N+ N Yi,) —n+gq+ 1.
We choose a subspace T € G(n,q+ 1) so that
Ty =TaNTE(Yi, N+~ NY,).
Set M = {t € Ty : |t| = 1}. Since L, (£) is positive definite on Ty and

L,,(z) depends continuously on x and z, then we can find neighborhoods
U CVof£and I') C Aj..x of A such that

5= inf _ Ly, ()t >0.
2€UY,uery ,teMnTy
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Set

Hopo) =y 2006,

kel sz

forzeV,teC”j=1,...,N. Then

N
(21) LS (@)t = C(CY wiltles, 2 + Ly, (2)2)
j=1

forall C > 0,u € Ar..n,2 € V. Set

I = : i < J .
M {t €M zeUlgr,l,ferg Lo (2)t < 2}

Then it follows from (2.1) that
c g
(2.2) L;(2)t > CE
ifte M~ M,z €U, ueTS. Further, since
TE(Yk, N NYe,) ={t €C™ 1 t(pg,,€) =0 for v=1,...,6}
and by definition of the number %,
M'NTE (Y, N---NYy,) =0,

we have the inequality
N
s ) A2
v = trglgl,;/\ﬂt(%,é)l > 0.
Choose neighborhoods Uy C Ug of £ and I'y C 1"9‘ of X so small that

N -
> ujlt(es,2)1> > )
j=1
for t € M',z € Uy, pn € T'y. Moreover, we choose C > 0 with
%%
4
for z € Up,u € T'x,t € M'. Then it follows from (2.1) that

Lo, ()] <

2,1

L8y > S
for C > Cy,z € Uy, u € I'x,t € M'. Together with (2.2) this implies that,
for all C > Cy,z € Uy and pu € T'y the form Lf(z) is positive definite
on T)‘. [}
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2.3. DEFINITION. — A local g-convex domain,0 < g<n-—1,isa
C? intersection D CC C™ (see sect. 1.9) for which one can find a C? frame
(Up, p1, - - -, pN) satisfying the following two conditions :
(i) IfK ={k1,...,ke) € P'(N) and
Ug ={z€ UB oy (2) = = pr(2)},

then (dpg, (2) — dpr,(2)) A -+ A (dpk, (2) — dpk,(2)) #0 for all z € Ug.
(ii) There exist a C*° map
Q:ArL.yn — MO(n,n—-q-1)
and constants a, A > 0 such that
Re Fp, (2,¢) 2 pa(¢) = pa(2) + al¢ — 2> = AIQ(N)(C - 2)?

for all X € Ay..n and 2,( € U (for the definition of the Levi polynomial
F,,(2,¢), see sect. 1.3).

2.4. LEMMA. — Let (U, p1,...,pn) be ag-configuration in C",0 <
g <n —1. Then for each point £ € U with p1(§) = --- = pn(€) = 0 there
exists a number R¢ > 0 such that, for all R with 0 < R < R,

D:={z€U:pj(z) <0 for j=1,...,N}n{ze€C":|z2-& <R}

is a local g-convex domain.

Proof. — Set for R > 0,

Pr41(2) = |2 = €* - R?,
Dr={2€U:pj(2) <0 for j=1,...,N and p§+1(z)<0},
Us, ={z€C":|z—-¢ < 2R}

We have to prove that, for sufficiently small R, Dg is a local g-convex
intersection. First note the following : it is clear that there is Ré > 0 such
that Dpg is a C? intersection and (U5R7 Ply--- PN, pﬁﬂ) is a frame for Dy
satisfying condition (i) in Definition 2.3 if 0 < R < Ry.

Therefore it remains to find constants a, A, R¢ > 0 with R < Ry,
as well as a C* map

Q:Ay1.Nny1 — MO(n,n—q-—1)
such that, for 0 < R < R¢, 2, € Us, and A € Aj..Ny1,

(23)  ReF,a(,0) 2 pR(¢) — pf(2) +al¢ — 2> = AIQN(¢ - 2)I%,
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where pf := M\ipy + -+ + Anon + Ans10R 41

Note that Lp§(§) is independent of R > 0. Denote by G (\),\ €
Aj..N+1, the set of all spaces E € G(n,q+ 1) such that L,r (&) is positive
definite on E. Since L R (&) is positive definite on C™ and by condition
(iil) in Definition 2.1,

Gi(A\) #0 forall A€ Ar..ny1-
Moreover, it is easy to see that, for all A € Aj..ny41,G+()) is open and
connected. Therefore, by elementary topological arguments (Aj..y4; is
contractible), one obtains a C° map
T: A1-~N+1 e G(n,q + 1)
such that L,z (&) is positive definite on T'(A) for all A € Aq..n41.

Denote by P(A),A € A;..n+1, the orthogonal projection from C"

onto T'(A), and set Q(A) = I — P()). Choose a > 0 with

L,z (€)P(A)t > 4a| P(V)|?
for all A € Aj...Ny4+1 and t € C™. Further, choose Ré’ > 0 with R’g < R’5 S0
small that

L,p(Q)P(\)t = 3al P\

if |(—&| < R/,\ € A1..N+1,t € C™. Finally, we choose constants A, A’ > 0
such that

1L, (Q)t = L,z (PO < A (IPOVHIQVH + [QNE)

< alPOI? + (4 —20) QU1

and therefore

L,p(C)t 2 20l POV + 201Q()8 — Q)P

A
= 20l - Z1QOV?
for | — & < R!/,A € Ay..N41,t € C™. In view of relation (1.1) in sect. 1.3,
this implies that there exists a constant R¢ with 0 < R¢ < R{ such that
Re F,n(2,¢) 2 pR(¢) — P (2) + al¢ = 27 = AIQO)(¢ — 2)P?
for | —¢&|, |z — €| < 2Re and A € Aq..n41- O

Notes. — The results of this section are closely related to §3 in
[AiHe] (cp. Lemma 2.2 with Lemma 3.1.1 in [AiHe|, and the proof of
Lemma 2.4 with the proof of Proposition 3.3.1 in [AiHe].
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3. A Leray map for local g-convex domains.

In this section D CC C™ is a local g-convex domain, 0 < ¢ <n —1,
and (Ug, p1,...,pN), @, A,Q are just as in Definition 2.3.

3.1. Construction of the Leray map 1. — Since pi,...,pn are
defined and of class C? in a neighborhood of UB» we can find C* functions
ati(v=1,...,N;k,j=1,...,n) on Uy such that

j 32p,,(0
aﬁj(g) - a(kaCJ < %E

for all ( € Ug. Set

p)\ = A1p1 +“'+)\NPN
and ki
a)\ —/\1a e+ Anap

for A € Ay...n5. Then

82 ©

k] 2 2
(3.1) | ; (a5 ~ B60C, Jiuts| < Fl
for all ( € Up,t € C™ and A € Aj...n. Set

n

B QZ 8/;\(] G %)~ Z a];j(g)(Ck —2k) (¢ — %)

k,j=1
for (2,{,A) € C* x Uz x Ay...n. Then it follows from (3.1) and condition
(ii) in Definition 2.3 that
~ e!
(32)  ReFp (20 2 () = pale) + 51¢ ~ 2 = AR — 2)

for all (2,{,)\) € Uy x Up x A1...n. Denote by Qk;()) the entries of the
matrix Q(X), i.e.

Q) = (ij(’\)):,jﬂ (k = column index).
If (2,{,A) € C" x Uy x Aj...n, then we set
w(a,6,0) = 222857 (0) G- 44 Doy VG0,
I k=1 k=1
w(z,(,A) = (w (z,(,/\),...,w"(z,(,)\)),
¥(z,¢, )‘) = (w(z,(, A),C—Z).
Since Q(A) is an orthogonal projection, then we have

(3.4) U(2,¢,2) = Fpy (2,0) + AIQ)(¢ — 2)I?

(3.3)
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for all (2,¢,A) € C* x U x A;...n, and it follows from estimate (3.2) that
a
(3.5) Re¥(z,¢,A) 2 pa(Q) = pa(2) + 3¢~ 2|?

for all (2,(,\) € Uz x Ug x Ar.n. In particular ¥(z,{,A) # 0 if

(2,¢(,A) € D x Sk x Ak for some K € P'(N). Therefore, by setting
_w(z,(,A)

(3'6) '(/)K(Z, C? >\) - \I/(Z, C, A)

for (2,{,\) € D x Sk x Ag,K € P'(N), we obtain a family ¢ =

{¥x}kep(n) of C*-valued C 1 maps. Obviously, 9 is a Leray map for the

frame (U, p1,...,pn) (see sect. 1.11).

3.2. DEFINITION. — A map f defined on some complex manifold
X will be called k-holomorphic if, for each point £ € X, there exist
holomorphic coordinates hi,...,h, in a neighborhood of £ such that f
is holomorphic with respect to hy,...,hg.

3.3. LEMMA.

(i) For every fixed (¢,)\) € Up x Aj..n, the map w(z,(,\) and the
function ¥(z,{, A) (see (3.3)) are (¢ + 1)-holomorphic in z € C™.

(ii) For each K € P'(N) and all fixed (¢,)\) € Sk x Ak, the map
Yi(z,(,A) (see (3.6)) is (¢ + 1)-holomorphic in z € D.

Proof. — Assertion (ii) follows from (i). Therefore we must prove
only assertion (i). Let (¢,\) € Uz x A1...x be fixed.

Choose complex linear coordinates hy,...,h, on C™ with
{€C": Q)2 =0} = {z € C" t hgsa(z) =+ = ha(2) = 0}.

Then the map C" 3 z — Q(A)(¢ — 2) is independent of hi,...,hgy1. This
implies that w(:,(, ) is complex linear with respect to hi,...,hqt1, and
U(-,¢, A) is a quadratic complex polynomial with respect to hy,...,hg41. O

Notes. — For N = 1 such a Leray map was first constructed by
W. Fischer and Lieb (see [FiLi]). For the general case, a similar map was
constructed by Airapetjan and Henkin (see Proposition 3.3.1 in [AiHe]).
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4. Homotopy formulas on local g-convex domains.

