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0. INTRODUCTION

Let A be a second order differential operator written as

A=12Y Yi+ Y.,

i=1

where Y, (0 <i<m), are C7(R?) vector fields, h be a C(R?) function
and D be a regular open set of R?.

h — A is said to be hypoelliptic in D if for ue 2'(D), ue C*(D)
as soon as (h—A)ue C*(D). In 1967, L. Hormander [21] showed that
a sufficient condition for h — A4 to be hypoelliptic is :

(0.1) (H.G) Lie (Y;,0 <i< m) spans R? at every yeD.
This condition is also necessary when the Yjs and h are analytic [16].
Let T? be the semi group on C)(R?) whose infinitesimal generator

coincides with 4 — h on CP(R?). The Ito’s theory allows to give a
stochastic representation of T7, namely

Tif(y) = E [f () exp — J h(ys)dS}

0

where y_ is the generic element of C°(R*,R?) and E’ is the expectation
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relative to P,, where P, denotes the Probability measure defined on
C°(R*,R%) and solution of the stochastic differential system of
Stratonovitch

©0.2) {dyt = V() di + Yi(y,) dwi
Yo =Y

Here the w'’s ‘are independent Brownian motions for 1 < i < m, and
we do the usual summation convention for repeated indices.

Actually one can build on the standard Wiener space a stochastic
process ¢ (®,y) whose law is P, and which is for every ® a flow of
C* diffeomorphisms of R? ([2], [24]).

P. Malliavin ([26]) has introduced a differential calculus on the
Wiener space (known as Malliavin calculus) which allows to give a
probabilistic proof of the C*® smoothness for the heat kernel

. ., 0 .. ..
(assomated with E+A>’ under the natural Hormander’s condition

0
(0.3) (HR) Lie(—+Y,Y;1<i<m) spans R**' at -every
ot

(t,y) e R* x R?, (cf. [30]).

In [13), using the Malliavin calculus and the diffeomorphism property
of ¢,(®,"), we proved (probabilistically) that under (H.G) (see (0.1))
the resolvant operators of the semigroup 77 have C® kernel out of
the diagonal. We then obtained a probabilistic proof of the celebrated
Hormander’s result, and a decomposition theorem for the space C* (M)
(when M is a compact C* manifold), similar to the classical decomposition
result for elliptic pseudo differential operators ([15]).

Consider now the boundary value problem

0.4) (L.P) {(h_A,zz ?; mb

where L is an operator defined on a suitable space.

There are several methods to regard such a problem. A powerful
one consists in transforming (L.P.) into a pseudo differential problem
on the boundary.
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This method requires having a good knowledge on the first boundary
value problem (Dirichlet problem denoted by (D.P)), that is with
L = v,, where vy, is the sectional trace of order 0 on dD.

Indeed assume that the Green and the harmonic operators G and
H are well defined, that is:

Gf (resp. Hg) is the unique solution of (D.P) with data (f,0)
(resp. (0,2)), ~

and moreover G (resp. H), maps C%®(D) (resp. C®(0D)) into
Cc*(D).

Then for fe C®(D) and g e C*(0D), (0.4) has a solution u € C*(D)
if and only if a solution ¢ € C*(0D) exists to the following boundary
problem :

(0.5) (B.P) L-(Hp)=g — L-(Gf) on 0D,
and then u = Ho + Gf.

In particular if L maps C*(D) into C®(0D), the smoothness of
any solution of (L.P) is equivalent to the hypoellipticity of L.H.

The Dirichlet problem has been studied for a long time in the p.d.e
theory when A is uniformly ellipticc. When A4 only satisfies (H.G) and
D is compact, it was solved by Derridj ([16]), with two additional
assumptions : the boundary is non characteristic for 4, and a coercivity
assumption for h. Derridj proved that if the data (f,g) are C®, there
exists a C* solution u, and uniqueness holds in an intermediary space
between L? and H'(D). Here again the solution u admits a stochastic
"representation

u(y) = E’U f () exp— (J h(y,) ds) dt:|
(0.6) 0 o
+ Ey[g(yr) exp— ( j h(y) dt>]

where T = inf {t>0,y,¢ D}.

Conversely a natural assumption for (0.6) to make sense is:

0.7) H.O) sup E{j%xp—(fh(des)dt} < + ©
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offently called the (uniform) Gauge condition for the Dirichlet problem.
If (H.C) holds and if 0D is non characteristic, one can prove by
probabilistic methods (the martingales methods of Stroock and Varadhan
[32]), that u given by (0.6) is a solution of (D.P). In [14] we applied
the Malliavin calculus (in the formalism of [3]) and developped a
stochastic calculus of variations for the stopping time T (following [11]
and [4]) in order to give a probabilistic proof of the smoothness of u.
Actually we obtained more.

First of all uniqueness holds in 2'(D). This is a consequence of
the following analogue of Hormander’s result proved in [14] Thm 5.3:

(0.8) Let U be an open domain of D, every solution ue 2'(D) of
(D.P) with fe C*(U) and g e C*(UndD) is in C*(U).

Seconds, all these results extend to the case of non compact D, with
&'(D) (that is the ue 2'(D) which extend to ¥'(R%) in place of
2'(D). Finally, the Gauge condition (0.7) is, at least when D is
compact, weaker than the coercivity assumption of Derridj. Notice that
a probabilistic study of the Poisson kernel was first done in [1].

In this paper we shall study the boundary value problem (0.4) for
a Ventcel’s boundary condition, that is L = v — I', with

’ = 0
Fr=12%Y V:+V,+a——pA.
= on
The V['s, and V, are Cy vector fields acting on 0D, v, p and o are
C7 (D) functions with p and o > 0, and n is the unitary normal
relative to 0D pointed inward.

This condition was introduced by Ventcel [35] in order to characterize
the Feller semi groups on D generated by A, via the Hille-Yosida
theorem (see [8], [28], [29], [33] and the references therein).

When the ¥''s (1</<r) and p are identically 0, we get the classical
oblique derivative problem. If one of the Vs (1</<r) does not vanish
identically, the problem (L.P) (see (0.4)) can fail to be elliptic ([20]).

For such an L, (L.P) is only solved when A is uniformly elliptic,
D is compact, and T is transversal on dD, that is

* a > 0 (strong transversality) in [8],

* o + p > 0 (weak transversality) in [28] and [33];
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of course with some supplementary assumptions on h and v, essentially
h+v>0,hand v > 0.

On the other hand the construction of a semi group T? whose
generator is A — h on M® = {f e C*(D), (v—T)f=0 on 0D}, can be
done directly by probabilistic methods, without any assumption of
ellipticity for 4 (see [31], [18], [23], [36], [19]).

Namely for fe M*, one has

Tifp) = P [f (vo) exp— (f h(ys) dS>]’

0

where y is the generic element of C°(R*,D) and E’ the expectation
relative to an appropriate law Q, on the previous space.

We are interested here in the case when Q, is the (unique) law
solution of the following stochastic differential system of reflection of
Stratonovitch (this is not always true, see the references given above):

dy, = 1,(3) Yo(y) dt, + 1,(y) Yi(yo) dw;
(0.9) + 1Lop(¥) Vo(yo) dL, + 1:p(¥) V. (y2) dM
' Yo=Y

p(y) dL, = 15p(y,) dt

_ 0
where Vy, =V, + o —-
on
The precise meaning of this statement and the definition of the local
time L, are given at §1.

If the boundary is (uniformly) non characteristic and I" (uniformly)
strongly transversal (see (1.1) in § 1) this is always possible.

The Ito formula gives us the natural candidate u to be the solution
of (L.P) that is:

0.10) u(y) = E’Uwf(yz) exp— J

0

h(y,) ds-exp— J

0

v(y) dL, dt]

; EU " g exp— j h(y) ds-exp— j tv(ys)dLde,]

0 0
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and the Gauge condition for (L.P) is then the following
0.11)

sup Ey[f+wexp<— fth(ys)ds— ftv(ys)dLs>(dt+dL,)] < + .
yeD 0 0 0

We show in §4 that if (1.1), (0.11) and (H.G) are fulfilled in D,
then for C* data f and g, the function u given by (0.10) is in C*(D),
and is the unique solution of (L.P) in 9'(D) if D is compact, or
&'(D) if it is not (assuming in that case an uniform condition (H.G)).

We now describe the contents of the paper and the relationship
between the probabilistic and the p.d.e formalisms.

In §1 we define (0.9) and recall some basic facts on existence and
uniqueness. We also give a construction of the solution well adapted
for the sequel. From a geometric point of view the main difference
between (0.2) and (0.9) consists in that we cannot represent the solution
of (0.9) as the image law of a flow of C* diffeomorphisms. This is
because L,, which depends on the starting point y, is Markovian in y
and hence very irregular.

Fortunately if p = 0 (non sticky case) we can find local charts in
which the tangential coordinates form again, for each fixed time, a C®
diffeomorphism of R*"'. We also describe in this case the inverse flow
with the help of time reversal on the probability space.

In §2, we study the Q, law of y,, denoted by P(t,y,dx). In [9],
[10], [11], we have gotten sufficient conditions for P(t,y,dx) to be of
the form :

P(t,y,dx) = 1p(x)p(t,y,x) dx + 15p(x)p(x)p(L,y,X) du(x)

where dp is the area measure on 0D and p(t,y,-)e C*(D) (see (2.4)
and (2.6)). We then study the smoothness of p(t,-,-). The main tools
are the local stochastic calculus of variations on the reflected process
(see [11]) and the expression of the inverse flow. This part is very
similar to what we have done in [14] for the stopped process. The
relevant results are (2.9) and (2.25).

