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POISSON COHOMOLOGY
OF REGULAR POISSON MANIFOLDS

by Ping XU

Introduction.

Poisson cohomology plays a very important role in the study of Pois-
son geometry. Finding Poisson cohomology of certain Poisson manifolds
would allow us to solve some problems in deformation theory, as well as a
number of other interesting problems [L] [VK1] [VK2]. For symplectic man-
ifolds, Poisson cohomology is isomorphic to the usual de Rham cohomology
[L]. In general, Poisson cohomology, roughly speaking, reflects two pieces of
information of a Poisson manifold, the de Rham cohomology of symplectic
leaves and the variation of symplectic structures along symplectic leaves.
Despite of its importance, little work has been done in computing such
cohomology because of the lack of a general powerful method.

The aim of the present paper is to suggest a way of computing Poisson
cohomology by means of symplectic groupoids. Using this method, we carry
out a computation for a special kind of regular Poisson manifolds where
the symplectic foliations are trivial fibrations. Such an idea was already
suggested by Vorob'ev and Karasev in [VK2], where they compute the
Poisson cohomology for certain kinds of Poisson manifolds in dimensions
1, 2 and 3.

The key point of this paper can be stated as follows. For an integrable
Poisson manifold (i.e., a Poisson manifold admitting a global symplectic
groupoid), the Poisson cohomology is naturally isomorphic to the de Rham
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cohomology of left invariant forms on the symplectic groupoid. This fact
allows one to convert the problem of computing Poisson cohomology to that
of computing de Rham cohomology of certain manifolds, which is much
easier to handle in general. In particular, in the case that the symplectic
foliations are trivial fibrations, we show that the computation of Poisson
cohomology is equivalent to the computation of de Rham cohomology of
certain torus bundles.

The first section of this paper contains a general discussion on the
preceding fact and its consequence for the regular Poisson manifolds in
which the symplectic foliations are locally trivial fibrations.

The second section is devoted to an explicit construction of symplectic
groupoids for integrable Poisson manifolds of the form P = S x Q.

In Section 3, we compute directly the de Rham cohomology of torus
bundles, a result needed in Section 4.

In Section 4, we obtain the main result of this paper, namely, a general
formula describing Poisson cohomology of integrable Poisson manifolds of
the form P = S x Q.

As a by-product of this work, we can easily see that any volume form
of an integrable Poisson manifold produces a Haar system for its symplectic
groupoid. The relation between volume forms of the base Poisson manifold,
Haar systems of the symplectic groupoid and the symplectic volume of the
symplectic groupoid, as well as a number of possible applications to (7*-
algebras of symplectic groupoids will be discussed elsewhere.

Finally, we would like to mention that a different approach to the
computations of Poisson cohomology was recently carried out by I. Vaisman
[V].
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Weinstein. The author would like to acknowledge his indebtedness to Pro-
fessor Alan Weinstein for his invaluable guidance during its preparation.
He also wishes to thank Professor Pierre Dazord, Professor Richard Lashof,
Professor Kirill Mackenzie and Jianghua Lu for many stimulating discus-
sions.
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1. Poisson cohomology and de Rham cohomology
of invariant forms on symplectic groupoids.

Let (r -^ P, a, 13) be a Lie groupoid. By T^F we denote the tangent
bundle of the foliation on F arising from the a-fibration and by T^F its
dual bundle. Write ̂  for the C7°°(r)-module of all smooth sections of
the bundle Ty and ̂  = A^; then ̂  -^ ^+1 with d the usual
exterior derivative along the fibres becomes a cochain complex. The subset
f^ ^ of f^ consisting of all forms which are invariant under the groupoid
left translations is a subcomplex of (f^;, d). The cohomology groups of this
subcomplex are denoted by H^ ^(T, IR). Let A —> Fo be the Lie algebroid
of r with anchor map p : A —> TP. It is quite obvious that any element of
(7"'(A, R) can be naturally identified with an element of f^ ^ and vice versa.
This identification commutes with the coboundary operators, and therefore
establishes an isomorphism between Tr^A.IR) and H^^{Y,R) (cf. [WX]).