Throughout this section we assume :
D cc C" is a local g-convex domain, 0 < ¢ < n — 1 (see Definition 2.3);

(Up,p1,---,pN) is a frame for D satisfying conditions (i) and (ii) in
Definition 2.3;

Sk,K € P(N), are the submanifolds of 8D which belong to the frame
(Up»p1,- -+, pN) according to sect. 1.10;

% is the Leray map constructed in sect. 3.1 for the frame (U, p1,...,pN)-
We set
T¥=Bp+ », 6 R}
KeP/(N)
and
= Y I
KeP'(N)

(for the definition of the operators BD,Rﬁ and L}l’(, see sects. 1.12 and
1.13).

4.1. THEOREM. — Ifn — q < r < n, then, for each continuous
(n,r)-form f on D such that df is also continuous on D,

(4.1) (=1)*"f =dT¥f —TYdf on D.

Proof. — In view of the Cauchy-Fantappie formula (1.5), we must
prove that LY f = 0 for all K € P'(N).

Fix K € P'(N) and denote by v¥},...,9¥% the components of
the map k. Since, by Lemma 3.2 (ii), the map ¥k (z,¢(,A) is (¢ + 1)-
holomorphic in z, and since r > n — ¢, this implies that
A (2, A) A - Adols (2, A) Adzy A+ Adzn = 0
for all 1 < ji,...,7r < n. Looking at the definition of L}/} f now it is easy
to see that L% f = 0. 0

Now we are going to replace the integrals over the manifolds Sk
in the homotopy formula (4.1) by integrals over certain submanifolds I'x
of D.

4.2. The manifolds I'x. — For K = (ki,...,ks) € P(N) we set
Ug = {C € UE : pk1(€) == pke(C)}
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if k1,..., k¢ are different in pairs, and Ug = () otherwise. By condition (i)
in Definition 2.3 each Ug is a closed C? submanifold of Up- We denote by
pi, K € P(N), the function on UX which is defined by

(4.2) pr(C) =k, (() (C€ULv=1,...,0.
Now, for all K € P(N), we define
(43) Tk ={CeUE:p;j({) <px(¢)<0 for j=1,...,N}.

Then it is easy to see that all I'x are C? submanifolds of D with piecewise
C? boundary, and that

(4.4) D=TyU---UTlN
and
(4.5) gk =Sk Ul U---UTknN, KEP(N).

We choose the orientation on I' such that the orientation is skew
symmetric in the components of K, and the following conditions hold :
I'y,..., 'y carry the orientation of C™, and
(4.6) if K€ P(N)and 1< j <N with j ¢ K, then
I'k; is oriented just as —0T' k.

4.3. LEMMA. — IfT'k are the manifolds defined in sect. 4.2, then
N
Ok =Sk — » Tk;
j=1

for all K € P(N).

Proof. — Denote by Sk, K € P(N), the manifold which is equal to
Sk as a set and which carries the orientation of OI'k. Then it follows from
(4.5) and (4.6) that

N
(4.7) Ok =Sk — Y Tk
=1

for all K € P(N). Therefore we must prove that Sk = Sk for all
K € P(N). We do this by induction over |K|. Since 0D = S1 +---+ Sn
(see sect. 1.10), it is clear that Sk = Sk if |K| = 1.

Now let £ > 1 and assume that the relation §K = Sk is already
proved for all K € P(N) with |K|=¢.
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Consider K € P(N) with |K| = £+ 1. Set K’ = K({+1) (see
sect. 1.4). Then by hypothesis and (4.7)

: N
6FK/ = SKI — ZFK/J'.
Jj=1
This implies that

N
> 0Tk = 0Sk:
j=1

and therefore, by (1.3),

N N
(4.8) > 0Tk =Y Sk
j=1 j=1

Moreover, since

Z Tk ji =0,

Jri=1

it follows from (4.7) that

N N _
> 0k = Skij.
j=1 j=1

Comparing this with (4.8) we see that §K/j = Skgsj foralll < j < N.
Hence, in particular, S = Sk. O

4.4. LEMMA. — IfTi are the manifolds defined in sect. 4.2 and
Ak, Aok are oriented simplices introduced in sect. 1.6, then

> (~)EIaIrk x Aok)
KeP/(N)

_DXAO+ Z |K|SKXAOK-— Z T x Ag.
KeP’'(N) KeP/(N)

Proof. — If K = (ki,...,k¢) € P'(N), then (in addition to
sect. 1.4) we introduce the notations
J(K,v)y=k, (w=1,...,%
CK ={1,...,N}~{ki,... ke}.
Then we obtain from Lemma 4.3 that

6(PK X AOK) = SK X AOK — Z FKj X A()K
jeECK

and

|K|
+Z(—1)|K'+"+1FK x Aok + (-D)FH Tk x Ak

v=1
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for all K € P'(N). Since

Tk = (1) T )ik ),
this implies that

> (-1)H(Irk x Aok)
KeP'(N)

N
= Y (-)¥Sk xAok— Y, Tk xAx+» M,
KeP'(N) KeP'(N) s=1

where

N

M1 = ZF]' X Ao

=1

and, for2<s< N,

Myi= Y (-D)¥Tk)imm x Dok — D, (-1)!FITk; x Aok
KeP/(N) KeP/(N)
|K|=s |K|=s-1
1<v<s JECK

Since 'y 4+ --- + 'y = D and the sets of pairs
{(K,j): K€ P'(N),|K|=¢~1, j€CK}

and
{(K(®),i(K,v): K € P(N),|K|=¢, 1<v<8)

are equal, this completes the proof. O

4.5. The function ®(z,({,\) and the map 7(z,{,\). — Set
pr=Mp1+--+Anpy for A€ Aj.nN,
and let ¥(z,¢,A) and w(z,(,A) be the maps defined by (3.3). We set

for all (2,¢,\) € C" x Uz X A1...n. Then it follows from (3.5) that
(4.10) Re®(2,¢,2) 2 =pa(¢) = pa(2) + 51 = 2P,

for all (2,{,A) € C" x Uy X A;..N, where o > 0 is the constant from
condition (ii) in Definition 2.3. In particular, ®(z,{,\) # 0 if (2,{, ) €
D x D x A,...n, and we can define the C* map

w(z,¢,\)

(411) 77(2, g) A) X()‘O) [
®(z,¢, )

D+ (- k00)
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for all (z,¢,)\) € D x D x Apy...N with z # ¢ (for the definitions of ¥ and
A, see sects. 1.7 and 1.8). Note that

(412) MeC X = ol i 1/2< X <1,
¢ — 2|

(4.13) n(z N = YEON e g < <1/a,

®(z,¢, )

w(z, ¢, A) _
(4.14) 10560 = g i =0
Further we notice that, by (4.11), (4.9), (3.6) and (1.4), for all K € P'(N)
we have the relation
(4.15) n(z,¢,A) = Yok (2,¢,A) if ((,A) € Sk X Aok

From Lemma 3.3 one immediately obtains the following

4.6. LEMMA. — For fixed ((,A) € Uy x A;..N, the function
®(2,(, A) is (g+1)-holomorphic in z € C™, and the map n(z,(, A) is (g+1)-
holomorphic in z € D.

4.7. The kernels @(z, ¢, ) and ﬁ(z, ¢,A). — Let n(z,¢,A) be the
map defined by (4.11). Then, for all (z,{,A) € D x D x Ag;...y With z # ¢
we introduce the continuous differential forms

n—1

—N— ——
(4.16) G(z,(, ) = det ( (2, ¢, /\),dn(z,C,)\)) Adzi A~ Adn

(2m )”
and

n

r——
(4.17) H(z ¢ N) = ——— det (dn(z, ¢, ,\)) Adzy A+ A dzg,

(2miyn )

where d is the exterior differential operator with respect to all variables

z,¢(, A (for the definition of the determinants, see, e.g., sect. 0.7 in [HeLe2]).
Then it is easy to see that

(4.18) dG=H.

Further, it follows from (4.12) and the definition of the Martinelli-Bochner
kernel B (see sect. 1.12) that

~

(4.19) Glpxbxa, = B;
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and it follows from (4.15) and the definition of the Cauchy-Fantappie
kernels Rk (see sect. 1.13) that, for all K € P'(N),

(4.20) Glpxskxnox = (—1)KIRk.
We omit the simple proof of the following
4.8. LEMMA. — Denote by [G(z ¢y A\)]deg A=k and [H 2,y A))deg A=k

the parts of the forms G(z ¢, ) and H (z,¢, A), respectively, which are of
degree k in A. Then the following statements hold :

(i) The singularity at z = { of the form [@(z, ¢, A)]deg a=k is of order
< on— 2 —1.

(ii) The singularities at z = ( of the first-order derivatives with
respect to z of the coefficients of |G [ G(z,¢, A)ldeg A=k are of order < 2n — 2k.

(iii) The singularity at z = { of the form [H (2,¢, A))deg A=k is of order
<2n-2k+1.

4.9. LEMMA. — Let @(z, ¢, \) be the form defined by (4.16). Then
the following two statements hold :

(i) If f € CY,(D) withn —q+1<r <mn, then

/ FO A0 =0
(GANET K XAk
for all K € P'(N) and z € D.

(i) If f € CY,_o(D), then
@ [ FQAB(z¢N) =0
$A)ENK XAk

for all z € D and K € P'(N), where d, is the exterior differential operator
with respect to z € D.