In §3 we study the smoothness of u given by (0.10), under the
hypothesis (H.G) (see (0.1)). This is done by introducing an auxiliary
process on an extended space, satisfying the hypotheses of §2, and
which is related to the initial process by a regular time change and a
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projection. The time change is clearly smoothed by the integration in
dt. We then obtain ((3.4)) the smoothness out of the diagonal of the
kernels associated to the operators (f,0) >u and (0,2) > u. The
remarks (3.28) at the end of the paragraph are also of great importance
for the sequel.

In §4 we solve the problem (L.P). We start by proving in §4.A
the analogue of Hormander’s result for (L.P), that is if (0.7) is satisfied
and (H.G) (see (0.1)) is fulfilled in an open domain U of D, any
solution u (ue 2'(D)) of (L.P) with regular data fe C®(U) and
g€ C*(UndD) belongs to C*(U). ((4.2)).

The method of the proof is the following.

First we show that the harmonic operator H extends continuously
0
to &'(0D) (4.32), then that so does %H . This is done by studying

the associated Fourier transform. The key point is the expression of
the inverse flow.

Finally we prove that the boundary operator is hypoelliptic, by an
approximation procedure and integration by parts as in [13] and [14].

One crucial point in the proof is a theorem of existence and
continuity for sectional traces on the boundary ((4.6)). This result is
our debt to the p.d.e theory.

Though (v—T") H extends to &'(6D) and has a kernel which is C®
out of the diagonal, we haven’t succeeded in proving that it is a pseudo

differential operator (in the sense of [15]). This point is discussed at
the end of §5.

In §4.B we show by a standard martingale method that the u
defined in (0.10) is a solution of (L.P), and conclude to the existence,
uniqueness and regularity of the solution. These results are extended to
a non compact domain, and to data (f,g) in certain Sobolev spaces.

In §4.C, we give some simple conditions for the Gauge hypothesis
(0.11), to hold.

The last paragraph is devoted to some complements.

In § 5.A, we introduce the adjoint system (A4*,I'*) which arises from
the usual Green formula. We then obtain a decomposition result (5.29)
in the non sticky case

C*(D) = (ker (h—A)NM*®) @ (h— A*)(M*™)
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provided D is compact. This result is the analogue of the one we
proved in the case without boundary in [13]. The proof lies on the
compactness of the resolvant operator in the C* spaces (k < + o) (see

(5.95)).

This is then applied in §5.B to the study of the invariant (and
reversible) measures of the process y. Since the semi group has the
Feller property, the existence of an invariant measure is ensured by the
compactness of D. We explain the relation between the set of invariant.
measures and ker (h—A*) n M*®, and prove that if the Lie algebra
generated by the Y"’s, 1 <i < m, is full at each ye D, there exists a
unique invariant Probability measure (5.35).

Uniqueness is closely related to the strict positivity of the density p
of P(t,y,dx). This property is obtained by using some elementary large
deviations ideas. In that case ergodicity holds.

In §5.C the connection between the spectrum of the generator
(h— A) and the Gauge condition is explained.

Finally in §5.D we recall the connection between the boundary
operator and the boundary process y, , where 4. is the right continuous
inverse of the local time L. Let we say that the law of the boundary
process has been studied by J. M. Bismut [4] (also see [19]). The
hypoellipticity of (v—I')H can certainly be proved by using the results
of [4].

The results of the paper are closely related to [8], [29], and [33]
where the analytical arsenal is developped in the uniformly elliptic case
for compact domains. At the present stage this arsenal seems to fail
to give the analogous results in the degenerate case. The present paper
can be viewed as the conclusion of the work started in [13] and [14].

I am very indebted to J. M. Bismut who has initiated me into the
intricacies of the Malliavin calculus. I also wish to thank C. Leonard
for the time he has spended on teaching me the very little I know
about large deviations and an anonymous referee for helpful criticism.

Notation. — For 0 < k < + oo, C*, C%, Ck are respectively the
spaces of k-times continuously differentiable functions, C* functions with
bounded derivatives up to order k, and C* functions with compact
support.
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2'(D), &'(D), H*(D), are the spaces of distributions in D which
extend to elements of 2'(R?%), &'(R%), H*(R?) (see e.g [15] for more
details).

If Yis a C*® vector field and f a function, Yf denotes the action
of Y on f.

If Fis a C* diffeomorphism of R, F*Y (resp F*~'Y) is the vector
field defined by

F*N)(y) = @F. )(F'(y)
(resp. F*"'Y)(y) = (dF) ') Y(F(»)))
and is called the push-forward (resp. the pull-back) of ¥ by F.

If M, is a continuous L? martingale, dM, (resp.3M,) denotes its
differential in the sense of Stratonovitch (resp. Ito).

Throughout this work all the considered filtrations are supposed to
fulfill the usual hypotheses, and we use the summation convention

Y a;b; = ab’ = a'b;.

To help the reader, we add an index of some notation which we will
use throughout the paper.

Notation Meaning Introduced in
(H.G)  General Hormander’s hypothesis 0.1), (2.1)
(H.R) Restricted Hormander’s hypothesis (0.3), (2.1)
H.F) Special Hormander’s hypothesis 2.2)

(H. 2.unif) Uniform Hoérmander’s hypothesis 2.1), (2.2)
(H.S) 2.9
(H.C) « Coercivity assumption » ©.7)
0.11) Gauge condition 0.11), (3.2)
D.P) General Dirichlet problem Introduction
P.P) Dirichlet problem 4.8)
(L.P) Boundary value problem 0.4)
(B.P) Boundary problem 0.5)

RMY Resolvant operator 3.3)
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1. DIFFUSIONS WITH A BOUNDARY CONDITION

Let D be an open regular set of R, defined as D = {{/(x) > 0},
where e CP(R?). 0D is locally a C*® hypersurface defined by
oD = {Y(x)=0}. D denotes the closure of D.

We assume that for every x € dD, |V{y(x)| = 1 so that V{(x) = n(x)
is the unitary inward normal at x e dD.

Let we consider

- Y,, Y., ..., Y, m+ 1C% vector fields defined on R? with values
in R%.

- Vo, Vi, ..., V., r+ 1Cy vector fields defined on dD with values
in R?.

- peCy (6D,R").
By Seeley’s theorem [15], one can always suppose that the Vs,

0</<r, and p are the restrictions to dD of Cy functions defined
on the whole space R, denoted again by ¥, and p.

We then define the following second order differential operators

A=12Y Y2+ ¥,
(1.0) .
C=12Y V2 + V,— pA.
=1

Furthermore we assume that

) (V)x)=0 for £=1,...,r

(1.1): for any xe oD i) (Vo) (x) = v, > 0

iii) a*(x) = i (Y)’(x) 2 a>0

i) means that the vector fields V, act on 0D,
ii) is a transversality assumption on ¥V, and,

iii) means that dD is uniformly non characteristic.
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It is then known that there exists for each ye D a unique solution
to the stochastic differential system of reflexion of Stratonovitch (see
(18], [23]).

) dy, = 1,(0) Yo(yo) dt + 1,(») Yi(y,) dw;

+ Lop() Vo) dL, + 15p(y) V,(y,) dM’
©.9) ap(Y) Vo(y,) (V) V,(ye)

i) yo=1y
iii) p(y,) dL, = 15p(y,) dt

that is one can find a stochastic process (Q, F,, P,,y,, L,, w;, M,) satisfying

i) y, is an F, adapted continuous process with values in
D,

i) L, is an F, adapted non decreasing and continuous
process with L, =0 and P, as for all t>0,

J lﬁD(ys) dLs = Lta
0

iii) w,(resp. M,) is a (F,, P,)L* continuous martingale with
(1.2) values in R™(resp. R") whose brackets are given by
KWW, = 8yt KM M), = 8;L,; <W, M), =0,

iv) the stochastic differential in the sense of Stratonovitch
of y, is given by (0.9) i); y, =y, and P as for all

t=0,

J P(Ys) dLs = f laD(ys) ds.

0 0

(1.3) Notation. — We denote by Q, the family of the P,’s laws of
y. So Q, is a strong Markov family of probabilities on C°(R*,D), we
shall call following [23] an (4,I")-diffusion.

Remark that there is one degree of freedom in the definition of the
operator I'. Indeed if we define, for he Cy(0D) with h(x) = hy > 0

t t
(14) L= f h(y,) dL and M; = J h'(y,) OM,
0

0

the stochastic process (Q,F,,P,,y,,L;,w;,M;) induces an (4,[/h)-
diffusion.
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The different terms can be interpreted in the following way :
* A is the generator of a diffusion (with a drift) in D,

*12Y V} + V,, with ¥V, = V, — (Vo¥)n, is the one of a diffusion

=1
(with a drift) on D,
* (Vow)n is a reflexion coefficient at the boundary and p a viscosity
coefficient.

We shall now recall a construction of y,, on which our study is
based. First if y, induces an (4,T)-diffusion, define

t
.5 v, = J 1p(ys)ds, and 7{, = ¥, its right continuous inverse.
0

Then y;, induces an (4,I°)-diffusion, i.e with p = 0. Conversely if
y¢ induces an (4,I°)-diffusion, define

t
(1.6) Ye=1t+ j p(ys)dL;,, and m, =y, !
0

then y; induces an (4,I)-diffusion (cf. [23] p. 212-214).

