
ANNALES DE L’INSTITUT FOURIER

PATRICK CATTIAUX
Stochastic calculus and degenerate boundary
value problems
Annales de l’institut Fourier, tome 42, no 3 (1992), p. 541-624
<http://www.numdam.org/item?id=AIF_1992__42_3_541_0>

© Annales de l’institut Fourier, 1992, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1992__42_3_541_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
42, 3 (1992), 541-624.

STOCHASTIC CALCULUS
AND DEGENERATE BOUNDARY VALUE PROBLEMS

by Patrick CATTIAUX

CONTENTS

0. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

1. DIFFUSIONS WITH A BOUNDARY CONDITION . . . . . . . . . . . . . . . . . . . . . . . . 551

2. SMOOTHNESS OF THE LAWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

3. RESOLVANT OPERATORS AND KERNELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

A. An auxiliary process and the reduction of the problem . 566
B. Smoothness of the operator R^ . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

4. BOUNDARY VALUE PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

A. A priori regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

B. Solution of the boundary value problem (L.P) . . . . . . . . . . . 592

C. On the Gauge condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

D. Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599

Key words : Diffusions with a boundary condition - Ventcel and oblique derivative
boundary value problem - Hypoellipticity - Stochastic representation - Stochastic calculus
of variations - Resolvant operators - Invariant measures.
A.M.S. Classification : 35H05 - 35J25 - 35K20 - 60H99 - 60J35 - 60J60.



542 PATRICK CATTIAUX

5. COMPLEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
A. A decomposition result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
B. Invariant and reversible measures . . . . . . . . . . . . . . . . . . . . . . . . . . 608
C. Gauge, uniqueness and spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
D. Boundary process and boundary operator . . . . . . . . . . . . . . . . 620

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

0. INTRODUCTION

Let A be a second order differential operator written as

m

A = 1/2^ y?+ Fo,
1=1

where V,, (0 ^ i < m), are C?^) vector fields, h be a CH^) function
and D be a regular open set of ^.

h - A is said to be hypoelliptic in D if for ue^\D), ueCCO{D)
as soon as (h-A)u(=C^(D). In 1967, L. Hormander [21] showed that
a sufficient condition for h — A to be hypoelliptic is :

(0.1) (H.G) Lie (V,, 0 ̂  i < m) spans W1 at every y e D.

This condition is also necessary when the Y'iS and h are analytic [16].

Let T? be the semi group on C^ff^) whose infinitesimal generator
coincides with A - h on (^(R^). The Ito's theory allows to give a
stochastic representation of T?, namely

r?/oo = ̂ r/o^exp - r^^si
where y . is the generic element of C^R'^.IR^) and Ey is the expectation
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relative to P y , where Py denotes the Probability measure defined on
C^R4',^) and solution of the stochastic differential system of
Stratonovitch

(02) {^= ^O^4- ̂ )^i
[yo = y

Here the w^s;are independent Brownian motions for 1 ̂  i ^ m, and
we do the usual summation convention for repeated indices.

Actually one can build on the standard Wiener space a stochastic
process (p.(o),y) whose law is Py and which is for every co a flow of
C00 diffeomorphisms of ^ ([2], [24]).

P. Malliavin ([26]) has introduced a differential calculus on the
Wiener space (known as Malliavin calculus) which allows to give a
probabilistic proof of the C°° smoothness for the heat kernel

(associated with — + ^ 4 ) , under the natural Hormander's condition
\ 8t }

(0.3) (H.R) ^(-^Y^Y^\^i^m\ spans ^+1 at every

(t,y)eR* x ff^, (cf. [30]).

In [13], using the Malliavin calculus and the diffeomorphism property
of (p((G),-), we proved (probabilistically) that under (H.G) (see (0.1))
the resolvant operators of the semigroup T? have C°° kernel out of
the diagonal. We then obtained a probabilistic proof of the celebrated
Hormander's result, and a decomposition theorem for the space C^M)
(when Mis a compact C00 manifold), similar to the classical decomposition
result for elliptic pseudo differential operators ([15]).

Consider now the boundary value problem

(0.4) (L.P.)^-^^^111^
I Lu = g on 8D

where L is an operator defined on a suitable space.

There are several methods to regard such a problem. A powerful
one consists in transforming (L.P.) into a pseudo differential problem
on the boundary.
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This method requires having a good knowledge on the first boundary
value problem (Dirichlet problem denoted by (D.P)), that is with
L = To? where yo is the sectional trace of order 0 on 8D.

