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ON CURVES WITH NATURAL COHOMOLOGY AND
THEIR DEFICIENCY MODULES

by G. BOLONDI and J.C. MIGLIORE

0. Introduction.

In this paper we study the Hartshorne-Rao module of curves in
projective space with natural cohomology. The interest of these curves
relies on the fact that, due to semicontinuity, they seems to be «good»
points of the Hilbert schemes of curves, and that the components of the
Hilbert schemes containing them are candidates to be «good » components.
In particular, this notion includes the well-studied notion of maximal rank,
taking also into account the speciality of the curve.

We characterize those graded 5-modules of finite length which are
the Hartshorne-Rao modules of curves with natural cohomology, giving
necessary and sufficient numerical conditions on the minimal free resolution,
using heavily the fact that if the diameter of the module is bigger than two,
then the curve is minimal in its liaison class. A fundamental tool for this
result is the work of Martin-Deschamps and Perrin [MP] about minimal
curves. In particular, we get that the module is generated in the first
two degrees; moreover, we show with an example that the multiplication
5i (g) M{C)t —> M{C)t-\-\ between the first two components of the module
need not to be of maximal rank. The case of diameter one is already
known (see for instance [BM1]), and the case of diameter two is treated
separately. In that case (and also partially for diameter 3) we get also
results of smoothness and uniqueness for the components of the Hilbert
schemes containing curves with natural cohomology. We point out that
the knowledge of the resolution of M(C) actually gives (via the above
mentioned results of Martin-Deschamps and Perrin) the resolution of Jo-
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When this paper was ready we received a preprint by Floystad [F]
where many results about the resolutions of curves with maximal rank
and maximal corank are obtained, some of which overlap with the results
of the present paper. Other forthcoming results related to this problem,
mainly in the case of a module of diameter 3, are contained in a preprint
by Martin-Deschamps and Perrin ([MP1], and very recently Ch. Walter
announced the construction of smooth curves with natural cohomology in
the so-called Fly-range.

This paper was written while the first author was member of
the Italian G.N.S.A.G.A. and the second author was supported by the
Italian C.N.R.

We thank A. Hirschowitz for many talks about this problem,
M. Martin-Deschamps and D. Perrin for having communicated us their
results and the Department of Mathematics of Trento for hospitality given
to the second author during the preparation of this paper. We also thank
the referee of a previous version of this paper, especially for pointing out
to us a simpler proof of Theorem 1.9 and of Proposition 3.5, and for many
remarks and suggestions.

1. The Hartshorne-Rao module of a curve in P3

with natural cohomology.

Throughout this work we let k be an algebraically closed field
and S = A;[Xo,Xi,X2,X3]. For a curve C in P3, we denote by Ic its
homogeneous ideal in 5, and by Jc its ideal sheaf. For any sheaf F on P3

we sometimes denote by H^(F) the direct sum (f) H1^^)). Two curves
fcez

C and C" are directly linked by a complete intersection X if Ix '• Ic == I c '
and Ix '- I c ' = I c ' If C and C' are linked in an even number of direct
steps, we say that they are evenly linked^ and the set of all curves evenly
linked to a given C is the even liaison class of C. In particular the property
of being locally Cohen-Macaulay and equidimensional is invariant under
liaison, and we make this assumption about all our curves.

An important object for even liaison classes of curves in P3 is the
Hartshorne-Rao module M(C) of G, defined by M(C) = © H^JcW).

fcez
This is a graded ^-module of finite length (by the assumption of locally
Cohen-Macaulay and equidimensional) and up to shift is an invariant
of the even liaison class of C. The structure of an even liaison class in
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codimension two has been studied (see [LR], [BBM]) and in particular we
know that there is a leftmost shift of the liaison invariant which is actually
the Hartshorne-Rao module of a curve. The curves whose modules have
this shift can all be deformed one to another, and hence in particular have
the same degree and genus, which are strictly less than the degree and
genus of any other curve in the even liaison class. We say that such curves
are minimal in their even liaison class and that the set of minimal curves
comprise the minimal shift of the even liaison class.

The curves we will be studying in this paper are the curves with natural
cohomology^ that is, curves for which at most one of ^o(^7c'(^))5^1(^c(^))
or h^^JcW) 1s non-zero for any given k. This contains two notions :

• maximal rank (i.e. having at most one of h°(JcW) or ^(JcW)
non-zero for any k) and, following [MP],

• maximal corank (i.e. having at most one of ^{JcW) or h2(J'c(k))
non-zero for any fc), and in fact it is equivalent to the union of these
conditions if C is not arithmetically Cohen-Macaulay.

Notation:

a(C) = mm{k e Z | h°(JcW) + 0} ;

t(C) = mm{k € Z | h^JcW) + 0} ;

r(C)=a(C)-t{C)-l^

rm = h^{Jc(i + i))(t = t{C), 0 < i < r = r(G)) (so mo > 0, rrir > 0
and mi = 0 if i > r for curves of maximal rank);

e(G) = max{fc € Z | ̂ (JcW) + 0} ;

diamM((7) = number of components of M(C) from degree t to the
last non-zero component (for a curve of maximal rank this is either
equal to r{C) 4-1 or r(C)).

Remark 1.1. — One can ask about how natural cohomology acts with
respect to an even liaison class. If C is a curve with natural cohomology
and diam M(C) > 3 (or more generally r(<7) > 2) then C lies on no
surface of degree e((7) + 3. Hence it follows from [LR] that C is minimal
in its even liaison class. That is, an even liaison class corresponding to a
graded 5-module of diameter >_ 3 can have at most one curve with natural
cohomology, up to deformation, and this curve occurs in the minimal shift.
If diam M(C) > 4 then [LR] guarantees that in fact C is unique (if it exists
at all). Indeed, we shall see that the degree and genus of C are determined
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by the dimensions of the first three components of M(C\ as are the
dimensions of the other components. For the question of whether C exists
at all for a given M, we give necessary conditions on these dimensions.

On the other hand, in the case of diameter two we will show that
for any dimensions of the components and any module structure, there are
smooth curves with natural cohomology. And for all shifts there are curves
with natural cohomology. The case of diameter 1 is completely treated
in [BM1], and for diameter 0 we have arithmetically Cohen-Macaulay
curves.

LEMMA 1.2. — Let C be a, curve with ̂ (JcW) = ̂ (Jc^k+l)) = 0
for some integer k. Then Ic is generated in degree < k + 2.

Proof. — This follows from Castelnuovo-Mumford, since :

h^{Jc(k - 1)) = h^JcW) = h^[Jc{k + 1)) = 0.

The fact that ^(Jc^k — 1)) = 0 follows from the usual exact sequence

0 -^ Jc{k - 1) —. Op3{k - 1) —. Oc(k - 1) -> 0

and the fact that k — 1 > —4. (If C is arithmetically Cohen-Macaulay this
last statement is standard. If C is not arithmetically Cohen-Macaulay then
the Hartshorne-Rao module is non-zero and hence must end in non-negative
degree : see for instance [M].) D

The following lemma is already known [GMa]; we give here a new
proof.

LEMMA 1.3. — Let C be a curve with h'2(J'c(k)) = 0 for some
integer k. Then M(C) is generated in degree < k + 1.