Proof. — Denote by [@(z,(, A)]; the part of @(z,(, A) which is of
bidegree (n,j) in z, and let K € P/(N). Then

/ ﬂoA&agm=/’ FO N B¢ N1, 2 € D,
T XAk Pk xAk

if f € CY (D). On the other hand, since, by Lemma 4.6, n(2, ¢, A) is (g+1)-
holomorphic in z if Ag = 0, we see that

[G(2,¢,A)]r—1=0 on DxTg x Ag



UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 405

ifr>n—q+1, and
d,[G(2,(,N)]n_g-1=0 on D xTg x Ag.

Together this implies assertions (i) and (ii) of the lemma. 0

4.10. The operator H. — Let f € BE,.(D),0 < 8 < 1 (see
sect. 1.16). Then, for all K € P'(N), we define

(4.21) Hicf(2) = /(“)EF _ HQAGGN, zeD.

It follows from Lemma 4.8 (iii) that these integrals converge and the so
defined differential forms Hg f are continuous on D. We set

(4.22) Hf= Y (-1)¥Hgf

KeP/(N)
for f € BE (D),0< < 1.

Now let f € BE (D),0 < f < 1,0 < r < n. Since H(z,(,)) is of
degree 2n and contains the factor dz; A- - -Adz,, and since dimg 'y X Apg =
2n+ 1, then only such monomials of H (2,¢, A) contribute to the integral in
(4.21) which are of degree (n+1—r) in (¢, A) and hence of bidegree (n,r—1)
in 2. This implies that Hx f =0ifr=0orn+ 1 —r < |K| = dimg Aok

Hence, for f € BE (D),0 <3< 1,0 <r <n, we have
Hf= 3 (-1)"Hgk/,
(4.23) RISt

Hf=0ifr=0, and Hf € C),_(D)if1<r <n.
4.11. THEOREM. — Letn—g¢<r<nand0< < 1. Then

(4.24) f=dHf+ Hdf on D
for all f € Bﬁy,(D) such that also df € B?(D).

Proof. — First consider a form g € C ;(D). Then by (4.18)
dex(gNG) =dgAG —dy(gAG) + (-1)"HgAH

and it follows from Stokes’formula (which can be applied in view of
Lemma 4.8) that

/ gAG = dg/\CAv’—i—d/ gAG+ (=1)"" Hyg
3(FK><AOK) FKXAOK

'k xXAok
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for all K € P'(N). In view of Lemma 4.4 this implies that
gnG+ 3 ([ gnG- [ anG
v/DXAo Z Sk XAok Z e XAk

KeP!'(N) KeP/(N)

= > (-p / dgAG+d gANG+ (=) Hgg ).
KGP’(N) Tk xAok 'k xAok

Taking into account (4.19) and (4.20) as well as the definitions of T% and
H, this can be written

b, _ A _1)IK A
TYg- > / gAG= > (-1 (/FKXAOKdg/\G

Kep/(N)/TKkXAK KeP'(N)

(4.25) +d g @>+(—1)"+1'Hg.

'k xAok

Now we consider a form f € C?”(B) with n — ¢ < r < n such that
df is also continuous on D. Setting g = df in (4.25) and taking into account
Lemma 4.9 (i), we obtain that

TVdf = ) (-1)|Kld/ df A G+ (—1)"+ 1 Hdf.
KeP'(N) TrxAox

Setting g = f in (4.25), applying d to the resulting relation and taking into
account Lemma 4.9 (ii), we obtain that

arvf= Y (—1)'K’d/ df NG+ (=1)"*"dH .
KeP'(N) PxxBok
Together this implies that
dT¥ f — TYdf = (-1)"*"(dH f + Hdf),
and hence, by Theorem 4.1,
(4.26) f=dHf + Hdf.

Finally we consider the general case. Let f € B,ﬂw(D),O < B <
1,n—q < r < n, such that also df € BE(D). Choose € > 0 with B+¢ < 1.
Then, by local shifts of f and a partition of unity argument, we can find a

sequence of forms f, € 02,,(5) such that also the forms df,, are continuous
on D and

fo — f and df, — df
in the space B°*¥(D). By Lemma 4.8 (iii), then
Hf, — Hf and Hdf, — Hdf
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uniformly on the compact subsets of D. Since, by (4.26),

fl/ = dHfl/ + deua

this implies that
f=dHf + Hdf. o

4.12. THEOREM.
(i) Let0<pB<1/2,0<e<1/2-p,and1<r <n. Then
H(Bf (D)) € G727 *(D)
and the operator H is compact as operator between the Banach spaces
Bf (D) and C,/?~~*(D).
(ii) Let1/2<B8<1,0<e<1-[,and1<r<n. Then

H(B{ (D)) € Bpr=i"(D)

n, r—1
and the operator H is compact as operator between the Banach spaces
Bf (D) and BL+*7"*(D).

n,r—1

The following sects. 5-8 are devoted to the proof of this theorem.

5. A first description of the singularity of the kernel of H.

In this section we assume :

D cc C™ is a local g-convex domain, 0 < g < n — 1 (see
Definition 2.3);

(Up, p1,-- -, pN) is a frame for D satisfying conditions (i) and (ii) in
Definition 2.3;

I'k, K € P(N), are the submanifolds of D which belong to the frame
(Up, p1,- - -, pN) according to sect. 4.2;

®(z,(, A) is the function defined for (z,{,A) € C" x Uz x Ay..x by
(4.9) in sect. 4.5.

5.1. DEFINITION. — Let K € P'(N) and let s be an integer.

A form of type O; (or of type Os(z,(,\)) on D x T'x x Aok
is, by definition, a continuous differential form f(z,{,\) defined for all
(2,¢,\) € D x 'k x Aok with z # ( such that the following conditions
are fulfilled :
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(i) All derivatives of the coefficients of f(z,(,\) which are of order 0
in ¢, of order < 1 in z, and of arbitrary order in A\ are continuous for all
(Z,C,)\) € D xT'g x Aok with z # (.

(ii) Let V%,k = 0,1, be a differential operator with constant coeffi-
cients which is of order 0 in (, of order k in z, and of arbitrary order in A.
Then there is a constant C > 0 such that, for each coefficient ¢(z,{, X) of
the form f(z,(, ),

[VZe(z, (M) < CI¢— 27"
for all (z,{,\) € D x Tk x Apg with z # (.

(iii) There exist neighborhoods Uy, Ux C Aok of Ag and Ak, respec-
tively, such that f(z,{,\) =0 for all (2,{,\) € D x ' x (Up UUk).

The symbols Os(z,(, A) and O, will be used also to denote forms of
this type, also in formulas. For example :
f = 0Os means : f is a form of type Os.

Os AN f = Ok A g+ O, means : for each form h of type O, there exist a
form u of type Ok and a form v of type O,, such that hA f =uA g+ v.

The equation
Bf) = | Ou(2,C.N) A £(2,6, )
(§, N €Sk xAok
means : there exists a form B of type Os such that
Bf() = | Bz, X) A (2,6,
(¢, N €SK xDoK
for all f.
5.2. DEFINITION. — Let m > 0 be an integer. An operator of

type m is, by definition, a map
E: |J Bl.(D)— C.(D)
0<B<1
such that there exist
— an integer k > 0,
- K € P'(N),
— a form E(z,(, A) of type O|k|-2n+2k+m 00 D x T'x X Aok such
that, for all f € B2 ,(D),0< <1,
2 E(z,,N)A0(C
Be) = [ fio n 2N 0K)
(¢, N\€Tk xAok Ok+m(z, ¢, \)
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where f € Bg*(D) is the form with

FQ) = FONAGA--- NGy,
and for © holds the following :
ifm=0, then © =1;
if m > 1, then there exist indices i1, ...,i, € K such that either

e=apil/\"'/\apim or @=5p,-1/\6pi2/\-~/\8pim

(for the definition of A, see sect. 1.8).

5.3. LEMMA. — Let E be an operator of type 0, let 0 < § < 1
and 0 < ¢ < 1 — . Then E(BS.(D)) C Ca .’ ¢(D) and there exists a
constant C' > 0 such that
(5.1) IEflli-p-e,0 < ClIfll-p,0

for all f € BE (D).

Proof. — In this proof we denote all positive constants by the same
letter C, and we use the abbreviations
pr=Aip1+ -+ ANpN, AE AN,
d(z) = dist(z,0D), ze€ D.

Further, let px be the function on I'x defined by px(¢) = p;(¢) for j € K
and ¢ € Tk (see (4.2)). Note that

and

(5.2) d(¢) > Clox(C)| for €Tk,

(5.3) loa(2)| 2 Cd(z) for (z,A) € D x Aq.n,
and

(5.4) pr(¢) = pa(¢) for (¢,A) €Tk x Ak.

In view of (5.3) and (5.4) it follows from (4.10) that

(5.5) 1©(2,¢, 0| > C(Iox (O] + d(2) + ¢ — 22)
for all (z,¢,A) € D x Tk x (Aok ™ Ag).