Indeed assume that the Green and the harmonic operators G and
H are well defined, that is :

Gf (resp.Hg) is the unique solution of (D.P) with data (/,0)
(resp.(O^)),

and moreover G (resp. H), maps C°°(Z)) (resp. C°°(aZ))) into
C°°(5).

Then for /eC^CD) and g e C^D), (0.4) has a solution u e C°°(jD)
if and only if a solution (peC^Z)) exists to the following boundary
problem:

(0.5) (B.P) L.(^(p) = g - L '(Gf) on 8D,

and then u = 77(p + Gf.

In particular if L maps C°°(Z)) into C^^SD), the smoothness of
any solution of (L.P) is equivalent to the hypoellipticity of L.H.

The Dirichlet problem has been studied for a long time in the p.d.e
theory when A is uniformly elliptic. When A only satisfies (H.G) and
D is compact, it was solved by Derridj ([16]), with two additional
assumptions: the boundary is non characteristic for A, and a coercivity
assumption for h. Derridj proved that if the data (f,g) are C00, there
exists a C°° solution u, and uniqueness holds in an intermediary space
between L2 and H\D). Here again the solution u admits a stochastic
representation

rr /r \ 1u(y) = ̂  /(^)exp- h(y^ds ] dt \
(0.6) LJo \Jo / J

r /r7 M+ Ey\g^)exp-( h(y,)dt]\
L \Jo /J

where T = inf{^0,}^Z)}.

Conversely a natural assumption for (0.6) to make sense is :

rp / p \ -j
(0.7) (H.C) supj^ exp- h(y,)ds )dt\ < +< + 00

y e D Uo \Jo / J
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offently called the (uniform) Gauge condition for the Dirichlet problem.
If (H.C) holds and if 8D is non characteristic, one can prove by
probabilistic methods (the martingales methods of Stroock and Varadhan
[32]), that u given by (0.6) is a solution of (D.P). In [14] we applied
the Malliavin calculus (in the formalism of [3]) and developped a
stochastic calculus of variations for the stopping time T (following [11]
and [4]) in order to give a probabilistic proof of the smoothness of u.
Actually we obtained more.

First of all uniqueness holds in ^ ' ( D ) . This is a consequence of
the following analogue of Hormander's result proved in [14] Thm 5.3 :

(0.8) Let U be an open domain of 25, every solution u e ^ ' ^ D ) of
(D.P) with /6C°°(<7) and g e C^(Ur^8D) is in C^(U).

Seconds, all these results extend to the case of non compact Z>, with
y ' ( D ) (that is the u e ^ ' ( D ) which extend to y ' ^ ) ) in place of
Q i ' ( D ) . Finally, the Gauge condition (0.7) is, at least when D is
compact, weaker than the coercivity assumption of Derridj. Notice that
a probabilistic study of the Poisson kernel was first done in [1].

In this paper we shall study the boundary value problem (0.4) for
a VentcePs boundary condition, that is L = v — F, with

r ^

r = 1/2^ F?+ F o + a . - - PA.
^=1 on

The r^s, and Vo are C^ vector fields acting on 8D, u , p and a are
C^(8D) functions with p and a ^ 0, and n is the unitary normal
relative to 8D pointed inward.

This condition was introduced by Ventcel [35] in order to characterize
the Feller semi groups on D generated by A, via the Hille-Yosida
theorem (see [8], [28], [29], [33] and the references therein).

When the V ' ^ { \ ^ ^ ^ r ) and p are identically 0, we get the classical
oblique derivative problem. If one of the Fs(l^^r) does not vanish
identically, the problem (L.P) (see (0.4)) can fail to be elliptic ([20]).

For such an L, (L.P) is only solved when A is uniformly elliptic,
D is compact, and F is transversal on 8D, that is

* a > 0 (strong transversality) in [8],
* a + p > 0 (weak transversality) in [28] and [33];
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of course with some supplementary assumptions on h and v , essentially
h + v > 0, h and v ^ 0.

On the other hand the construction of a semi group T? whose
generator is A - h on M°° = {/ e C°°(5), (u-r)/=0 on 8D}, can be
done directly by probabilistic methods, without any assumption of
ellipticity for A (see [31], [18], [23], [36], [19]).

