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ON CAPACITAB1LITY AND MEASURAB1LITY
by Maurice SION (l) (Vancouver).

1. — INTRODUCTION

The definition of capacitability of a set as equality of its
inner and outer capacities bears an obvious resemblance to
the definition of measurability of a set as equality of its inner
and outer measures, which occurs in many developments of
measure theory in a topological space. From this point of
view, measurability is just capacitability when the capacity
is a measure.

In non-topological spaces as well as in many topological
situations such an approach to measure and measurability
is not at all suitable. There, a much more satisfactory point
of view is that of Caratheodory measure and the corresponding
notion of measurability (see definitions 3. 1 and 3. 2). In
this context, however, a measure need not be a capacity and,
even if it is, measurability and capacitability are unrelated.
Thus, in general, theorems about capacitability do not imply
corresponding theorems about measurability nor vice-versa.
In the case of analytic sets, this is rather frustrating, for the
arguments used in the proofs of the capacitability and measu-
rability of an analytic set for various classes of capacities
and measures are very similar (see [2, 4, 6, 8]). As a matter
of fact, similar arguments are also used to prove other proper-
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ties of analytic sets, e.g. that they are Lindelof (see [8]).
Is there a central notion that ties all these facts together?

An attempt to isolate such a notion was made by Choquet
in [4]. His definition of an abstract capacity goes a long way
toward including that of a Caratheodory measure. It does
not quite do it and, as he points out himself, his general
capacitability theorem does not yield all the results it should
even on capacitability, e.g. theorem 3. 2 in [8] does not follow
from it. Only the idea of the proof is applicable.

In this paper, we solve the problem by introducing the
notion of outer content (3. 7), and the more abstract ones
of outer family (5. 3) and capacitance (5. 5). First, in section 3,
we study the relation between measurability and capacitability
and delineate that portion of measure theory which can be
included in the theory of capacities. In section 4, we discuss
Newtonian capacity as a measure. For this measure, very
important sets are not measurable but are capacitable. The
definition is new, but it coincides with the standard one on
capacitable sets and should replace the inner capacity in
most problems where the latter is used. In section 5, we
abstract the notions of analytic set, outer measure and capa-
city and prove a central theorem (5. 4) which yields various
properties of analytic sets as special cases.

2. — NOTATION

2. 1 dmn f denotes the domain of /*.
2. 2 (o denotes the set of natural numbers.
2. 3 0 is both the empty set and the smallest element in (o.
2. 4 H is a a-field in X iff H is a family of subsets of X

closed under countable unions and complements with respect
to X.

2. 5 pi. is additive on H iff

^(U^ s ̂
\n^D / ne(o

whenever A^ e H and An n A^ = 0 for n, m e= G), n =/= m.
2. 6 A ~ B == { x : x e . A . and x ^ B } .
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3. — MEASURABILITY AND CAPACITABILITY

In measure theory there are two big streams of thought:
additivity and approximability. Caratheodory's approach to
measurability is concerned primarily with additivity proper-
ties of a function which is assumed to be only subadditive
to begin with. To be precise, let us introduce the following
definitions.

DEFINITION 3. 1. — (A is a measure on X iff (JL is a function
on the family of all subsets of X such that

(i) (JLO = 0
and

(ii) 0 ̂  (JiA ̂  S y^n whenever A c I J Bn c X.
ne(o n^o

DEFINITION 3. 2. — A is ^measurable iff A es dmny. and
for every T e dmny.,

YT = ;x(T n A) + f^(T - A).
Then, for any measure ^, the family of [x-measurable sets

forms a cr-field on which pi is additive. The idea of starting
with an additive function on a o--field avoids the problem
completely and is not really more general since one can,
and usually does, extend the function to an (outer) measure (A
such that the family of pL-measurable sets includes the original
cr-field. This measure possesses the property incorporated in
the following definition.

DEFINITION 3. 3. — (x is an outer measure on X iff ^ is a
measure on X and for every A c X there exists a ^-measurable
set B such that A c B and (xA == piB.

An essential property of outer measures that will concern
us later on is the following (see [6], p. 51).

THEOREM 3. 4. — If [A is an outer measure on X and
A^ c A^+i c X for n e (D then

^ fLJ An} = lim (XA"-
\n€(i) / »
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The other stream of thought in measure theory is concerned
with approximation from below, i.e. one picks a priori a family
F and considers those sets which satisfy the following defini-
tion.