Proof. — Let Z/i and L^ be general linear forms (so in particular
neither contains a component of (7, and their intersection is a line A
disjoint from C). Put

Uw=H°(Ox(k+2)),

V^ = H1 (JcnL. (z)), V^i = H1 {JcnL. W),
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and consider the commutative diagram

M(C% -L^ M(c)^i —^ yi^+i —— o

I'2 I'2 [ g

M(C)^+i -L^ M(C)w —^ ^1,^+2 ——— 0

Uk-^2 ————^ ^2,fc+l ————^ ^2,/c+l ————)> 0

where by GnL^ we mean the intersection of C with the plane denned by Li.
Let a; € M(C%+2- If ^ is in the image of the multiplication by Li or 1/2,
there is nothing to prove, so assume that this is not the case. In particular,
by exactness h(x) -^ 0 and so there exists a non-zero y € H^{JcnL^ (k 4-1))
such that g{y) = h(x). But / is also surjective, so there exists z € M(C%+i
such that f(z) == y^ and hence h{L^z) = p(/(^)) = 9{y) = h{x) -^ 0.
Hence in particular L^z ^ 0 and by hypothesis L^z -=^ x. But then
0 7^ x — L^z € ker/i = imLi so there exists w € M(C%+i such that
Liw = x — L^z, and a* is a linear combination of elements of M(C%+i. D

Remark 1.4. — Notice that two general linear forms suffice to generate
all of M{C) in degree ^ k + 2.

COROLLARY 1.5. — Let C be a curve with natural cohomology. Let
t = t(C), r = r(C). Then Ic is generated in degrees (^+r+l) and (t+r+2),
and M(C) is generated in degrees t and t + 1. D

Remark 1.6. — Notice that in the special case r{C) = diamM(C)
(i.e. rrir = 0), we get that Ic is generated in degree (t + r + 1), and that
if h^^Jc^ ~ 1)) = 0 — which may happen — then M(C) is generated in
degree t.

Lemma 1.3 says that in degree i > k + 2, multiplication by a
general linear form L may not induce a surjection M(C)i —> M((7)^i,
but multiplication by two general linear forms does give a surjection. We
now give the «dual)> statement.

LEMMA 1.7. — Let C be a curve with hQ{Jc{k)) = 0 for some
integer k. Let L\ and L^ be linear forms neither containing a component
ofC. Then [(kerLi) H (kerL2)]z = 0 for i < k - 2.
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Proof. — The proof is similar to that of Lemma 3.1 of [GM] and is
omitted here. Note that if C is irreducible then L\ and L^ can be chosen
arbitrarily. D

We need some results from [MDP]; we may concentrate what we need
in the following proposition :

PROPOSITION 1.8. — Let M be a graded S'-module of finite lengthy
and let

0 ̂  F^ -^ Fs ̂  F2 ̂ F^^Fo ——> M -> 0

be a minimal free resolution of M. Set ^2 = © [b2WS{—n)}. Then the
n€Z

minimal curve in the even liaison class individuated by M has resolutions

0 -^ (B[^W-^)] -^A/o —. JcW -^ 0
nez

and

0 ̂  1C —— (9[(&2(^) - q(n))0p(-n)] —— ^c(^) -^ 0
nez

where A/o is the sheafification of NQ == Kerai, /C the sheafification of
K = Kera2, ^(^) ^ b^^n) and there exists 0,0 such that q(n) = b'z(n) for
n < OQ; ^n(^ (?(^o) < ^2(^0); moreoyer, h = deg(^Vo) + ̂ . Tiq('n) (note that
do may be equal to +00). nez

Proof. — See [MDP, Chap. IV, 2.5, 2.7, 3.4, 4.1, 4.4]. Note moreover
that OQ depends only on o^. D

We say that a (r + l)-uple of positive integers (mo, mi , . . . . m^) is ad-
missible if there exist integers d > 0 and g such that (—mo, — m i , . . . , —my.)
is exactly the (ordered) (r + l)-uple of negative values of the function
^dp : Z -^ Z defined by :

XdgW = = ( ) — kd— 1 -\- g m the interval [—2,4-oo[,
\ 3 /

and such that ^^(—2) > 0, i.e. there exist d, p, and t such that
Xdg(.t + k) = —mjfc, A; = 0 , . . . ,r, and these are the only negative values
of \dg ln ^ne interval [—2,+oo[.

For simplicity of notation, we allow m-r = 'x.dg{t + ^) to be equal to 0.
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Note that if r > 2, then d, g and t are uniquely determined as follows
(see also below) :

t = —7712 + 2777,1 — 777Q — 3,

d = 777i — 777o -(- - (2777i — 777o — 7772)(2777i — 777o — 7772 — 1)?

/ 27771 -777o-7772 \
P = - ^ -7770+1

\ ° /

i / o o\ 1^ , /^ 2777i — 777o — 7772 M
+ (27771 - 777o - 7772 - 3) 777i - 777o +[ N .

We say that a graded S'-module of finite length is numerically admissible if
the dimensions of its homogeneous components form an admissible 77—uple,
and the first non-zero component is in degree t.

r
Notation. — Let F be a free 5'-module : F = (9 S(—rii), with

^-i <: ^2 <: • • • ^ ̂ r- We set infF = 77i and sup I7' = 77^. z=l

THEOREM 1.9. — Let C be a curve with natural cohomology. Assume
that diamM((7) > 2. Then M(C) has a minimal resolution of the form

0 -^ F^ —> Fs —> F-2 —> F^ —> FQ —> M(C) -^ 0

where

FQ = poS{-t) © qoS{-t - 1),
F^=p^S(-t-l)(BqiS(-t-2),
F^ = u^S(-t - r - 1) C V2S{-t - r - 2) C p2S(-t - 2) C q^S^-t - 3),
Fs = U3S(-t - r - 2) C V3S(-t - r - 3),
F4 = n45'(-t - r - 3) C ̂ 45'(-t - r - 4)

for some non-neg-atiye integers PQ , pi, p2 5 qo^qi^q2^ ^2 5^3 5^4 5 ^2 ̂ 3 ̂ 4 •

Proof. — Of course the case of diameter one is trivial and we omit it.
Suppose now that we have a minimal free resolution for M(C) :

(1) o ̂  F4 ̂  ̂ 3 ̂  ̂ 2 ̂  Fi -^ Fo —— M(C) -^ 0.

It is a standard fact that for each i we have infF^+i > infF^. Applying
the same fact to the dual module (twisted) A^G)^^) we also get that
supF^+i > supF^. We first consider FQ. If diamM(G) = 2 clearly it is
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generated in at most two degrees. If diamM((7) > 3 then this fact follows
from Corollary 1.5 and the fact that C has natural cohomology. For the
rest of the proof we will assume that C is minimal in its even liaison
class. Indeed, in the case of diameter 3 or more this is automatically true
(Remark 1.1). In the case of diameter 2 we will see that the minimal shift of
the even liaison class (in the sense of the second paragraph above) always
consists of curves with natural cohomology (Proposition 3.1) and clearly
if M(C) is shifted then the only change in the minimal resolution of M(C)
that we want to prove comes in the value of the integer t which defines the
shift.

By Proposition 1.8, F^ (from the resolution (1)) splits as F^ = F (B P
where

F = 0[(W - q(rz))S(-n)] and P = (^[q{n)S(-n)],
n€Z n6Z

and they have the following roles : F appears in the minimal free resolution
ofJc,

(2) 0 -^ F4 ̂  Fs — F —— Ic -^ 0

(F4, FS and (74 are the same as in (1)), and P appears in a locally free
resolution

(3) 0 -> P —> No —> Ic -^ 0,

where NQ is the kernel of a\.