Namely for / e M°°, one has

r^) == ^r/^)exp-fr/i(^)ds)i,
L \Jo /J

where y is the generic element of C^IR^D) and Ey the expectation
relative to an appropriate law Qy on the previous space.

We are interested here in the case when Qy is the (unique) law
solution of the following stochastic differential system of reflection of
Stratonovitch (this is not always true, see the references given above):

(0.9)

dyi = U^)ro(^) dt, + l^)y.(^) d^\
+ W^o(^) dL, + \^(y^V^iM\

Yo = y
p(^) dLt = \QD(yt) dt

where Vo = Vo -h a — -
^n

The precise meaning of this statement and the definition of the local
time Lt are given at § 1.

If the boundary is (uniformly) non characteristic and F (uniformly)
strongly transversal (see (1.1) in § 1) this is always possible.

The Ito formula gives us the natural candidate u to be the solution
of (L.P) that is :

(0.10) u(y) = ̂ [T/(^)exp- (\(^)^.exp- | v(y,)dL,dt
LJo Jo Jo

/(.V,)exp- h(y,)ds'exp- v(y,)dL,dt\
LJo Jo Jo J

U g(yt)exp- h(y,)ds-exp- v(y,)dL,dLt\
) Jo Jo J

+^ | | ^)exp- \ h ( y , ) d s ' e x p - [t v(y,)dL,dL,
LJo Jo Jo
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and the Gauge condition for (L.P) is then the following
(0.11)

l-F+co / n r't \ -|
sup^ exp - h(y,)ds- v(y,)dL, )(dt+dL,) < + oo .
y e D LJo \ Jo Jo / J

We show in §4 that if (1.1), (0.11) and (H.G) are fulfilled in 5,
then for C°° data / and g , the function u given by (0.10) is in C°°(25),
and is the unique solution of (L.P) in 2'(D) if D is compact, or
y ' ( D ) if it is not (assuming in that case an uniform condition (H.G)).

We now describe the contents of the paper and the relationship
between the probabilistic and the p.d.e formalisms.

In § 1 we define (0.9) and recall some basic facts on existence and
uniqueness. We also give a construction of the solution well adapted
for the sequel. From a geometric point of view the main difference
between (0.2) and (0.9) consists in that we cannot represent the solution
of (0.9) as the image law of a flow of C°° diffeomorphisms. This is
because L(, which depends on the starting point y , is Markovian in y
and hence very irregular.

Fortunately if p = 0 (non sticky case) we can find local charts in
which the tangential coordinates form again, for each fixed time, a C°°
diffeomorphism of R^1. We also describe in this case the inverse flow
with the help of time reversal on the probability space.

In §2, we study the Qy law of y^ denoted by P(t,y,dx). In [9],
[10], [II], we have gotten sufficient conditions for P(t,y,dx) to be of
the form :

P(t,y,dx) = InWp^y^x) dx + ^9DWpWp(t,y,x) d^(x)

where d[i is the area measure on 9D and p(t,y, •) e C°°CD) (see (2.4)
and (2.6)). We then study the smoothness of ? ( ( , - , • ) . The main tools
are the local stochastic calculus of variations on the reflected process
(see [11]) and the expression of the inverse flow. This part is very
similar to what we have done in [14] for the stopped process. The
relevant results are (2.9) and (2.25).

In §3 we study the smoothness of u given by (0.10), under the
hypothesis (H.G) (see (0.1)). This is done by introducing an auxiliary
process on an extended space, satisfying the hypotheses of §2, and
which is related to the initial process by a regular time change and a
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projection. The time change is clearly smoothed by the integration in
dt. We then obtain ((3.4)) the smoothness out of the diagonal of the
kernels associated to the operators (/,0) -> u and (0,g) -> u. The
remarks (3.28) at the end of the paragraph are also of great importance
for the sequel.

In §4 we solve the problem (L.P). We start by proving in §4.A
the analogue of Hormander's result for (L.P), that is if (0.7) is satisfied
and (H.G) (see (0.1)) is fulfilled in an open domain U of 2), any
solution u (ue ^ ' ( D ) ) of (L.P) with regular data /eC°°(C/) and
g e ^(Ur^QD) belongs to C°°(£/). ((4.2)).

The method of the proof is the following.

First we show that the harmonic operator H extends continuously

to <^'(SD) (4.32), then that so does — H . This is done by studying8n j j &

the associated Fourier transform. The key point is the expression of
the inverse flow.

