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DEFORMATION OF POLAR METHODS

by D.B. MASSEY and D. SIERSMA

0. Introduction.

In [Ma2], [Ma3], and [Ma4], Massey defines and investigates a collec-
tion of analytic invariants which can be attached to a hypersurface singu-
larity, regardless of the dimension of the singular locus. These numbers are
the Le numbers and, in many ways, they appear to be a good generaliza-
tion of the Milnor number of an isolated singularity. The Le numbers are
defined and investigated in a manner that falls under the general heading
of "polar" methods.

Of course, from the topological point of view, it is the Betti numbers
of the Milnor fibre that are the interesting invariants. But only in a very
few special cases one can explicitly calculate these Betti numbers.

However, in the case that the hypersurface has a one-dimensional
singular locus, there are certain other analytic invariants which play an
important role in the study of singularities. These invariants are the
numbers of certain special types of singularities that occur in generic
deformations of the original hypersurface. In some cases, one can determine
from this information the Betti numbers, or even the homotopy type, of
the Milnor fibre.

Such deformation invariants are studied by de Jong [Jol], [Jo2],
Pellikaan [Pel], [Pe2], Siersma [Sil],[Si2],[Si3], and de Jong and van Straten

The first author was partially supported by NSF grants # DMS-9003498 and #DMS-
8807216.
Key words : Perverse sheaves - Characteristic cycle - Vanishing cycles - Polar varieties.
A.M.S. Classification : 32C42 - 32B30 - 32C40.
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[JoStI], [JoSt2], [JoSt3] in the context of deforming the defining equation of
the hypersurface, and are studied by Gaffney [Gal], Mond [Mol],[Mo2], and
Gaffney and Mond [GaMo], in the context of deforming parametrizations
of the original hypersurface.

In this paper, the authors show the connection between these two
approaches in the case of a one-dimensional critical locus. This connection
arises from the fact that the alternating sum of the Le numbers equals the
reduced Euler characteristic of the Milnor fibre [Ma2],[Ma3]. Specifically,
we derive a formula involving the Le numbers, the number of special points
in a deformation, and the Euler characteristic of the deformed singular set.
In order to state the theorem, we must first fix some terminology.

Let fs : (U,0) —> (C,0) be a family of analytic germs, where U is
an open subset of C7^1. Suppose that the dimension of the critical locus,
S/o? of the germ of /o at the origin equals 1 and that the deformation fs
is equi-transversal (see 1.10) - this last condition means essentially that
the generic tranverse Milnor number is constant in the family fs. In this
situation, we have

THEOREM (1.11 and 2.2). — For all e > 0 sufficiently small, if B^
is the closed ball of radius e around the origin in C71^1 and a is a small
complex number with 0 < |a| <€ e, then

bn(F) - bn-l{F) = ̂ 6n(Fp) + ̂  (&n(Fq) - ̂ -l(Fq))

P q

-E^(x(^)- E i),
k q € SS

where \ denotes the Euler characteristic, bi denotes the reduced Betti
number, F denotes the Milnor fibre of fo at the origin, Fx denotes the
Milnor fibre of fa — /a(x) at the point x, the p ' s are summed over all
p e Be H S/a which are not contained in V{fo) '.= fa1^) , the q's
are summed over those q in B^ H S/a which are contained in V(fa)
and at which fa has generic polar curve, the {S^ : k = 1,2,... } are the
irreducible components of the singular set, T,V{fa), ofV{fa) in B^, and u^
is the generic transverse Milnor number of S^.

While this formula seems to give a comparison of the two methods, in
the proofs we wish to contrast the two methods. Hence, we give two proofs
of the formula. In the first author's proof, we use the dynamic properties
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of intersection numbers coupled with some easy stratified Morse theory to
conclude the result. In the second author's proof, one uses the notion of
vanishing homology in a deformation, as developed in [Si2] and [Si3], to
derive a formula involving the Euler characteristic of the Milnor fibre of
the original hypersurface, the number of special points in a deformation,
and the Euler characteristic of the deformed singular set.

In section 3, we give a slightly improved version of the formula of
Le and lomdine [Le2], [Io2], together with the sharpest possible bound for
the validity of the formula. This formula enables one to calculate the Euler
characteristic of the Milnor fibre of a one-dimensional singularity in terms
of the multiplicity of the Jacobian scheme and the Milnor number of an
associated isolated singularity.

In section 4, we give some important special cases and some non-
trivial examples. The examples in section 4 include the transverse A\
case, line singularities, plane curve singularities, homogeneous and quasi-
homogeneous singularities, and composed singularities.

In the final remarks, we discuss - among other things - how to
effectively calculate these invariants with the aid of a computer.

The first author would like to thank The University of Utrecht for
their hospitality - this paper is the result of a week long visit there in
February 1990. Also, the first author must thank T. Gaffney for a series of
very helpful conversations.

1. Le numbers and deformations.

In this section, we shall define and investigate a collection of analytic
cycles - the Le cycles - which live in the critical set of a analytic map
h : (C77'4'1,0) —> (C, 0). Our intention is to generalize the information given
by the Milnor number in the case of an isolated singularity. In [Ma2] , we
defined the Le varieties as schemes. However, it appears that only their
structure as cycles is important, and this structure is much easier to define
and calculate.

Throughout this section, we let h: (C^^O) -^ (C,0) be an analytic
map and z be a linear choice of coordinate systems for C^1.

We shall be considering schemes, cycles, and sets; for clarification of
what structure we are considering, we shall at times enclose cycles in square
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brackets, [ ] , and analytic sets in a pair of vertical lines, ||. Occasionally,
when the notation becomes cumbersome, we shall simply state explicitly
whether we are considering V as a scheme, a cycle, or a set.

By the intersection of a collection of closed subschemes, we mean the
scheme denned by the sum of the underlying ideal sheaves. By the union of
a finite collection of closed subschemes, we mean the scheme defined by the
intersection (not the product) of the underlying ideal sheaves. We say that
two subschemes, V and W , are equal up to embedded component provided
that, in each stalk, the isolated components of the defining ideals (those
corresponding to minimal primes) are equal. Our main concern with this
last notion is that it implies that the cycles [V] and [W] are equal. We say
that two cycles are equal at a point, p , provided that the portions of each
cycle which pass through p are equal.

We will use the notation of [Ma2]. Let W be a scheme and let a be
an ideal in A. We wish to consider scheme-theoretically those components
of V(a) which are not contained in \W\.

Let S be the multiplicatively closed set A—|jp where the union is over
all prime ideals p <E Ass(A/a) with \V{p)\ ^ \W\. Then, we define a/W
to equal S~la^\ A. Thus, a/W is the ideal consisting of the intersection
of those primary components, q , (possibly embedded) , of a such that
\V{q)\ ^ \W\. If V = V{a), we let V/W denote the scheme V(a/W).

It is important to note that the scheme V/W does not depend on the
structure of W as a scheme, but only as an analytic set. This definition
coincides with that of a gap-sheaf - a notion which is normally encountered
in the analytic context [SiTr]. The gap sheaf notation for V/W is y[TV].
We shall not use this notation here. In the analytic situation, one does the
primary decomposition above on the level of stalks, and must then show
that the construction above yields a coherent sheaf.

DEFINITION 1.1. — For 0 ^ k ^ TZ, the k-th (relative) polar variety,

r^, of / i with respect to z is the scheme V { ——,.... —— ] / E/i (see
^Ozk Qzn) /

[Ma2] , [Ma3]). If the choice of the coordinate system is clear, we will
sometimes simply write F^.
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Thus, on the level of defining ideals, F^ ^ consists of those components
of

/^ 9h\
" \ r\ 5 • • • 5 n |\^/, a^y

which are not contained in |S/z|. Note, in particular, that F^ ^ is empty and,
/ Qh 9h\

at a point p where dinipS/^ < A;, we must have F^ = V \ — — , . . . , —— ) .
\^9zk 9znj

We naturally refer to the cycle F^ as the k-th polar cycle of h
with respect to z.