By definition, infF = a{C) = t + r + 1, so infFs ^ t + r + 2 and
inf F^ >_ 14- r 4- 3. On the other hand, we claim that sup F^ < a(C) + 4 =
t -f- r + 5 and hence sup F^ < t + r + 3. Indeed, if we let K = coker 04, the
sheafification of the exact sequence

(4) 0 -^ K -^ F -> Ic -> 0,

together with maximal rank gives /^(/C^)) = 0 for all i > t+r4-1 (where /C
is the sheafification of K). Then the exact sequence

(5) 0-^F4-^F3 —>K -̂  0

gives that H3^^)) injects into H3^^)) for all i > t + r + 1. Since
supFi > supFs, this can only happen if ^(^(z)) = 0 for all > t + r + 1,
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i.e. — sup F^-\-t-\-r + 1 > —4, as claimed. This proves the theorem for F^
and Fs. Note that inf F = t + r -h 1 and sup F < t + r + 2.

Then note that a minimal free resolution of Ac = © [H°(C, Oc(n))\
has the form n(EZ

0-^P —^ Fi —^ Fo C 5 —^ Ac ̂  0

(see f.i. [MP, II, 4]), and hence supP > supFi > supFo? and (considering
also the dual sequence) infP > inf.Fi > inf-Fo = t.

But now ^(JcW) = 0 (by maximal corank) implies that for every
p >. t, H^(P{p)) injects into ^(A/oCp)), where as usual P and A/o are
the sheafifications of P and TVo, and H^^AfQ^p)) injects into ^(^(p)).
Since ^(^(supP - 4)) ^ 0, while ^(^(supP - 4)) = 0, we get that
supP — 4 < t, that is to say supP < t + 3. This implies supFi < t + 2;
since moreover F^ = F (B P, this completes the proof. D

Remark 1.10. — With this theorem in fact we have a clear view of the
possible resolutions for the ideal sheaves of curves with natural cohomology.
If C is as above and r(C) >, 2, then C is minimal in its even liaison class
and locally free resolutions of Ic are :

0 -^ K —> u^0^(-t - r - 1) © v^Ops^-t - r - 2) —> Jc -^ 0,

0 -^ p20p3{-t - 2) C q20p3(-t - 3) —> F —> Jc -^ 0.

The first one is clearly linked to the «west-side » approach of [EH], and in
fact from it we get a free resolution for Jc '-

0 -^ Z40p3(-t - r - 3) C V40p3(-t - r - 4)

—^ U30p3(-t -r- 2) ez'30p3(-^ - r - 3)
—^ n20p3(-t - r - 1) ® v^0?3(-t - r - 2) —^ ^c -^ 0.

COROLLARY 1.11. — Let C be a curve with natural cohomology and
let M = M(C). Then the dual module .M^ is generated in the first two
degrees.

Proof. — There are two easy proofs of this fact, either from the fact
that ?4 is generated in two degrees (and then use the fact that the minimal
resolution of M^ is a twist of the dual of the minimal resolution of M), or
else from the fact that the linked curve C' has maximal corank (and then
use Lemma 1.3). D
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Now we would like to say something about the ranks of the modules
occurring in these resolutions. We suppose that C is a curve with natural
cohomology and diam(C) > 3, and we suppose henceforth that we have
/^(^(p)) = 0 for p > ^ — 2, or equivalently t > —1 (this is not of course an
heavy assumption, and it is automatically verified if C is smooth connected,
but it guarantees that m^ == —x(Jc(t + ^)) for every i < r). Recall that by
Riemann-Roch we have :

x(Jc(p)) == ( p ^ } -pdeg(G)-l+^(G).
\ ° /

Hence for every p

x{Jc{p + 2)) - 2x{Jc(p + 1)) + x{JcW) = P 4- 3

and

(3) x(^c(p+3))-3x(^c(p+2))

+3x(Jc(p+l))-x(^(p))=l.

If we let p == t == t(C)^ we get —mo + 2mi — mo = t + 3, and hence :

t(C) = —7712 + 2mi — mo — 3.

In the same way, one sees that

x(Jc(t + 1)) - x{Jc(t)) = ̂  (t + 3)(t + 2) - deg(G),

and hence

deg((7) == mi — mo + ^ (2mi — mo — m2)(2mi — mo — m2 — 1),

and finally :

(^i\ (2m^ - ̂ o - m2\ , .pa{C)=-[ -mo+1
\ 0 /

, /o o \ f , /2mi-mo-m2M+ (2mi - mo - m2 - 3) mi - mo + I j .
L V 2 ) \

Since moreover \{Jc{p)) is a polynomial in p which depends on deg(C)
and pa(C)^ we see that

rrii=-x(Jc(t+i)) {3 < i ̂  r)
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is determined by mo, mi and 7712. Moreover, since x(Jc{t-1)) ^ 0, from (1)
we get :

-m2 + 3mi - 3mo > 1.

Remark 1.12. — This simple numerical argument shows that the
Hartshorne-Rao module of a curve with natural cohomology is not at
all symmetric, at least for diam(C) ^ 4. If there exists a curve C with
natural cohomology and whose Hartshorne-Rao module has homogeneous
components of dimensions mo, . . . ,mr (where r >_ 3), then there cannot
exist a curve D with natural cohomology and Hartshorne-Rao module with
homogeneous components of dimensions my. , . . . ,mo. In fact, for r > 3,
we have :

(2) ms - 3m2 + 3mi - mo = -x(Jc(t + 3)) + 3x(Jc{t + 2))

-3x(^(t+l))+x(JcW)

If -D is a curve with natural cohomology and Hartshorne-Rao module with
homogeneous components of dimensions m^, . . . , mo, and mo = ^(^(p)),
then analogously :

-X(JD(P)) + 3x(JD(p - 1)) - 3x(^D(p - 2)) + X{JD{P - 3)) = -1.

But the first member is mo — 3mi + 3m2 — ms, and this is equal to +1,
due to (2).

As a consequence, if in an even liaison class (with diam > 4) there
exists a curve Y with natural cohomology, then in the other half of the
liaison class there cannot exist a curve with natural cohomology. Since
moreover Y satisfies e{Y) < s(Y) +4 (the « strong)) condition ofLazarsfeld
and Rao) one can say that Y is the only curve with natural cohomology in
the whole liaison class.

Now we come back to our purpose of determining the integers
appearing in the resolution of Theorem 1.9. Our goal is to prove the
following :
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PROPOSITION 1.13. — Let C be a curve with natural cohomology
and diam(C) > 3. Then (using the notation of 1.9) :

— m2 + 3mi — 3mo > 1,

Po = mo,
pi == 4mo + qo - mi

P2 == <7i + 6mo - 4mi + m2,

1^2 = —3my + 3my.-i — rrir-2 + 1,

4my.-i — 6m.r — rrir-2 <: ^3 <: lOmy. + 4^4 — rrir-2,

max{0,mr-i — 4mr} < u^ <, m^-i ;

max{0, mi — 4mo} < ^o ^ mi,

4mi — 6mo — rn^ < qi <: 2mo + 2^o + 2mi — m^ < lOmo + 4^o — ma,

^2 = —3mo 4- 3mi — m^ — 1,

^2 = ̂ 3 + 6my — 4my-i + m^-2,
-y3 = 4777^ + U4 — my-l,

^4 = 777,y,

(note some symmetry).