Finally we prove that the boundary operator is hypoelliptic, by an
approximation procedure and integration by parts as in [13] and [14].

One crucial point in the proof is a theorem of existence and
continuity for sectional traces on the boundary ((4.6)). This result is
our debt to the p.d.e theory.

Though (u-F) H extends to ^ ' ( 8 D ) and has a kernel which is C00

out of the diagonal, we haven't succeeded in proving that it is a pseudo
differential operator (in the sense of [15]). This point is discussed at
the end of § 5.

In §4.B we show by a standard martingale method that the u
defined in (0.10) is a solution of (L.P), and conclude to the existence,
uniqueness and regularity of the solution. These results are extended to
a non compact domain, and to data (/,g) in certain Sobolev spaces.

In §4.C, we give some simple conditions for the Gauge hypothesis
(0.11), to hold.

The last paragraph is devoted to some complements.
In §5.A, we introduce the adjoint system (^4*,r*) which arises from

the usual Green formula. We then obtain a decomposition result (5.29)
in the non sticky case

C^CD) = (ker (h-A)^M°°) © (h-^*)(M*°°)
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provided D is compact. This result is the analogue of the one we
proved in the case without boundary in [13]. The proof lies on the
compactness of the resolvant operator in the Cii spaces (k < +00) (see
(5.5)).

This is then applied in § 5.B to the study of the invariant (and
reversible) measures of the process 3;. Since the semi group has the
Feller property, the existence of an invariant measure is ensured by the
compactness of D. We explain the relation between the set of invariant.
measures and ker(^-^*)nM*°°, and prove that if the Lie algebra
generated by the F's, 1 < i ^ m, is full at each .ye 25, there exists a
unique invariant Probability measure (5.35).

Uniqueness is closely related to the strict positivity of the density p
of P(t,y,dx). This property is obtained by using some elementary large
deviations ideas. In that case ergodicity holds.

In § 5.C the connection between the spectrum of the generator
(h— A) and the Gauge condition is explained.

Finally in § 5.D we recall the connection between the boundary
operator and the boundary process YA. , where A. is the right continuous
inverse of the local time L. Let we say that the law of the boundary
process has been studied by J. M. Bismut [4] (also see [19]). The
hypoellipticity of {v—T)H can certainly be proved by using the results
of [4].

The results of the paper are closely related to [8], [29], and [33]
where the analytical arsenal is developped in the uniformly elliptic case
for compact domains. At the present stage this arsenal seems to fail
to give the analogous results in the degenerate case. The present paper
can be viewed as the conclusion of the work started in [13] and [14].

I am very indebted to J. M. Bismut who has initiated me into the
intricacies of the Malliavin calculus. I also wish to thank C. Leonard
for the time he has spended on teaching me the very little I know
about large deviations and an anonymous referee for helpful criticism.

Notation. - For 0 ^ k ^ + oo, C\ C\, C\ are respectively the
spaces of fe-times continuously differentiable functions, C^ functions with
bounded derivatives up to order fe, and C^ functions with compact
support.
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^(25), (T(25), H^D), are the spaces of distributions in D which
extend to elements of ^(R^), (T^), 7^(1^) (see e.g [15] for more
details).

If Y is a C°° vector field and / a function, F/ denotes the action
of Y on /.

If F is a C°° diffeomorphism of ff^, F*7 (resp F*"1^ is the vector
field defined by

(F*y)GO=(AF.y)(F-1^))
(resp. F*-1 Y)(y) = (dF)-\y) Y(F(y)))

and is called the push-forward (resp. the pull-back) of Y by F .

If Mi is a continuous L2 martingale, ^M( (resp. 5M^) denotes its
differential in the sense of Stratonovitch (resp. Ito).

Throughout this work all the considered nitrations are supposed to
fulfill the usual hypotheses, and we use the summation convention

^dibi = aib1 = a'bi.
i

To help the reader, we add an index of some notation which we will
use throughout the paper.