The key point of this definition is that the dimension of the singular
set of h is allowed to be arbitrary.

Our ideal structure is somewhat non-standard, as we allow for embed-
ded subvarieties. Also, it is important to note that we index by the generic
dimension instead of the codimension.

Clearly, as sets, 0 = F^ C F^ C ... C r^1 = C^. In fact,
by 0.1. i) of [Ma2] , we have that :

PROPOSITION 1.2. — (r^1 H V [-^-^ /S/i = r^ as schemes,

and thus the cycle F^1 H V ( -^— ) — F^ J has only components which
[_ ' \OZk ) \ L ' -I

are contained in the critical set of the map h.

oh oh
As the ideal ( — — , . . . , ——) is invariant under any linear change of

OZk 9Zn

coordinates which leaves V(zo,..., Zk-i) invariant, we see that the scheme
r^ ^ depends only on h and the choice of the first k coordinates. At times,
it will be convenient to subscript the A;-th polar variety with only the first
k coordinates instead of the whole coordinate system.

While it is immediate from the number of defining equations that
every component of the analytic set 1̂  ^ has dimension ^ A;, one
usually requires that the coordinate system be suitably generic so that
dimple ^ = k at some point, p. When this is the case, we have :

PROPOSITION 1.3. — If dimple = k, then F^ has no embedded
subvarieties through p.
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Proof. — This follows from 1.3 of [Ma2]. D

DEFINITION 1.4. - If the intersection of r^ ^ and

V(zo -po,...,Zk-i -pk-i)

is zero-dimensional, or empty, at a point p, then we say that the k-th polar
number, 7^z(p)? ls denned and we set 7^z(p) equal to the intersection
number

(r^- V{zQ-pQ,...,Zk-l -J?fc-l))p.

Thus, if 7^z(p) is defined, then F^ must be purely ^-dimensional,
or empty, at p and so - by 1.3 - r^ has no embedded components at p.

We now wish to define the Le cycles. Unlike the polar varieties and
cycles, the Le cycles are supported on the critical set of h itself. These
cycles demonstrate a number of properties which generalize the data given
by the Milnor number for an isolated singularity.

DEFINITION 1.5. — For 0 ^ k ^ n, we define the k-th Le cycle ofh
with respect to z, A^J , to be

^••^S PI,]
If the choice of coordinate system is clear, we will sometimes simply

write [A^]. Also, as we have given the Le cycles no structure as schemes,
we will sometimes omit the brackets and write A^ ^ to denote the Le cycle
- unless we explicitly state that we are considering it as a set only.

Note that as every component of F^1 has dimension ^ k +1, that

every component of A^ ^ has dimension ^ k. We say that the cycle, A^ ,

or the set, A^ ^ , has correct dimension at a point p provided that A^ ^
is purely /^-dimensional, or empty, at p.

We define the k-th Le number ofhatp with respect to z ,A^(p),

to equal the intersection number (A^ • V{zo — p o ^ . . . ,2^-1 — pk-i)} ?V ' / p
provided this intersection is zero-dimensional, or empty, at p. If this
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intersection has dimension ^ 1 at p, then we say that the A;-th Le number
(of h at p with respect to z ) is undefined. Here, when k = 0, we mean that

W«..c-)^ rl,.nvg)]̂ ,.]. vg)^

(this last equality holds whenever A^z(p) is denned, for then F^ has
embedded components by 1.3).

Note that if A^ ^(p) is denned, then A^ ^ must have correct dimen-

sion at p. Also note that, since r^1 and F^ ^ depend only on the choice

of the coordinates ZQ through ^, the A*-th Le cycle, \A^ J, depends only
on the choice of (zo? • • • i ^ k ) '

PROPOSITION 1.6. — The Le cycles are all non-negative and are
contained in the critical set ofh. Every component of A^ ^ has dimension
at least k. If s = dinipS/i then, for all k with s < k < n - ^ - l , p i s not
contained in A^ ^ , i.e. A^ ^ is empty at p.

Proof. — The first statement follows from 1.2. The second statement
follows from the definition of the Le cycles and the fact that every
component of F^1 has dimension at least k + 1. The third statement
follows from the first two. D

Remark 1.7. — As we demonstrated in example 1.7 of [Ma2] , in the
case of an isolated singularity, A^ ^ is nothing other the Milnor number.

In the general case, it is tempting to think of A^(p) as the local
(generic) degree of the Jacobian map of h at p, i.e. the number of points
in

oh oh '
Be n v [ ^—— - ^0, • . • , 7—— - ̂ n9zo OZr,

o
where Be is a small open ball centered at p and a is a generic point with
length that is small compared to e\ unfortunately, there is no such local
degree.
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Consider the example h = zj + {zo - z^)2 and let p be the origin.
Then,

_ _ ( 9 h 9h 9h \
BE n v \^~ ~ a0' ~^~ ~a^ ^~ ~ a ^ }y9zo 9z^ 9z^ j

= Be n V(2{zo - zi) - ao, 2(^o-^)(-2^i)-ai, 2^2-02).

The solutions to these equations are
2O'Q QI ai a2

zo=^+^ 2 1 =-2ao' ^T

The number of solutions of these equations inside any small ball does not
just depend on picking small, generic ao,ai, and 02, but also depends on
the relative sizes of ao and ai. If a\ is small relative to OQ, then there will
be one solution inside the ball; if ao is small relative to ai, then there will
be no solutions inside the ball.

Do either of these numbers actually agree with A^(0)? Yes, with
these coordinates, A^(0) = 1. This can be seen from the above calculations
together with the discussion below, which shows how "close" A^ ^ is to being
the generic degree of the Jacobian map of h.

We claim that, if dimple = 1, then A^z(p) exists and equals the
number of points in

, ( 9h 9h \
B£n v { ^ - - a ^ " ^ ^ - a n ] ^^9zo 9zn j

o
where Be is a small open ball centered at p, ao ^ 0 is small compared to
e, and a i , . . . , an are generic, with length that is small compared to that of
do.

To see this, note that this number of points equals the sum of the
intersection numbers given by

^( ( 9 h 9h\ 9h \
^^^•••^J-^-^-i \ \ / Q

where the sum is over all q in

_ , / 9 h 9h 9h\
B£n v[^~~a^ TT"5"-^ •\ 9zo <9zi 9zn ]
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But, for CLQ ^ 0, these points, q , do not occur on the critical locus
of /i, and so this sum equals

E f^z • ^
q \ -<-'

/ qq

This last sum is none other than

^-(^'vi^}} .v \^°y7p
It is also possible to give a more intuitive characterization of A^ ^(p)

where s = dinipE/i. Namely, (see Prop. 2.8 of [Ma2])

^,z(P) =^1W^
y

where v runs over all 5-dimensional components of S/i at p, n^ is the
local degree of the map (^o, . . . , Zg-i) restricted to v at p, and ̂  denotes
the generic transverse Milnor number of h along the component v in a
neighborhood of p. In particular, if the coordinate system is generic enough
so that ny is actually the multiplicity of v at p for all v, then A^(p) is
merely the multiplicity of the Jacobian scheme of h at p.

For the remainder of the paper, we shall restrict our attention to the
case where dimoE/i = 1. In this case, there are only two (possibly) non-
vanishing Le numbers :

A,,z(p) = IM • V
9h_
9zQ

and

^(p) =Y^n^'
Correspondingly, there are only two (possibly) non-vanishing reduced Betti
numbers of the Milnor fibre, Fp, of h at p; namely, bn(Fp) and bn-i{Fp)
(see [KM]).

In [Ma2],Thm. 2.15, we give a formula for the Euler characteristic of
the Milnor fibre in terms of the Le numbers under the hypothesis that the
coordinate system is polar. In [Ma3], the dominate generic requirement on
the coordinate system is that it be pre-polar - a strictly weaker requirement
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than being polar. However, one has only to go through the proof of 2.15 of
[Ma2] to see that all that is used is that the coordinates are prepolar. In
the case of a one-dimensional singularity, the result is easy to state :

PROPOSITION 1.8. — Suppose that h : (C^^O) -^ (C,0) is an
analytic map and that z is a linear choice of coordinates for C71"1'1 such
that, at some point p , we have dinipS(/i[ _ ) = 0. Then, A^(p) and
A^ ^ (p) are denned and

AUP^UP) = Wp)-w^p),
where bi{Fp) denotes the i-th reduced Betti number of the Milnor fibre of
h at p.