Now we first consider the case that the integer k£ in Definition 5.2 is
zero. Then it follows from (5.2) that

C|lfll-s,p
1< Px@P =z

(5.6) I£C) AE(2,¢,\)
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and, if V, is one of the operators 9/9z;,0/9%;,

= Cllfll-p,p
(57) "vzf(C) A E(Z, C’ A)" S |PK(<)|ﬁ|< _ zlzn_!KH.l

for all f € B5 (D) and (z,(,\) € D x Tk x Aok. Set

B2 = [ HOABGCY)
I¢—z|<|z—w]| R
= Jeernnage FOAE@CY)
and f¢=wl Stzmsl
Bz = [ oo SOA BN - Blw,g, )

1K=z, l[¢{—w|>|z—-w]

for all f € BS (D) and z,w € D. Then

(58) Ef(z) _Ef(w) =I1(f,Z,W)+I2(f,Z,'LU)
for all f € B,Bl,* (D) and z,w € D. Since pg is a local coordinate on 'k, it
follows from (5.6) that

dty A+ Adton— k|41
15,2l < CIfl-p0
69 s T TP

< Clz—w|* | fll-,p

for all f € BS (D) and z,w € D. Further, it follows from (5.6) that

dty A -+ Adton_ k|41

< _
(5.10) 1Er@I = clr ﬂ’Dﬁe""?@Z"“ [t1]8[t[2n—1K]

< Cllfll-p,p
for all f € Bgy*(D) and z € D. From (5.7) it follows that
5 5 Clz — wl||fll-s,p
AN (E(z,(,A) — E(w, (M)l < :
1£(€) A (Blz,¢,3) = Blw, ¢ M) € ooy
Clz — w|*P=¢||fll-.0
= x(QPIC — P IKTH-5=
for all f € B2 ,(D),z,w e D and (¢,\) € Tk x Aok with [(—2|,|¢—w]| >
|z—w]|. Hence

dt; A--- Ndtg,_

o |1—B—¢ n—|K|+1

e e a1/ MY N v St
ItI<C

(5.11) A
<Clz—w|'~P~¢||fll-,p0
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for all f € Bg,*(D) and z,w € D. Now it follows from (5.8), (5.9) and
(5.11) that

IEf(2) — Ef(w)]l < Clz = w|*"*~*| fll-g,p
for all f € BS,*(D) and z,w € D. Together with (5.10) this implies (5.1).
Now we consider the case that k£ > 1.

In view of (5.2) and (5.5) then we obtain that

Clfll-s,0
lpx (Q)IPIC — 221X
for all (2,{,A) € D x 'y x Apk. By the same arguments as in the case

k = 0 this leads to estimate (5.10). Further we see that now, since k > 1, E f
is of class C* and, if V, is one of the operators 8/8z; and 8/8%;, then

[ty n EEEN | <
*(z,¢,N)

do
IV Ef)I<CIfll-,0 / Kxa
(GNeTk xBok |pk (Q)|P|DF+1(2, ¢, N)||¢—2|2n~IK]-2k

dokxa

+C”f”—[9,D/ 5
(CNETk xBok |pk (O)1P|2F (2, ¢, M)|I¢—2|2n~I1KI=2k+1

forall f € B,ﬁl,*(D) and z € D, where dog xa is the Euclidean volume form
on ' x Apk. In view of (5.5) this implies that

do
IV-EfI<CI .0 / K
cer ok ()18 (lok (Q)l+d(2)+I¢—2[2) “[¢—2|2n—1KI-2

dog
+Clfll-sp, /
PP J er o QP (Iox (Q1+d(2) +I(—2[2) [(—z[zn- 1K1

for all f € Bg,* (D) and z € D. Since pg can be used as local coordinate
on 'k, this implies that

dty A A dton_ k|41
IV.Ef(2)|l < Cl\fll-.0 / n K]
teRen-IK1+1 [t |8 ([t1] + d(2) + [¢[2) [¢[2n—1K1-2

dty A -+ Ndton_ k|41
+Clfl-a [
1150 ], gon-ixes TP (ta] + (2) + 22 jePonTRIT

for all f € Bg,,, (D) and z € D. After integrating over t;, one obtains

Aty A~ Adba 1k
IV-ES@) < Ul [ o K]
teR2n—IK| (d(z) + ‘t|2) |tl2n—|K!—2

dt, /\"'/\dt2n_K
+Clfl-s0 | e
teram-11 (d(2) + |t[2) [t[2n—1K]|-1
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for all f € Bg*(D) and z € D. Hence

& d e dr
||VzEf(Z)||SC||f||—ﬁ,D[ | ot W}

(5.12)
< C|lfll-p,pld(2)]7"

for all f € B,[-f,*(D) and z € D. (5.10) and (5.12) together imply estimate
(5.1) (cp., e.g., Proposition 2 in [HeLel]). O

Remark. — This proof shows that in the case k > 1 estimate (5.1)
holds even with ¢ = 0.

5.4. THEOREM. — The operator H defined in sect. 4.10 is a finite
sum of operators of type m (for certain integers m > 0 - see Definition 5.2).

Proof. — Tt is sufficient to prove that each of the operators Hy, K €
P'(N), is a finite sum of operators of type m. Let K € P'(IN) be fixed. By
(4.23) we may assume that £ < n.

We use the same notations as in sects. 3 and 4. Set
W = W(Z, C7 A) = (w(z’ Cv >‘)a d()
and € - 7 d¢)
M = M(z,¢) = N

for (2,(,A) € D xT'g X Aok \ Ay, where

n

(w(z,¢,N), d¢) = 3wl (z,¢, Mg

Jj=1
and

n

Z — Z;)d;.

Jj=1

Further, we use the abbreviations w = w(z,(,A),® = ®(2,(,A), n =
77(27<a )‘)7 )OC = )%()‘0) Thenv by (4 11)

/C-z -3 Codw o w
dn_(lc—zl (I))d +xd| -0+ k-Dggnde
and therefore
W AW W
(5.13) (dn,d§)=($—M)/\ dX+XdM +(1-3) -+ (1-X) g5 Ad®,

for all (z,¢,\) € D x D x Agy...x with z # ¢, where (dn, d¢) = dn' Ad(y +
-4+ dn™ Ad(, and n',...,n" are the components of 7.
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In the following all differential forms which are defined on D x D x
Ap1...ny will be regarded as forms restricted to D x ' x Apg. If g is such
a form, then we denote by [g]qeg x=r the part of g which is of degree r in
A. Then the forms d® and dW are obtained by lifting from D x ' x Ag
with respect to the map (z,{,A) — (z,{,A). Since dimg Ax = £ — 1, this
implies that

[(dW)s]deg,\zg = [(dW)s A dq)]deg ra=e=0 fors=1,2,---.
Therefore it follows from (5.13) that

W o o o
[(dn, Q)" Adzr A+ Adzn] gy =n( =M ) A A (XM +(1-%)

aw

i)
n—1
+(1 —5})%2) ]degH_1 ANdzy A+ Adz,
on D x 'k x Apk. Since (dn,d{)™ Adz, A --- A dz, contains the factor
dGi A+ ANdCy ANdzy A+ - Adzy, in this relation dW and d® may be replaced
by daW + EZ,CW and d,® + 5Z,C<I>. Hence

[(dﬂ» d<>n Ndzy N A dz"] deg A=¢

_ n—1 %% 3 o o 527CW o W!I\EZ,CQ n—¢
= n(ﬂ—l) (E_M) AdxA(XdM+(1—x)T +(1—x)——&)2—~—)

o W Ad\D
Ma-30Z+1- 05—
on D x ' x Apk. Since d)o( =0y, OgANM =0_1, Og ANdM = O_5 and
Oog N0, W =0 on D x Tk x Aok, this implies that

[(dn,d¢)™ Adzy A+ A dzy]

-1
) ANdzy N--- Ndzy,

deg A=/

_ w Op Op = n—¢
= 0o A (3+O-1) A (0_2+3+@/\WA8“<I>)
0o Oo -1
“$A®W+§AWA@®
on D x 'k x Apk. Taking into account that W AW = 0, it follows that
(5.14) [(dn, dO)™ Adz1 A -+ Ndzn] gy sy = B1 + -+ + By,
where El, .. .,E‘4 are forms on D x ' X Aok with
~  O0_ Op\"*¢ -1
E1 = aﬁ——l A (0_2 + ‘3) A (d)\W)
~ O AW Op "¢ -1
By = Dl N (0_2 + 6—) N (dAW)
- O_1 OO n—~¢—1 -1 —
By= i A (0_2 + 75) AMAAW) L AW AT, @

n—~¢
E4Z{EA(0_2+%) AW 2AWAd® if£> 2
ifo=1.
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Now for f € BE,*(D),O < B < 1, we denote by f the form in Bg*(D) with
f(Q)=f()AdG A---ANdl,. Then

n(n—-1

(5.15) F(O) A B (¢ N) = FO A ﬁ%{ﬂ%m 40" Adzy A - A dz.

Since dimr Aok = ¢, it follows from (5.15) and (5.14) that Hx =
E, + ---+ E4, where

EJf(z)=/ f(C)AEj(z)C’)‘)> ZGD,
(¢,N)ETk xAoKk

forall f € BS ,(D),0<B<1,(j=1,...,4).
From the definition of w and ® (see (3.3) and (4.9)) it follows that

(5.16) O AW = ZOO/\apj(C)+01,
jEK

(5.17) O AdyW =Y 0 A8p;(¢) + O,
JEK

O A8 c® = 00Ap;(¢) + 0y
JEK

on D x 'k x Aok and therefore

Op A (d,\W)e_l = Z Ot—1-m N Opi; ({) A+ - A Dpi,, (),

i0ens im€K

O ANW) AW = 3 Opem ABpiy (Q) A -+ A Bps, Q)

Oo A (W) "2 AW AD, (@
= Z Or-mN0pi, (C) A -+ A Bpi,,, () A, 1 ()

[T im €K
= Y Orms1Apiy () ABpig(C) A+~ A Bpi (€)
1<m<e4+1
irim €K
+ Z O¢—m+1 A 9p;i, () A -+ A Dp;,,. (€)
0511}5[



UNIFORM ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 415

on D x 'k x Apk. This implies that

o 02—2n+2 £—14s8—m)+m
By = Z Q(l—l(+s—m)+m) A 8pil (() ARRRNA 8pim (C),

~ O¢—2ni2(6+s—
E; = Z <I>1(18+s(—m)+1:¢)+m A Bpin (C) -+ A Opir, (C),

= Op—2n42(¢+14s—m)+m . 5
By= ) q)’(‘;f;:_f,meH A 0pi; (§) A Opiy (Q) A -+ A Bpi (€)

0€—2n+2(l+1+s——m)+m
+ Z ®(E+1+s—m)+m A Bpiy (O A+ A Dpin (€)
0<s<n—£~-1

on D x I'x x Aok. Hence each of the operators E1, Es, E3 is a finite sum
of operators of type m (with 0 < m < £+ 1). It remains to prove that this
is true also for Ej.