Hence we are reduced to build a solution of (0.9) with p = 0. We
start with the following definition (see [1]).

(1.7) DeFINITION. — Let x € 0D and (U,F) a local chart at x. (U,F)
will be called a good chart if

i) Fis a C*® diffeomorphism from U onto V < R* x R?™?

i) If Yi=F*Y, and A" = 1/2) Y;> + Y, then A’ is written in V
i=1
as

2 m
C bl viny xox,

1255+ ba )

d
.0
where be Cy(R?) and X, = ) X}
e 0x

on R? with values in R*™* for i = 2, ..., m.

» are Cy vector fields defined

From a probabilistic point of view, (1.7) means the following. Let
y' = (u,x) = F(y). Then, up to the first exit time out of V,y; solves
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the system
du, = dw; + b(y))dt + dL,
(1.8) {dx, = Xo(y}) dt +Y X;(y;) dw; + So(x,)dL, + Y S,(x,) dM

i=2 /=1

Lp(y)dt =0, y; = (u,x)e R* x R*™!

Se
(F*Vy)' =1 in virtue of (1.4).

where <0 ) =F*V,, ¢=1,...,r (see (1.1)i)); after choosing

We then have

(1.9) ProrosITION. — There exists € > 0 such that for all x € 0D we
can find F, such that (B(x,e)nD,F,) is a good local chart at x.
Moreover

-1
Sug)(”Fx”C’;(B(x,s)nD) VIIF, ||c’;(Fx(B(x,e)nD))) S Mk) < + o0,
xX€

Proof. — See [14] Thm 4.5 and lemma 5.18. O

¢ being chosen as in (1.9), in order to build the (4,I'°)-diffusion,
we are reduced to build the A diffusion in D, and the solutions of
(1.8) in a countable locally finite family of good local charts and then
to piece together these processes using the methods of [18]. Thanks to
(1.9), to classical estimates on exit times (for instance [13] 1.6) and to
the Borel-Cantelli lemma, one shows that the so obtained process has
an infinite explosion time.

We go back now to (1.8). Conmsider Q = Q' x Q x Q* with
Q = C(R*,R), Q=C'(R*,R"™"), Q* = C°(R*,R"). The path of
(0',0,0*) = ©eQ is denoted by (B-,w? ...,w",w*' ... ,w*) and
P =P ® P® P* is the Wiener measure on Q. For ue R we define

z,(u)

u+ B,;

t

W) =z, = [ul + j sign (z,(w)) 8B, + L/

0

(1.10)
= |u| + wi(uw) + L¢
M, (u) = wie.

F, is the right continuous P completed filtration generated by B,
w,, 0 <s<t,and w¥, 0<s< Ly
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Consider the stochastic differential system of Stratonovitch

(L11) {dx, Xo(us, x,) dt+ X,(uy, x,) dwi+ So(x,) LY+ S,(x,) dM((u)

Following [24], for all fixed (u,0’)e R X Q', one can construct a version
of the P essentially unique solution of (1.11) which is a flow of C*®
diffeomorphisms of R®™'. Let ¢,(w,u,x) be this process. We describe
the flow of the inverses. From [24], ¢,'(w,u,x) is solution of the
backward stochastic differential system

(1 12) {dxs Xo(ut—ss xs) ds— Xi(ut—-s, xs) &‘W;_ So(xs)d\Ls—- Sl(xs) JMg
X.

Consider the transformation on (,F;) defined by

(1.13) 0-&'=(s>B,— B, ;sow,—w,_;;sowi—wi )
=(B., %W *%).
Since L} only depends on o', and since ®' and o* are independent,
P is invariant under ® — ®*:
Define for ue R
B - o= |5 | = ~1 T u
s = WLyl
It is known (see [38]) that

(1.15) Conditionally to z,(u) =« we have L¥ = L — L*, and
consequently, M,=M,— M,_,, P as.

We can now introduce the flow ¢,(®,u,x) solution, with (u,®") fixed
of

(1.16) {dx,= = Xo(ug, x,) dt = Xi(uy, x;) dwi— So(x,) dLi = S,(x;) dM;
Xo=X.

One deduces from what precedes, that for fixed ¢, P a.s.

cl)fl(co,u,-) = ¢t(d)t’ _Zt(u)")
(117) ¢s(0~)5u") = ¢t—s(6)ta _Zt(u)")o ¢t((’)’u") for s <t
$.-5(8", —z,(),") = dy(®,u,-) 0 $(&", —2z,(u),) for s<t.
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This result is very similar to the one obtained in the case without
boundary (cf. [2]).

Finally we introduce the Girsanov martingale

(1.18) G%(u,x) = exp {ftb(us,¢s(m,u,x)) dwl(u)

- 1/2jt b*(u,, ds(®,u,x)) ds}

and P? = G!’P on F,.

Then the P? law of (u,, d,(w,u,x)) for u > 0, is the law solution
of (1.8).

The construction of the (A4,I')-diffusion is achieved.

Remark. — The construction of the flow ¢ given here differs from
the ones given in [4] or [9], [10], [11]. It seems that this construction
is the most convenient to express the inverse flow.

Finally recall that the local time L, is the density of occupation
time at 0D, that is

(1.19) ProrosiTiON. — Let y, be an (A,I)-diffusion with local time
L,. For £ >0, and D, = {0 < y(x) < &}, we have

lim I/SJ 15,(y)a*(y;) ds = j (Vo) (vs) dL;

£—>0 0

both in L* and almost surely, the convergence being uniform in t on [0,T]
for all T>0.

2. SMOOTHNESS OF THE LAWS

In [9], [10], [11] we studied the problem of the existence of smooth
densities for the laws of the diffusions with a boundary condition. We
recall here the main results we obtained and complete them by showing
the regularity in the starting point. We begin with some definitions.
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(2.1) DeFintTionN (cf. [13] 1.2). — For xeR?, let Ly(x) be the set
of the vectors Y(x), 1 < i < m, and of the Lie brackets of length < N
of the vector fields Y;, 0 <i<m, at x,; Ly(x) = Ly(x)uU Y,(x).

Recall the Hérmander’s assumptions

— (H.G) is satisfied at x if there exist N(x) and c(x) > O such that
for all zeR* Y (Y,z)* > c(x)llz||* ie if Lie (Yi(x);0<i<m)
Ye LN(x)(x)
spans R? at x.
— (H.R) is the analogue of (H.G) just replacing Ly by L}.
— (H.G unif) (resp. (H.R unif)) is satisfied on U = R? if there exist
NU) and c(U) > 0 with N(U) = N(x) and c(U) < c(x) for all xe U.

In particular if (H..) is satisfied at each point of a compact set K,
(H... unif) is satisfied on K.

(2.2) DeFINITION. — Let x€dD, X,, X,,...,X, are the vector

fields defined in (1.6) ii). Let Ly(x) be the set of the vector fields

0

a—~,X2, ..., X, and of the Lie brackets of length < N of the vector
X1

B
fields

> Xo, Xy, ..., Xpn Where at least one of the X;, 2 <i<m,
1

appears, at x. We say that

(H.F) is satisfied at x if there exist N(x) and c(x) > 0 such that for
all zeR?, ) (Y,z)? > c(x)||z||?
Y € Lz (%)

(H.F unif) is defined in the same way as (H.G unif).

(2.3) DerintTiON (cf. [1], [12] 1.5 and [14] 3.22). — Let xe€ oD and
(U,F) be a local chart at x. (U,F) is said to be a very good local chart
if it is a good local chart (see (1.7)) and if (H.F unif) is satisfied in U.

We shall say that 0D is very good if for every x € dD, one can find
a very good local chart at x.

We can state

(2.4) Tueorem (cf. [12] 1.22). — Let P(t,y,dx) be the P, law of y,.
We assume that (H.R) holds (at y), that 0D is very good and that V,
is normalized so that Vy\y = 1/2 a* on dD. Under one of the supplementary



558 PATRICK CATTIAUX

assumptions

i) p is constant (eventually 0),

(H.S) i) V, =0, 1 </ <r, (oblique derivative condition), and
p(x) > 0 for all xedD,

there exists p(t,y,x) defined on R* x D with values in R* , which satisfies

i) x - p(t,y,x) belongs to C*(D),

ii) (t,x)aﬁp(t,y,x) is continuous on Rx x D for all

multi index o,
2.5 iii) For all t > 0

P(t,y,dx) = ID(X)p(t’ysx) dx + lan(x)P(x)P(t,y,x) du

where dp is the area measure on 0D associated to the
Leray form p defined by : dy A p=dx* A --- A dx°.

The smoothness of p in the interior of the domain is shown by
using the local calculus of variations (cf. [10] 1.15), the C*® extension
up to the boundary is the aim of [11] in case (H.S)i). The existence
of a smooth density on 0D is shown in [10] § VI. Finally the C*®
extension up to 0D in case (H.S)ii) is proved in [12] 1.22. The
identification of the boundary density is an easy consequence of (1.19)
(cf. [12] 1.10).