We may use this proposition to calculate A^(p) even when the
coordinate system has been chosen in a very non-generic way.

COROLLARY 1.9. — Suppose that h : (C71"^1,0) —> (C, 0) is an analytic
map and that z is a linear choice of coordinates for C7^1 such that, at some
point p , dinipS/^ = 1 and dimpS(/i| _p ) = 0. In addition, suppose for
a generic choice of coordinates that h has no polar curve at p. Then, S/i is
itself smooth at p and

AUP) = ^(degp(^o|,J-l),

where fl denotes the generic transverse Milnor number ofh near p (see 1.7)
and degp(^oj^) is the local degree of the map ZQ restricted to S/i at p.

Proof. — That E/i is smooth at p follows from Le's non-splitting result
[Le3]. Using [Le3] again together with the result of [Lei], we also have that
^(Fp) = 0 and &n-i(Fp) = ̂ . By remark 1.7, A^(p) = ̂  (degp(^J).
The formula now follows from 1.8. D

We now wish to study deformations of one-dimensional singular-
ities. For the remainder of this section, we will let fs : C71"^1 —> C de-
note a family of analytic maps in the coordinates (2^0 , . . . ,^n) such that
dimoS/o = 1 and dimoS (/GI^)) = 0. Let f(z,s) = /s(z).

PROPOSITION/DEFINITION 1.10. — The following are equivalent :

i) For all p C S/o — 0 near 0, /| _p has a smooth critical locus
near p and the family fs\y^ _ is /^-constant (i.e. has constant Milnor
number) at p;
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ii) for all components v of S/o through 0, there exists a unique
component v ' of S/ containing v and, moreover, ̂  == /^,.

iii) for all e > 0 sufficiently small, there exist r , rj > 0 such that

9B, x Or H ^- l((D^-0)x Dr)

^ ^-(/^)

(D^ - 0) x Dr

is a proper, stratified submersion.

We call such a deformation of /o an equi-transversal deformation at
the origin.

Proof. — i) and ii) are both equivalent to :

f) for all p € S/o - 0 near 0, S/ is smooth at (0, p) and

^U\V(s-a,ZQ-qo))

is independent of the point (a,q) C S/ near (0,p).

The proof that these three conditions are equivalent is essentially the
argument for the /^-lemma (4.2) of [Mal]. The point is that as a function
of(a,q),

^U\V(s-a,zo-qQ))

is upper semi-continuous and so has a generic value on each component of
the singular set; namely, /^/. All three conditions are equivalent to saying
that /^/ equals the Milnor number of /Q|^ ^ _ at (0,p).

By Proposition 4.1 of [Mal] (or by a double application of Theorem
4.5 of [Ma4]), we see that this implies

ft) for all p € S/o — 0 near 0, S/ is smooth at (0,p) and, if (^,p^)
is a sequence points not in S/ such that T^s^p^V(f — /(^,p^)) converges
to some hyperplane T, then r(o,p)S/ C T. (In the terminology of [Ma3],
this says that V{s) is a pre-polar slice for / at the origin.)

Moreover, ft) certainly implies f), for if ^{f\v(s-a z -q ) ) were not

constant near (0,p), then a generic hyperplane slice through (0,p) would
have polar curve at (0, p) - and this would give a contradiction to ft)-
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Thus, our problem now is to show that f f ) is equivalent to iii).

That ft) implies hi) is the argument of Le in Proposition 2.1 of [Lei]
(or, in a more general setting, is Proposition 2.4.1 of [Ma3].)

To complete the argument, we shall now show that iii) implies i).

Let Bs be a Milnor ball for /o at the origin (i.e. all spheres contained in
Be centered at the origin transversely intersect all the strata of a Whitney
stratification of V(/o)), and let p € 9B^ D S/o. For a particular linear
form, L , we will show that the Milnor number in the family fs\
is constant near (0, p); i) and ii) follow, since they are independent of the
linear form, L , so long as / s | y ^ ^ / o ls a family of isolated singularities.

The linear form, L , that we select is L(v) = (v,(0,p)), where ( , )
denotes the complex inner-product. We choose this linear form because
ker(L) is contained in T(o,p) (C x 9Bs).

Now, suppose that iii) is true, but that ^ f / s | ^ ^ ^ ) is not con-
stant. Then, f\y^-L(o,p)) possesses polar curve with respect to the linear
map 5. This polar curve has dimension 2 over the reals and so its intersec-
tion with C x 9Be is real one-dimensional. This real curve passes through
(0, p) and at each point, q , on this curve, we have that

W/ - /(q), L - L(0, p)) = T^V(s - ̂ (q), L - L(0, p))

whence,

W/ - /(q), s - 5(q)) = T^V(s - ̂ (q), L - L(0, p))

C Tqy(5-5(q))H Tq(Cx QB,).

This contradicts iii). D

Note that for an equi-transversal deformation, one must have that

s/ny(5)=s(/o)
as germs of sets at the origin (though this is certainly not sufficient).

We can now state the main theorem in terms of Le numbers - the
translation to Betti numbers is immediate.

THEOREM 1.11. — Suppose that dimoS (/o| ) = 0 and suppose
that fs is an equi-transversal deformation of fo at the origin. If Be is a
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sufficiently small closed ball around the origin in C7^1 and a is a small
complex number with 0 < |a| <€ e, then,

A°/o(0) - A}o(0) = E^-^P) + E (^(q) - ̂ .(q))J a — J a V

P q

-E&(x(^)- E i),
fc q G SS

where the p 's are summed over all p C £?e D S/o, which are not contained in
V(fa), the q's are summed over those q € Bg D E/a which are contained
in V{fo) and at which fa has generic polar curve, the {S^ : k = 1,2, . . . }
are the irreducible components of T^V(fa) in Be, and ^ is the generic
transverse Milnor number of S^.

Proof. — We use the coordinate system (s, ZQ, ... , Zn) for /.

We will first show that

(*) A^(o)=(r ) . y(.))o+(A}. v(s))^
for then - by the dynamic properties of intersection numbers - we can
conclude that

^/o^E^- y(•s-a))p+E(A}• ̂ -^^(A)- y(s-a)).
p q r

where the p's and q's are as in the statement of the theorem, and the r's
are summed over all points r € B^ H S/o, which are contained in V{fa)
and at which fa has no generic polar curve.

From this, one concludes - from a local application of (*) or see [Ma2]
- that

(**) ^o(o)= E^(P)(P) + E^q) + E^)-\°,
J a — J a V

P q r

and we will replace the r-term to derive the theorem. First though, we
show (*).

By definition,

^J^.vf^}} Jy^9L,...SL^.v(9f-\\
\ v^'^/o v szl 9zn ^li,
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As fs is equi-transversal, S/ H V{s) = S (/o), and so we may use O.l.i of
[Ma2] to conclude that

v{s-^-m)^fo=^n^2f)^
(see also 5.18 of [Ma3]). Hence, we would like to show'that

{v(s) n r2) /s/ = v{s) n r^ = v{s). r2

as cycles - for then we would have

^'((^•^•"(S)),
= v(.). r2,. y

=(v(.). (r}+A})),
from which (*) follows. Thus, to prove (*), it remains for us to show that

(y(s) n r^) /s/ = v(s) n Y}

as cycles. This is where having an equi-transversal deformation is used
strongly.

We must show that

(y{s) n r^) /s/ = v(s) n r^

up to embedded subvariety - that is, we must show that V(s) D r2

has no (isolated) components contained in S/. But, if V{s) H F2 had
a component contained in S/, then fs^ _^ would have polar curve
(see 7.5 of [Ma3]) and, hence, would not have constant Milnor number; a
contradiction of condition i) for an equi-transversal deformation. Therefore,
we have shown (*), from which (**) follows.