Notation Meaning Introduced in

(H.G) General Hormander's hypothesis (0.1), (2.1)
(H.R) Restricted Hormander's hypothesis (0.3), (2.1)
(H.F) Special Hormander's hypothesis (2.2)

(H.P.unif) Uniform Hormander's hypothesis (2.1), (22)
(H.S) (2.4)
(H.C) «Coercivity assumption» (0.7)
(0.11) Gauge condition (0.11), (3.2)
(D.P) General Dirichlet problem Introduction
(P.P) Dirichlet problem (4.8)
(L.P) Boundary value problem (0.4)
(B.P) Boundary problem (0.5)
jR71'" Resolvant operator (3.3)
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1. DIFFUSIONS WITH A BOUNDARY CONDITION

Let D be an open regular set of IR^, defined as D = {\|/(x) > 0},
where xl/eC?^). SD is locally a C°° hypersurface defined by
SD == {\|/(x)=0}. D denotes the closure of D.

We assume that for every x e 9 D , |V\|/(x)| = 1 so that Vv|/(x) = n(x)
is the unitary inward normal at x e S D .

Let we consider
- YQ , FI , . . . , Y^ m + 1 CT vector fields defined on tR^ with values

in R^
~ VQ , V\, • ' ' , Vr r + 1 C^ vector fields defined on 8D with values

in W.
- pGC? (^A^^.

By Seeley's theorem [15], one can always suppose that the F/s,
0 ^ ^ ^ r, and p are the restrictions to 9D of C^ functions defined
on the whole space IR^, denoted again by Vi and p.

We then define the following second order differential operators

A = 1/2 ̂  r? + Ye
(1.0)

r = 1/2^ r;+ FO- p-4.

Furthermore we assume that

i) (Y^)(x)=Q for ^ = 1, . . . , r
ii) (^vlOW ^ ^o > 0

m

iii) a2^) = ^ (r^)2^) ^ ^ > 0

(1.1): for any x e SD

i) means that the vector fields Y{ act on SD,
ii) is a transversality assumption on VQ and,

iii) means that SD is uniformly non characteristic.
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It is then known that there exists for each y e D a unique solution
to the stochastic differential system of reflexion of Stratonovitch (see
[18], [23]).

i) dy, = l^yt)Y^y,)dt + U^)r^W

(0.9)
+ W^m(^)^+ ^D(yi)V,(y,)dM^

") yo = y
hi) p(^) dLt = \8D(yt) dt

that is one can find a stochastic process (0,7^,J^,^,Z^,w^M^) satisfying

/ i) yt is an F< adapted continuous process with values in
5,

ii) Z^ is an F^ adapted non decreasing and continuous
process with Lo = 0 and Py a.s for all t ^ 0,

^6D(ys)dLs = Lt,
Jo

iii) w<(resp. M() is a (F^Py)L2 continuous martingale with
values in R^resp. d^) whose brackets are given by
«H^ = §^; ^M\M^, = 5^; ^M7), = 0,

(1.2)

iv) the stochastic differential in the sense of Stratonovitch
of yt is given by (0.9) i); yo = y , and P a.s for all
t > 0 ,

rpo^z,= fp(y,)dL, = \QD(ys)ds.
Jo Jo

(1.3) Notation. — We denote by Qy the family of the Py's laws of
y . So Qy is a strong Markov family of probabilities on (^([R^D), we
shall call following [23] an (^4,r)-diffusion.

Remark that there is one degree of freedom in the definition of the
operator F. Indeed if we define, for he C^(8D) with h (x) ^ ho > 0

•-1(1.4) L h(y,) dL, and M\ = h^y,) 6M,

the stochastic process (Q,^,P^,^,L;,w^M^) induces an (A,F/h)-
diffusion.
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The different terms can be interpreted in the following way :
* A is the generator of a diffusion (with a drift) inD,

r

* 1/2 ^ V] + PO, with Po = V, - (V^)n, is the one of a diffusion
<?=i

(with a drift) on 8D,
* (^o^)^ is a reflexion coefficient at the boundary and p a viscosity

coefficient.

We shall now recall a construction of y^ on which our study is
based. First if ^ induces an (^,r)-diffusion, define

- - F(1.5) Y( = ^D^Ys^ds, and T|< == y^ its right continuous inverse.
Jo

Then y^ induces an (.4,r°)-diffusion, i.e with p = 0. Conversely if
y°t induces an (.4, P ̂ diffusion, define

(1.6) j t - t - ^ - p ( y s ) d L , , and T|< = y,-1

Jo

then ̂  induces an (^,r)-diffusion (cf. [23] p. 212-214).

Hence we are reduced to build a solution of (0.9) with p = 0. We
start with the following definition (see [1]).