Theorem (2.4) can be localized as follows :

(2.6) THEOREM. — Assume that (H.R unif) is satisfied on U c D,
that U n 0D is very good, cverything else being as in (2.4). Then for
every yeD and t > 0, (2.5) holds if we replace D and 0D by U and
UnaD.

We are now interested in the regularity of p in both y and x.
According to what was done in [14] 3.35 and 4.37 we shall use the
stochastic calculus of variations on the inverse flow. We start by some
notation.

27) € = C°(R*,D) equipped with the cylindrical o algebra and
(Q,)ycp, so that P(s,y,dx) is the semi group associated to
the canonical process s — y;.
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(2.8) On ¥ = C°(R*,R™) equipped with its canonical Wiener
structure, one builds the flow &,(w,y) solution of
dy, = Y,(y)dt + Y(y)dwi; y, = y.
We can state the first result :
(2.9) THEOREM. — Let U and V two open sets of D. We assume
that (H.R unif) (see (2.1)) is satisfied both on U and V, that V n oD is

very good and that (H.S) (see (2.5)) holds. Then for all t> 0,
(0,%) = p(t,y,x) € C*(UX V).

Assume furthermore that U n 0D is very good and that p = 0. Then
p(t,,") € Co(UX V).

Proof. — In order to prove the first part of the theorem, it is
enough to prove that for any compact set K in U, any fe C7(U) with
support in K, any ge Cy(D) with support in ¥ and any multiindices
a and B, the following holds (see e.g. [13], [14])

(2.10) i_[a“f(Y)a"g(X)P(t,y,dX)dY' < (0B, 0) [1fllwlIglles -

If 2¢ = d(K,0D) and S = inf {s > 0,d(y,, K) > €}, we may apply the
Markov property at time 7 = 1/2 (t A S). Therefore
@2.11) | *f(y) °g(x) P(t,y,dx) dy

= ja“f(y) 0Pg(x)P(T,y,dz) P(t—T,z,dx) dy
= ja“f(y)Ew[faﬁg(x)P(t— T(Y),gr(y)(W,Y),dX):l dy

where S(y) = inf {s > 0,d(E,(w,y),K) =€} and T(y) = 12t AS©y)).

Indeed starting from ye U and before to leave U, the Q, law of y
and the law of &.(w,y) are the same. On the other hand we can write
for all ye K and almost all w

[ o]
1= ls(y)>t/2 + Z 1t/(n+1)<S(y)<tln'
n=2

For simplicity we write

(212) Sn+1 = lnf {S ? 05 d(&;s(w’s at/rﬁl(w,y)),K) > 8}~
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Therefore (2.11) becomes

(2.13) J f(y) A’ g(x) P(t,y,dx) dy

+ o0
= z auf(y)Ewlilt/n-f-l < s(y)Ew,[IS,.Jr 1< tn+n?)
n=2

jaﬁg(X)P((nt/n+ D=S8ui1, ‘E:S,H ‘(W’, Een+1)s dx):|:| dy
+ Ja“f(y)Ew[l,,2< S J@Bg(x)P(t/Z, &tlz(W,Y),dx):l dy.

For fixed (w,w") (resp. w) we make the change of variable y — &+, (W,))
(resp. y = &yz(w, )

Remember that if E-(w, y) is the flow solution of

~

A, = — Y (&) dt — Yi«(&,) dW:Q o=y
and if
Ws = Wynt1 — Winep-s» 0<s<tn+1

then

g(t/n+l)—s(wn")OE.»t/rH'I(W,‘) = E)s(wf) for 0 <s < t/n + las.

Moreover the Wiener measure on #  is still unchanged if we change
w into w". As in [14] 3.35, we then deduce that the above (2.13) is
equal to

(2.14) = Z jE"’[a"f(E,,,,,,1(w,y))lt,n+ 1< &y Jacobian gt/n+ 1w, )]
n=2

Ew'[lsu> < tin+n) faﬁg(x)l’((nt/n 1D =8(3)):Es0) (W5 ), dx)] dy

+ J E®Pf(E,5(w, ) 12 < 5 Jacobian &, (w,y) g(x)
P(t/2,y,dx)] dy
where S(y) = inf {s > 0,d(E,(w,y), K) > &}.

Remark that since Eo = id, Jacobian Es >0 for all s > 0.

It remains now to integrate by parts in w and in x, and to add in
n. To this end we remark first that since S(y) > 0, the integration in
'y holds in K, ={y,d(y,K) > €} which is compact. We apply the local
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calculus of variations in E“'(cf. [13]). Since supp.f < K, we obtain for
n>=1

i) sup |Ew[aaf(ét/n+1(W,Y)1(t/n+ 1H<8») Jacobian ét/n-f (w01l

ye K£/2

<c(ag, ) (n+ D)D) £,

(2.15) i)  sup [E“[0"f(Eyns 1 (W, 0) L (yjns 1y < 50y Jacobian gt/rw 1

yeKe—Kgo

(w,»]l
n+1 1

k(lo| +d/2)
< c(a,8,t) (T A ;) Ifllo exp — c((n+ 1)e*/t)

where k is a positive constant only depending on the vector fields. The
exponential control in ii) is a consequence of the following fact : if
d (y,K) = €/2, t/n + 1 must be greater than the first time the process
hits K, for 0*f not to vanish (cf. [13]1.6).

We then apply the local techniques of [10], [11] to P(-,-,dx). Since
(nt/n+1) — S(y) = t/2 on S(y) < t/(n+n?), we obtain

D) sup |E*[Lsg)<unen? Ja"g(x)P((nt/n+ H=SO),

yEKElZ

Esom(W',y),dx)]

< c(B,&,t)ligll sup P(S(y) < t/n+n?)
(2.16) YKy

< c(B&,t)lIglle exp — (c(n®+n)e’/t).
i) sup IE'”'llsms,,mzJﬁ"g(x)P((nt/nH)—S(y),

yEKe"Ke/Z

{;S(y)(wlay)’ dX)]| < C(Basyt)”glloo .

Hence we can make the summation in n, which proves (2.10) and
the first part of (2.9).

It remains to study the existence of a C* extension up to
(UnadD) x V. Indeed y — Q, is continuous (cf. [18]), hence such an
extension necessarily coincides with the a priori defined density
p(t,y,) of P(t,y,dx) for ye U 0D. To show the existence of such an
extension if suffices to work in a very good local chart (B,F) at
yeUn oD, if such a chart exists, and to prove (2.10) with
fe Cy(B). Define

B, = {ze B,d(z,0B) > &}.
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For ¢ small enough, B, is a neighborhood of y and we can restrict
us to fe Cy(B,). Let

S = inf {s > 0,d(y,, By;) > €} and T=1/2(tNS).
¢.(w,u,x) is the flow builded in § 1, for the X;’s given by (1.7).
We define naturally

2.17) S(u,x) = inf {s > 0, (us (), ds(w,u,x)) ¢ F(B,)};
Tw,x) = 1/2(¢ A S(u,x)).

In order to prove the second part of the Theorem, it is enough to
prove (2.10) with supp f < (B, n D), for a very good relatively compact
local chart (B,F) at ye UndD.

(2.18) From now we assume that p = 0 and that U n oD is very
good.

We may write

(2.19) | &*f(y) Pg(2) P(t,y,dz) dy

= f 0*f(F~'(u,x)) | Jacobian F~'(u,x)|
Rt xpd—1

EPb[J‘aﬁg(z)P(t_ T(uax)’ F~ 1(uT(u,Jv:)s ¢T(u,x)(0),uax)> dZ)] du dx .
One extends every he CH(R* xR?™ ') to he C)(R?) by

h(u,x) = h(lul,x) for ueR.

Since the P laws of
(u»(—u), d)-(m,—u,x),GT’-(—u,x)) and (u'(u)a d)-(co,u,x),GB-(u,x))

are the same, (2.19) is equal to

220 =12 J' *f((F)™*(u,x)) |Jacobian F~'(u,x)|

EpltGI_;‘(u,x) Jaﬂg(Z)P(t_ T(u,x), (F)_ l(uT(u,x)’ ¢T(u,x))9 dZ):l du dx
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after extending F~' and Jacobian F~' into elements of CH(R* xR*™Y).
As in (2.12) we put

Spe1 = 10f {s 2 0, (U(0', 2jn+1(0)), Ps(@', Z4yn+ 1 (W), Ouyns1(u,x))) ¢ F(B,)}

which allows to rewrite (2.20) into the form
+ o0 -
(221 =123 J@"((F)“(u,x)) |Jacobian (F) ™ *(u,x)|
n=2

b b
E" [s,x> gn+1 ET [ls,, > un+2 j@ﬁg(z)
P((nt/n+1)= S, 1, F (us,, (@, Zyne1(4),
¢s,,+ 1((’0" Zyn+15 Peyn+1)), d2)] du dx

+ 172 J &*((F)™(u,x)) Jacobian (F)~*@,x)| E” [Lsq0 a2
J@Bg(z)P(t/Z,(F)“(u,,Z, by2),dz)] du dx .
We then make the two successive changes of variables
X = Qyn+1(@,u,x) next u - — z,,.,(0,u)
and endly we change &“"*' (which appears because of the change on

t
x) in ®. The formula w; = J sign (u+ B,) 8B, immediately shows that
0

this transformation on the probability space induces a change of P’ in
PP,

Hence from (1.14), (1.17) and what precedes, (2.21) becomes

+o0 _
222) =12 % | EF [P ((F) (= Zyne 1 (), Bypns 1 (%))
n=2
150, x> yn+1 Jacobian $t/n+l(u’x)|JaCObian F_l(—zt/rH-Ia $t/n+ 8]

EPB[lsw.nszm"zJaﬁg(Z)P((nt/n+ 1)
= S(u,x), (F)_l(“sm,x), Psw,x),dz)] du dx

+1/2 JrEP_B[auf((F)—l(_Zt/z, $t/2))1§(u,x)> 12 Jacobian ‘T)z/z
|Jacobian F (= zys, §,2)| 0°g(2) P(t/2,(F)~*(u,x), dz)] dx

where S(u,x) = inf {s > 0, (u,(u), §;(0,u,x)) ¢ F(B.)}.
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(2.23) But (F)"'(u,x) = F '(Jul,x) (idem for Jacobian F~'),
and the laws of  (u-(u),P-(u,x),G 2(u,x)) and
(w.(—u), d.(—u,x), G"*(—u,x)) are the same.