We have finished now with the intersection theoretic portion of the
proof. The remainder consists of replacing the term

E^r)
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in (**) with some more topological information. Using 1.9 together with
condition ii) for an equi-transversal deformation, we find that

(+) IX (^E^ E (^r(^)-l),
r k r € ES

where each r is counted only once since ^.V(fa) is itself smooth at the r's,
as there is no generic polar curve at these points.

We now use some stratified Morse theory [GoMac] to rewrite

E (^(^J-l).
r e s s

For b small ^ 0, we consider the real valued function ^ = Re(2:o + b)
on E^, and analyze what happens as the value of ^ increases. By the equi-
transversal condition, for ^ ^ 0, our space has the homotopy type of

^dego(2;o|J
v

points, where the sum is over all components, v , of EY(/o) which are
contained in the unique component v ' of EV(/) such that

E^ = B, H V{s - a) H v'.

The critical points of '0 occur precisely at the points q and r which
are contained in E^. Moreover, as we pass through each of these critical
points, we attach (on the level of homology) deg (zo\ ^ — l) one-cells
(this is because, locally, one starts with something which is homotopic to
deg [^o|^fc ) points and end up with something that is contractible). Thus,
we arrive at the following equality of Hurewicz type

X^ka)=^deg^)- ^ (degq(^)-l)
v q e ss

- ^ (deg,(^)-l)
r C ES

and, by combining this with f), we obtain

/ ^
(+t) E^-E^ E^o^oiJ-E (deg^o,,J-l)-x(^)

r k \ v q e SS a ^
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But, by definition of A1 and using that /^ = fly i we have

^oW =^&]Cdego(^o|J,
k r

and

^^(^S^ S ^q^OI^)-
q fc g e ES

Combining these two formulas with f f ) and (**) yields the theorem. D

COROLLARY 1.12. - Suppose that dimoS (fo\v^ ) ) = ̂  an(^ ^PP086

that fs is an equi-transversal deformation of fo at the origin. Further,
suppose that the value of ^ is independent of the component v of E/o
through the origin - denote this common value by ^. Then, in the notation
of the theorem, we have

^o(O) - A^(0) = E^-/.(P)(P) + E ( /̂.(q) - W + ̂ )
P q

-^ . x(^n SY(/J).

Proof. — A quick Euler characteristic calculation (using, say, a
simplicial decomposition in which all q's are vertices) gives

x(B,n Ey(/ j)-^i=^(x(^)- ^ i ) .
q k \ qe ES /

Combining this with the theorem yields the result. D

2. Vanishing homology and the main theorem.

In this section, we will re-prove the main theorem as stated in theorem
1.11, but now - instead of polar methods - we shall use purely topological
methods.

As in section 1, we let /o : (C^^O) —> (C,0) be a germ of a
holomorphic function such that dimoS(/o) = 1- Choose a representative
fo:X—> D satisfying the conditions of the Milnor fibration. More pre-
cisely, D = Dyy and X = /(^(D^) n ^e ^or r] ana e small enough, ./(^(O)
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transversely intersects OBe as a stratified set, and /o"1^) transversely inter-
sects 9B^ for 0 < \t\ ^ T}. The Milnor construction implies that fo:X—> D
is a locally trivial fibre bundle over D* == D — {0}.

We next consider a holomorphic deformation of /o :

f : X x S^ D

where S = Bp C C7' (mostly we shall take r = 1 ) and we require
f{x, 0)=fo(x). We define F : X x S -^ D x S by F(x,s) = {f(x,s),s).

Recall the equivalent characterizations of an equi-transversal defor-
mation as given in 1.10.

LEMMA 2.1. — Let f be an equi-transversal deformation of fo. Let
SF be the critical locus of F : X x S -» D x S and let A(F) be the
image F(SF).

Then,

F^ x.W.)) : F-l (D x ̂ W) - ° X WF)

is a locally trivial fibration.

Proof. — By l.lO.iii, F is a proper stratified submersion on 9Be. Thus,
it suffices to show that F is submersion at all interior points. However, this
is the case, as we have explicitly removed the interior critical points. D

We will also need :

LEMMA 2.2. — Let f be an equi-transversal deformation of fo. Then,
for all a sufficiently small,

i) /^(Dy,) H Bs is homeomorphic to /o'^D^) H Be and is therefore
contractible,

ii) ./a"1^) transversely intersects OB^ (in a stratified sense) for all
small ^.

Proof. — i) : We will show that

B, x C H f-\D^

I s
C
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is a proper, stratified submersion for all s small.

Certainly, in a neighborhood of the origin, we may Whitney stratify
/-W by f-1^) and f-1^).

That s is a stratified submersion on Bg x C D /^(Dn) requires
nothing.

o
That s is a submersion on Be x C D /^(cX)^) follows from the

fact that the intersection of the polar curve, F^ , with Be x 0 is just {0}.

Finally, that s is a submersion on 9Be x C H /^((XJU follows
from condition iii) of being equi-transversal.

This proofs i).

ii) Except where / = 0, this follows from condition iii) for being equi-
transversal. We will now show that it is also true along V(/).

Equi-transversality implies that V(s) transversely intersects V(f)
~ s^(/) in a neighborhood of the origin and that QB^ x 0 transversely
intersects SY(/), where ^V(f) is smooth along this intersection by equi-
transversality.

Using nothing, it follows then that QB^ x {s} transversely intersects
SV(/) for all s small.

We would like to see that V(fso) - SV(/so) transversely intersects
9Bs x {so} for all SQ small.

Now, 9B^ x {so} misses F^ for SQ small. Hence, along the
intersection in which we are interested, V(s - so) transversely intersects
V(f) - ̂ V(f) and

y(/,j - sv(/,j = v(s - so) n (v(f) - sv(/)).

Thus, what we want to show is that

9B, x C n {V(f) - SV(/))

i s

C

is a submersion for all s small.
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Suppose not. We would have a sequence of points

(Pz^i)^ (q,0) € 9B, x 0,

where p, e <9B,,/(p,,^) = 0, T^^V(f) -^ T, and

(*) ^p^)^/)0 (C^x 0)C rp,9B, x 0.

If (q, 0) is a smooth point of V(f), then T = T(q^o)^(/) and (*) would
imply that TqV(/o) c Tq<9£^. However, we could have initially chosen Be
so as to make this impossible.

If (q,0) C SY(/), then by ft of 1.10, T^o^V(f) C T. Hence, as
9Be x 0 transversely intersects EV(/), we are finished. D

We now give our second proof of the main theorem.

THEOREM 2.3. — Let B^ be a sufficiently small closed ball around the
origin in C71"1'1 and let a be a small value of the deformation parameter.
Then,

bn{F) - bn^(F) = ̂  ̂ (Fp) + ̂  (^(Fq) - ̂ -l(Fq))

P q

-E&(^)- E 1 ) -
k q G ES

where F denotes the Milnor fibre of fo at the origin, Fx denotes the Milnor
fibre of fa — /a(x) at the point x, the p ' s are summed over all p G Bg D S/a
which are not contained in V{fo) , the q's are summed over those q in
Be D S/a which are contained in V{fa) and at which fa has generic polar
curve, the {S^ : k = 1, 2 , . . . } are the irreducible components of^V(fa) in
Bs, and ̂  is the generic transverse Milnor number of S^.

Proof. — We consider the critical locus S(/a) of fa. Let S(/a) =
SaU P where Sa is the 1-dimensional piece of S(/a) and P = { p i , . . . , prn}
is the set of isolated points of S(/a).

First define for every p € P pairs (-Ep,Pp) consisting of a local Mil-
nor ball, Ep, and a local Milnor fibre, Pp. This construction is also used in
[Si3].

We next consider a neighborhood of the 1-dimensional piece

So = E^ U ... U E^.
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Let {q i , . . . , q^} be the following collection of special points on So :

• all points where Sa is non-smooth

• the smooth points of So where there is a non-void generic polar in
curve.