DEFINITION 3. 5. — A is ((x, F) — capacitable iff A e dmn^
and

p-A = sup (xC
CCAcep

In practice, another family G is also chosen a priori and one
considers sets A for which

inf p.a = sup p.a
ACa aCA
aeG aeF

However, by defining

vA = inf aa
ACa
a€G

if ya = pia for aeF, the problem is reduced to one about
(v, F)-capacitability.

Comparison of definitions 3. 2 and 3. 5 shows that in
general measurability and capacitability are unrelated. Yet,
in measure theory the two streams of thought usually run
side by side and very frequently they are allowed to become
confused, e.g. measurability is defined as capacitability. This
occurs usually in topological spaces where F is taken to be
the family of closed or compact or compact ^§ sets.

One reason for not separating the two concepts is that the
families F considered in capacitability theorems consist
usually of measurable sets and the following elementary
result is well known.

THEOREM 3. 6. — For any measure [x, if F is a family of
^.-measurable sets, [JiA <; oo and A is (pi, F)-capacitable, then
A is [^-measurable.

Thus, it has seemed so far that in situations where one
has a measure, capacitability almost automatically implies
measurability. If one has capacitability but not measurability,
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then it is felt the function (x involved must not be a measure.
In section 4, we give an example, important in potential theory,
where we have a measure (JL and a family F such that non-
measurable sets are (pi, F)-capacitable. Thus, the feeling
that in measure theory the two concepts always go hand in
hand is not justified.

The separation of the two concepts becomes all the more
important if one wants to understand the relation between
measure theory and the theory of capacities. Only that part of
measure theory concerned with approximation from below
can be incorporated in the theory of capacities. Thus, only
when measurability is a consequence of capacitability can we
expect it to follow from some result in the theory of capacities.
This is precisely the case for analytic sets and explains why
the proofs of their measurability and capacitability are so
similar. That the results do not follow from one another is
due to the definition of capacity. In order to have the theory
of capacities applicable to measure theory, the definition of
a capacity should be broad enough to include as wide a class
of measures as possible. Choquet's treatment in [2], which
we followed in [8], is too restrictive and even his definition
of an abstract capacity in [4] is not broad enough, mainly
because it is tied to a family H chosen a priori. For this reason
we introduce the following definition, where such a tie-in is
omitted.

DEFINITION 3. 7. — pi is anouter content on X iff (JL is a function
on the family of all subsets of X such that if A^ c A^i c X for
n e co then

oo ̂  (xA^ pA^i ̂  lim p.A^ = p/lj A^;
n \n^o /

00.

Then, an outer measure is an outer content, but a measure
in general is not. This difficulty is frequently solved by passing
to an outer measure, as we do in the proof of 5. 10. An interes-
ting measure, which is an outer content but not an outer
measure, is discussed in the next section. We defer theorems
about outer contents until section 5 where the notion is
abstracted to that of a capacitance.
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4. — NEWTONIAN CAPACITY AS A MEASURE

In this section we shall consider an application of the
point of view of section 3 to classical potential theory. We
refer to any standard text, e.g. [1, 5], for background to the
subject. Although we restrict ourselves to the Newtonian
potential in Euclidean 3-space, workers in the field will
readily see the extension to more general situations. The
main point here is the definition of the capacity of any set
before inner and outer capacities. It is a measure for which
not all compact sets are measurable and, since it coincides
with inner capacity on all absolutely measurable sets (in par-
ticular analytic sets), we see that there are non-measurable
sets which are capacitable. The significance of this example
goes beyond this fact. It brings capacities back into measure
theory where we can apply known results rather than just
known techniques. Theorem 4. 5 and corollary 4. 6 are good
examples of this. Throughout this section, X is Euclidean
3-space.

DEFINITIONS 4. 1.
1. K is the family of all compact sets in X.
2. M' is the set of all Radon measures on X, i.e. measures

(A on X such that.
(i) open sets are [^-measurable,

(ii) if C is compact then (xC <; oo,
(iii) for any A c X and £ > 0 there exists an open A' such that

A c A' and piA' ̂  (J.A + e.