Since E4 = 0 if £ = 1, we may assume that £ > 2. For j € K, we
denote by 9/0); the partial derivative on Apx with respect to A; as a
member of the system of coordinates A;,¢ € K. Then it follows from (5.16)
that

0P oP

O AW Ady® = Z 6—)\]'00/\6/)1;-}- Z 8_)\]01
1,jEK JjEK

on D x Sk X Aok. Together with (5.17) this implies that

8%
OoNAW) 2AWAd® = Y o Ot-1-mAOpiy (Q)A- -\, (€)
J

on D xT'g x Aok . Hence

= 6(1) O —2n s$—1l—-m m
(5.18) E4 = Z ;97] -2 +2gj+81 )+ AOp;, (Q)A-+-ADp;,, (C) -

Now let s,m,1,...,im,Jj be as in (5.8). Then £+s > 2 and therefore
0P 1 0 1
Vi G aF v (———(I)l+s—1)'
Moreover, then

{/\EAOK:)\]' =0}=AOK(j) and {)\EAOK:/\j=1—Z/\,‘}=AK.
igK
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By partial integration with respect to A; and taking into account that
00y /0A; = Oy for all integers k, and that forms of type Oy vanish for A in
a neighborhood of Ag, this implies that

= 0% Oy n s—1-m)+m
[ @ gy AR £ 5y, (Q) A A B )
FKXAOK

X

Oy- n s—1—-m)+m
[ Aot gy, () A+ A 893, (0)
'k xAok

r O —2n s—1—m)+m
+f gy n A2 g (€) - A 9, (0)
FKXAoK(j)

for all f € BE,*(D),O < B < 1. In view of (5.18) this implies that E4 is a
finite sum of operators of type m (with 0 <m < £—1). a

6. An auxiliary estimate.

In this section we assume :
£ > 2 is an integer;

Ay, K € P'({), are the simplices introduced in sect. 1.6, and we set
dAg = dgy A+ NdXg, for K = (ky,..., k) € P'(£) and A € Ak;

C,, b, € are positive numbers; -
Pq,..., D, are complex numbers with
(6.1) Re®; >6+¢ (j=1,...,¢).

Ifi,j € {1,...,€} with ¢ # j, then V; denotes the partial derivative
0/0X; with respect to A; as a member of the system of coordinates
A1, ooy, A on Ajp; and we write

i

i1-is i i
Viedn =V Vi
for s=2,3,---and 1 <4,,5, < swithi, #5,(v=1,...,s).

~ and T" are complex C'*° functions on Aj..., such that

&
(6.2) <7
(6.3) VaEAO < 2
(6.4) T < Cs,

(6.5) VA2 T(W] < C
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forall A€ Ay..pand 1 < s <0+2,1<14,,5, < Lwithi, #5,(v=1,...,s).

6.1. THEOREM. — Set C, = (3p)!27P for p=0,1,---. Then
T(A)dA ... CpCi
(60 k.72 o= Brep
( 2 A%+ 7(>\))
Jj=1
for all integers p > 0, and
< CpCy

(6.7)

/ T(A)dA;...o
vt (é’\f‘bf”(’\))p jle'IKIQjI(6+6)”"K'

for all K € P’'(¢) and all integers p > |K| + 1.

Proof. — Estimate (6.6) follows immediately from (6.1), (6.2) and
(6.4). To prove (6.7) we may assume that
(6.8) |®1] > - > | @]
and K = (1,...,r) for some fixed r < £. Let also p > r + 1 be fixed.

We introduce the following notations :

(7)s and (I')s,s = 1,...,£ + 2, are the sets of all functions of the
form

7'1 'Lm 117 tm
Viliry resp. ViU T

where0§m<sand1<z,,,y,,<€w1thz,,;é],,(u=1 cee,m);

Xs,8= ., 4, is the set of functions defined as follows : X, = {I'}
and, for 0 < s S Z — 1, X541 is the set of all functions which are of one of

the forms
b bvu ;

b
, , or ———V*
b+ Vi (b+V’ 29 0 h vy Y
where ¢ € X;,1 <1i,j < £ with 7 # j, and b is a complex number with
(6.9) bl > =

It is easy to see that each function in X;,0 < s < 4, is the sum of not more
than (3s)! functions of the form
by---buty -, ¥
(b1 + 1)1t (by + ) How’
where u,v,a1,...,a, > 0 are integers with 0 < p 4+ v < 2s and
o+ +a, =v,by,...,b, are complex numbers with

13 .
|b1|25 (2=1)~"a“)7
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Yi € (7)s1(1 £ <), ¥ € (I)s, and ¢; € (7)1(1 < ¢ < p). In view of
(6.3)-(6.5), this implies that

(6.10) lo(N)| < (3s)1225C,

for all p € X;,0 < s< ¥ and A € A;..... Now, for 0 < s < r we formulate
the following

STATEMENT (s). — If K = (ki,...,kn) € P'(€) withm > r —s
and if p € X, then
197p—3s
Ak (Jg{ 205 +700) PR

where K, _g := (ky,... kr—s)-

In view of (6.8), statement (0) (setting K = (1,...,¢) and ¢ =T
implies estimate (6.7). Statement (r) is true by (6.6). To complete the proof
of the theorem, it is therefore sufficient to prove the implications

Statement (s + 1) = Statement (s), 0<s<r-—1.

Assume that 0 < s < r — 1 such that statement (s + 1) is true.
Further, let K = (k1,...,km) € P'(£) with m > r — s be given. To prove
(6.11) we distinguish two cases.

First case. — |®k, — ®;| < 1/2|®y,| for all j € K. Since ) \;j =1
j€EK
for A € Ak, then

| > /\ﬂ’jl = |‘1’k1 + ) X(®5 - ,)
JjEK JEK(?)
for all A € Ak. By (6.1) and (6.2), this implies that
1
| 5”0+ 2 719k
j€EK
for all A € Ag. Together with (6.10), (6.8), (6.1) this implies (6.11).

Second case. — There exists 7 € {1,...,m} with
(6.12) ‘<I>k1 - @y,
Set b= @, — P,

1
> §[®k1|.

krkr
kalkl vy

kr
—2—0,
(b+ V)2

1 P, p2 = 3 Vi e.

b
T b+ Vi b+ Viy
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Then, by (6.12) and (6.1), ¢1, @2, 93 € X41. Further, since
DNB =1 =Bk, + > (B - Bx,)
JjEK JEK(T)

for A € Ak, then we have the relation

v Z 2®;=b

jEK
for A € Ak, whence
bl=p+s)p(d) gk, p1(N)
p—s ~ 'k p—s—1
(X v +90) (x v +20)
JEK JjEK
+ p2(A) _ ©3(A)
p—s—1 p—s—1
(£ 22 +10) ( X 2@ +900)
JEK jEK
for all A € Ak. Since, for each C! function f on Ay,
[ Vhian=x [ s0anen = [ 50w,
Ak Ak (i) Ag(#)
this implies, in view of Statement (s + 1), that
p(A)dAk
[B] e
Ax ( Z /\jq)j +’)‘(/\))
JjEK
1 1 2 (3p)127P—3s—3C,
< + + :
( I1 121 II |24 I1 |<1>j|> (6+e)p-
jeJl jEJZ je r—s—1

where J; = (k2,...,kr—s),J2 = (k1,--+ .-+, kr—s) if 7 < 7 — s, and
Ja = (k1,...,kr—s—1) if 7 > 7 — s. Since, by (6.12) and (6.8),

1
o] > §|‘I’j|

for all j € K, this implies estimate (6.11). O
7. Estimation of operators of type m > 1 by A-free bounds.
In this section we assume :

D cC C" is a local g-convex domain, 0 < ¢ < n — 1 (see
Definition 2.3);
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(Up, p1,---,pN) is a frame for D satisfying conditions (i) and (ii) in
Definition 2.3;

I'k,K € P'(N), are the submanifolds of D which belong to the
frame (U, p1, ..., pN) according to sect 4.2;

ifi,j € {0,..., N} with i # j, then V% denotes the partial derivative
0/0\; with respect to A; as a member of the system of coordinates
Ao, oy, An on Ag...n, and we write

i

Vi =iV
for s =2,3,---and 0 <i,,j, < N with i, #j,(v=1,...,5);
®(2,(, N) is the function defined by (4.9) in sect. 4.5;

CY(D) is the space of continuous non-negative functions on D;

pk(C) := p;j(¢) for K € P'(N),{ € Tk and j €K (see sect. 4.2)
d(z) := dist(z,0D) for z € D.

Further, we use the following conventions : the letter d stands for
d(z), p; and px stand for p;(¢) and px((), and f stands for f(().

7.1. DEFINITION. — A A-free bound (of first or second kind) is,
by definition, a map

M: |J B#D)— ci(D)
0<B<1
such that : there exist a number C > 0, a monomial ¢ in d(;,...,d(,,
d¢y,...,d¢,, a multindex K € P'(N), an integer 0 < s < |K|, and (if

s > 1) points A!,...,\* € Ak such that if we use the abbreviations

t, =Im®(2,¢(, \)
dt, = d¢Im ®(z,(, \Y),

and

then M is defined by one of the following equations : If s = 0, then

I£lllo A dpk|
: =C
(7 1) Mf(Z) ek (lPKI +d+ K _ zlz)lc _ z|2"—lK|—l’
(12) Mf(z)=C I fllle A dpx|

cerx (Ipx|+d+1¢ = 2[?)[¢ — 2|~ IKD
or

(73)  Mf(z)=C 171l |o A dpx]

cerx (lox| + d + |¢ — 2[2)°|¢ — 2]2n-1KI-1
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forfEBf(D),0§ﬁ< 1,and z€ D. If s > 1, then

Il

s
o Adpg A /\dt.,
v=1

(74) Mf)=cC / ; :
¢eTk (IpK|+d+|(—z|2) I (Itul+d+|<_z|2)|4_z|2n;—|K|—s—1

v=1
or
171]o A doxc A J\ doe
(7.5) Mf(z)=C / — v=1 ,
€Tk (lox | +1d|+1¢=212) " TT (Itv|+d+I¢—=212) ¢ — 2[2n-1K 11
v=1

for f € B¥(D),0< B8 <1, and z € D.