Proof.

Module FQ. — First of all, clearly we have

Po = mo, andpi = 4mo + qo — mi (see [BB, 4.2])

and trivially :

max{0, mi — 4mo} < qo < mi.

Module F^. — On the other hand, we get from (5) of 1.9 above that :

^4 =h2(K{t+r)) =mr.

Moreover,

my--i — 4m^ < U4 <: mr-i

(consider the minimal resolution of M(G)V(4)).
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Module Fs. — Again from (5) and from h^{K(t + r - 1)) = 0 we get

v^ = 4774 + ^4 — 774-1

and that 0 ^ h^{K(t + r - 2)) = u^ + 6774 - 4774-1 + 774-2, from which we
have :

^3 > 4774_i — 6774 — 774-2.

But again considering the minimal free resolution for M(CY(^)^ we get :

n3 <, lOrrir + 4^4 — mr-2

(see also the argument for q\ below, which is similar).

Module F^. — Since (2) of 1.9 is minimal :

^2 =a=/ i ° ( Jc ( t+r+ l ) )
=x(^c(^+r+l ) )
== —3774. + 37Tly.-l — ^Tir-1 + 1

(since x(^c(t + r + 1) - 3x(^c(^ + r))
+ 3x(^ + r - 1)) - ̂ (J^ + r - 2)) = 1);

v^=b=h3(K(t+r-<2))
== my._2 + 1^3 + 4^3 — 4^4 — 10^3

= us + 6mr. — 4my._i + mr-2-

For 92, we know that q^ = f = h^^Jcd - 1)) = x(Jc{t - 1)); but since as
usual l=x(Jc(t^2))-3x(Jc(t+l))-}-3x{JcW)-x{Jc(t-l)), we get:

92 = —37720 + 377li — 77l2 — 1.

For p2; we easily see that

p2 = e = h\F(t - 2)) + h^Jcit - 2)) - 4/l2(^ - 1))
- qi + X(^ - 2)) - ̂ x{Jc(t - 1)),

and since

x(Jc{t - 2)) - ̂ x{Jc(t - 1)) + 6x(JcW)
- ̂ x(Jc(t + 1)) + x[Jc(t + 2)) = 0,
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we have :

P2 = qi - Qx(Jc(t)) + ̂ x(Jc(t 4-1)) - x(Jc(t + 2))

= q\ -\- 67770 — 4777i + 7712.

If r = 2, of course (F^) has the form :

F2 = P2S(-t - 2) C (<72 + n2)S'(-t - 3) C ̂ (-^ - 4).

Module F\. — We have :

0 < h°(F(t + 2)) = 4pi + gi - lOmo - 4go + m-2

===> 4mi — 6mo — 777,2 <: qi;

since moreover gi is smaller or equal of the dimension of the homogeneous
component of degree t + 2 of the kernel of the map

moS(-t) C qoS(-t - 1) —> M,

and this dimension (as a ^-vector space) is lOmo + 4go — ^2, we get :

q\ < lOmo + 4^o — ^2.

This inequality will be used later on, but in fact we can prove more. Let us
call R this kernel, and Ri its homogeneous components. Hence we have :

dim Rt == 0,
dim Rt-^-i = 4po + qo - mi = pi,
dim^+2 = lOpo + 4^o - m2.

Since q\ is the number of generators of R in degree t + 2, we have that
q\ = dim-R^+2 — dimlim^t+i (g) 5'i —>• ^4-2)]. Notice moreover that 7? is
the image of the map :

^ : piS(-t - 1) C qiS(-t - 2) —> poS(-t) C 9oS'(-^ - 1).

Let n i , . . . . 77po be minimal generators of M(C) in degree t. Then an element
of Rt-^-i may be viewed as a po-uple of linear forms (Li , . . . , Lpp) such that
Z/i77i + • • • + LpQripQ = 0. Let (Mi, . . . , Mpo) be another element of Rt-^-i-
Let A and B be linear forms such that :

A(Li,..., L^) - B(Mi,..., MpJ = 0.
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Assume (Li , . . . , LpJ and (Mi,. . . , MpJ are independent (under k). In
particular :

ALi=BMi,...,ALp,=BMp,.

If A == XB for some scalar A, then (Mi, . . . ,Mpo) = A(Li , . . . ,Lpy)
contradicting independence of ( I / i , . . . , Lpo) and (Mi,. . . , Mpp).

So without loss of generality we may assume A and B independent.
Then we may write

Li =a iB, . . . ,Lpo =apoB,

and not all a^ are zero. Hence :

A(aiB) = &Mi =^ Mi = aiA,

A(apoB) = BMpo =>- Mpo = Op^A.

This means :

(aiB)ni + • • • + (apoB)n?o = 0 ===^ B(aini 4- • • • + ap^rip^ = 0,

(aiA)ni + • • • + (apoA)npo = 0 ̂  A(aiUi + • • • + OporipJ = 0.

For general A and B this is impossible (Lemma 1.7). Therefore

Rt+i 0 (A, B} injects into ^+2,

hence:

dim[im(J?t+i (g) 5i -^ ^+2)] > 2dim^+i = 2pi = 8pi + 2go - 2mi.

Therefore :

<2i ^ lOpo 4- 4<7o - m2 - (8po + 2go - 2mi) = 2mo + 2qo + 2mi - 7712. D

Example 1.14. — We shall see in the section 3 that for diameter
two, any module structure admits curves with natural cohomology. For
diameter > 3, though, one might hope that the number of minimal
generators for M(C) would be the «expected)) number; that is, that
the homomorphism Si (g) M(C)t —^ M(C)t-\-i would have maximal rank
(where t = t(C) and 5i is the vector space of linear forms) and so QQ would
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be determined. We now show that is too much to hope for. Our tool is liaison
addition (cf. [Sw], [SV] or [BM4]). Let C\ be a general set of four skew lines,
and let C^ be a general set of two skew lines. Choose general polynomials
FI € Ic2 °^ degree 2 and F^ € Ici of degree 3. The scheme Z defined by the
(saturated) ideal F\IC^ -+- ^2 Ic^ nas degree 4 + 2 + 6 = 1 2 and Hartshorne-
Rao module with components of dimensions 3, 5 and 2 in degrees 2, 3 and 4
respectively. In particular, there is a minimal generator in degree 3 (coming
from the module of Cs). But using the exact sequence [BM4]

0 -^ Ops (-5) —— Jc, (-2) C Jc. (-3) —— Jz -^ 0,

one checks that Z has natural cohomology. In this case, one has for M(Z)
qo = 1, which is not the minimal possible value, and the multiplication
5'i 0 M((7)2 —^ M(C)s has not maximal rank.

Remark 1.15. — We want to stress the fact that most of these
numerical conditions just follow from the form of the resolution, and not
from the fact that M is the Hartshorne-Rao module of a curve with natural
cohomology.

Remark 1.16. — Note a nice consequence of these numerical relations :
if m\ — 4mo is > 0 and go is the minimal possible, i.e. qo = m\ — 4mo,
then q\ is forced to be the minimal possible too, i.e. q\ = 4m i — 6mo — ^2,
and pi = 0 = p2- See also section 3.