Hence we do not change (2.22) if we replace 1/2 by 1, (F)™*
(resp. Jacobian) by F ~' (resp. Jacobian), — z,,.,(4) by u,,.,(u) and
P~" (resp. P’) by P~" (resp. P’).

Because supp.f < D n B,, we can integrate by parts in E” - by
using the calculus of variations near the boundary ([11]). We can also
integrate by parts in dz as before. Since (u,x) belongs to F(B;) in the
integral, we have estimates like (2.15), (2.16) (involving F(B,,,) and
F(By) — F(Bs;) in place of K., and K,—K,,). The proof is
complete. O

(2.24) Remark. — If p #0 one has to deal with (u,,d, (4,x))
(see (1.6)). If p is not constant, we do not know wether ¢, remains a
diffeomorphism of R®”', which is required in view of the change of
variable x — ¢, (u,x). If p is a non zero constant m, only depends on
u and ¢, is a diffcomorphism whose inverse is given by (1.17). In
return we do not know whether the function u — z, (u) is a change of
variables.

At last as in [13] 1.12 and [14] 3.44, one can obtain for the densities
the following upper estimates.

(2.25) ProposITION. — Let U and V be two open subsets of D,
d' =4d/2,t>0. Let U, (resp. V,) be the set {xe D,d(x,U) <€} (resp.
with V). Assume that U 0D and V 0D are very good and compact,
and that (H.S) holds. Then

1) If (H.R unif) is satisfied in V. for an ¢ > 0, there exist n and c
positive, only depending on the data on V, such that for all x € D

Ip(t.x, )lckm < (@A) "=+

ii) If in addition (H.R unif) is also satisfied on U,, and p = 0, then

P s lick@xm < c(e Ag) nk+dh
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n and c depending this time on the data on V, and U,.
Moreover for any m > 0 and any multi index o, there exists
¢ > 0 such that

ok '
sup ——ap(l,-,y) < c(sAn/\t)~n(k+lal+d)
yeV.dy,myzn ||0Y dm
exp — ¢'(n*/tAn))
sup ap(t,x, ') < C(S/\ n /\t)-"(k+[al+d,)
xe U, d(x,V)>n ||0X km

exp — ¢'(n’/tAn)).

Recall that if Lie (Y,(x),...,Yn.(x)) spans R? at x € 6D, we can
find a very good local chart at x (cf. [11] section 2). By virtue of (1.9),
Proposition (2.25) extends to domains U or V with a non compact
intersection with 0D, provided they are uniformly very good i.e. when
the X;s defined by (1.7) in F(B(x,e)nD) are satisfying (H.F. unif). In
particular if we can find N and C > 0 such that

Y, (Y,z)* = C|z|® for al xe UndD and zeR?,

Ye Vy(x)

where Vy(x) is the set of the Lie brackets of length < N of the Y/s,
1<i<m,atx, Un oD is uniformly very good.

3. RESOLVANT OPERATORS AND KERNELS

For h e C¥(D) and v e C¥(dD) we consider the process H}"* defined
by

t t
@3.1) HP® = exp — J h(ys) ds-exp — J v(y,) dL;.
0

0

The Gauge of H™" is the function J(y) defined by
+ o

3.2) J@y) = EYU‘ H{""(dt+dL,):|~
0

In the whole paragraph we assume the following

(0.11) sup J(y) < + oo (Gauge condition)

yeD
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so that for any fe Cy(D) and g € C¥(0D) one can define

+ 00

(3.3) R7:0) = Ey[j . f(yt)Hi“"dHJ

0

g H ?‘”st] :

The aim of the paragraph is to show that if (0.11) and (H.G) (see
(0.1) or (2.1)) are fulfilled, the operator

R"":(f,g) > R},

maps C3(D) x Cy(dD) into C®(D), and admits suitably regular
kernels, namely

(3.4) THEOREM. — Let U and V be two open sets of D. We assume
that (H.G) is satisfied at any y € U and any x € V, and that (1.1) and
(0.11) hold. Then

1) R*"(C7(D)*x Cy(@D)) = C=(UV)
2) The operators

RE*:C2(V) > 2'(U) and R :C2(VAdD) » 9'(U)
f - RYS g Rgy
have their kernels, respectively denoted by K, and K,,, which are
C® out of the diagonal.
(i.e supp-sing- K, = diag (UX V) and
supp -sing - K, < diag (U (VndD)).

To this end we first introduce an auxiliary process easily related to
y., which can be submitted to the techniques of § 2. Here the situation
is a little more intricate than in [13] or [14], on the one hand because
of the apparition of the local time L,, on the other hand because of
the chart by chart construction of y,.

3.A. An auxiliary process and the reduction of the problem.

We start by settling the problem of the viscosity coefficient p.
Indeed if y; with local time L; induces under PJ an (4,I)-diffusion,

setting
-1
n = <t+ Jp(yi’)dL2> ,
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we saw that y; induces an (4,I)-diffusion, with local time L;, . Hence
+ o0 o
(3.5 R0 = E?)I;[ FOHH MR gt
0
+ f @D +pf (YD) H Mo dL?]
0

where E? is the PJ expectation and H f""’ is associated to yy. Then if
R? is the resolvant operator associated to yy, PS5, L} one has

(3.6) R}y = (RO}5457
So we may and will assume that p = 0.

Let we consider m + r + 3 vector fields Y;,, 0 <i <m, V,,
0< 7 <r and Z defined on R*"! with values in R*"*, of C{? class,

given by ,
To(r,6) = (“Z@OY °‘y)>:|7,~(y,¢) - (u(a) OY,.(y)), L<icm.
T LLC) oo
V((y,ﬁ)—( ’0 ) 0</<r; Z(y,g)_<u(§)),
with u(¥) = (2+sin £)/3,/2, EeR.
Define
=122+ 125 Ti+ ¥,
(38) i1

C=112) V;+V,.
=1

One can build on D x R, an (4,T)-diffusion (P,;,(¥,,&),L).

Let © be the canonical projection from R? X R onto R?, and

(39 3() = J w(@)ds, y@ =)

0

Then n(¥,, &,y induces the (4,I)-diffusion starting from y, with local
time L.

One immediately has

(3.10) RE5(0) = (R3°(n,8)  for all EeR,

2.g
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where

(R)™5°(3,€)
= Ey.a[ J f()u*E)exp— J (h(Fo)u*(Es) ds+v(y)dLy) dt]
+ Ey.aH wg(ile)eXp— J (h(F)u*Es) ds+v(y,)dL)) dl?t]-

All the interest of the introduction of the auxiliary process is explained
in the following proposition.

(3.11) ProvositioN ([14] Thm 4.5 and lemma 5.18). — 1) Let U < D.
Assume that A fulfills (H.G unif) (see (2.1)) on U, then A fulfills (H.R
unif) on U X R.

2) Let U < oD. If A fulfills (H.G unif) on U, then U x R is very
good for A. Moreover one can find € > 0, only depending on the data
in U, such that for every x € U there exists a C* diffeomorphism F,
from (DNB(x,e)) X R onto a subset V of R* x R? satisfying

i) (DNB(x,e))x R, F,) is a very good local chart at (x,E) for all

EeR.

ii) All the derivatives of F, and F;' are bounded on (DnB(x,g)) x R
(resp. V) uniformly in (x,§).

3.B. Smoothness of the operator R™°.

If (0.11) holds, the operator R™": (f,g) — R'?%, is well defined, and
maps C®(D) x C*(@D) into L*(D). We now give the proof of
Theorem (3.4).

Proof. — As in the previous section we may and will assume that
p=0. To prove (3.4.1) we shall show that for all ¢ € C7(UnD) and
every multiindex o the following holds :

(3.12) Ua“w(y)R?:Z(Y)dy‘ < c(@lly -

Indeed in this case R}%e C*(UnD) and extends C* up to U n dD.
This extension is equal to the a priori defined R%%(y), y € dD, because
of the continuity of y - Q, and of (1.19).



DEGENERATE PROBLEMS 569

From (3.10) one has

(3.13) f o) R () dy = f FoO((RY™ Y + (R~ () dy.
According to (3.11) the semigroup
(3.14)  P(».8),-): C°(DxR) >R
= — — hul
F > E,[F(y,,E)H"™"],
admits for all t > 0, a density m(t,-,+) e C*((UXR) x (VXR)).