It then follows that
(iv) if A is [^.-measurable then piA == sup piC.

r* r" ACCA
C€K

3. A is absolutely measurable iff A is [^-measurable for
every (A e M\

J 4
4. For any y. e M', the potential V^{x) = -.———- dy. t.
5. M = |(A: (xeM' and U^ ij. ^ ~ (!
6. For any A c X,

(i) the capacity 0A === sup aA
l^CEM
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(ii) the outer capacity 0*A == inf 0B
ACB
B open

(iii) the inner capacity 0^A == sup 0C.
CCA
C€K

7. A 15 capacitable iff 0*A == 0^A.
8. For any T c X an^ a c X, ^(a) === p.(T n a),
9. MT= {^: P L < = M anrf p i ( X ~ T ) = O j .
The following theorems follow readily from the above

definitions and elementary measure theory.

THEOREM 4. 2. — 0 is a measure on X.

PROOF. — For any family F of measures, if

vA = sup H.A
K.GF

then v is a measure. Measurability, however, is not preserved
in general.

THEOREM 4. 3. — J/*A is absolutely measurable, 0A == sup [xA
^•€Mj^

PROOF. — Clearly, 0A^ sup ;JiA.
SISM^

On the other hand, if [x e M, since A is absolutely measurable,
(AA is also a Radon measure and (xA ̂  (A, so that a^ e MA.
But [^A(A) == (J(.A. Hence the desired result.

Theorem 4. 3 shows in particular that 0^ is the standard
inner capacity.

THEOREM 4. 4. — J/*A 15 absolutely measurable then 0A==0^A,
i.e. A is (0, K) -capacitable.

PROOF. — Since A is absolutely measurable, for any [x e M
we have

piA = sup p-C.
CCA
CCXL

Therefore
0A === sup sup [xC == sup 0C ==== 0^A.

|A6M CCA CCA
CGK ces.

THEOREM 4. 5. — J/' 0A, == 0 /or n e o> then 0 ^ [ J A^^ == 0.
\neo> y
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COROLLARY 4. 6. — If A^ 15 absolutely measurable and
0^ = 0 for n e co ^en 0,,^J A^ = 0.

\ neto /

THEOREM 4. 7. — 0 15 an outer content on X.
The next theorems depend more deeply on properties of the

potentials U^.. These properties are well known and we omit
their proofs since they are beyond the scope of this paper.
For them, we refer the reader to [1, 2, 5].

THEOREM 4. 8. — A is 0'mesurable iff 0A == 0 or
0(X — A) == 0.

PROOF. — We use the fact that for any compact a there
exists [A e Ma with px == 0a and that for any compact disjoint
a, P with 0a > 0 and 0(3 > 0 we have 0(a u (3) < 0a + 08.

Let A be 0-measurable. If 0^A > 0 and 0^X ~ A) > 0
then there exist compact a c A and [3 c X — A such that
0a >0 and 0? > 0 and

0(a u p) == 0((a u p) n A) + 0((a u p.) — A) = 0a + 0?,

which is impossible. Let 0^A ==0. For any compact C, let
P.^MC, (JLC == 0C. Then

aC = 0C = 0(C n Ay+ 0(C ~ A) >pi(C n A) +.^(C~A)^(JLC.

Since (x is an outer measure and (JiC < oo we conclude that
A is ^-measurable. If ^A > 0 there is a compact a c A with
aa > 0^ i.e. 0^A > 0. Hence .̂A = 0,

0C = [J.C == pi(C — A) ̂  0(C ~ A) ̂  0C,
" ' 0 (CnA)==0C—0(C~A)==0 .

Taking for C a sequence of compact spheres covering the
whole space, we conclude 0A = 0.

REMARK. — 4. 8 shows that 0 is not an outer measure even
though it is an outer content.

THEOREM 4. 9. — If A is compact then 0A = 0*A.

THEOREM 4. 10. — 0* is an outer content.
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THEOREM 4. 11. — If A is analytic then A is capacitable,
i.e. A is (0*, K)-capacitable.

Theorem 4. 11, which is due to Choquet [2], follows from 4. 9,
4. 10 and 5. 9 of the next section.

5. — ANALYTIC SETS AND ABSTRACT APPROXIMATION

Let us first introduce the classical notions so that we may
have them for ready reference.