2. Necessary and sufficient conditions.

One may ask how far is Theorem 1.9 from giving necessary and
sufficient conditions for a finite length graded module M to be the HR-
module of a curve with natural cohomology. The answer is again
contained in the description given by [MP] of the resolution of M
and in Proposition 1.13, and in particular in the integer OQ defined in
Proposition 1.8. In what follows, let C be a curve and e(G), s{C), t(C)
and r(C) be as in § 1, and let m^ = ^[Jcit + i)). We suppose for
Propositions 2.1 and 2.2 that r > 3. If r < 2, then every graded module
of diameter r is, up to shifting, the Hartshorne-Rao module of a curve
(even smooth) with natural cohomology. Actually a stronger result is true :
every graded module of finite length of diameter r which is the Hartshorne-
Rao module of some curve is in fact the Hartshorne-Rao module of a
curve with natural cohomology (see § 3). The case r = 2 will be stated in
Propositions 2.4 and 2.5.
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PROPOSITION 2.1. — Let C be a curve with natural cohomology,
t = t(C) and let M = M{C) be its HR-module. Then M is numerically
admissible and its minimal free resolution has the form :

0 —> v^S(-t - r - 4) C u^S(-t - r - 3)
-^ V3S{-t - r - 3) C usS(-t - r - 2)

^ V2S{-t - r - 2) C u^S(-t - r - 1)
© ̂ (-t - 3) @p2S(-t - 2)

^ 9i5(-t-2)epi5(-t-l)

-^ go^-^ - 1) epoS(-t) -^ M -^ 0,

and ao > t + r -h 1.

Proof. — The fact that M is numerically admissible follows
immediately from the definition and the fact that C has natural
cohomology; the form of the resolution is Theorem 1.9. So we have to
prove only that ao > t + r + 1. Now, just look to the sequence

0 ̂  1C —— @[{W - q(n))0p{-n)] —— Jc(h) -. 0
nGZ

from Proposition 1.8. Then the definition of ao, joint with the facts
that ^(P3,^^ + r -h 1)) = 0 and that C has natural cohomology,
immediately gives that a o > ^ + r + l . D

Now we prove the converse.

PROPOSITION 2.2. — Let M be a numerically admissible graded
S-module of finite lengthy having a minimal free resolution of the form

0 —> V4S(-t - r - 4) C u^S(-t - r - 3)
-^ V3S(-t - r - 3) C U3S(-t - r - 2)

-^ V2S{-t - r - 2) © u^S(-t - r - 1)
(A) © g2-S'(-^ - 3) C p2S(-t - 2)

^ q^S(-t-2)epiS(-t-l)

-^ qoS(-t - 1) (BpoS(-t) —— M —— 0,

with ao > ^ + r + 1. Then it is the HR-module of a curve with natural
cohomology.
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Proof. — From Proposition 1.8, the minimal curve in the even liaison
class individuated by M has a resolution :

0 -> p20p(-t - 2) C q20p(-t - 3)

® ( © [qWOp(-n)] ) -^ A/o -^ ^(^) -^ 0.
n>t+r+l

We will show that C has natural cohomology; for this, we need to show
that q(n) = 0 for n > t + 4. From the exact sequence

_ 0 -^ A/o —> qi0p(-t - 2) C pi0p(-^ - 1)
—> qo0p(-t - 1) (^poOp(-t) -^ 0,

we know rank Ao, which is :

qi + pi - qo - po == 91 + 4mo + 90 - ̂ i - 9o - rriQ
== 3mo + ^i — mi ;

but this number is exactly equal to p^ + q'2 + 1 (we need the computations
of Proposition 1.13, which follows only from the fact that M has a resolution
with the form (A)).

Since on the other hand

rankA/o = rank ̂ Op^-t - 2) © q^(-t - 3) © ( Q) [q(n)0p(-n)]) 1 + 1,
n^t+r+l

it follows q(n) = 0 for every n ̂  t + 4, hence

/i = deg(A/o) + ̂  ng(n) = 0,
nez

and (7 has natural cohomology, since

h°(Jc(t + r)) = 0 and h\Jc(t)) =0. D

Remark 2.3. — The condition OQ > ^ + r + 1 can be translated,
following [MP, Chap. IV, 6.4] as follows. Let us denote a^ the restriction
of 0-2 to p20p{-t - 2) C q20p{-t - 3). Then, in our situation,

ao > t + r + 1
^==> o-x is injective and with a cokernel without torsion
<=^ the (p2 + 92) minors of o-a; have only trivial common factors

(remember that a^ can be seen as a (p2 + 92) x (pi + qi) matrix). Note
moreover that q(t + 3) = q^ = -3mo + 3mi - m^ - 1.

The case r = 2 is similar, but we have to state it separately since
now 92 and u'z patch together.
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PROPOSITION 2.4. — Let C be a curve with natural cohomology, and
let M be its Hartshorne-Rao module, having homogeneous components in
degrees t, t + 1, t + 2 of dimensions mo, mi, 7712 respectively {mo and m\
are > 0, m^ may be 0), and all the other components are zero. Then M is
numerically admissible, its minimal free resolution has the form :

0 —> v^S(-t - 6) C U4S(-t - 5)

-^-> vsS(-t - 5) © U3S(-t - 4)

-a3-^ v^S(-t - 4) C w^S(-i - 3) © p2S{-t - 2)

-^ q^S(-t - 2) C pi5(-t - 1)

-^ go<?(-^ - 1) OpoS(-t) -^ M —— 0,

with do >, t + 3 and q(t + 3) = —3mo + 3mi — 777-2 — 1.

Proof. — The fact that M is numerically admissible and the form
of the resolution follows, as above, from Theorem 1.9, and Proposition 1.8
gives as usual two resolutions of Jc '.

(*) 0 ̂  /C —— [v2 - q(t + 4)] Op{-t - 4) © [w2 - q(t + 3)] Op(-t - 3)
C [p2 - q(t + 2)]0p(-t - 2) ̂  Jc -^ 0,

(**) 0 -. g(t + 4)0p(-t - 4) C ^(^ + 3)0p(-^ - 3)
© q(t + 2)0p(-t - ^ - ^ N Q - ^ J C ^ Q .

Since ̂ 0 (P3,/C(^+2)) = 0 = ft0 (P3,^c^+2)), it follows that p2 = 9(^+2),
and this implies by definition that CLQ > t + 2.

Again the definition of g, joint with simple computations left to the
reader, gives :

g ( t + 4 ) = 0 ,
q(t + 3) = rankA/o - 1 - p2 = -3777o + 377Zi -7772+1. D

Conversely,

PROPOSITION 2.5. — Let M be a numerically admissible graded S-
module of finite length of diameter 3, having a minimal free resolution of
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the form

0 —^ v^S(-t - 6) © u^S{-t - 5)

-^ z;3^(-^ - 5) C n35(-^ - 4)

(A) -^ ̂ (-^ - 4) C W2S(-t - 3) © p2<9(-^ - 2)

^^ 9i5(-^ - 2) epi5(-^ - 1)

^^ ^o5(-^ - 1) C poS{-t) -. M ̂  0,

with OQ > t + 3 and g(^ + 3) == —3mo + 3mi — 7722 — 1- Then it is the
HR-module of a curve with natural cohomology.

Proof. — The minimal curve in the liaison class individuated by M
has resolutions :

(*) 0 ̂  /C -. [02 - q(t + 4)] Op{-t - 4)
C [w2 - q(t + 3)] Op(-t - 3) -^ Jc(h) -^ 0,

(**) 0 ̂  q(t + 4)0p(-^ - 4) C ^(^ + 3)0p(-t - 3)
C p20p{-t - 2) -^ A/o -> ^c(^) -^ 0.