THEOREM 1.1. — If F is a Lie groupoid with Lie algebroid A —> FQ,
then

^(r.n^^A.n).
In particular, if (F =^ P, a, (3) is a symplectic groupoid, its Lie algebroid

is the cotangent bundle T*P —> P with anchor p : T*P —> TP being
the map naturally induced from the Poisson tensor. Therefore, C^A.IR)
is naturally isomorphic to r^/^ TP), and the Lie algebroid differential d
turns out [H] to be the Poisson differential [L] d^ for the multi-vector fields
over P. Hence, the Lie algebroid cohomology .^(r*?,^) is isomorphic to
the Poisson cohomology H^(P). Therefore by Theorem 1.1, we have

THEOREM 1.2. — Jfr ̂  P is a symplectic groupoid, then H^ ^(F, IR)
is isomorphic to the Poisson cohomology H^{P).

A Poisson manifold is called integrable, by Dazord [Dl], if it is the
unit space of a symplectic groupoid. For an integrable regular Poisson
manifold P whose symplectic foliation is a locally trivial fibration P -n-^ Q
as a different table fibration, we have a nice description for the cohomology
H^ ^(r, IR). To this end, we shall introduce a vector bundle E^ —> Q by the
following procedure. It is known that for each u C P, a~~^(u) is a principal
bundle over the symplectic leaf through u, with the structure group being
the isotropy group Iu of F at u [CDW]. We denote by H^a-1^)^) the
de Rham cohomology of J^-invariant forms on a~l(u). For any two points u
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and v in the same symplectic leaf L, there always exists a point z e F such
that a(z) = u and (3(z) = v. The left translation L^ : a^^v) —> a-^u)
induces an isomorphism :

L: : H^a-^u)^) -^ H^a-\v)^).

Moreover, L^ = L^ if ^ and z^ e F are two such points, since
H^ (a 1^), IR) is fixed by the isotropy group.

Since the symplectic foliation of P is a locally trivial fibration, F is
a-locally trivial. Let {U,} be an open cover of Q, such that the symplectic
fibration TT : P —> Q has a local section a over each Ui. For any U^
the a-fibration a-^e^)) -°-> a(Ui) induces a canonical vector bundle
SF —> €i(Ui) (^ £/,) with Hy^a-1^))^) as the fibre over each
point u e U,. If U, H ̂  ^ 0, the transition : Hy (a-^e^n))^) _>

^.(u)^^^"^6^^))^) is g^611 ̂  the canonical identification above. Thus
in this way, we obtain a canonical vector bundle S" —> Q, which is easily
seen to be independent of the choice of open covers {U^}. It is not difficult
to see that

^LO^^G00^^),

where C°°(Q, 271) is the space of smooth sections of the bundle 271. Hence,
we have the following :

COROLLARY 1.1. — If P is an integrable regular Poisson manifold in
which the symplectic fibration P —> Q is locally trivial as a differentiable
fibration, then H^(P) is isomorphic to the space of smooth sections of the
vector bundle 571.

Example 1.1. — If S is a symplectic manifold, its symplectic groupoid
S x S~ z=^ S is transitive and principal. Hence, (^(O.S71) ^ S71 ^
%(S',R) and Corollary 1.1 implies that H^(S) ̂  H^(S,R). This result
was first proved by Lichnerowicz [L], by introducing a direct isomorphism
between the two cochain complexes.