In the cases (7.1) and (7.4), M will be called a A-free bound of first
kind, and in the cases (7.2), (7.3) and (7.5), M will be called a A-free bound
of second kind.

7.2. THEOREM. — Let E be an operator of type m with m > 1
(see Definition 5.2). Denote by V, one of the operators 8/0z1,...,0/0zn,
0/0%z1,...,0/0%,. Then there exist a finite number of A-free bounds of
first kind My, ..., M., and a finite number of A-free bounds of second kind
M;i,..., M}, such that
IEf(2) < Mi(z) + -+ + Mi(2)
IV:Ef(2)|l < M{(2) + -~ + My(2)

for all f € BY(D),0< 8 <1, and z € D.

and

For the proof of this theorem we need some preparations.

7.3. DEFINITION. — Let o be the positive constant from condi-
tion (ii) in Definition 2.3. An admissible collection of corners is, by defini-
tion, an ordered collection (A\!,...,X¢) of points A!,...,X\¢ € A;..N such
that the following conditions are fulfilled :

(i) Al,..., Xt are linearly independent as vectors in R®.
(ii) There exists K = (ki,...,ke¢) € P'(N) with A1,...,\¢ € Ak.
(iii) For all (2,{,pn) € C* x U X Aj...¢, the function

4 4
(7.6) Wz, Gom) = 02,6, 3 mA) = D w2, )
v=1 v=1
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satisfies the estimates

a
(77) l’Y(z’Cv /J')l < ’8_|< - 2'2
and
iyeeig a
(7.8) le...js'Y(za ¢Gu)| < §l< - Z|2

foralll1<s<f¢+2and1<1,,j5, <{€withi, #3,(1<v<¥).

If (\1,..., \%) is an admissible collection of corners, then we denote
by A(M\L, ..., ) the simplex spanned by A\!,..., )¢, i.e.

AN .. .,)\l) = {iu,,)\" T pE A]...[}.
v=1

An admissible simplex is, by definition, a simplex A such that, for certain
admissible collection of corners (A!,...,X¢), A = A(AL, ..., \E).

7.4. LEMMA. — There exists €>0 such that: if K = (ki,...,k¢) €
P'(N) and M\,...,\* € Ak are linearly independent (as vectors in R?)
points with

(7.9) A =Xl <e (1<y,k<0),
then (\!,...,\%) is an admissible collection of corners.
Proof. — Let Al,...,X¢ € Ak. Then it follows from the definition
of the function ® (see (4.9) and (3.4)) that
B(2,6,A) = F (,0) + AIQM(C - )
and therefore, since, for each A, Q()\) is an orthogonal projection in C”,
B(2,¢, ) = Fp, (2,0 + AR ~ 2),C ~2)

for all (2,{, ) € C"xUgxA;...N. Since fm (2,¢) depends linearly on A, this
implies that if y(z,(, ) is the function defined by (7.6) in Definition 7.3,
then

(7.10) (=6 m) = 4([@Q( leuux") - ze:uuQ()\")] (¢-2)T-72)
v=1 v=1

for all (2,(,u) € C™ x U x Aj...¢. Since

£
ViY N =N - X

v=1
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for p € Ay..pand 1 < 4,5 < £ with ¢ # j, and since Q is of class C™, we
can find C >0 (independent of AL,..., Af) such that

(7.11) |vaiQ (Z/‘ P )|<c max |\ — A|

1<1,5<¢
v=1
forall p € Ay..p,1<s<f€+2and1<i,,j <{€withi, #j,(1 <v<s).
Let C be chosen so that moreover
(7.12) R(N) — Q)| < CIA=X|

for all \,\ € A;...n. Set N

~ 16CA
and assume that condition (7.9) is fulfilled. Then (7.10) and (7.12) imply
(7.7), and from (7.11) it follows that

£
viine( X wr)|<

(7.13)

a
=164
for p€ Ay..g;1 <s<f€+2and1<i,,j5 <£€withi, #j,(1 <v<s).
Moreover, since

s ZuuQ(A") _ {Q(,\J )— Q) ifs=1

J1-Js if822,

v=1

it follows from (7.12) and (7.9) that also

¥4
N ZuuQ(A") <
=1

o

= 164

for all u € Aj..0,1 §s§£+2and 1<iy,,5, <L withi, #5,(1 <v<s).
Together with (7.10) and (7.13) this implies (7.8). O

7.5. LEMMA. — Let K = (ky,...,k¢) € P'(N),andlet \y,...,\¢ €
Ag such that A\, ..., \¢ are linearly independent as vectors in R¢. Further
let ¢ be a monomial in d(i,...,d¢n,d(y, . . .,dC,,. We set

t; =Im®(2,(,N)

dt; = d¢ Im ®(2,¢, M),
and we use the following deﬁnmon if f is a differential form on 'k and
f is the part of f which is of degree dimg 'k, then by |f| we denote the
absolute value of f. Then there exists a constant C > 0 such that, for all
11y.--5tm € K,

m
lO' A /\ 0pi,
v=1

(7.14) +C Z ‘O'J/\de/\ /\dtj||g_z|m—l—lJl

JEP!(2) jeJ
[7fSm=1

and

< Clog Adpk||¢ — 2™ 1

m
+lo A3 A 20,
v=2
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for all z € D and ( € T'x, where o9 and o; are some monomials in
d¢i,...,dCn, dCq,...,dC,.

Proof. — 1t follows from the definition of @ (see (4.9) and (4.3))
that

d¢Im ®(2,¢, N) = i(8prs (€) — 9pxi (¢)) + O(I¢ - =)

for (2,{) € C* x Uz and | — z| — 0 (1 < j < n). Since py;(¢) = px for
¢ € T'k, this implies that

1 ,
(7.15) Opxilrx = §de + %dtj +O(I¢ - 2])
and ‘

— 1 i
(7.16) Opxilrx = ‘2‘de - §dtj +O(I¢ - 2])

for (2,{) € C"xTk and | —z| — 0 (1 < j < n). Since the points A!,..., ¢
belong to Ak and are linearly independent as vectors in R™, we can find
numbers 3] with

¢
Ak, =) BN (1<v<o).
=1
Since p) depends linearly on A, then
¢
pr, = Biox (1<v<0)
j=1
and it follows from (7.15) and (7.16) that

4 .
1 ]
Opr, I = D B (5don + 3dt; ) +O(I¢ - 2)
Jj=1

and .
~ Sl i
Bpnlric = 387 (5ox + 2at5) +O(1¢ — )
j=1

for (z,{) € C" xT'k and |{ — 2| — 0 (1 < v < ¥). Hence, for some constant
C, >0,

m m
Ia/\ /\ dpi, +la/\5pi, A /\ dpi,| < Crlo|I¢—2™
v=1 v=2
+ C1|o® A dpk||C—2|™
(7.17) +C Z |03 ANdpk A /\ dtj||(_z|m-1—|Jl
JEP!(£) jeJ
1JjSm=1
+Ch Z ‘(ﬁ A /\ dtj“(“zlm_m
JEP/(£) jeJ

|7|€m
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for all (2,{) € D x I'k, where o!,0%,03 and 0% are some monomials
in d¢1,...,d¢n, d¢y,...,d¢,. Moreover, since px can be used as a local
coordinate on 'k, for some Cy > 0, we have the estimates

taﬁ/\/\dtj|fczz on A dpx A /\ dtj'
JjeJ

KEJ jeJ(&)
where o3 are again some monomials in d(i, . . .,d(,,dCq, . . ., dC,,. Together
with (7.17) this implies (7.14). O
7.6. Proof of Theorem 7.2. — We use the same notations as in

Definition 5.2. Let K = (ki,...,k¢). We may restrict ourselves to the case
that, for some 1 < j; <--- < je <n,

E(2,¢,)) = 9(2,¢, \dAo Adhe, A+ Adhg, AdCj, A=+ AdC;
where ¥(z,(, A) is a complex function of type Op—oni2k+m on D X T x

Aok. Fix a number 0 < £ < 1 such that 9(z,(,\) = 0 for all (2,{,A) €
Aok with £ < X < 1.

In addition to the notations introduced at the beginning of this
section, in this proof we shall use the following notations :

V. is one of the operators 8/9z1,...,0/0z,,0/0%1,...,0/0%, ;
if feBE.D),0<pB<1landI = (,...,a,) € P'(n), then f;
denotes the coefficient of the form f at the monomial d¢; A---Ad{, AdC,, A
BRRNAN dza'c 5
Aok = A€ Aok :0< Ao < £}
d\g =d/\k2 A ANdAg, ;
c=dG A---NdCu AdC; N+ AdE,
fr= f1(¢) and © = ©(().
Then

(7.18) Ef(z) = f19(2,6, N0 Ao Adio Adg

Iepl(n) /(‘(,A)EFK XXOK Qk-{’m(z’ C? i)

| I|l=2n—€8+1—k—m

forall f € BS,*(D),O <B<1,and z € D. Now we fix some I € P'(n) with
|I| = 2n—£+1—k—m, and an admissible collection of corners (\!,...,\?)
with A1,...,X¢ € Ak, and set

A = (A €Boxre AQL,..., 20}

Bf z):/ 106 N0 AT Add Ndrg
(¢, N)eTk xA Bk+m (5 ¢, N)

and
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for f € B,L:,,(D),O < B < 1, and 2z € D. Since, by Lemma 7.4, Ag
can be divided into a finite number of admissible simplices, and since
(7.18) holds, it is sufficient to find a finite number of A-free bounds of
first kind My,..., M, and a finite number of A-free bounds of second kind
Mi,...,M, such that

w

(7.19) IEf(2)) < My(2) + -+ + Mo (2)
and
(7.20) IV-E(2)| < Mj(2) + - + M_,(2)
for all f € B2 ,(D),0<fB<1,and z € D.