We first prove that /i°(P3, Jc(t 4- 2 + /i)) = 0 = ^(P3, ̂ c(^ + ^)) (again
we let details to the reader).

The beginning of a minimal free resolution of NQ gives that
^(P3,^)^ + 2)) = p2, and hence /i°(P3, Jc(t +2+h))=0.

As in § 1, we have p2 = /^o(P3,A/o(^ + 2)) == qi + 6mo - 4mi + m^.
Moreover, rankA/o = q(t + 4) 4- 3mo — m\ + qi and from

0 -^ Afo —> qi0p(-t - 2) ©pi(9p(-^ - 1)
—> qo0p(-t - l)^poOp(-t) -^ 0,

we have

rankA/o == q\ + 7?i - qo - Po = 3mo - mi + ^i,

hence ^(t + 4) = 0. But now again (**) gives that 0 = h^^.Jcit + fa)).
Thus (7 has natural cohomology and M(C) = M(—h). But (7 is minimal
and M is numerically admissible, so h = 0 and M = M(C). D
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3 The case of diameter two.

Recall (see [LR], [BM4]) that given a curve X, we define a basic double
link Y of X as follows : choose a surface Fi of degree b containing X and a
general surface F-z of degree /. Then the ideal F-^IX + (^i) is the saturated
ideal of a curve V, basic double link of X. We denote this procedure
by X : (&,/) —> Y. The curve Y is linked to X in two steps, and the
cohomology of the ideal sheaf of Y is determined (numerically) by that
of X and the degrees b and /.

PROPOSITION 3.1. — Let C be an even liaison class whose
corresponding Hartshorne-Rao module has diameter two. Then every shift
of C contains curves with natural cohomology, and there exists in C a
smooth curve with natural cohomology.

Proof. — We first show that if the minimal shift of C contains no
curve with natural cohomology then no curve in C has natural cohomology.
This follows from the Lazarsfeld-Rao Property (cf. [BBM]). Indeed, the
cohomology of the ideal sheaf of a curve in C is the same, numerically, as
the cohomology of a curve obtained from a minimal curve by a sequence of
basic double links, and it suffices to consider basic double links with / = 1
(cf. [BM4, Cor. 3.9]). Now, if C is a curve and we perform a basic double
link C : (/, 1) -^ V, then we have :

t(Y) = t(C) + 1;

fa(G) if /=a(C),
o v ) f a ( G ) + l if />a (C) ;

f e ( C ) + l if / < e ( G ) + 3 ,
e( ) U-3 if />e (C)+3 .

(The first two are clear, and the third comes from [BM3, Lemma 1.14].)
So one quickly checks that if C fails to have natural cohomology then so
does V, regardless of the / chosen. If now C is a curve in C^ with natural
cohomology and we perform a basic double link C : (t{C) + 3,1) —^ V,
then V is a curve in C^ + 1 with natural cohomology. If we start from
a graded module M of finite length and diameter 2 (and we suppose for
simplicity that the non zero components are in degree 0 and 1 and of
dimensions mo and mi), and we follow as usual Rao'construction as in
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Theorem 1.9, we get a locally free sheaf F whose cohomology is as follows :

F

h°

h1

h2

h3

0

0

mo

0

0

1

0

mi

0

0

2

0

0

0

3

*

0

0

0

Then by Castelnuovo-Mumford, F(3) is globally generated, and p =
rank(F') — 1, general sections of F(3) drop rank along a curve Y whose
Hartshorne-Rao module (shifted) is isomorphic to M, and which has natural
cohomology, as one can see from the exact sequence

0^p0p3(-3) F — — J y ( t ) - ^ Q

and the diagram

Jc

h°

h1

h2

t -1

0

0

t

0

mo

0

t + 1

0

mi

0

t+2

0

0

t+3

0

0.

Hence in C there is a smooth curve with natural cohomology; this implies
that all curves in £° have natural cohomology and therefore every shift of C
contains curves with natural cohomology. D

Remark 3.2.

(a) One cannot strengthen this result by saying that every shift of C
contains smooth curves with natural cohomology. For instance, if M is
annihilated by the maximal ideal of S (i.e. C is a Buchsbaum even
liaison class), then there are no smooth curves in the minimal shift
(cf. [BM2, Thm 2.12]).

(b) For a curve with natural cohomology and module of diameter two,
the degree and arithmetic genus of the curve are easily computed in terms
of the shift (i.e. the integer ^(C)), as we did in Section 1. This is independent
of the module structure.

PROPOSITION 3.3. — II Y is a curve with natural cohomology, with
diameter 2, then Y is non-obstructed.
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Proof. — We prove that ^(A/y) = Ext^Jy.Jy) = 0, from which
the thesis follows. Let us consider the cohomology of Jy :

JY | t - 1 t t + 1 ^ + 2 t + 3

h° 0 0 0

/i1 0 mo mi 0 0
h2 0 0 0 0 .

From Castelnuovo-Mumford it follows that Jy is generated in degree t + 2
and ^ + 3, and hence a minimal resolution of Jy has the form :

(*) 0 -^ V —> p0p3(-t - 2) C q0p3{-t - 3) —> JY -^ 0.

We now consider a minimal free resolution of M(Y) :

0 0 0 0

\ / \ /
K F

/ \ / \
• • • -^ P25'(-^ - 2) e g2<5(-^ - 3) —. piS(-t - 1) e gl5f(-t - 2)

—> poS(-t) e qoS(-t - 1) —^ M(Y) -^ 0

from which we get the two following exact sequences :

(**) 0 ̂  K -^ p20?3(-t - 2) C q20^{-t - 3) -> F -> 0,

(***) 0 -. F -^ pi0ps(-^ - 1) e 9i0p3(-t - 2)
^ Po0p3(-t) e go0p3(-t - 1) ̂  0.

From Rao's construction, we have that V ^ K C 7^ where 7^ = ®0p3 (-a^)
and di > t + 2 for every z (this follows from (*)). z

Then we apply to (*) the functor E x t ^ ( ' , Jy), and we get :

Ext^, Jy) C Ext^TZ, Jy)

——Ext^Jy.Jy)

—^Exf2^^ - 2),Jy) C gExt^O^-t - 3),Jy).

But now

Ext^T^Jy) ^ e2:fl(Jy(a,)) = 0 since a^ ^ t + 2,

Ext2^^ - 2), Jy) ^ ̂ (Jy^ + 2)) = 0,

Ext^Ops^ - 3), Jy) ^ ̂ (Jy^ + 3)) = 0,
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hence it is enough to study Ext^, Jy). From (**) we get :

p2Ext\Op3(-t - 2),Jy) e ̂ ExI^C^-^ - 3),Jy)

—— Exî î y) —— Ext^F.^y).