Remark. — In the preceding example, if one takes the fundamental
groupoid H(S) instead of the coarse groupoid 5' x 6'- as a symplectic
groupoid over S, the a-fibre is the universal covering space of S and
the isotropy group becomes the fundamental group of S. Hence, the
corresponding de Rham cohomology of invariant forms coincides with the
usual de Rham cohomology of S. So, one obtains the same result as before.
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More generally, if P = S x M, the direct product of a symplectic
manifold S and a zero Poisson manifold M, then a symplectic groupoid of
P is given by

S x S~ x T*M ̂  S x M.

Fixing any point SQ C 5, we have a global section {so} x M for the
symplectic fibration of P. Then the corresponding a-fibration over this
section is isomorphic to S x T*M -a-> M, where the isotropy group over
each m € M is isomorphic to T^M, and T^M acts on each a'^m) =
S x T^M by translations on the second factor T^M. Hence,

s^Q^^^^A™^
i=l

therefore,

H^(P) ̂  Q%^n) ̂ r°°(/\ TM).
1=1

Example 1.2. — Let P = S2 x IR"^, with ̂  the symplectic structure
on each leaf S'2 x {t}, where a; is the standard symplectic structure on
the unit sphere S2. First, we note that P may be viewed as so (3)* — {0}
with the linear Poisson structure. Hence, its symplectic groupoid is the
transformation groupoid

S2 x H-4- x 50(3) =^S2 x R+.

It can be easily seen that the a-fibre of this groupoid is 5'0(3), and the
isotropy group is the circle group S1. Since S1 is compact and connected,
the de Rham cohomology of invariant forms on any a-fibre coincides with
the de Rham cohomology of 50(3). Furthermore, since the symplectic
fibration is trivial with the base space IR"^, the vector bundle 572 is trivial
over IR4'. Hence,

:7n _ 0+ „ u-nx%(50(3),R);

therefore,

^(p)- c00 (R+,7%(50(3),R)).
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It follows immediately that

7^(P) ^ G00^4-, H) = 0°°^) (Casimirs),
H^(P) = 0 (Poisson vector fields/ Hamiltonian vector fields),
H^(P) = 0 (infinitesimal deformations of the Poisson structure),
H^(P) ̂  G00^4-, R) = C°°(R^) (obstructions to deformation

quantization), and
H^P)=0 ( A ; > 4 ) .

2. Symplectic groupoids of regular Poisson manifolds.

Given a Poisson manifold in which the characteristic foliation is a
trivial fibration TT : P = S x Q —> Q, the Poisson structure is described
by a smooth map from Q to Z2(S), the space of all closed two forms on S,
denoted by {^y\y 6 Q}.

According to Dazord [Dl], P is integrable if and only if the map
V 1—)> [^y] ^Tom Q ^° H2(S^H) is a submersion onto an affine subspace
of T^^IR) whose underlying vector space is generated by elements of
H2^,!). In other words, there exist [Ci], • • • , [Ck] e H2(S,I) and a
submersion (^i(^/), • • • ^ g k ( y ) ) '• Q —^ ̂ k such that

hJ-M+^zQ/)^].1=1

Symplectic groupoids over such Poisson manifolds have been investigated
by Dazord [Dl] [D2]. For completeness, in the following, we shall give an
explicit construction of the Symplectic groupoids directly. Let us first recall
that a RIL ("realisation isotrope de Libermann") is a complete symplectic
realization which is a surjective submersion with connected and isotropic
fibres [D2]. According to Dazord [Dl], in order to construct a symplectic
groupoid over the Poisson manifold P = S x Q, it suffices to find a RIL
for the Poisson manifold P * P~ = S x S~ x Q. To this end we need the
following :
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PROPOSITION 2.1. — Let P = S x Q be a Poisson manifold with
Poisson structure {^y\y G Q} such that

k

^y = ̂ o + ̂ 9i(y)Ci + dsOy,
1=1

where [C\ ] , • • ' , [C^] G 7:f2(Sf,Z) are linearly independent in H2^^),
{9\{y) i ' ' ' •> 92{y)) '• Q —> ^k ls a submersion, {Oy\y C Q} is a family
of one forms on S and ds is the exterior derivative with respect to S.
Let E -p-> S be a Tk -principal bundle with connection (0i, • • • ,^/c) and