Set

£ £
orp) = (r,(1=n) Y mA, . (1= 1) 3 mr)
v=1 v=1

for 0 < 7 < ¢{and p € Aj.... Then ¢ is a diffeomorphism from [0,£] x A;...e
onto A. Denote by a(7),0 < 7 < 4, the function with

¢
(1-7)tdr A (Z/\gdu,,) . (Z/\ du,,) = a(r)dr Adp;...e
v=1
on [0,&] X Aj...p, where dpy...e :=dpa A - -+ A d. Set
D267 ) = a(r)9 (=G 0, u)),
I'(2,¢,7,4) = a(r)V9 (2, ¢, 0(7, 1)),

£
I"(2,6,7, 1) = =(k +m)a(r)d(z ¢, (r, Va2 (2,6, 3 mA*),

v=1

£ 4
We,6ow) = 25,6, mA") = 3 m®(2,¢, )
v=1 v=1

for (z,{,7,p) € D x T x [0,&] X Aj...¢, and

Q(Z C T) =/ (Z C)T)p')d»ufl £
et (86X o)

/ I(z,¢, 1, p)dps...

Q(Z,C,T)=/ - (ZCT/‘L) 1.2 —
L (3 (W) (e G)

" F"(z,(,’r,,u)d,u

o=  — L
Hert (5 mB(e, () +1(= 6 )
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for (2,(,7) € D x ' x [0,£]. Then
(721)  Ef(2)] < /C max |z, ¢, 1)/ £1® A o]

el 0ST<E

and

(122) IV.BSGI < [ max 10,6, )+, DIANIO o]
¢ery 0S7<¢

for all f € B2 ,(D),0 < 8 < 1, and z € D. Since 9(z,(,\) is of type
0¢—2n+2k+m, and V,®(z,¢,\) is of type 0p on Apg, there is a constant
K; > 0 such that

(723) ]F(Z’C)Tvlj‘)la Ivi'lmi‘e F(Z,Cy T, /1')1 S

J1°"ds

K,
'C _ z|2n—£—2k—m )

K,

(724) |PI(Z, C’ T, /")l’ 'Vi~1"‘i7’ F’(Z, C, T, l‘l‘)l < |C — ziZn—!—Zk—-m+l P

J1-]s

K,
¢ = z|2n—t—2k—m>
for all (z,{,7,1) € D x T x [0,€] X A;..., and for all 1 < s < £+ 2 and
1 <i,,5, < € with iy, # ju,(1 < v < s). (The operators V;‘l',','.;i here are

(7.25) (2, ¢, )|, [VR 2T (2,¢, 7, 0)| <

J10s

considered with respect to the variable p.)

Now we are going to estimate 2,2, by means of Theorem 6.1.
First note that pyv(¢) = px for all { € T and 1 < v < ¢, and that there
is a constant co > 0 such that —pyv(2) > cpd forall z€ Dand 1 <v < ¢
Therefore it follows from estimate (4.10) that

(7.26) Re®(z,¢, \) 2 collok] +d) + 3¢ = 2I°
for all (2,{) e DxT'kxand 1<v </{.

C, = KIK _ zl—-2n+£+2k+m
o
§ = co(lpx| +d) and € = Z|¢ - 2[%,
®; = ®(z,(,N) for j=1,...,¢,

() = (2, ¢, 7, 1) and T'(p) =T(2,(, 7, ) for p € Ay,
then, by (7.7), (7.8), (7.23) and (7.26), conditions (6.1)-(6.5) are ful-
filled (with p instead of A) and it follows from Theorem 6.1 that with
Cp = (3p)127P
Ck+1C*
|Q(Z,<,T)| < min Ck+m'C*
JEP!(£) H |<I)J.](5+5)k+m—].]|
jeJ

|JI<k4m—1

ifm=1

ifm > 2.
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In the same way (using (7.24) and (7.25)) then one obtains

( Ck1C4[¢ — 2|71 L
, (6 + €)k+1 ifm=1
Q Z, ’T S < _ -1
(2, ¢, 7)| mi,n C):I_:.m?*lc kilm—”! ifm > 2
L Freea JIEIJI il(6 +e€)
and |
( Ck+2c* . _
" (6 + ¢)k+2 ifm=1
FECIS Ci4mC. if m > 2
|;|E<Pkl-$—l'r)n H |®;](6 + &)ktm—1JI+1 =

Setting t; = Im ®(z,¢, M) and taking into account that then, by (7.26),
[©(z,¢, V)| = min (1,c0, 5 ) (I3l + lox| +d +1¢ = ),

this implies that there is a constant K5 > 0 (depending only on K1, cp, @, k

and m) such that

o2ax, [z, ¢, )]

K2K_z|—2n+£+1

— if m=1
(7.27) lox [ +d+](—22 nm

) K2K_Z|—2n+l—-m+2|‘f|+2

min

ser'@ (|pk|+d+|C—2?) T (1t]+d+|¢ - 2[?)
m jeJ

if m>2,

IJ1<k+

Orgagglﬂ (2,¢,7)]
( K2|<_Z|—2n+e i
|pK | +d+|C—2?
(7.28) Ko|(—z|2nte+1 N
<3 (pxl+d+(—2?)2
min KZIC _ z|—2n+l—m+2lJl+3 if m>3
sierie  (pxl+d+(—2)? T (It1+d+¢—2%) = =
\ - jeJ
and
2}
Oglagelﬂ (2,¢,7)]
K| —2|~2n+eH! " .
IaHm=
(7.29) (lox |+d+]¢~2|?)2
S Ko|¢— z|—2n+e m+2|J]|+2 s

sePke  ([px|+d+|C—22)? T (sT+dric=P)

1J|<k+m
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for all (z,¢) € D x 'k with z # (. By Lemma 7.5 there are monomials oo

and oy in d(y,...,d¢,,dCy,...,dC, and a constant K3 > 0 such that on
I’k one has the estimate

|©Ao|
K3loo Adpk| if m=1
(7.30) X ]
<{ Kaloondpk|[¢—=™ K3 3 |osAdex A /\dtj [¢=z|™ 1 if m>2.
JEP!(¢) icJ
1II€m=-1 i€
Together with (7.27) and (7.29) this implies that, if K4 = K2K3 then
loo A dok|
<
oZex, 12(2,¢, T)|©® Ao| < Ky Tprlrdtlc—aP) — a1
(7.31) oy Ndpg N /\ dt;
‘K jeJ
¢ Z, (Ipx [ +d+1¢—2[2) [T (Its1+d+¢—2I?)|¢—2[2n—4-1I1-1
JEP/(e) h
17[<m—1 ieJ
and
dpk |
" < |o Adpk
oBax, Q7 (2, ¢, T)I© Aa| K4(|PK|+d+lC—z|2)2IC—zl"’"“—l
(732) oy ANdpkg A /\ dt;
K jeJ
¢ (Ipx |+d+1¢—212)2 [T (Itj|+d+I¢—2|2)|¢ —2|2n—¢- 111
JEP/(¢) b
171Sm-1 i€

for all (z,¢) € D x 'k with 2z # (. Finally, we observe that from (7.30) one
can obtain also the following (weaker) assertion : there exist monomials o
and o in d(1,...,d¢n,d(y, - - -, dC, and a constant K4 > 0 such that

Kilog A dpk| ifm=1,2
KglogNdpx||¢ 2™

OAN0o| < L
©nol< +K5 Y ’of,/\de/\/\dtj“(—zlm'z'lJ' ifm>3.
JEP/(¢) .
[VI<m-2 jeJ

Together with (7.28) this implies, if K = K2 K3 then

Jo A doxc|
+1¢— ) — 2P

max |Q'(z,¢,7)||© Ao| < K

log A dpk|
+ K,
“(px|+d+[¢ - 2[?)%[¢ — z[2n—E-1

o’y Ndpg A /\ dt;

(7.33)

€J
+K; J
4 E (Ipk [+d+I¢—2[2)? [T (It;+d+]¢—z[2)|¢—z[2m—¢-1II-1
s i<
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for all (2,{) € D x ', with z # {. Now (7.19) follows from (7.21) and
(7.31), and (7.20) follows from (7.22) and (7.32), (7.33). o

8. The Range-Siu trick and end of proof of estimates
(i.e. of Theorem 4.12).

8.1. LEMMA. — Let M be a A-free bound of first kind (see
Definition 7.1), let 0 < 8 < 1 and € > 0. Then there exists a constant
C > 0 such that
(8.1) IMf(2)ll < Cllfll-p(1 + [dist(z, 8D)]*/2~F~%)
for all f € B?(D) and z € D.

Proof. — We use the same notations as in Definition 7.1, we set
¢ := |K|, and we denote all positive constants by the same letter C. Since
dist(¢,0D) < Clpk]| for ¢ € 'k and since M is of the form (7.1) or (7.4),

8
ipxl""a Adpg A /\ dt,

IMf()]l < Clifll—p / ; =
€Tk (Jp| +d+[¢—22) T] (Jtu] +d + [C—2|2)|¢ — 2|2n—t=s=1

v=1

for all f € B?(D) and z € D, where s = 0 if M is defined by (7.1).