Let Q = Qi U ... U Qd be the union of well-chosen distinct local
Milnor balls around each q. Then, there exists a neighborhood, E° , of Sa
together with F° = /^(to) H E°, where to is close to /a(Sa), a (piece of
a) Milnor fibre, such that

(F°\Q,F°\Q)^ ^\Q

is a locally trivial fibre bundle pair, where the fibre pair is (Ek^k) - the
Milnor pair of the transversal singularity Y^ on E^ — 0.

Let E == /o^^y?)0 ^e- According to lemma 2.2.1, E is homeomorphic
to /^(D^) D Be and, according to lemma 2.1, F is homeomorphic to
fa'Wn B,.

Now we use the direct sum formula for the vanishing homology

^(F,F)=e^(Fp,Fp)© ^(F°,F°).
P

This formula already occurs in [Si3] and is stated there for the transversal
type Ai. Under the transversality conditions of lemma 2.2.ii, the formula
holds in general and the proof remains unchanged.

As a corollary, we have

X(E^F) = ̂ x(^p^p) + X(^°),
P

where

X(E^F) = ̂ (-l^dim^.F) = ̂ {E) - x{F) = 1 - ̂ (F).
j

At the isolated singularities, p , we have :

X(^p, Fp) = xW - x(Fp) = (-^^(Fp).

The remaining part is %(E°,F°). We assume that the neighborhood
E° of So is chosen small enough so that it contains So as a deformation
retract. Then, we have :

X(E°, F°) = x(E°) - x(F°) = ̂ (SJ - x(F°).
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Next, cut F° into pieces, according to the components of Q and of
^\Q. So,

x(FO)=^^ka\Q)x XW + ^x(F^
k q

where :

.Fq = the Milnor fibre of the local singularity at q

Yk = the transversal Milnor fibre of S^ - {0}.

Remark that :

X^ka\Q)=X^ka)-^n^

where

_ 0 if q i ̂
711:1(1 ~ 1 if q e E^.

We conclude :

X(F°) = EX(^) • xWc) -^^n^x(Yk) + EX(^).
fc fc q

So:

X(E, F) = ̂ (S,) - ̂  x(S^) • XW + ̂  ̂  nfc,qX(^)
fe fc q

-E^^+E^p'^p)-
q P

One concludes the theorem from this formula by substituting the
following easy identities :

1. x(E, F) = (-l̂ +^F) - ̂ _i(F)}

2. x(Ep,Fp)=(-l)n+lbn(Fp)

3. xW = 1 + (-1)"^

4. X(^q) = (-^"^{Wq) - ̂ n-l^q) + 1}

5. E^^^'+EE^.q-1)- "
A; fc q
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As in section 1, we immediately have the following corollary, which
we now state solely in terms of Betti numbers.

COROLLARY 2.4. — Suppose that dimoS (/o| ) = 0 and suppose
that fs is an equi-transversal deformation of fo at the origin. Further,
suppose that the value of /^ is independent of the component v of E/o
through the origin - denote this common value by ^5. Then, in the notation
of the theorem, we have

W) - b^(F) = ̂ ^(Fp) + ̂  (^(Fq) - &n-l(^) + ̂ )

P q

-^ . x(^n sy (/,)).

3. The Le-Iomdine formula.

We now wish to give a slightly improved version of the formula of
lomdine and Le as found in [Le2] and [Io2]. See also [Ma2], [Ma3], [Ma4],
[Pe3], and [Si5]. The improvement is a more precise bound on how large
the exponent in the formula must be chosen. This new bound is especially
useful in the homogeneous and quasi-homogeneous cases.

PROPOSITION 3.1. — Let h : (C^O) -^ (C,0) be analytic and let
z be a linear choice of coordinates for C714"1 such that dimoSf/ii ) = 0.v I ^C^o) 7

Let j be an integer ^ 2.

Then, h + ez^ has an isolated singularity at the origin for all but
finitely many e. Moreover, if j is not a polar ratio (for the definition of
polar ratio, see [Si5] or the proof below), then h + ez^ has an isolated
singularity at the origin for all e 7^ 0.

Finally, if j is greater than or equal to the maximum of the polar
ratios and h + ez^ has an isolated singularity at the origin, then

^^W = A^(0) + 0 - l)A^(O) = A^(0)-A^(0)+^(0)

= ^(Fo)-^-i(^o)+^(0),

where A° j (0) is equal to the Milnor number of/i+ ez^.
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Proof. — The proof is the same as that of 3.1.ii and 3.2 of [Ma3] but,
as our statement here is slightly different, we shall recall the proof.

. ( Qh Qh\
Since 1^ ^ is contained in V — — , . . . , —— ,

y0z^ Ozn j

r^n v(^o) c s(/^^).
Thus, it follows from our hypothesis that dimoF^ ^ D V(zo) = 0. It is

( 07 \

immediate then that dimoF^ ^ ^ 1 and dimol^ ^ D V -^— ) = 0.OZQ J

Now, write the cycle F^ as V^ ^[77], where the T] are the irreducible
r]

components of F^. Consider the intersection number

(r...(^.^-))^E^(.-g.^-1)^.

We would like to impose conditions on j and e so that each

rj • V [ — — ^ j £ z i ~ 1
Qh
OZQ

actually equals

v ^h\\rj • V .—
< \^°//o

for then we would have

(+) (^^•v(^+^~l}) -(^•^.H) =xohw•
\ \^° / / o \ \^°//o

By [Fu], if we let a^(t) be a parametrization of 77, we may calculate
the intersection number

r] • V^——+j£z3o 1oh
OZQ

( r\r \

by taking the t-multiplicity of ^— + jez^~1 ) \a^{t)'

Using this same method of calculating the intersection number twice
more, we conclude that
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i y(^^^-})^ v92' I I ,

S)).(-^-1)),== min ^ 77 • V
\\ \^°/^o

with the exception of the single value of e which makes the lowest degree

( a? \
terms of , j |̂ ) and n^^ \^^) add up to zero.

Thus, using that

(r, . y^-1))^-!)(»? • ^o))o,

we find that if we have

(^fe))
(*) 3 ^ ' ' / / 0 + 1u 3 - (r, . V(^o))o

for all T/, then (f) holds for all but a finite number of e. In addition, if we
choose strict inequalities in (*), then (f) holds for every value of e.

Now, the Milnor number of h + ez^ at the origin equals

9h . _i 9h 9h\\I ^ I V „ __ 1 \JIV \J I t, I IV{——+3ez3o \ — — , . . . , — — \ \
\ \9zo 9zi 9zn) j ^

( , , ( Q h . , i \ ^ ( 9 h 9h\\=('/^+^ ^y(^•••^})„
=(V(^+JC^)•^+^)

'(-e-0-')-^/^-64-1)-^.

( ^, \
But, as A^ is contained in V -— \, if e -^ 0 then we have

9zo )

(v (^ +^^l) • A^) = °" - 1) ̂  • y(^o))° •\ \ / / o
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Combining this with the above and (f), one obtains the result - with the
condition given in (*).

Finally, we need to show that (*) is equivalent to the more usual
requirement on the polar ratios. As was shown in [Lei] and [Ma3], a quick
application of the chain rule yields that, for every component rj of F^,

(^ VW^=^ MJ^) ) +(^ ^o))o.

Therefore (*) can be re-written as

. > ^ • vW)p
(r, • V(^))o'

where the right-hand side gives precisely the polar ratios (or, as is frequently
done, one may push everything down into the Cerf diagram). D

The maximum of the polar ratios as a bound already occurs (in a
slightly hidden form) in section 3 of [Si5]. In that paper, the Le-Iomdine
formula is generalized to the eigenvalues of the monodromy. For the same
kind of statements for the spectrum we refer to Steenbrink[St] and M. Saito
[Sa].

Remark 3.2. — Examining the above proof or section 3 of [Si5] slightly
closer, it is possible to show that :

A^(0)<^(0)-A^O)+^(0)'

provided that j is smaller than the maximum of the polar ratios (see, also,
the closing remarks). This shows that our bound is sharp.