( k \curvature (Ci, • • • , C^). Let F = E x r*Q/ ̂  Hdgi and
\ i=i )

/ k \ k / k \
^=p* ^o+^^(^/)Q +^*W)+^7r*(^(^))A^- ^A+^^A7z ,

\ 1=1 / i=i \ 1=1 7
/ k \

where 0y is considered as a one-form on P of type (1, 0), ( T*Q/ ̂  Rdgi j
\ z=i /

is the quotient space ofT*Q under the IR^ -action denned by :
/ k \

(ti,---,^)^^)- [y^+^t,dg,(y) , V(^Oer*Q,
\ 1=1 /

/ k \

TT : ( T*Q/\^Hdgi ) —> Q is the natural projection, (71, • • • , 7 ^ ) is a
\ i=i )

connection of this principal bundle, d\ is the standard symplectic 2-form
on T*Q and (f) = p x TT. Then (F, ̂ ) -^ P is a RIL.

/ k \
Here, ( dX + Y^ dgi A 7^ ) is considered as a two-form on the quotient

\ 1=1 7
/ k \

space T*0/ V^ Rdgi . This is justified by the following lemma.
V 2=1 7

k

LEMMA 2.1. — dX + ̂ ^ dgi A 7^ is the pull back of a two-form on
1=1

/ k \
the quotient space ( T*Q/Y^IRd^ ) , and therefore can be viewed as a

\ 2=1 7
k \

( k \
two-form on T*Q/ ̂  Hdgi .

\ i=i 7
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Proof. — By p, we denote the natural projection T*Q —> Q. Let
Xi, • • • , Xk be a family of vector fields on T*Q generating the Reaction
described above, and <f>[, • • • , ̂  their flows. Then,

^(y, 0 == (y, ̂  + tdgi(y)), for any (y, ̂ ) € T*Q.

For any given v e T(y^)(T*<3), it follows from the definition of A and the
relation p o <f>\ = p that

((^rw = \Wv)
=^+tdg,(y))(TpT^v)

=^+tdgi(y))(Tpv)

=X(v)+t(p*dgi)(v).

Then. (<^)*A = \+tp*dgi. Therefore, L^.A = p*(^. However, it is easy to
see that (^.A)(y,0 = $(TpX,) = 0 for all (y^) e r*Q. since TpX, = 0.
Thus ix.rfA = Lx,\ - dix,\ = p*dgi. Hence,

I k \
ix. \d\+^p*dg^^
\ J=i /

k k

= ix,d\ + ̂  ix, (p*dg_,) A ̂ ; - ̂  ̂ *rî  A ̂ ,7,
3=1 j=l

k k
= P*dgi + ̂  i(TpX,)(dgj) A ̂  - ̂  ̂ *rî - A ̂ .

j=i j-=i
=0.

k

Therefore, [dX + ̂  dp, A 7,^) is indeed the pull back of a certain two-form
1=1

k

on (r^Q/^Rdgi).
i=l

In fact, locally around any fixed point in Q, we may choose a coordi-
nate system U - ̂  x C^ with coordinates (y , , . . . , y,, ̂ ,... ̂ ,), such

/ fc \
that p,Q/) = y^ (z = 1,. . . , fc). Then, T*Q/ ̂  Rd^ ^ ffT x H^-^ with

V ^=1 /
coordinates (y^ . • . , yr.pk^i, • • ' ,pr), and the connection 7, can be taken
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k r

to be dpi. Hence, d\ + ^ , dgi A 7^ = ^1 dj^ A dyi^ which is obviously a
1=1 Z=/C+1

/ fc \
two-form on the quotient space ( T*Q/ ^^ IRc?^ ) . Q.E.D.