DEFINITIONS 5. 1.
1. H^== |A: A=UB^ for some B ^ e H j .

'n€(o .

2. Hg= |A: A==(^|B, for some B ,eHj .

3. .H,s == (H,)s. "e<o, _
4. Borelian His the smallest family B such that H c B == Bg == Bg.
5. Soiislin H is (Ae family of all A sucA fAa(

A=Uf~^A(so, . .,^)

where S 15 (Ae 5et o/* sequences of natural numbers and
h(sQ, . . . y ^) eH forevery seS and n e co.

6* K(X) is the family of all closed compact sets in X.
7. A is analytic iff A 15 the continuous image of a set in

K<j§(X) for some X.
8. A 15 Lindelof in X i/̂  any op^n covering of A in X can be

reduced to a countable subcovering.
9. For any set valued function f and any set A,

f[A]= U 'fW- ' ": ; '
x €sA.ndmnf

It is well known that if A e Souslin K(X) then A is analytic.
The converse is known to hold only if X e Kcy(X) (see [3, 7]).
For this reason, results about Souslin K(X) sets are not as
strong as corresponding result^ for analytic sets. On the other
hand, the notion of a set in Souslin H holds for any family H
whereas that for an analytic set requires a topology. Thus,
in general, one notion does not include the other. We remedy
this situation by introducing a definition of abstract analytic
set which generalizes both of the above concepts.
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DEFINITION 5. 2. — A is (/', ¥)-analytic iff F 1*5 closed under
finite intersections and for i, / <= <o (Aer^ e^i5( d(i, /') e F such that:
(i) ̂  /)c<^ ,+1),

(ii) i/1 D == mj ,̂ /) ^n fis onD and A = /•[D].
»e(o je^

Clearly, any set is (/*, F)-analytic for some f and F. The
point of the above definition is that there exist f and F satis-
fying conditions imposed by the hypotheses of theorems below
so that analytic and Souslin sets are (/*, F)-analytic.

As we pointed out in the introduction, the arguments used
to prove various properties of analytic sets are very similar,
even when no numerical valued function such as a measure
or a capacity is involved. What do all these results have
in common? Essentially this : they all prove that if the ana-
lytic set has a certain property P then there exists a compact
set inside it which also has property P. Thus, they are all
concerned with approximation from below with respect
to a property P. We may well call it P-capacitability. We
isolate this notion in theorem 5. 4 and then derive from it
known results about Souslin and analytic sets. The conditions
to be imposed on P are stated in the following definition.

DEFINITION 5. 3. — P is an outer family iff, for every sequence
a, if a^ c a^4.i for n e (D and I_J a^ e P then a^ e P for some
n s (i). fte(o

We then have the following central result.

THEOREM 5. 4. — Let P be an outer family, A be {f, F)-
analyticy A e P. Then, for every n e co, there exists a^ e F such
that 0̂ 4.1 c a^, f[o^n] €= P a^d || a^ c dmnf.

n6fo

PROOF. — Let D === dmnf. Then

D=nu^1'/)
<€(0 y€(o

where d{i, j) c d{i, j + 1) e F for i, / e c o and == /A[D], By
recursion, we shall define a sequence s of natural numbers
so that for every n e co

(*) f \\ }d{i,^) eP.']•
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To this end, we note that since

[Jf[d{0, /)] = A e P
yEh)

there exists SQ e (D so that f[d{0, So)] e P. For any n e co, having
defined ^o? • • • 5 ^n to satisfy (*) above, let

n

Xn==|"|^, <?.}
i=0

an==f^|^,^).
i=0

Then, since

(J f[^ n d{n + 1, /•)]==/•[«„] eP
^€(0

we can choose s^^ e (Q so that

/•[^ n d{n + 1, ̂ i)] e P

i.e. (*) is satisfied with « n » replaced by « n + 1 »•
Since F is closed under finite intersections, we have

a,+ica,eF, /TaJeP and f^(a,cD.
n€u)

In order to get a similar result for Souslin sets, we need a stron-
ger condition on the family P. To this end we introduce the
following.

DEFINITION 5. 5. — P is a capacitance in X iff P is an
outer family of subsets of X such that if a e P and a c j3 c X
then peP .

We then have the following.