4. Examples and special cases.

4.A. Transverse A\ singularities.

In this sub-section, we will restrict ourselves to the case where the
generic transverse singularity of /o is of type Ai.

COROLLARY 4.A.I. — Suppose that fs is a family of analytic maps
such that, as germs of sets at the origin, S/D V{s) = S(/o)- Suppose
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also that dimoS [fo\y^ . ) =0 and ̂  = 1 for every component v ofS/o
through the origin. Then, fs is an equi- trans versal deformation of fo and

^o(O) - A}JO) = E^-A^P) + E (^(q) - ̂ (q) + ̂
P q

-x(B, nsv(/,)).

In terms of Betti numbers, this says

bn{F) - bn-l(F) =^~bn{Fp) + ̂  (^(Fq) - ̂ _l(Fq) + l)

P q

-X{B,D sy(/o)),
where the notation is the same as that of theorems 1 . 1 1 and 2.3.

Proof. — That fs must be an equi-transversal deformation follows
from the upper-semicontinuity of the Milnor number - if the generic
transverse Milnor number of /o is 1, then for s -^ 0 small the generic
transverse Milnor number must be 0 or 1. But it can not be 0 since
S/ H V(s) = S(/o)- Thus, the deformation is equi-transversal.

Now, the equations follow immediately from 1.11 and 2.3. D

Example 4.A.2. — Suppose that S = S(/o) is a 1-dimensional,
isolated complete intersection singularity. This situation is studied in detail
in [Si3]. In this case, there exist equi-transversal deformations with So
smooth (equal to the Milnor fibre of the singular curve S) and with fa
having only Aoo and Doo singularities on Sa, and the isolated singularities
of fa are all of type Ai.

The main theorem of [Si3] is :

In this case, the homotopy type of the Milnor fibre, -F, of /o is a
bouquet of spheres; there are two cases :

if #Doc > 0, then F ^ 5^ V . . . V ^n;

if ^D^ = 0, then F ^ 5'n-l V ^ V . . . V 571.

Moreover,

bn(F) - ̂ _i(F) = fi(^) - 1 + 2#D^ + #Ai,

where /^(S) is the Milnor number of S.

Note that this formula agrees with that of our main theorem.
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The same statement on the homotopy type of the Milnor fibre is true
in all cases where / allows a deformation with only Aoo,.Doo, and A\ -
singularities. The example Too^co,oo? given by / = xyz, shows that such
deformations do not always exist.

There exist the following formulas [Pel],[Pe2] relating #Ai and i^Doo
to the dimension of a certain local ring :

j ( / ) = d i m — — # A i + # A ^
^ U )

where I is the reduced ideal defining S and J(f) is the Jacobian ideal of
/; and (still under the assumption that S is a complete intersection)

6{f) = d im° |— = #D^
det(hij)

where / = S/^^j and {g\,... ,gn} define S as a reduced 1-dimensional
icis.

In the next two examples, we remain in the transverse A i-case,
but consider the case where there exists a deformation of /o with only
Ace ^DOQ .TOOOOOQ, and AI singularities. In this case, we have

COROLLARY 4. A. 3. — Suppose that fs is a family of analytic maps
such that, as germs of sets at the origin, S/ H V{s) = S(/o)- Suppose
also that dimoS (fo\y^ ) ) = ̂  an(^ ̂  = ̂  ^or ^^y component v ofS/o
through the origin. In addition, suppose that the deformation fs has only
AI singularities off V {ft) and only Aoo.Doo, and Too, 00,00 singularities on
V{ft), then

A^(0) - A^(0) = bn(F) - ̂ -i(F) = #Ai + 2#D^ - x (B, H ̂ V(fa)) .

Proof. — This follows from 4.A.1 and some quick calculations. A° = 1
at a quadractic singularity, \° = 2 and A^ = 1 at a Dyo point, and A^ = 2
and A^ = 3 at a To^oo,oo point. D

Example 4.A.4. — In his papers [Mol],[Mo2], D. Mond considers
finitely ^4-determined map germs F : (C2,0) —^ (C3,0). The image F(C2)
is a hypersurface germ at the origin, given by some / = 0, and has a
1-dimensional singular locus E with transversal type Ai on E — {0}.
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One can consider the versal unfolding

G : C2 x C^ -. C3 x C<

Let G(a-, s) = (Gs{x), s) and let the image Gg(C2) be the hypersurface
germ with denning equation gs = 0. According to Mond, near the origin,
the map gs : C3 —)• C has for all s € C^ only one fibre with non-isolated
singularities and for generic s e Cd the only singularities are of types
AOO t ^00 5-^0000005 BUG A.\.

It is shown in [Mo2] and [Si7] that the special (non-isolated) fibre is
homotopy equivalent to a bouquet of 2-spheres

^(0)^ ^V ... V 52,

where the number of spheres is equal to #Ai.

Moreover, the Milnor fibre of gs is, in this case, also a bouquet of
spheres :

F^ S2^ . . . V S2.

The number of spheres is, according to [Si7], equal to :

bn(F) = 2#Doo - 1 + 2#r^o, - x(S,) + #Ai,

where Ss is the normalization of Es.

This formula agrees with the formula of our main theorem since

x(s,)=^(s,)+2#r^oo.

A list of these very interesting examples appears in [Mol],

Example 4.A.5. — In [Pel] and [Pe2], Pellikaan considers the poly-
nomial /o = ^y^ + y^z2 + 42;2.^2. There exist two totally different equi-
transversal deformations of /o-

• fs = x^y2 + y2z2 4- 4^2a•2 + sxyz,
in which Eg consists of the three coordinate axes, and

#Ai = 4 #D^ = 6 #T^oooo = 1 ^(E,) = 1.

Therefore, b^(F) - &i(F) = -1 + 12 + 4 = 15. We remark that, by using
a computer, this Euler characteristic calculation can be produced quickly
via the lomdine-Le formula - see the closing remarks.
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• fa == {xy - a^x - a^y)2 + (yz + a^y - a^z)2 + (2xz + 030: - a^)2.

This deformation is induced by the miniversal deformation of (S , 0),
which can be defined by the vanishing of the 2 x 2 minors of the matrix ?

( x y z \
\ .r+ai 2z/+a2 S z + a s } '

Here, Sa is a Milnor fibre of E, and /^(S) = 2.

#Ai = 6 #1̂  = 4 #Jo^ = 0 ^(S,) = -1.

Therefore, ^(^) - h(F) = 6 + 8 + 1 = 15.

Since the deformation has only A^, D^, and Ai -points, we conclude
that

F^ S2^ . . . V S'2,

where the number of spheres is exactly 15.

Note that, despite the ease with which they may be calculated, the
Le numbers and the formula of lomdine and Le provide no indication that
the homology is trivial in dimension 1.

Remark 4.A.6. — We should mention here one other formula for the
Euler characteristic of the Milnor fibre in the transversal Ai case. In [Jo2],
de Jong gives the following formula :

bn{F) - bn-i(F) = j{f) + VD^ + /,(E) - 1,

where F, p . , and S are as before, VD^ is the virtual number of D^ points,

and j(f) = dime __, where J(f) is the Jacobian ideal and I is its radical.

While it seems that this formula should follow directly from ours, we
have yet to show that this is, in fact, the case.

4.B. Line singularities.

The topology of line singularities is studied in [Sil] for transversal
type Ai and in [Jol] for the transversal types

S e {Ai,A2, As, ̂ 4,^6,^7(^=2), Es(n=2)}.
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De Jong produced a list of elementary non-trivial line singularities,
FiS , of type S\ a list which is complete up to stable equivalence.

Next, he constructed an equi-transversal deformation with only FiS
points and A\ points as special points. His main theorem states :

Let f : (C7^1, 0) -^ (C, 0) be a line singularity of type S. Then, the
Milnor fibre F of f has the homotopy type of a bouquet of spheres :

\j S^V \j S"
e /-t+e

with

/. = ^(F)-^-i(F)=^a^+#Ai-^,

where hi is the number of FiS points in the above-mentioned equi -
transversal deformation and ai and e can be computed explicitly. Only
in exceptional cases is e -^ 0 and in these cases e is small, e = 0,1, or fji.