V 2=1 )

Sketch of proof of Proposition 2.1. — It is obvious that uj is a closed 2-
form. We shall use a local argument below to show that uj is non-degenerate.
Take U ̂  IR^ x IR7'"^ with coordinates (^/i, • • • , y ^ ^ y ^ i , • • • , ^/r) to be a local
system as in the proof of Lemma 2.1, and let V be any open submanifold of
S, such that E\^ is trivial and (7i, • • • , Ck are exact on V. We assume that
E\^> ^ V x T^ with coordinates (9, a;i, • • • , a;fc), such that 0^ = ai + cte^ and
d = dai with a^ € ^(V),^ = I , - - , A:). Then, r[vx^ is isomorphic to
V x T^ x R7' x ̂ "^ with coordinates (9, a;i, • • • , Xk.yi, • • • , ̂ Pfe+i, • • • ,Pr),
and under these coordinates

k k k r

uj = UJQ + ̂  ̂ ^i + c?(^) + ̂  ̂  A a^ + ̂  d^ A d^ + ̂  ̂  A dp^.
i=l i=l i=l i=k-\-l

k

By using the fact that c<;o + Y^ ̂ ^i + ̂ (^) is non-degenerate when being
1=1

restricted on each symplectic leaf y ^constant, one can easily show that uj
is non-degenerate.

r\

The tangent space of each ^-fibre is spanned by ——, (z = 1, • • • , k)
9xi

and ——, (2 = k + 1, • • • ,r), and therefore is obviously isotropic. For any
Qpi

function f{q^y) e 0°°^ x U)^ it is not difficult to see that

^9f 9 ^ 9f 9
( ) ^= /-lr^^-^^^'

where Xf is the Hamiltonian vector field of / on the Poisson submanifold
V x U C P. It is trivial to see that for all /, g € C'°°(V x U),

{^f,4>*g}=i^(X^f,X^g)
^(X/,Xg)

=^{f,g},
since Xf and Xg are always tangent to V x U. Therefore, 0 is a Poisson
morphism, or in other words, a symplectic realization.
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r\ r\

The coefficients in the front of —— and —— in Equation (1) depend
dxi opi

neither on the coordinates Xi nor on pi, so X^f is complete provided Xf
is complete. In other words, (p is a complete symplectic realization. Q.E.D.

An immediate consequence of Proposition 2.1 is the following theo-
rem, in which an explicit construction of a symplectic groupoid over the
Poisson manifold P = S x Q is described (see also [Dl] [D2]). We will
see in the next section that this construction plays a key role in our later
computations.

THEOREM. 2.1. — Suppose that the Poisson structure {ijjy} on P =
S x Q is given by

k

[^y}=[^}+^9z(y)[Ci]
i=l

as in Proposition 2.1. Let E -p-> S x S be a T1^-principal bundle with
/ k \

curvature (Ci, -d),. • • , (C^, -C^), F = E x T*Q/ ̂  Rdg, ) and F ̂
_ \ z=i 7

S x S x Q be the RIL of S x S~ x Q as constructed in Proposition 2.1;
then r —> P with a = OQ o 0 and f3 = /3o o <p is a symplectic groupoid
over P, where OQ and f3o : S x S~ x Q —> S x Q (= P) are given by
OQ = (pri,id) and f3o = (pr^id), respectively.

3. De Rham cohomology of torus bundles.

In order to find the Poisson cohomology for Poisson manifolds dis-
cussed in the last section, we need to compute the de Rham cohomology of
principal torus bundles. For circle bundles, the de Rham cohomology follows
easily from the Gysin sequence [BT]. However, for higher k, the spectral
sequence of a T^-principal bundle becomes very complicated, which makes
it difficult to find the de Rham cohomology directly by using the spectral
sequence. Here, instead, we compute the de Rham cohomology directly by
geometric methods.