THEOREM 5. 6. — Let P be a capacitance in X, H a family
of subsets of X closed under finite unions and intersections^
A e P n Souslin H. Then, for every n e (D, there exists a, e H n P
such that a î c a^ an^Ha^cA.

n€rjL»

PROOF. — Let

S == i s: s is on (o to (o ^
S^ = 15 : s is on ^0, ..., n ̂  to <o ^
s'=l Is..
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For s e S, n e (i), let s/n be the restriction of s to ^ 0, .. ., n^.
Since A e Souslin H, we have

A=u^/l^7^)
A-€S n6co

where h(s') e H for every s ' <= S'. We shall define F and f so
that A is (/>, F)-analytic. For s, t e S u S', let s ^ t iff
dmn t c dmn s and ^ ̂  (; for every i e dmn (,

( = = = ^ : $ e S u S / and $ ^ ( j

F=(J^
(€S'

Then F is closed under finite intersections and if we let tor
i, / eo

d(iy j) = ^s : s e S u S' and s^ ̂  j for n == 0, . . . , z ^

we see that rf(i, /) c d(i, j' + 1) e F and

For s e S, let
s-nu^1'/)

i€(o yeco

/•(.)= n/^/n).
nGa)

Then A is (/", F)-analytic and by 5. 4, for every i e o), there
exists f eS ' such that P4-1 c ~t\ i.e. t^1 ^ t\ /'p1] e P and

n?<=s
t'eco

Let
pn == inf t\ for n e co.

16 CO

Then p e S, and for each n e co there exists i e (Q such thiait

M (po, ...,pJ=(^ ...,^).,
One easily checks (see [6], p. 49) that

^]=nuw1)-
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Let

^-nu^)
fc=o ^6p

so that a^i c a^ e H and ^ ^ == /"[p] c A.
Since, for every i e a), ne(u

^nu^/")'neio ^ej

in view of (*) above we conclude for every n e co there exists
i e <o so that f^t1] c a^. Since /*[?] <= P we have a^ e P.

Using the same arguments, theorems 5. 4 and 5. 6 can be
generalized as follows.

THEOREM 5. 7. — Let P be a relation such that for every a
and P, |P': (a, (3') e V\ and |a': (a', j3) e P| are outer families,
A &c (/*, ^-analytic and B 6e (g, G)-analytic. If (A, B) e P
(Aen, /or e^n/ n e co, (/iere e*ri5t a^ e F and pn e G 5uc/i </ia(:

an+l c an, Pn+l c Pn. 1^1^ c dw^ ("1 P" c rfmng and

n€(o nGa)

(/•M, §[?„]) - P,
THEOREM 5. 8. — Let P be a relation such that for every a

and 3, ^ [3 ' : (a, [3 ' )eP^ and |a':(a', ? ) e P ^ are capacitances
in X and! X' respectively \ H and H' &<° families of subsets of
X and X' respectively closed under finite unions and intersections;
A e Souslin H, B e Souslin H'.

It (A, B) e P then, for every neo, there exist a^eH,
[^eH' 5uc/i t/iat: a^ca,, ^+1 c^, (̂  a, c A, (^p,cB
and (a,, PJ e P. ^° ^ ^ "^

We conclude this section with a few applications of 5. 4,
5. 6 and 5. 8. Theorem 5. 9 is a rewording of a theorem in
[4], 5. 10 is a classical result (see [6]), 5. 11 combines two
results in [8]. The use of an outer content makes these results
applicable directly to measures as well as capacities. Theorem
5. 12 was proved in [8], and 5. 13 is a slight generalization of
a theorem in [7].

THEOREM 5. 9. — Let y. be an outer content on X, H a family
of subsets of X closed under finite unions and countable inter-
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sections and such that whenever 0^4.1 c a^ e H for n^^ we have

p. (^\ a^ = lim p.a ,̂
\ n€^ 7 n

and 0 e H. Jf A e= Souslin H t/ien A 15 (a, H)'capacitable,

PROOF. — If piA == — oo then pA === piO. Otherwise, let
a < (Jt.A and

P == |a : p.a > aj.

Then, by 5. 6, for n e co there exists a^ e H such that
a^i c a^, p.a^>a and I J o ^ c A. The conditions on H guarantee'*n+l v- ^-n? r'-n __
that re€a>

F|a^H and ^n^0-
n€(o \ n€o) /

THEOREM 5. 10. — Let a he a measure on X, H a family of
u^-measurable sets. If A e Souslin H (Aeyi A 15 ^-measurable.