Here we have

Ext\0p3{-t - 2), J y ) ̂  H\JY(t + 2)) = 0,

Extl(0p3(-^ - 3),^y) ^ ^(JTy^ + 3)) = 0,

hence we look to Ext^F, Jy\ From (***) we get :

Pl Ext2^^ - l),^y) 9 ̂  Ext2^^ - 2),^y)

-^Ext^^Jy)

———PoExt3(Op3(-^),^y)e^Ext3(Op3(-^-l),^y)

and since

Ext2(0p3(-^ - l),Jy) ^ ^(JTy^ + 1)) = 0,

Ext2(0p3(-^ - 2),Jy) ^ H\Jy(t+ 2)) = 0,

Ext^C^-^y) ^ H\Jy(t)) = 0,

Ext3^^ - 1), ̂ y) ^ ̂ (Jy^ + 1)) = 0,

we get Ext^F, Jy) = 0, hence Ext1^, Jy), and therefore

Ext^Jy^y^O. D

Remark 3.4. — This result can be also proved, in a simpler way,
by using the fact that the corresponding variety of module structures
(see [BB]) is smooth, and the results of [MP] about the map from (a suitable
covering of) this variety to (a suitable covering of) the Hilbert scheme, and
this is perhaps a way for extending it to other more general situations.
R.M. Miro-Roig pointed out to us that she has obtained this same result.
Our proof also shows that /z^A/y) = 0, which implies that the dimension
of the Hilbert scheme is 4d, i.e. as low as possible.

Now we come back, in the case of diameter 2, to the problem
of determining the ranks of the free modules appearing in the minimal
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resolution of the Hartshorne-Rao module ofV, as we did in Proposition 1.13.
If the resolution is

0 -^ u^S(-t - 4) C v^S(-t - 5) —> usS{-t - 3) C V3S(-t - 4)
—> c^S(-t - 2) C d^S{-t - 3) —> piS(-t - 1) © qiS(-t - 2)

—> poS{-t) C qoS{-t - 1) —> M -^ 0,

then arguments similar to those used in 1.13 show that

Po = mo, pi = 4mo + go - mi,

C2 = Qi — 4mi 4- 6mo, d^= u^-\- 6mi — 4mo,

^3 = 4mi + U4 — mo, v^ = m\,

and that

max{0, m\ — 4mo} <. qo <: mi, 4mi — 6mo ^ Qi < lOmo + 4go?

max{0, mo — 4mi} < u^ < mo, 4mo — 6mi < u^ < lOmi 4- 4^4

(provided that t > —1). With this remark, we are able to prove the following

THEOREM 3.5. — Let Y and X be curves with natural cohomology,
d = d(Y) = d(X), g = pa(Y) = pa(X), and diam(V) = 2. Then Y and X
are contained in the same irreducible component of Hilb^.

Proof. — This proof, much simpler than our original proof, is due
to the referee. For diameter 1 this result is contained in [B]. We use the
notations of [MP]. Let H^p the scheme of curves with the same cohomology
as X and V, which is an open subset of H^g by semicontinuity. Let Ep
the corresponding scheme of module structure, which is irreducible since
for diameter 2 it is an affine space. The map ^ : H^p —> Ep is smooth and
with irreducible fibers (see [MP, VII 1.1 and VII 3.5] for definitions of these
objects and proof of these facts), hence H^p and H^p are irreducible. D

Example 3.6. — From the point of view of [EH], we illustrate with
an example this relationship between the resolution of the Hartshorne-Rao
module and the resolution of the ideal sheaf. This example also shows how
the « actual» construction of graded modules with good properties (which is
the difficult part of this approach) can help in finding «good )> curves. Let us
consider the following module structure ^ € V(2,1) (the notation is taken
from [BB]) given by the following multiplication maps, where b\ and ^2 are
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fixed generators of the homogeneous component of degree 1 and c is the
generator of the homogeneous component of degree 2 of ^ :

XQb\ = c, x\b\ = x^b\ = x^b\ = 0,

Xob'2 = 3:2^2 = ^3^2 = 0, .Z-1&2 = C.

Hence the minimal free resolution of^ begins with 25(—1) —>• ^ —> 0. Let N
be the kernel of this map; N has 4m i — mo == 7 generators in degree 2,
namely (xo, -.z-i), (.TI,O), (.z'2,0), (^35 0), (0,o-o), (0,3-2), (0,^3) for instance.
But these generate all of 25(—1) (and hence all of N) in degree 3. Hence
the resolution continues :

75(-2)-^ 25(-1) ^$-> 0.

Let E be the kernel of the first arrow. We consider now the resolution of
^v C V(l, 2), which, up to shifting, is :

^o-^r(4)^o0 -^ 26'(1) —^ 75'(2) ——. F2 ——> ^i

\ ^ \ /
E^ F
/ \ / \

0 0 0

where the cohomology of E^ (the sheafification of E^ as usual) is

E^

h°

h1

h2

h3

-8

0

0

0

*

-7

0

0

0

8

-6

0

0

1

0

-5

0

0

2

0

-4

0

0

0

0

-3

0

0

0

0

-2

7

0

0

0

It is easy to check that Fo = 5(6), that Fi = 25(5) C 35(4) and hence that
F^ == 5(4) (D 85(3). We are now in the situation

0 -^ 25(1) -^ 75(2) -^ 5(4)085(3) -^ 25(5)035(4) -^ 5(6) -^ r(^) -^ 0

\ / \ 7
^ F

/ \ ^ \
0 0 0 0
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Thanks to [MP], the minimal curve in the liaison class individuated by ^v

has resolutions

0 -^ 20p3(l) -^ 70p3(2) -^ 60p3(4) -^ J7c^) -^ 0
/

E^

and 0 -> 2(9p3(3) C Op3(4) -^ F -^ Jc(t) -^ 0, and it can be computed
that t = 6. Therefore the cohomology of Jc is

Jc - 1 0 1 2 3
h°

h1

h3

0 0 0 0 *

0 1 2 0 0

2 0 0 0 0

andd(C)=4,^(G)=-l .

Then one finds easily that C can be chosen as the disjoint union of a
line and a skew cubic. Note that this is the « missing)) curve «a resolution
lineaire dominante)) of type (2,7) (see [EH, Thm 7.1]). It is not connected,
but it can be chosen smooth. The unicity (and the generic smoothness)
of the component of Hilb^p containing them follows from the results of
this chapter. Q

4. Comments on diam > 3.

Curves with natural cohomology were introduced since, due to
semicontinuity, they are «general)), as dimensions of the cohomology
groups, in their irreducible component of the Hilbert scheme, having the
« minimal)) (dimensionally) cohomology allowed by the Euler characteristic
of the sheaves Jc(t), determined by d, pa and t.

Proposition 1.13 suggests another condition of minimality, that is to
say we can consider curves with natural cohomology having the Hartshorne-
Rao module with the minimal possible integers QQ , 91, 1^3, u^.