Of course we are not exactly in the situation of §2 because of the
apparition of the extra term FI:‘“Z'”. But this is not relevant, and all
the results of §2 extend to that case except the upper estimates (2.25)
which have to be weighted in a natural way, using the well known
fact that E[exp L] < + 0.

Now using again the Markov property, we can control the integration
after time 1 namely :

(3.15) j6“¢(y)173y,aU wf(fz)uz(ﬁz)ﬁf‘"z‘”dt] dy

= faacp(y)m(l,(y,a),z)(m';:i;g(z) dz dy

= (=" J 0y 33m(1,(.8).2) (R (2) dz dy
similarly

(3.16) Ja%p(y)f?y,.»,[ j wg(y“»m"“dz,] dy
= (- 1* fw(y) oim(1,(3,£),2) (RYE*(2) dz dy.

1
We now have to integrate by parts in j 0°'(p(y)E,,§|: j ...:Idy.
0

This will be done in the same way as in (2.9).

Introduce U, = {y € U,d(y,0D)>¢} and a recovering of U X R by
U, X R and a family of very good local charts like in (3.11.2).
Introducing a partition of the unity if necessary, we may assume that
supp ¢ is included in the projection of a very good local chart or in
U,.
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Begin with the case supp ¢ < Uy,.
Set S(y) = inf {t>0,y,¢ U,,,} and T(y) = 1 A S(p).

We are following (2.11)-(2.14). So as not to exhaust the reader’s
patience, we only give the details on S(y) > 1.

Define £ (w,z) as the flow solution of
dgz == Yo(Ez) dt — 7,~(E¢) dw; — Z(Ez) dwyt?, EO(W9Z) =2z.
Then

(3.17) jﬁ“w(y)Ey,g[j f(fz)uz(ét)ﬁf‘"z’”lsmndt] dy

=E”U_ j 0°Q (R, (W,2)) f (E,(,2)) u*(W'E (W, 2))
Jacobian &,(w,z)154. H,(w)H; '(w)dt dz]
where

S(z) = inf {t>0,8,(w,2) ¢ U, ;s xR},
n' is the projection of R? x R onto R, and

A,(w) = exp ~ f B, O, 2)) (e, (w,2)) ds

Indeed starting from a point in D and before to leave D, the local
time L is remained constant equal to 0.

We then only have to integrate by parts using the calculus of
variations on & just taking care of the fact that the derivatives of f
and h also appear.

The justification of the summation in n<1= Y 1yt 1<r<1 ,,,) follows
N

from estimates similar to (2.15) and (2.16) replacing K by U,,, and ¢
by g/2.

Still with supp ¢ < U,,,, we now have to integrate by parts in

j@“(p(y)l_?y,gl:j ... dlft] dy.
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With the same notation as before we see that on S(y) > 1, the local
time did not increase so that this term is 0. Thus we give the details
on 1/2 < S(y) <1.

(3.18) faa¢(Y)Ey,§[11/2<SU)<l J g()Tt)F]:'“ZvvdL_t:I dy
0

1/2
= jau(p(y)Ey,i[l1/2<S(y)E}71/2’€1/2[<J‘ g(yl)Hfmz’ust>
0
: lswl/z)sllz]jl dy

from the Markov property and because L, = 0 for te€[0,1/2] on
S(y) > 1/2. Introducing the inverse flow, this is still equal to

1

B E"’[J 0*Q(n,/5(W,2)) 15¢»1/2 Jacobian §,,(w,z)

1/2
Ez|:1S(z)< 1/2<J g(Yt)H;wz’vst>] dZ:'
0

and we again apply the calculus of variations on &.

Now assume that supp = B with (BxR,F) a very good local
chart as in (3.11.2).

Set B, = {y € B,d(y,0B)>¢/4} and S = inf {t>0,y, ¢ B}.

Since the B,’s and U,,, are still an open recovering of U we may
and will assume that supp ¢ < B, n D (take care that 0B is relative
to the induced topology on D, i.e is the intersection of the closures in
D of B and D\B).

Consider the vector fields

F*Yo=<)_?>, F*Y,:()Q(), 1<i<m, F*Z=(g>,
0 i

F*V,=<9>, 1</¢<r, F~*I70=<§1> defined on R?'! with
0

values in R?*!.

Let z,(u), u,, L! be as in (1.10) and ¢,(w,u,x) be the solution of

(3.18 bis)  dx, = X,(u,,x,) dt + X,(u,,x,) dw' + Z(u,,x,) dwr*?
+ So(x)) dL* + S,(x,) dM’(u) ; X, = xeR?
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$.(o,u,x) is the reversed flow obtained by taking the opposites of the
fields, @' is the time reversed path defined in (1.13) (with the apparition
here of w™*'). As before we introduce S(u,x) resp. S(u,x)) the first
exit time of B’ = F(BxR) for ¢.(resp §.) and we replace (y,&)1,.
by F_l(uss$s)ls<s(u,x)'

Here again we give the details of the localization procedure only
on S >1 (ie Su,x)>1)

1
(3.19) jaaw(y)Ei,y[J f()_’:)uz(iz)ﬁf'"z’”lbldt] dy
0
= J (@@ o mo F~')(u,x)|Jacobian F~(u,x)|
BI
1
EPbI:IS(u,x)> 1 J‘ (fomo F_l) X (u2 om' o F_l)(uu 6:)
0

t
<exp - f (homo F Yy xw?on’ o F~Y)(us, §,) ds

0

t
exp — J (vomo F71)(0,9,) dLg)dt] du dx .

0

Following (2.19)-(2.21) we define

t t
/ ~? = CXPJ. b(usa ‘T)s) SW; - 1/2J' bz(us, &)s) ds
0

0
t
H, = exp — J [(homo F Y)x u?omo F~1))(u, d,)ds
0

+(@omo F1)(0,$,)dL¥]
so that (3.19) is still equal to

(3200 = fl E"U (@@ om F)(uy, §1(u,x))
o ’ |Jacobian F~*(u,, §,)(u,x))|
s> 1(f0 70 F~ ) (g, &,(u,%)) (0 0 ' 0 F~ 1) (uy, $y(u,X))
Jacobian ¢, (u,x)H, H; G dudx] dt .
We can add to (0.9) a supplementary equation
dA, = H[((homo F Y)xu?on' o F~))(u, &) dt

+@omn F')(0,,)dL;]
H,=1.
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This shows that we can use the calculus of variations of [11] to
integrate by parts in (3.20) for each fixed t.

Finally since £ = L* — L*_, conditionally to z,(u) = u’ (see (1.15))
we have

(321 5“<P(y)Eg,y[IS> 1 J

0

1

20 A, df,] dy
- Ep[f (@@ om F")(uy, §,(u,x))|Jacobian F~*(u,, ,)| Jacobian §,
B/

1
Lswn> IGI”ﬁl(j (gomo F“)(0,<T>z)17?‘dLl‘>dudX]-
0

One more time one easily checks that we can use the calculus of
variations of [11] to integrate d*¢ by parts. The proof of (3.4.1) is
achieved.

In order to show the regularity of the kernel K, in (3.4.2) one has
to show the following :

For any compact subsets K and K’ of U and V such that Kn K' = J
any f and ¢ respectively in C?(K’) and C®(K) and any multiindices
o and P one has

(3.22)

ja“m(y)Rga;o(y) dy| < (@B @llwllflle-
Hence here we have to integrate both 8*¢ and oPf.

We write (3.15) in a slightly modified form

(3.23) ja“tp(y)Ey,g[f aﬁf(?:)uz(ét)ﬁi'“z'"dt]dy

+

= j5“<P(y)m(1/2,(y,€),Z)Ez[J

1/2

i Pf(yurE)HM dt] dy dz.

We integrate by parts in E, using the local calculus of variations
between the times ¢t — 1/2 and t. The integrability in dt is ensured by
(0.11) and (2.25) (see [13] and [14] for analogous results). Then for
fixed z we integrate by parts in y.

Set € = d(K,K’'). Because supp f < K’ one introduces

T(y) = inf {t > 0,d(,, K) > &/2}.
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We then have

(3.24) Ja“w(y)Ey.z[j 5”f(?=)u2(€z)ﬁ?“2'”dt:| dy

= Jaa(P()’)Ey,éliJ‘ aﬂf(j’t)uz(&t)ﬁ?ﬂ'vdt} dy.

T®)

One uses again the localization procedure writing

1= 1T(y)>1 + 2 11/n+1‘|.< Ty < 1/n-*
n>1 |
If T(y)e[l/n+1,1/n] we reverse the time at time 1/2(n+1). (3.24) splits
into two independant parts as in (2.14) and we use the calculus of
variations on y  to integrate 0°f and on the reversed process to

integrate 0°¢@ just as in the above proof of (3.4.1). This shows the
regularity of Kj,.

Finally to study Kj;,, using a change of coordinates induced by a
very good local chart, we are reduced to the case D x R = R* x
R?.