Given a T^-principal bundle E -7L-> M, the relative cohomology [BT]
is defined as the cohomology of the complex d : ^(TI-) —> f^+^Tr),
where ^(Tr) = ^(M) C ^n-l(^) and d(^,0} = (^,7r*cc; - d0), for all
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u: C ^(M) and 0 C f^"1^). The short exact sequence

0 ——> ^n-l(£;) -^ ^(TT) -^ ̂ (M) ——. 0

yields a long exact sequence

——— ^n(TT) ̂  ̂ "(M) ̂  ̂ (^ ̂  ̂ ^(TT) ̂  JT+^M) ——— .

Hence, we have

LEMMA 3.1. — The following exact sequence holds for any n G N :

0 —, jr^M)/^ —> ^(E) —> L72 —^ 0,

where K71 = %*(^n(7^)) and L71 is the icerneJ ofz* : T^+^TT) —^ ^rn+l(M).
On the cochain level, z* is given by %*(cj, ̂ ) = uj.

Remark. — Since Tk is a compact group, both de Rham cohomology
and relative de Rham cohomology of the bundle E can be computed by
using the de Rham subcomplex consisting of all invariant differential forms.
In the rest of this section, we will work on this invariant subcomplex without
any further mention.

In order to compute ^(I^), it suffices to compute K71 and L71

according to Lemma 3.1. To this end, let us choose a connection on E given
by k invariant one-forms ai, • • • , Ok G ^(E) and denote the corresponding
curvature by 0:1, • • • , cj/c e f^(M). Given any (^, 0) e ^(Tr), we may always
assume that

k
0 = TT*(/) 4-y^ ^ 0^1 A a^ A • • • A a^ A 7r*0^...^,

r==l Kzi<i2---<ir<^

with ^i,...,^ € ^"^(M) and 0 <E Q^'^M). Since we are working
with relative cohomology, we can assume that (j) = 0. By an elementary
computation, we have

TT*^ - d0

( \ k
= TT* ( uj - ̂  a;, A (f)i j + ̂  ^ o^ A • • • A a^

\ i / r=li-i<---<ir

ATT* ((-l)r-l^,..•,^.+^(-l)t ^ ^A^,..^^^,..^) .
1=0 i-^<---<it<l<it+i<---<Zr
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e=^L ]C î A^A—Ac^ATr*^ . . .^
r==l Kzi<i2---<ir<A;

if and only if

(2) ^=^^/\^
i

and
(3)

W^-.^D-^ E ,̂,.,̂ ,,,=o,
*-0 zi<---<it<Kit+i<---<ir

for all r such that 1 < r < k. On the other hand, (^0) e Bn(7^) if and
only if uj = d^ and

k

6 = TT^ + ̂  ^ ^ A a,, A ... A a^ A TT*^,.,^
r=l l<ii<i2---<ir<A;

where 7, 0 e ^-^(M) and

,̂..,.=(-l)^-l ,̂.,,+E(-l)t ^ ^A ,̂,,,,,̂ ,,,
, *-o ii<---<^<^<^^i<...<^

for certain ^,...^ C ̂ -^^M).

K^0)] ̂ ^n ^ and only if (^) e Z^+^TT) and [̂  = 0. Let us
denote by L^ (M) the group consisting of all elements ©[<^,...,J C

^ H^^M), such that for all 1 ^ r < I - 1, there exists
Kii<---<il^k

^i,...,z, C f^-^M) satisfying Equation (3) and ̂ [^ A 0,] = 0. Then,

it is not difficult to see that

^ ^ ̂ (M) e • . . e L^^M) e... e Lr^W.
Similarly, we have
(4)

( k

^^[y^^^)^^) 4)iefln ^^ ̂  there exists ^,...,^ e ̂ -^(M) [
[ ^[ satisfying Equation (3) for all r, 1 < r < k. I
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For instance, we have by definition,

L^M) = { (9[0,] e ̂ ^(M) ^>,] A [0,] = ol ,
I i i=l i=l )

which can be easily seen to depend only on the cohomology classes [o^], (z =
1, • • • , k). Indeed, this fact is true for all such groups L^' (M).