Since px can be used as local coordinate on I'c, now we can apply
the Range-Siu trick (see the proof of Proposition (3.7) in [RS], where
this is described in detail) which consists in replacing the functions ¢, by
appropriate quadratic polynomials in local coordinates containing px. In

this way one obtains that
s+1

—Bd N
IMEN < Ol 3 [,y AN A0t
r=1 lvl<c ]Jl(|yy|+d+1yl2)|y|2n—e—n

for all f € B? (D) and z € D. Since we may assume that 8 > 0, this implies
that

s+1

dyl /\"'/\dy2 —¢
IMF@I < CIfl-p S / dys n
v
k=1""[yl<c (d+ |y|?)P H (lyo] + d + |y|2)]y|2n—2t-=
v=1

s+1

[1 + 'en(d + Iylz)”n—ldyl AEEA dyZn—-l——n
< C"f"—ﬁ Z £€n2n—l—n+l (d+ Iy'2)3|y12n—£—n

k=1 lvl<C

<c ©__dar
<Clifll-s @t
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for all f € B?(D) and z € D. Since we may assume also that 3 + ¢ # 1/2,
this implies (8.1). D

8.2. LEMMA. — Let M be a M-free bound of second kind (see
Definition 7.1), let 0 < 8 < 1 and € > 0. Then there exists a constant
C > 0 such that
(8.2) 1M f(2)]| < CIIfll-gldist(z,0D)] */>~#=¢

for all f € BY(D) and z € D.

Proof. — If M is defined by (7.2), then as in the proof of Lemma 8.1
we obtain that

ly1|Pdys A -+ A dyzn—e41
M < C|fll- .
IMFG < Ol [, o e

lyl<C

Since we may assume that 8 + € < 1, this implies that
lya|P=Sdys A --- A dyan—e41
M <C|fll-
N S O [ pncon T a5

dyi A - Ndyan—s —p—
SOt [ e et < CUSll-pd

lyl<

lvi<c

for all f € B?(D) and z € D. If M is defined by (7.3) or (7.5), then as in
the proof of Lemma 8.1 we obtain that

s+1

|y1|—3dy1/\ s Adyan_gt1
IMf(2)l < Clifll- ﬁ§ / bl
=1 JvER I ()| 4 d 4 Jy[2)2 H(lyu|+d+|y|2)|y|2n-f-
v=2

for all f € B?(D) and z € D, where s = 0 in the case (7.3). This implies
that

s+1
dy1 A+ Adyon—s
IMFE < Cllfll-s / . =
k=1 TR (g [y 2)148 T (g |+ d + [y]2)lyl2n=t=
v=2

s+1
< C”f” Z [1 + Ien(d+ |y|2)”~_ldy1 ASEREAS dy2n—l—n+1
P | Ran—torin (d+ [y FPly|Pn ===

k=1

" ) .
SCllfll—ﬁ/o @iraiiere < Ollfll-pd~1/?=F~¢

for all f € B?(D) and z € D. O
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Proof of Theorem 4.12. — We denote all positive constants by the
same letter C. By Theorem 5.4, H is a finite sum of operators of type m.
By Lemma 5.3 and Ascoli’s theorem operators of type 0 admit estimates
which are even stronger than those stated in Theorem 4.12. Therefore it
is sufficient to prove that Theorem 4.12 holds for all operators of type m
with m > 1 (at the place of H).

Let E be such an operator and 0 < # < 1. Then, by Theorem 7.2,
E can be estimated by a finite sum of A-free bounds of first kind. Hence, if
€ > 0, then by Lemma 8.1
(8.3) IEf(2)II < ClIfll-5(1 + [dist(z,0D)]/2~F~)
for all f € Bﬁy*(D) and z € D. Further let V, be one of the operators
8/0z1,...,0/02,,0/0%1,...,0/0%,. Then, by Theorem 7.2, V,E can be
estimated by a finite sum of A-free bounds of second kind. Therefore
Lemma 8.2 implies that if € > 0, then
(8.4) IV-Ef(2)|l < CIIfll-pldist(z, 8D)]~1/2~F~*
for all f € B2 (D) and z € D.

Now let 0 < 8 < 1/2. Then (8.3) in particular implies that

(8.5) IEfllo < Clifll-5
for all f € Bg,*(D). It is well-known (see, e.g., Proposition 2 in Appendix
1 of [HeLel]) that (8.4) and (8.5) together imply that

EBE.(D)C () CEPD)

0<e<1/2-8

and that E is bounded as operator from B2 , (D) to each C,ll/ 2-F~¢(D),0<
€ < 1/2 — . By Ascoli’s theorem it follows that E is even compact as
operator from B2 (D) to each ci(f“"e(ﬁ),o < & <1/2— (. Hence part
(i) of Theorem 4.12 is proved.

To prove part (ii), we assume that 1/2 < 8 < 1. Then by (8.3)
E(Bf.(D)) € (| B *(D)
e>0
and F is bounded as operator from BE,*(D) into each BFt+e—1/2(D),
e > 0. Moreover, it follows from (8.4) and Ascoli’s theorem that, for
each domain Q CC D, F is bounded as operator from Bﬁ,*(D) to CJ ().
Together this implies that F is compact as operator from Bﬁ,*(D) to each
Ate=12(Dy,e > 0. 0
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9. Globalization.

In this section E is a holomorphic vector bundle over an n-
dimensional complex manifold X, and D CC X is a strictly g-convex
C? intersection, 0 < ¢ < n — 1 (see Definition 0.1). Further, we denote
by C2,.(D, E), By (D, E) etc. the Banach spaces of E-valued differential
forms on D which one obtains canonically extending the definitions from
sect. 1.16.

9.1. THEOREM. — There exist linear operators
: J BE.(D,E) —Cp,_1(D,E)
0<B<1
and
K.: |J BZ.(D,E)— C},(D,E)
0<B<1

for n — q < r < n such that the following holds :
(i) Ifn—q<r<n, then
(9.1) f=dT f + Tpprdf + K, f

for all f € BE (D,E),0 < 8 < 1, such that df also belongs to B?(D,E).
(For r = n, the term T, 1df must be omitted.)

(ii) If0<B<1/2and0<e<1/2—p0, then, foralln—q <t <n, T,
and K, are compact operators from Bn’r(D, E) into cl/2- ﬁ *(D, E) resp.

n,r—1
1/2—ﬁ—6(ﬁ E)

(i) If1/2 < B < 1 and e > O, then, for alln —q < r < n,T;
and K, are compact operators from B5 (D, E) into BPte Y 2(D, E) resp.

n,r—1
Bﬂ+5—1/2(D’ E).

Proof. — By Lemma 2.4 there exists a finite number of open sets
Uy,...,Un C X suchthat D C U U---UUp, and each U; ND,1 < j <m,
is a local g-convex domain. Moreover, we may assume that F is trivial over
some neighborhood of each U; N D,1 < j < m. Let H; be the operators
which are induced in

U B:.(D,E)

0<B<1

by the operators which exist by sect. 4 for each U;ND. Choose non-negative
C* functions x; with compact support in U; such that x1 + -4+ xm =1
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in a neighborhood of D. Set

T.f =Y x;H;(flu;np)

Jj=1
and m
Kof = dy, A Hji(flu,np)
=1
forn—g<r<n,feBf (D),0<B8<1 - D
9.2. LEMMA. — For each neighborhood © C X of @D there exist

a neighborhood U C © of 8D and a real C? function p on U whose Levi
form has at least q + 1 positive eigenvalues at each point in U such that

(9.2) {ze€eU:p(z)<-1}u(D\U)ccDcc{z€U:p(z)<1}UD.

Proof. — Let p;,...,pn be the functions from Definition 0.1.
Choose 3 > 0 and set

Y1 =p1, P2 = mg-x(PhP2)y e PN = mgx(‘PN—l;PN),
where mgx(~, -) is defined as in Definition 4.12 in [HeLe2]. Then it is easy to

compute that the Levi form of ¢y 1 has at least g+1 positive eigenvalues at
each point in U. Further, it is easy to see that (9.2) holds if 3 is sufficiently
small and, for some positive number C, p := Con_;. O

93 LEMMA. Let n—q¢g < r < n0 < f <1, and let
f € B2 (D,E) be a form which is exact on D. Then :

(i) If0 < B < 1/2, then there exists u € N 01/2 5-¢(D,E)

0<e<1/2-p
with f = du.
(i) If1/2 < B < 1, then there exists u € ﬂ sz’:e_—l/z(D E) with
E>
f=du.

Proof. — By means of Theorem 4.12 and Grauert’s “Beulenmeth-
ode” (see, e.g., the proof of Theorem 2.3.5 in [HeLel]), we find a closed
continuous E-valued form f in a neighborhood of D as well as a form

i€ ﬂ C,II/T?'_ ﬂ"e(D, E) resp. @ € ﬂ Bﬁti 1/2(D E)

0<e<1/2-p >0
such that f — du = f on D. Since f, and therefore f is exact on D, then
it follows from Lemma 9.2 and classical Andreotti-Grauert theory (see,
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e.g., Theorem 12.14 in [HeLe2]) that the equation dv = f has a Holder
continuous (with each exponent < 1) solution v in some neighborhood of
D. Set u=v — . a

9.4. Proof of Theorem 0.2. — The proofs of parts (i) and (ii) are
analogous; we restrict ourselves to part (i).

Let i, K,,n—q < r <n, be the operators from Theorem 9.1. Then,
by (9.1), dT, = I — K, on B? (D, E) Nkerd. Since the operators K, are
compact, this implies that the operators dT;, restricted to BE (D, E)Nkerd
are Fredholm operators with zero index. Therefore we can find finite
dimensional linear operators L, : BZ (D, E) Nkerd — B,ﬂw(D, E)Nkerd
such that the operators dﬁ + L, are invertible.

Moreover, by the Andreotti-Grauert theorem (see [AnG] or, e.g.,
Theorem 12.16 in [HeLe2]), all forms in BS (D, E) N kerd are exact.
Therefore, by Lemma 9.3, we can find finite dimensional linear maps

F,:BS (D,E)nkerd — (| CMZ{(D,E)

n,r—1
0<e<1/2-8
such that L, = dF,. It remains to set
T, = (T, + F.)(dT, + L,) . o
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