PROOF. — For T c X , a c X let ^(a) == a(T n a) and
;4(a) = inf p.T(P)

aCjS
P is [jiT-nieasurable.

Then a is pi-measurable iff a is (Ji^-measurable for every T
with JJ.T < oo. Given such a T, let 0 == (x^. Then 0 is an outer
measure on X and the elements of H are 0 "measurable. Let
H' == Borelian H. Then A e Souslin H' and by 5. 9, for £ > 0
there exists a e H' such that a c A and

0(A — a) == 0A — 0a < e.
Since a is 0-measurable and £ is arbitrary, A is 0-measurable.

THEOREM 5. 11. — Suppose p. is an outer content on X and
for every a e K(X) and £ > 0 there exists an open v! such
that a c a' and pia' <; p.a + £- If A. is analytic in X then A is
(p., K(X))-capaci(aMe.

PROOF. — Let D e K<j§(X'), g be continuous on D and
A==g(D) . Let F==K(X' ) and, for x^D, f{x) = { g { x ) } .
Then A is (/, F)-analytic. Given a<p.A, let

P= |a:pLa>a{.
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Then, by 5. 4, for n e co there exists a^ e F such that-̂K c a^ F^M) > ̂ and n^c D-
neo)

Let ^n^
n€(o

Then (3 e K(X') and hence /•[P] e K(X). If a' is open and
/TP] c a' ^en for some n e co, /*[a,j c a'. Thus, [xa7 > a and
hence ^[P]) > a.

THEOREM 5. 12. — If A is analytic then A 1*5 Lindelof.

PROOF. — Let G be an open covering of A,
P = | a : a c A and no countable subfamily of G covers a ̂ .
Introducing f and F as in 5. 11 so that A is (/*, F)-analytic,

if A <= P then by 5. 4 there exist a^ e F such that

an+i c an, f[^n] €s P and f^ ̂  c dmn f.
nCEo.)

But, / T | | a n | is compact so that a finite subfamily of G
Ln€(o J

covers it and hence covers f[a'n] for some n e co. This contradic-
tion shows that A < P.

THEOREM 5. 13. — Let A and B be disjoint sets in Souslin
K(X). Then there exist disjoint sets A' and B' in Borelian K(X)
such that A c A' and B c B'.

PROOF. — Let
P == i (a, P) : a c X, P c X and there are no disjoint

sets a', (3' in Borelian K(X) such that
aca ' and ( S c p ' j .

Then P satisfies the conditions of theorem 5. 8 and if
(A, B) e P there exist a^, (^ in K(X) such that a^^ca^ ,pn+ic pn, na"c ̂  n ̂ c B and (a- ^)€s p-Let

n€co n€(i)

a'^n^ ?'=n?'>
nea) n6(o

Since a', ^ e K(X) and a' n ^ == 0, we have a, n ^ = 0,
for some n e a/, and therefore a,, n ?„ == 0 for some m s &),
hence (a^^, ?„+„)*?.



98 MAURICE SION

BIBLIOGRAPHY

[1] M. BRELOT, Elements de la theorie classique du potentiel, Centre de
documentation universitaire, Paris, 1959.

[2] G. CHOQUET, Theory of Capacities, Ann. Inst. Fourier, Grenoble, vol.
5 (1953-54), pp. 131-295.

[3] G. CHOQUET, Ensembles K-analytiques et K-Sousliniens, cas general
et cas metrique, Ann. Inst. Fourier, Grenoble, vol. 9 (1959), pp. 75-81.

[4] G. CHOQUET, Forme abstraite du theoreme de capacitabilite, Ann. Inst.
Fourier, Grenoble, vol. 9 (1959), pp. 83-89.

[5] 0. D. KELLOGG, Foundations of potential theory, Dover Publications,
New York, 1953.

[6] S. SAKS, Theory of the Integral, Stechert, New York, 1937.
[7] M. SION, On analytic sets in topological spaces, Trans. A.M.S., vol.

96 (1960), pp. 341-354.
[8] M. SION, Topological and measure theoretic properties of analytic sets,

Proc. A.M.S., vol. 11 (1960), pp. 769-777.