LEMMA 3.2. — L^^M) and K71 depend only on the Chern class
([a;i],—,[a;fc]).

Proof. — We will prove this lemma only in the case that k = 2. The
general case follows from the same argument. By the remark above, the
lemma already holds for L^' (Af). So, it suffices to show this for L^' (M)
and Kn'. By definition,

( 3 <^i, <^2 C ^-^(M) such that
L^{M) = { [^1,2] € ^""(M) d(^i + ^2 A (^1,2 = 0, d^2 - ̂ i A ^1,2 = 0

and [uj\ A (^i + 0^2 A (^2] = 0

and

K^ = < [0:1 A 0i + cj2 A 02] 01,02 € Q.n~'2(M) s.t. d0i +^2 A 0i^2 = 0 and

d02 — 0:1 A 0i 2 = 0, for some 0i 2 ^ Zn~3(M).

Assume that uj[ = cji + d0\ and c<;2 = ^2 + ̂ 2 with 0i,02 ^ ^^^(M),
and suppose that (^1,^2 ^ ^1(M) satisfy d(f)\ + 0^2 A (^1^2 = 0 and
d(f>^ — ( j j \ A 0i^2 = 0. Set

^1 = ^1 — ^2 A 01,2

and

02 = ^2 + ^1 A 01,2;

then it can be checked directly that

d(f)[ + Cc;2 A 01,2 = d(f)\ + C<;2 A 01,2 = 0.

Similarly, d02 ~^[ A0i,2 = 0. However, by a straightforward computation,
we have

L^[ A0'i +0;2 A 02 = CJi A0i +C<;2 A02 + d(9\ A 01 +02 A 02 —01 A 02 A 01,2).

Hence,

[uj[ A 0'i + ̂  A 02J == [< î A 0i + Ci;2 A 02].
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So, L7^' (M) and Kn depend only on the cohomology classes ofc<;i and uj^.
Q.E.D.

We summarize the above results in the following :

THEOREM 3.1. — Suppose that E is a Tk-principal bundle over M
with the first Chern class ([c^i], • • • , [<^k]) ', then

^(E) ̂  L^'^M) e • • • © ̂ ^(M) e • • • © L^-^^M) e TT^M),
where ^(M) = ^(M)/^, Lm'k{M) (K71 resp.) is the subgroup of

Q) Hrn(M) (^(M) resp.) defined preceding Lemma 3.2 and
Kii<---<ii<k

Î '̂ M) is assumed to be 0 ifm< 0.

In particular, if E is a circle bundle with Chern class [c<;], i.e., when
k = 1, Theorem 3.1 implies that

^(E) ̂  L^~~^{M) C Hn{M)/Kn,

where

L^'\M) = { [<f>] € H^W | M A [4>] = 0}

and

^ = { M A [ct>] | [cf>} € H^^M) } .

This result coincides with the well-known Gysin sequence of circle bun-
dles [BT]. Although Theorem 3.1 gives an explicit formula for ^(E), the
subgroups ^m' (M) there are somehow elusive. Nevertheless for low di-
mensional cohomology, we can describe them more explicitly.

COROLLARY 3.1. — Assume that [c<;i], • • • , [cjk] are linearly indepen-
dent in H2(M, H ) ; then

1. L°^(M) = 0, for all k,r € N ;

2. H\E) ̂ H\M);

3. H^E) ̂  L^(M) © ^^2(M)/(span{[^]}) ;

4. moreover, ifHl(M) == 0 (for example, when M is simply connected),
H3{E) ^ L^(M) C ̂ (M), and H^(E) ^ ̂ (M) C L^(M) C

f k 1
H\M)/K\ where K^ = ̂  ̂ [^] A [^]| [^] € ^(M) V ; and

l z==l J
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5. if H^^M) is spanned by the wedge products of H^^M) with [c<^], (z =
k