The formula for JJL above is connected with those in 4.A.I. In fact, if
q is a point of FiS, then

a,=U^q)-^-iWi)+^

in our notation. Thus, the formulas are all equivalent in the cases considered
by de Jong.

4.C. Plane curve singularities.

Example 4.C.I. — Let h be an analytic map in the variables x and y ,
and suppose that h = P ]~[ Q^, where P and n QT are relatively prime
and Oi ^ 2, i.e. h gives a non-reduced curve singularity. We wish to calculate
the Le numbers of h at the origin.

Let ZQ = ax + by, where a -^ 0, and let z\ = y . Then,

V
oh
Oz,

V
oh -b
ox

-E^^r1)] + v

oh
9y ^

f9h
9x

-b\ <9/i \
a ) 9y

HQ,Q,-1
= AL + ri,^,z /l,Z-
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Thus, whenever

V

( 9h
9x

\

(n^̂
)a )

+

-1

9h \
~Qy

1.
has no components contained in the critical locus of h (an easy argument
shows that this is the case for a generic choice of (a, b) ), we have that

^,z = E(^ - ̂  (y^) • ̂  + ̂ ))o
and

f Qh
9x

nc?-
'-(

^
V a

9h\
9zo)

b\
•)+

}=v

Qh\
9y

)
(Qh

\Qx

9h
~Qx

\o __^h.z — V V

\ \

where we have used that V

Note that the formula

^,z = ̂ (^ - 1) (V(Q,) . V(ax + by))^

agrees with our earlier formula
\ 1 V^ o
^z = Z^^^,

v

since we clearly have r^ = (V(Qi) • V(ax + by))^ and ̂  = a, - 1.

Example 4.C.2. — Deformation of non-reduced plane curve singulari-
ties are studied by Schrauwen in [Sc]. Among others, he considers especially
deformations where the singularity splits up into D[p,q] singularities only,
having local equation xpyq == 0.

Let E23 be the curve consisting of all branches with multiplicity p. We
give S^ the reduced structure. Then, Schrauwen gives

FORMULA. — Let fa be an equi- transversal deformation which makes
each S75 smooth. Then,

b,(F)-bo(F)

= $> + ^ - ̂ ^ q] + W, 1] + ̂ (k - 1) {^k) - 1) - 1,
P<9 k
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where the first summation is over the D\p^q}-points with p < q, and the
second is over all multiplicities k.

This formula is now a direct consequence of our main theorem, once
you have noticed that the zero Betti numbers, &o ? have to be replaced by
the reduced Betti numbers, 60, and use that b-^(Fq) — bo(Fq) = 1 for each
D[p,g]-point, and x(^) = 1 - ̂ k).

Schrauwen considers in his paper also a second kind of deformation,
called a network map deformation. Such deformations arise as follows.
Deform first the reduced singularity fp in such a way that one gets the
maximal number of normal crossings <$, the (virtual) number of double
points.

The branches of fp and (/s)a are in one-to-one correspondence. We
get the network map deformation by giving the branches of (/^)a the
correct multiplicity of /. Then, we have :

FORMULA FOR NETWORK MAP DEFORMATIONS

61 (F) - bo(F) = ̂ (p+q)#D°[p^] - 5,

where the first sum runs over all D\p^ q\ -points on fa1^) with p < q and
S = ̂  mi = the number of all branches counted with multiplicities.

This formula is similar to fi = 26 — r + 1 in the case of an isolated
singularity. It has a very easy topological proof, which has no direct relation
with our main formula.

4.D. Homogeneous and quasi-homogeneous singularities.

Example 4.D.I. — We now turn to the case where h : (C^^O) —>
(C,0) is a homogeneous polynomial of degree d with dimoS(/i| ) = 0.

As h is homogeneous, S/i is a collection of lines which are transversely
intersected by V(zo) (since dimoS(/ij ) = 0 ). Hence,

\l V^ °>h=^^-
v

To calculate A^ we proceed in a manner similar to [MiOr]. We consider
the partial derivatives of h as defining a collection of hypersurfaces in P"^
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with homogeneous coordinates {zo:...: Zn:w). Then, if a is not zero, we
have that the hypersurfaces (in P"+1)

/9h , \ ( 9h\ ( 9h
v {^-+awd~l}^v .-.•••^hr-

^zo ;' V9^'" \^"/

intersect in a finite number of points with total intersection multiplicity
(d-1)^1.

Now, on the patch w ̂  0 , one immediately sees that the number of
intersection points (counted with multiplicity) is precisely A^. It remains
for us to count the number of intersection points where w = 0.

But, the intersection points where w = 0 correspond exactly to the
lines making up the singular locus. Thus, all of these points occur on the
patch ZQ -^ 0 , and the contribution of these points to the total intersection
multiplicity was

deg (9h-} x V (v (ah^} . . V (9h^}}
^oj x^[v[ 9., ) - v[ 9^ ) ) ^

where the sum is over all p in V(ZQ — 1) D S/i. But, this equals

(d- l )^^=(d-l)At
V

Therefore, we find that A^ = (d - l)^ - (d - 1)A^, and so

b^F) - ̂ _i(F) = A^ - \\ = (d - l)^1 - d\\.

Remark 4.D.2. — As was shown in [Si5], this agrees with the formula
that one would attain by applying the lomdine-Le formula in 3.1, using
that the polar ratios are each exactly d and that the Milnor number of a
homogeneous degree d polynomial in n + 1 variables is {d — l)^1 [MiOr].
(That the polar ratios are all d follows from the fact that the polar curve
is homogeneous and is, hence, a collection of lines.)

In 4.D.I, we saw that the Euler characteristic of the Milnor fibre
of a homogeneous polynomial depends only on the degree, the number of
variables, and A1. However, the homotopy type of the Milnor fibre is more
sensitive and depends on more data. Famous in this context are the Zariski-
examples of curves of degree 6 with 6 cusps on a conic or not on a conic.
The homology of the complement of the space is related to the eigenspaces
of the monodromy with eigenvalue 1 (cf Dimca [Dil]).
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Example 4.D.3. — Continuation of Pellikaan example (example
4.A.5).

Let / = xyz then d = 3 and transversal type is 3 times A\ and so
b^(F)-b^F)=8-9=-l.

Let / = x^y2 + y^z2 + 4^2a:2 then d = 4 and the transversal type is
again 3 times Ai and now : b^F) - bt(F) = 27 - 12 = 15.

Example 4.D.4. — Zariski example with 6 cusps on a conic. The degree
is 6, the transversal type is 6 times A^. So b^ (F) — b^(F) = 125 — 72 = 53.

Example 4.D.5. — In case / is a quasi-homogeneous polynomial with
weights WQ, • • • ,w^ and of degree d it is sometimes possible to compute
bn{F) — bn-i{F) by using the Le-Iomdine formula. This is especially the
case if x can be embedded in a quasi-homogeneous coordinate system :
x = XQ with d/wo C N and if moreover fd/wo = f + ̂ /wo defines an
isolated singularity. Similar cases are considered by Dimca [Di2] with the
help of differential forms.

We find the following formula :

^)-^w=n^-^E^
Wi ^ Ky

with kv = gcd(wi\Xi 7^ 0 on E^).

Note that all terms in this formula are independent from x.

4.E. Composed singularities.

Example 4.E.1. — Let / : (C72^1,0) —^ (C, 0) be a holomorphic germ,
which can be written as the composition

f=P{gi^2)

where

^(^^(C^.O)-^2^)

defines an isolated complete intersection singularity and

P:(C\0)^(C,0)

is a holomorphic germ.
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This situation is studied by A. Nemethi in his paper [Ne2]. This paper
contains information about the homotopy type of the Milnor fibre and the
monodromy of these composed singularities. If P has an isolated singularity
then the singular locus of / is (n — l)-dimensional. In case n = 2 we have
a 1-dimensional singular locus and we can try to apply the methods of our
paper.