We must show that for any compact subset K of U, any compact
subset K' of VnoD=Vn({0}xR* ') and any multiindices
o= (0, ...,0), B=(Bz...,Ba), we have

(3.25) Ua“(p(y)Rf,'ja”ag(y) dy| < c(,B) loll-l1glle -

We write again (omitting the diffeomorphism F for simplicity)

(3.26) ja“(p(y)l?y,g[j 5"f(}"z)ﬁf"‘2’”dl—a]dy

+ o0

_ j au(p(y)mU/z,(y,&),z)EzU

1/2

o n+1/2
= J‘a“w(y)m(l/L(y,&),Z)( ) EPbU 0°g($¢(w,2))> A st"] dzdy.

n=1 nl/2

g (yyHM di,] dy

We are obliged to cut up the integration in dL! because of the
possible problems due to the Girsanov transformation at infinity. With
o' fixed (see §1 for the notation) we apply the partial calculus of

variations on w?, ..., w™"! in order to integrate o°g by parts.
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Indeed each term of (3.26) is written as

(3.27) E”"[Jmm5”g($,((0,2))f75‘“2‘”d1~t“]

n/2

n+1/2
- U E** [P g($(@,2)) Gy HI™Y) dL,"(m')]'

n/2

Finally to integrate
1
f 6“<p(y)Ey.¢U 6"g(Pt)1?$‘“2'"dE} dy,
0

we do as for f ((3.24)) and then as before ((3.27)). O

(3.28) Remarks and complements. — 1) If (0.11) is fulfilled one can
choose T > 0 such that for all ye D

IENUCD gG)H dL,]

(since the support of g is compact).

<&

From (1.19) one gets

T

giir‘l) 1/8[ @) 2V W) () &) Hy 15, () ds = j gy ) HyY dL,

0

with g any Seeley’s extension of g. The above limit takes place almost
surely and in L?. We deduce that for all xe ¥V ndD and ye U with
x # y one has

(3:29) Kop(y,x) = (@*(x)/2(Vo¥)(x)) Kp(¥,X) -

2) One can introduce A, the right continuous inverse of the local
time L,. Then for ye oD,

E[ J e HE dL,]

= E[f+w 1a,< +08(ya,) €xp _<J’ v(ya,) ds+h(ya,) dAs> dtil.
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The process t — y,, is called the boundary process. The preceding study
supplies regularity results for the potentials associated to this particular
jump process. These results also can be obtained with the help of the
results of [4] and [19] on the laws of (4,,y,), may be with some
difficulties due to the joint regularity and the necessary integration in
A,. We shall return later to the analytical signification of this result.

3) Let ne CY(R™). One can mimic all what we have done in this
paragraph and prove that the operator

+ o0

R (f,8) - E’[f cDf(ih)ﬂ(t)Hf“"dt+ J.

0

g(Yz)n(t)H:"ustiI

also satisfies (3.4.1) and (3.4.2). The only thing we have to remark is

. t
that the passage to p # 0 involves n<t+ J p(ys) dLs>.

0

In particular if suppmn < [, + o[ for an € > 0, the formulae (3.15),
(3.16), (3.23) and (3.26) and their developments show that R%"™ and
REY™ are regularizing (i.e their kernels K} and K3, are of C*® class on
the whole considered spaces).

This result will be crucial in the next paragraph.

4) If we replace (H.G) by (H.G unif) (see (2.1)) on {d(y,U) <€}
and {d(y,V) <g} for an € > 0, then R**(Cy(D)x C¥(dD)) = C¥(U),
and we can find uniform upper estimates for the kernels K, and Kj;,
on the set d((y,x), diagonal) > ¢ > 0.

This is particularly relevant if (H.G unif) is satisfied on D.

5) It is easily seen that, if D is compact, t — E’[H""] is uniformly

continuous on R, with modulus of continuity sup E’[H%](t—s). Hence,
yeD

if (0.11) holds, lim E’[H™"] = 0.
t— o0
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4. BOUNDARY VALUE PROBLEM

In this paragraph we shall study the boundary value problem

(h—Au=fin D
(L.P) {(v—l‘)u = g on 0D

with he C¥ (D) and veCg(dD). We shall call (L.P) the Ventcel problem.

If the Vs, 1 <¢ <r, and p vanish identically, this is just the
oblique derivative problem. As explained in the introduction (L.P) is a
classical problem in p.d.e theory ([20]), but can fail to reach the classical
formalism of this theory. The Ventcel condition arises from the semigroup
theory. When A is uniformly elliptic, (L.P) was solved in [8] and [33]
(also see [28]). In this case it is proved that the solution u is equal to
R}? ([29] Prop. 5.2).

Here on the contrary we dispose of the Feller semigroup via the
stochastic process y. of §1. We shall use its properties proved in the
previous paragraphs and the martingales methods due to Stroock and
Varadhan ([18], [31]) to solve (L.P) in the hypoelliptic framework.

As in [14] §5 we begin with a result of a priori regularity for the
solutions. We then show that R} is a solution before concluding to
uniqueness. A detailed comparison with existing results is done at the
end of the paragraph.

First of all let we say what we mean by a solution of (L.P). Recall
that 2'(D) is the dual space of CP(D) and can be identified with
25(R?%), the space of distributions with support in D, thanks to a
continuous operator of extension (cf. [15] 19.3).

Let ue 2'(D). We shall say that u admits sectional traces on 0D
up to order k (k € N) if for any local chart

F:Bc D> VcRYx R

and any @€ C7(B), the image of @u by F is an application of C*
class in x' with values in 2'(R*" "), for sufficiently small x' > 0.

We define the traces as

Yo = ulsp’ YU = Yol (W)u], 0<j<k
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where n is the unitary inward normal vector field.
yu is then an element of 2'(dD).

The boundary condition (v—I")u = g on 0D, reads as follows :

4.1) (v+ph)-yu—1/2 2 Vi(you) — I_/o('You) = (Vo) - vau=g+p(vof)

with 7, =V, — (Vo(y¥)) - n.

We begin by stating the main results of this paragraph. The first
one is the analogue of Hormander’s result for the boundary value
problem :

(4.2) THeoreM (of a priori regularity). — Assume that (1.1), (0.7)
and (H.G. unif) (see (2.1)) are fulfilled in D. Let U be an open subset
of D. Then any ue 2'(D) solution of (L.P) with fe C®(U) and
g€ C*(UndD) belongs to C*(U).

In other words the boundary value problem (L.P) is hypoelliptic.

The next results are concerned with existence and uniqueness. First
recall the following definition :

(4.3) DEFINITION. — Let ue 2'(D). One says that u belongs to
&' (D) if, after the identification of 2'(D) and D5(R?%, u belongs to
S (RY).

(4.4) THEOREM. — 1) Assume that D is compact, that (1.1), (0.11)
and (H.G) are fulfilled in D. Then for fe C*(D), ge C*(0D) the
boundary value problem (L.P) has a solution ue C*(D), unique in
9'(D), given by u = R}Y.

ii) In the situation of i), we do not assume that D is compact, but
we assume that f € C¥(D), g e C7(dD) and that (H.G unif) is satisfied
in D. Then u = R%%e Cy(D), and is the unique solution of (L.P) in
F'(D).

iti) In the situation of i), let feC*(D)n¥'(D) and
g€ C*(@@D) n &' (0D). Then u = R}2e C*(D) n &' (D), and u is the
unique solution of (L.P) in &'(D).

We finally extend the above result to certain Sobolev spaces.
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(4.5) THEOREM. — We assume that D is compact, that (1.1), (0.11)
and (H.G) are fulfilled in D. Then for ke N, f € H*(D) and g € H*(0D)
there exists u e H*(D) solution of (L.P). Furthermore u is unique in
2'(D).

The proofs of the above theorems will use the following

(4.6) THEOREM OF TRACES. — Let u € 9'(D) such that (h—A)u = f
in D. We assume that 0D is non characteristic.
i) If f e C*(D), u admits sectional traces on 6D of any order.
il) If f € H},.(D), u admits sectional traces on 0D up to order k for
0<k<s+ 3/2.

Furthermore if M is a subspace of 9'(D) equipped with a topology such
that there exists a continuous operator of extension from M to 2'(R%,
then the traces of u, as elements of 9'(0D), depend continuously of

u, e M x H (D), for s> 1/2.

The proof of (4.6) can be found in [15] chapter 5, Theorem 2.9 and
remarks 2.10 and 2.11.

4.A. A priori regularity.

We want to show that under (H.G) any u € 2'(D) solution of (L.P)
with data (f,g) e C*(D) x C®(@D), is in C*(D). To this end we
shall show that yju € C*(0D). Indeed recall the following theorem :

(4.7) TueoreM ([14] Theorem 5.3). — Let U be an open subset of
D such that U n 0D is non characteristic. Assume that (H.G) is satisfied
at each y € U (or briefly on U). Then if ue 2'(D) is a solution of

(h—Au=fin D
Yo = g on 0D

with f € C*(U) and g e C*(UndD), then ue C*(U).
This holds of course for U = D.

As in the proof of the Hormander’s theorem in [13] Thm 2.2, or in
[14] Thm 5.3, we intend to approach y.u by functions ¢, e C*(6D) and
to use the kernels studied in §3. The difficuity here is essentially the
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presence of y,u in I'. The idea of the proof is to solve the Dirichlet
problem

(h—A)u,= fin D
YoUtn = @, On 0D

and to show that u, depends continuously of ¢, in a suitable space.
We then deduce from (4.6) that y,u, also depends continuously of ¢,.

The reader must be aware that the machinery we shall develop is
really necessary. This is because we cannot simply approach u by
u, € C*(D), and be sure that the sectional traces yu, converge to yu,
as we can see immediately from the density of CP(D) in 2'(D). In
other words the sectional traces are not continuous operators in general.

To carry out our program, we are lead to extend some of the
results on the Dirichlet problem we obtained in [14].