1, • • • ,^), i.e, H^M) = ̂ (H^M) A {[a;,]}); then
i=l

L^(M) ={Aeso(k,H<2(M)) = so(k,R) (g) H2(M)\ AAo;=0} ,

where so(k, H2(M)) is the space of all kxk skew-symmetric matrices
with values in H2^) and uj = ([c^i], • • • , [cc^;])^

Proof. — (1) follows immediately from the definition of L^^M) and
the fact that [c<;i], • • • , [c^/c] are linearly independent in H2(M^ IR).

(2) Obviously, K1 = 0. Moreover L^(M) = 0 by (1), so

H\E) ̂  L^(M) © H\M)/K1 ̂  H\M).

(3) According to Equation (4), [0] e K2 C H2(M) if and only if
k

0 = V^ A (j)i for some ^,(% = l - - ' , k ) ^ such that d^z = 0. Thus,
i=l

k
^ = a, (z = l , - - - , ^ ) are constants and ^ = Vc^. Therefore, JC2 =

1=1
span{[^]} and

H2^) ̂  Ly{M) C L^'^M) C ̂ (M)/^2

= L^(M) C ̂ 2(M)/(span{[^]}).

(4) By Theorem 3.1,

H^^E) ̂  L^(M) C ̂ ^(M) C ̂ ^(M) © H^M)/^.

H^M) = 0 implies that L^(M) = 0. Moreover by (1), we have L^(M) =
0. We will show below that K3 = 0.

k

By definition, [0] C K3 if and only if 0 = Y ^ z A (^ for some
1=1

^i 5 • • • 5 ^fe ^ ^(M), so that the following equations hold for some (pij €
^ ° ( M ) , ( z , j = l , - - - , / c ) :

(5) c^- + ̂  ̂  A (f)ij - ̂  ̂  A (̂ , = 0
i<j j<i

(6) d^j = 0.
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Equation (6) implies that <^j = c^- are constants. Then, according to
Equation (5), we have

Y^Cij[uji}-^Cji[^i] =0
i<j j<i

for all j = 1, • • • , k. It follows from the linear independence of [c^i], • • • , [cjk]
that Cij = 0. Hence, Equation (5) reduces to d(f)j =0, (j = 1, • • • , k). Since
H^^M) == 0, (f)j must be exact; therefore 0 is exact. Hence, K3 = 0.

Similarly, we can show that H^(E) ̂  ̂ (M)^^)^4^)/^4

and K4 = [ ̂ [^] A [^]| [^] e H\M) \.
i=l

(5) By definition, {[<^,J} C (]) ^(M) belongs to L^(M) if
K^i<»2^A;

and only if for all 1 ̂  i < k, there is ̂  6 ^2(M) such that

^ + ̂  ̂  A ̂ ^ - ̂  ̂  A <^ = ° anci

Ki i<l

k

^[o;,A^] =0.
i=l

In fact, the second condition can be implied by the first one, as in
the following. Suppose that ^ € ^(M), (z = l . - ' - A * ) satisfy the

k
first condition; Y ^ z A ^ must be closed. Hence, one can find [^] e

i==i
A; A;

^(M), (z = 1, • • • k) such that Y^[^ A (f)i} = Y^[^z] A [^] by assumption.
1=1 i=i

Therefore, the above two conditions are satisfied if ̂  is replaced by <^ — ̂
for all 1 < i < k. This shows that {[^i,zj} € ^^(M) if and if it is a
solution of the equations :

]^H A [(t)^} - Y^[^i] A [<^] =0, i = 1, • • • k.
Ki i<l

That is,

L^(M) ={Ae5o(k,H2(M)) =so(k,H)(S)H2{M)\ A/\UJ=O}.

Q.E.D.