Consider the deformation

fa = P(gi -^1,^2 -^>)

for generic values a = (ai, 02) of g. The singular locus of fa consists of the
1-dimensional set

^=g-\a)

and some isolated singularities. Moreover the deformation is equi-transver-
sal. Consider for this purpose a generic linear function ZQ , which is at the
point p € S/o — 0 transversal to g~l(0). Near p we can use z ^ ^ g ^ ^ g ^ as
a system of coordinates. The functions g i ^ g ' 2 are coordinates on the slice
V(zo —po). On this set we have near 0 :

^IV(.O-PO) = ̂ 1-^1^2-^2).

This shows that the family fa\v^ _p ls /^-constant at p. The transversal
type is given by the plane curve singularity P. Since there are no special
points on So, our main formula is in this case :

W) - b,(F) = ̂  Wp) - w(Sa).
p

Nemethi gives the following formula :

x(F)=(l-^)x(Sa)+(7/(S)J)o.

The last expression is an intersection number of the 1-dimensional compo-
nents of the critical set E (with a non-reduced structure) and /''^(O). For
more details cf. [Ne2].

Example 4.E.2. (Generalized Zariski examples).

j(x^z) = (^ + z^Y + (^ + z^.

This is a composed singularity with

g^x,y,z)=yq+zq



772 D.B. MASSEY, D. SIERSMA

g^{x,y,z) =xp +2^

P{u,v) =up +Z'9.

Since / is homogeneous of degree pq the equation f{x, y , z) = 0 defines a
curve Cp^q in the projective plane P^C).

The curve has exactely pq critical points, each with local equation
P(u^v) = up + vq. These curves are studied by Oka [Ok], who computed
the fundamental group of the complement, see also Nemethi [Nel]. I f p = 2
and q = 3 the curve is just Zariski's example with six cusps on a conic.

Following the above recipe we get the following equi-transversal
deformation :

fa(x, y, z) = W + ̂  - a^Y + (^ + ̂  - a^Y.

In this case, it is not difficult to compute the critical set of /a, including
the multiplicities of the isolated critical points :

pq — 1 points with multiplicity (p — l)(q — 1),

p points with multiplicity {q — I)3,

q points with multiplicity (p — I)3.

This implies :

^ Wp) - (pq - 1)(P - 1)(9 - 1) + P(q - I)3 + q(p - I)3.
p

The singular locus of fa has Ea == ^"^(a) as 1-dimensional component. So
is the Milnor fibre of S = ̂ "^(O). The map g is (quasi)-homogeneous with
weights wi = W2 = W3 = 1 and degrees a\ = p and a^ = q. We can apply
GiustFs formula [Gil], [Gi2], [Si4] :

/^(S) = 1 + (^a, -Y^wi)1^ = 1 + (p+ q - 3)pq.
11̂

The last ingredient we need is

^=(P-1)(9-1).

Therefore,

b^F) - bi(F) = (pq - l)(p - l)(g - 1) +p(q - I)3 + q(p - I)3

+(p-l)(q-l)(p+q-3)pq.
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There is also an other way to derive the same answer, using the
formula for homogeneous singularities from 4.D.2 :

W) -b,(F) = (d- I)3 -dj^^ = (pq-lf -p\\p- l)(g- 1).
v

After expansion you find out that the two answers coincide.

5. Remarks and questions.

It is reasonable to ask just how effectively calculable our numerical
invariants are. In particular, one would like to know if a computer can be
of any assistance in calculations for specific examples.

For the Le numbers the answer is definitely : yes. Any computer pro-
gram which can calculate the multiplicities of ideals in a polynomial ring,
given a set of generators, can calculate the Le numbers of a polynomial. (A
number of programs have this capability, but by far the most efficient that
we know of is Macaulay - a public domain program written by Michael
Stillman and Dave Bayer.)

Given such a program and a polynomial, / , with a one-dimensional
singular set, one proceeds as follows to calculate the Le numbers, A° and
A1 , at the origin with respect to a generic set of coordinates.

As we saw in 1.7, A1 is nothing other than the multiplicity of the
Jacobian scheme of /. So, one can have the program calculate it.

Now, we need a hyperplane that is generic enough so that its inter-
section number (at the origin) with the (reduced) singular set is, in fact,
equal to the multiplicity of the singular set. Usually, one knows the singular
set (as a set) well enough to know such a hyperplane. (Alternatively, there
are programs which can find the singular set for you - though how they
present the answer is not always helpful.) We shall assume now, in addition
to having A1 , that we also have such a hyperplane, V(L) , for some linear
form, L.

By the work of lomdine [Io2] and Le [Le2] (or our generalization in
3.1), we have that : for all k sufficiently large, / + Lk has an isolated
singularity at the origin and the Milnor number ^{f + Z^) equals A° + (k -
1)A1. But, the Milnor number is again nothing other than the multiplicity of
the Jacobian scheme, and so we may use our program to calculate it. Thus,
we can find A° - provided that we have an effective method for knowing
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when we have chosen k large enough so that the formula of lomdine and
Le holds.

However, we have such a method. If /+I^ has an isolated singularity,
let i^k denote its Milnor number. (Given a particular k , one must either
check by hand whether f+L1^ has an isolated singularity or have a program
do it. Macaulay will tell you the dimension of the singular set in the course
of calculating the multiplicity of the Jacobian scheme.) A quick look at
the proof of the lomdine-Le formula in 3.1 shows that the formula holds
provided that

^ k - ( k - 1)A1 ^ k - 2.

Therefore, to find A° , one starts with a relatively small k and checks
whether /^ ^ k - 2 + (k - 1)A1. If the inequality is false, pick a larger k.
Eventually, the inequality will hold and then

A° =^k-(k-l)\\

There is a similar alternative method for calculating not only the
Le numbers but also the maximum polar ratio of /. Extending remark
3.2 slightly more, it is not difficult to see that, if /^ is as above, then
/-A/c+i — l^k = A1 if and only if k ^ the maximum polar ratio.

Hence, to find the maximum polar ratio, one calculates /^ for succes-
sive values of k - looking for a difference of A1. Once this occurs, k > the
maximum polar ratio and, as before, we conclude that

A°=^- ( / c - l )A 1 .

While this method requires one to calculate at least two Milnor
numbers, /z/c, it will still be a more efficient way of calculating A° - provided
that the maximum polar ratio is significantly smaller than A° itself. This
would be the case, for instance, if the polar curve had a large number of
components.

As an example of using this last method to calculate the maximum
polar ratio and the Le numbers, consider the polynomial / == xy3 + x^y2.
Using the notation above, we find

k =
^k =

2
3

3
6

4
9

5
11

6
13

7
15

8
16
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As one easily checks, A1 = 1 and so, from the table, we see that the
maximum polar ratio is 7 and A°=15-(7-l)l=9. One can verify directly
that, in fact, the polar curve has two components, with polar ratios 4 and
7. To apply the first method above, one would have to use a value for k
that is > 2 + A° = 11.

As we saw in example 4.A.5, the Le numbers are less sensitive
invariants than are the number of special points in generic deformations.
However, this means that requiring the Le numbers to be constant in a
family is a less stringent condition. Despite the apparent weakness of this
assumption, the main result of [Ma3] - stated in the case of one-dimensional
singularities - is that, for families of n-dimensional hypersurfaces with
one-dimensional singularities, the constancy of the Le numbers implies the
constancy of the fibre-homotopy type of the Milnor fibrations if n ̂  3, and
implies the constancy of the diffeomorphism type of the Milnor fibrations
if n ̂  4.

Related to the result discussed in the last paragraph, T. Gaffney has
shown the following [Ga2] :

PROPOSITION. — Suppose that ft : (C^O) -^ (C^O) is a family of
finitely determined germs with rank 1 at the origin, and suppose that the
Le numbers, at the origin, of the images are independent of t. Then, the
family ft is Whitney equisingular.

In general, however, the relationship between the Le numbers and the
Whitney conditions is very unclear.
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