Let us consider, for instance, r = 2, that is to say a case with diameter
at most 3, and suppose that Y is curve with natural cohomology, r(Y) = 2
andp2 = 0 (in the resolution ofM(V)). This means gi+6mo—4mi+77i2 = 0,
that is to say q\ = 4mi — 6mo — m^ (the minimal possible value
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if 4mi - 6mo + mz :̂ 0). Then Y is non obstructed. In fact, we can repeat
the proof of 3.3, considering the sequences

(1) 0 -^ )C —> v,20p3(-t - 3) © V20p3(-t - 4) —> JY -^ 0,

(2) 0 -^ 1C -^ p20p3(-t - 2) ® ((72 + U2)0p3(-t - 3)

® V20f3 (-t - 4) —^ J~ -^ 0,

(3) 0^^——Pi0p3(-t - 1) © qi0p3(-t - 2)

—»po0p3(-t) ® ̂ ^(-^ - 1) -^ 0

(where with /C and F we denote here the sheafification of K and F
respectively). Recall the cohomology table of Jy '•

t t+

0 0

mo TOI 1712 0

0 0 0 0
From (3) one gets

JY

h°
h1

h2

t -1
0
0

t
0

rriQ
0

t + 1

0
7721

0

^ + 2

0

m2
0

^ + 3

0
0

pi Ext2 (Ops (-* - 1), jTy) ® gi Ext2 (Opa (-* - 2). Jy)

^ Piff^P3. Jy(t + 1)) ® 91 ff2^3, Jy(* + 2))

i
Ext2^,^,)

i
poExt3(Op3(-t),^y) © go Ext3 (Ops (-f- 1))

^ po^2 (P3, Jy(*)) ® <?off3 (P3, Jy(t + 1)).

which gives Ext2(^', Jy) = 0. From (2) one gets

p2 Extl(C'p3(-^ - 2),Jy) 0 (92 + -"2) Ext^C^-f - 3), ̂ y)

®U2 Ext^Ops^t - 4), Jy)

^p2ff l(P3,Jy(<+2))©(g2+U2)ff l(P3,Jy(t+3))

eu2ffl(P3,^y(^+4))

1
Ext^/C^y)

i

Ext2^,^),
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which gives (p2 = 0!) that Ext^/C, J y ) = 0. From (1) one gets

Ext^/C.Jy)

[
Ext^Jy.Jy)

I

U2 Ext^Opa^ - 3), Jy) C V2 Ext^C^-t - 4), Jy)

^^2^2(P3,Jy(<+3))e^^2(P3,Jr(t+4)),

and hence If ̂ .A/y) ^ Ext^Jy.Jy) = 0. Therefore Y is non-obstructed.
Note, however, that there is no guarantee that for a particular choice of
mo, mi, 7712 (for which there exist curves with natural cohomology) there
will exist one with p2 = 0.

Remark 4.1. — Note that if m\ > 4?no, then 4mi - 6mo - m^ > 0
(use the fact that -7712 + 3m i - 3mo > 1), and that in this situation it is
enough to have go = mi — 4mo, see remark 1.15.

An analogous (and in fact slightly better) result is true from the point
of view of unicity.

Suppose now that Y and X are curves with natural cohomology,
the same degree d and arithmetic genus g, r(Y) = 3 and that
p2(^0 =P2(Y) = 0. Then they are in the same irreducible component
of the Hilbert scheme Hd,g. In fact, let us consider the minimal resolutions
of My and of MX '-

(4) 0 —. ?4 —> PS —> ?2 —> Pi —> PQ —> My —> 0
\ / \ /

KY FY
/ \ / \

0 0 0

(5) 0 —> J?4 —> PS —> Ri —>RI —>Ro —> Mx —> 0
\ / \ /

Kx FY
/ \ / \

0 0 0

and of Jy and Jx :

(6) 0 -> q20p3(-t - 3) -^ Fy -^ Jy -^ 0
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(7) 0 -^ q20p3(-t - 3) -. Fx -^ Jx -^ 0

(remember that p2(X) = p^Y) = 0, and that 92 = -3mo + 3mi - m2 - 1
is independent from the curve).

One can easily check that the cohomology of J^x and Ty (dimensio-
nally) is

Fx^y | t-2 t - 1 t t + 1 t+2 t+3

h0 0 0 0 0 0

h1 0 0 mo mi 7722 0
^2 0 0 0 0 0 0
h3 0 0 0 0

(it is seminatural). In fact, one has from (4) and (5) the exact sequences

(4') 0 -. Ty —> (4mo + qo(Y) - m^0ps(-t - 1) C q^Y)0^{-t - 2)
—> mo0p3(-t) © qo(Y)Op3(-t - 1) -^ 0,

(5') 0 ̂  Fx —> (4mo + qo(X) - m^0^{-t - 1) C qi(X)Op3(-t - 2)

—>moOp3(-t)^qo(X)Op3{-t-l) -^ 0,

and gi (V) = 9i(^0, since

p2(Y}= 0 =^ 91 (V) = 4mi - 7^2 - 6mo,

p2(^) = 0 =^ 9i(X) = 4mi - m2 - 6mo.

Therefore

h\^,FY{t + 2)) = 4[4mo + qo(Y) - mi] + 91 (V) - lOmo

-49o(Y)+m2
= 6mo - 4mi + qi{Y) + m2 == 0

and analogously for /^(P3,.^^ -h 2)). Now, simply adding the addenda
(mi - qo(Y))Op3(-t - 1) and (mi - qo(X))Op3{-t - 1) and the identity
maps to (4') and (5') we have

(4") 0 -^ FY —> {4mo)0p3(-t - 1) 0 91 Op3 (-t - 2)
—> mo0p3{-t) emi0p3(-t - 1) -^ 0

(5") 0 ̂  Fx —> (4mo)0p3(-^ - 1) e qi0p3(-t - 2)

—> mo0p3(-t) 9 mi0p3(-^ - 1) -> 0,
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that we write briefly :

0-^.Fy —.C-^P-^0,

0 -> Jx —,c-^->V-^0.

If we consider Hom(C,P), we see that there is a Zariski open (irreducible)
subset T corresponding to morphisms a whose kernel ICa is locally free; by
semicontinuity, it must have the same cohomology (dimensionally) as Tx
and FY (which have the « minimal)) (dimensionally) possible cohomology).
Now one can work as in [BB] getting that Y and X are contained in the
same irreducible component of the Hilbert scheme.

These results can be translated as follows : if4mi -6mo-m2 > 0, there
is only one irreducible component of the Hilbert scheme containing curves
with natural cohomology and minimal gi, and these curves correspond to
smooth point.

But exactly in the same way one can argue if 4mi — 67722 — mo >. 0
and 163 is minimal (that is to say v^ = 0). We have :

(4'") 0 -. U4(Y)Op3(-t - 5) C rri20p3(-t - 6)

—> U3(Y)Op3(-t - 4) C (4m2 + u^Y) - m^O^-t - 5)

—— /Cy -. 0,

(5'") 0 -. u^X)Op3(-t- 5) © rri20p3(-t - 6)

—> U3{X)Op3(-t - 4) C (4m2 + m(X) - mi)0p3(-t - 5)

-^ )Cx -^ 0,
(6') 0 -> ICy —> (-3m2 + 3mi - mo + l)0p3(-t - 3) —> Jy -> 0,

(7') 0 -^ JCx —> (-3m2 + 3mi - mo + l)0p3(-t - 3) —> Jx -^ 0.

The cohomology of /Cy and K,x (dimensionally) is

K.Y,)CX | t-2 t-1 t t-^-1 t+2 t+3

h0 0 0 0 0 0 0

h1 0 0 0 0 0 0

h2 0 0 mo mi 7712 0

h3 0 0 0 0

since ^(P^/Cy^)) = /^(P3,^^)) = 0.
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Moreover, u^Y) = u^(X) = 4mi - 67712 - mo. Simply adding to the
left and center terms of (4'") and (5"7) the addenda (m^ -u^(Y))Op3 (-t-5)
and (m2 — u^{X))0^{—t — 5) respectively, the proof continues as in the
previous cases.

Hence, if 4mi — 67723 — rriQ > 0 there is only one irreducible component
of the Hilbert scheme containing curves with natural cohomology
and minimal u^. Note that m\ >_ 87712 + 1, together with the fact
that —37712 -+- 377ii — TTio + 1 ^ 0 (this comes from u^ > 0) implies
that 477li — 67712 — TTlQ > 0.
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