First we need to define the coercivity assumption

T
(0.7) sup E’[j Hﬁ"°dt] < + oo, where T = inf {t>0,y, ¢ D}.
0

yeD

(4.8) TueoreM ([14] Thms 4.37 and 5.14). — Let D be compact, we
assume that (1.1) iii), (0.7) and (H.G) are fulfilled on D. Then for all
g € C*(0D), the Dirichlet problem

(h—A)u=0in D
(P.P) { Yot = g on 0D

has a unique solution u, in 9'(D). u, € C*(D) and is given by

T

u(y) = E’[1T<+wg(yr) exp — J

0

h(y,) dt:|
= j K(y,x)g(x) du(x) (du the area measure)
oD

where K € C*(D x 0D —diag (D % dD)) is the Poisson kernel (K(y,x) = 5,
if yeaD).

The smoothness of K in the final variable was obtained in [1]. We
shall extend (4.8) and prove
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(4.9) THEOREM. — Under the hypotheses of (4.8), for every g € 2'(dD),
the problem (P.P) has a unique solution u, € 2'(D). Furthermore the
harmonic operator

H: g-u,
2'(0D) - 2'(D)

(or Poisson operator) is continuous.

Theorems (4.8) and (4.9) say that the Poisson kernel is a very
regular kernel on D x 8D, in the sense of [34] p. 536. An interesting
problem would be to study the same property for the Green kernel of
[14] and for the new kernels K, and Kj,. Since K is (at least formally)
a two sided fundamental kernel for (P.P), this could be seen as a
partial analogue to Corollary 1 p. 540 of [34], which says that an
operator A and its adjoint A* are hypoelliptic in an open domain U
if and only if every point of U has a neighborhood where 4 has a
two sided very regular fundamental kernel.

Proof of (4.9). — The operator H: C*(0D) — C*(D) having a
g Ug
C® Kkernel, is regularizing and then extends in a continuous operator

from &'(0D) = 2'(0D) into C*(D), defining

ug(y) = <K(y,%).8) -
Moreover (h—A)u, = 0 in D.

We have to prove that u,e 2'(D) and that H is continuous for
the topology of 2'(D). The properties of K are unsufficient to conclude
directly. We shall give another construction of u, using the Fourier
transform. We then first have to localize in order to work in R?.

Since D is compact one can find € > 0 and x,, ..., x,, n points
of 0D such that the balls B(x;,€) form a recovering of 0D, and are
via a C® diffeomorphism F;, good local charts. One can find n > 0
such that for all x e dD the ball B(x,n) is included in one of the

B(x;,€) = U;. From the recovering |) B(x,n), we extract a finite
xe 0D

n'

subrecovering U B(x;,m). One can find n° > 0 such that B, = {{(x) > n’'}
1

and the B(x},m/2) form a recovering of D. Set My, Ny, ..., M,, 2
subordinate partition of unity.
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We have to prove that for 1 <j<n', y > (K(y,*),n;g> belongs
to 2'(D), and the preceding construction ensures that supp n; = Uy,
(Usy, Fs(jy) being a good local chart.

So as not to introduce unnecessary Jacobians, we replace the area
measure (related to the charts induced by ) by the area measure dp'
induced by the (Uj, F;)'s, but conserve the notation K for the Poisson
kernel after changing the variables. Consider for £e R*™!

i) H,Ey = j () K(y,x)e"Fo@*2 dy’ (x)

#1005 - Jd (1,0 Foy) Q.0 KG, P (0,x))e'"? d
.

i = By Lrc 4o Fo0OD S HA

From (4.8) H, is the solution of

(h—A)H,E,-) =0 in D
{Yon(é,-) = n,(+)e" eV e C*(aD).

Then H, satisfies
i) (€,y) » H,(§,y)e C*(R*"'x D)

ii) For all ye D, & —» H,(£,y) e F(RY)

iii) y — (¢ » H,(£,y)) is continuous from D into C*(R?™!)
and from D into & (R*™ %)

4.11)

(4.11) ii) is an immediate consequence of (4.10)ii) since H, is the
inverse Fourier transform of a function of C¥(R?"'). To prove (4.11)1)
it is enough to see that we can differentiate in & under the expectation
in (4.10) iii) so that

o

d .
(4.12) o€ H,(5y) = M) 1< i o PulFo(yr))eFo 0TS HEO]

where P, is a complex polynomial, and then EEHA&’ ) which is the
solution of (P.P) with g, = m,e"Fo© (P, 0 F,,), belongs to C*(D)
thanks to (4.8). H,(-,-) belongs to C*(D x R*™") (differentiation under
the integral sign in (4.10)1)), and all its derivatives are bounded from
what precedes, then it belongs to C®(Dx R?*™?). (4.11)iii) follows from
(4.10) i) and (4.12).
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On the other hand H, and u, are related by

4.13) < )K@,-),ni(-)g) = (21t)‘*"f

RA~

RALLACIIES

where g; is the Fourier transform of F,;*(n;8), Fs* being the image
operator from 2'(0D) to 2'(R*"') induced by the diffeomorphism
F, . Hence since n;ge &'(0D), ;€ C*(R*™") and is slowly increasing.

Of course for ye oD, H,(-,y)¢ £(R*" ') and we cannot conclude
that (4.13) is continuous at y € dD (otherwise u, € C°(D)!!).

To obtain the existence of a sectional trace of order 0, we first
assume that y belongs to a good local chart B(xj,n/2), so that we
shall work in the usual half space. If ye R® we put y = (',3) e R x R¢™ !,
Let o € CY(R?™ "), we study the following quantity

4.14)  <(Mro Fog)O )M () K(Foin(0',+),+),1m,8>, M),
1<k<n'.

From (4.11)iii), for y* > 0, one can apply Fubini’s theorem so that
(4.14) is still equal to
@.15) @2m' jgj(&) @(P)(Mk © Fo) W', ) H (&, Fohy) (v, 3) dy d&
= (@2m)'~¢ féj(ﬁ) '”(P(J")(m 0 Foly) 0,9)(M, 0 F3))(0,x)e" ™
K(Fiy(',7), Fo—(;)(oax)) dx dydg.

If o(¢) # o(k), then d(F3} ('), supp. n,) > n by construction,
and

03) = (e 0 Fay) 00,7)(Me © Fo ) (0,%) K(Foy ('), Fay(0,X))
is C® up to the boundary y' = 0 so that

(4.16) y' — the quantity (4.14) belongs to C®(R™), and vanishes
on y' =0.

The only interesting case is then o(/) = o(k). In that case we
suppress this subscript and simply note F~'. In the same way we write
n, (resp. H,,K) instead of mn,oF '(resp. H,(§&,F '(y',y),
K(F~'(+),F~'(+))). We shall show
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(4.17) LemMmA. — For all ne N

sup sup (1+[g]%)"

311>0§5Rd_l

j(P(}—’)ﬁk(ylsy)ﬁ{(&ayl,)—)) dy‘ < c(n).
Assume that (4.17) holds. Then

i)

g®) f@(?)ﬁk(y‘,i’)ﬁz(ﬁ,Y‘,J")di"

< c((d+q+1)/)/(1+ (g1
if [g,®)] <c(l+[E]*)*
i) lim H,(Ey%5) = 0(0,7)e' .

yloo

(4.18)

Since H,(§,-)e C*(D) we may apply a first time the bounded
convergence theorem to obtain

(4.19) lim j ORGP E ) dy

yl-o
- f OO, P0,7, e dy

and then a second time (thanks to (4.18) i)) and obtain

(4.20) lim Jé,-(&) jw(f)ﬁk(y‘,f)ﬁ;(&,y‘,f) dy dg

yl-o0
= féj(ﬁ) J o(MNNL0,y)M,(0,y)e ™ dy d& = {n,@, Fx(n,g)> .
Adding in k, ¢ one gets

(4.21) lim <@, Fx(nu,(y", +))> = (@, Fu(nig)).

yl-o0

Hence y,u, exists and is equal to g, in particular u, € 2'(D).

It remains to prove (4.17). By definition one has
(4.22) Jﬁz(O,X)I?(y‘,f, x)e" % dx
= "y ) TOP V.

We shall use the fact that (U,F) is a good local chart, by using
the same localization procedure as in §2 and §3. As the reader can
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see the notation is very heavy

1) E, = inf {t>0,y, € B(x;,n)}
Sn = inf{t?Emyt ¢ U}
E,..,=inf{t=S,,y,€ B(x,,n)}
2) ¢,(w,z) is the flow solution of
dz, = (F*Y,)(z,) dt + (F*Y)(z) dw!, z, =z = (z',z)eR?
(4.23) 3) S(z) = inf {s>0, ¢,(,2) ¢ F(U)}
T(z) = inf {s=0, ¢p,(®,2) € {0} x R*"*}

4) z, = F(YE,,) 32 = ¢S(zn)(mazn)

5) H. = H"*; H(z) = exp — f h(s(w,2)) ds.

Since supp n, = B(x;,n/2), for y' > 0 we have
@24)  ETOM[1, n(y)eFOnOH,)
=) EF_10’1'”[1T>E,,HE,,EyE"[IT<so"lz(J’T)eKF(yT)'QHT]]

neN

— Z EF"l(yl,y')[lT>E"HEnE[(l_lT(zn)>S(z"))

neN

= i<¢