(1.7) DEFINITION. - Let x e 8 D and (U,F) a local chart at x . (U,F)
mil be called a good chart if

i) F is a C°° diffeomorphism from U onto F c= B^ x (R^-1

m

ii) // r; = F* Y, and A' == 1/2 ̂  V;2 + 7;, ̂  ̂  is written in V
1=1

as
S2 8 m

^ax2^^172^^0
I^AI OX i ^^

d a
w/im? fceC? )(Rd) anrf ^ = ̂  ̂ —, ar^ C? ^cror ^^5 ^nerf

7=2 cx]

on W1 with values in IR^"1 for i = 2, . . . , m.

From a probabilistic point of view, (1.7) means the following. Let
y ' = (u,x) = F(y). Then, up to the first exit time out of V,y\ solves
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the system
I d U t = dw} + b(y't)dt + dL,
I m r

(1.8) \dx, = ZoW) ̂  + I W<) dw\ + 5o(x,) dL, + ^ ^(x,) rfM^
< f = i

W/<)^ = 0, /, = ̂ x,)eR+ x ^-1

where ( ) == F* F/, ^ == 1, . . . , r (see (l.l)i)); after choosing

(F*Fo)1 = 1 in virtue of (1.4).

We then have

(1.9) PROPOSITION. - There exists £ > 0 such that for all x e SD we
can find F^ such that (B(x,&) nZ),FJ is a good local chart at x .
Moreover

SUp (ll^llc^B^On^VIIF^IIc^FxWx.OnD))) ^ M(k) < + 00 .
xe5D

DProof. - See [14] Thm 4.5 and lemma 5.18.

e being chosen as in (1.9), in order to build the (^,r°)-diffusion,
we are reduced to build the A diffusion in Z>, and the solutions of
(1.8) in a countable locally finite family of good local charts and then
to piece together these processes using the methods of [18]. Thanks to
(1.9), to classical estimates on exit times (for instance [13] 1.6) and to
the Borel-Cantelli lemma, one shows that the so obtained process has
an infinite explosion time.

We go back now to (1.8). Consider ft = Q7 x Q x Q* with
Q' = C^R^tR), 0 = C0^,^"1), Q* = C^IR^IR'). The path of
(o/,©,o)*) = G) e Q is denoted by (B-, w2, . . . . wf", w.*1, . . . , w*') and
p = p ' ( g ) p 0 p* is the Wiener measure on Q. For u e R we define

(1.10)

z,(u) == u + B,;

u,(u) = \z,(u)\ = \u\ + sign (Z,(M)) SB, + U,
Jo

= \u\ + w](u) + n
Mf(u) = w?;".

F( is the right continuous P completed filtration generated by Bs,
w,, 0 ^ s ^ t , and w* 0 ^ s ^ Lf.
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Consider the stochastic differential system of Stratonovitch

(1 11) [^^^^^dt^X^x^d^+S^dL^+S^x^dM^u)
\Xo=x.

Following [24], for all fixed (M,O/)(= R x Q\ one can construct a version
of the P essentially unique solution of (1.11) which is a flow of C°°
diffeomorphisms of l^"1. Let (^(co,M,x) be this process. We describe
the flow of the inverses. From [24], (^^((O.M.X) is solution of the
backward stochastic differential system

(1.12) [dxs= -zo(^-.,^)^-Z^-,,x,)^-5'o(x,)rfL,-5(,(x,)rfMf
I Y — Y( X Q — X .

Consider the transformation on (Q,F<) defined by

(1.13) G)-^6<=(5-^^-^-,;5-^W,-W,.-,;5^W^-W^)

=(5.,w.,w.*).

Since Lf only depends on o/, and since a/ and o* are independent,
P is invariant under oo -> ©< :

Define for u e R

(1 14) [zs(^ = u ~ Bs; ^ = z, == |M| + w,1 + L?
?=^1.

It is known (see [38]) that

(1.15) Conditionally to z,(u) = u' we have L^' = Lf - L^, and
consequently, Ms = Af^ — M^-s, P a.s.

We can now introduce the flow $<(co,M,x) solution, with (u,o/) fixed
of

(1 16) [dxt= ~x^x^dt~x^xt)d^\-S,{Xt)dLut-S,{x,)dM^
\ ^o=^.

One deduces from what precedes, that for fixed t, P a.s.

(^(CO.M,-) = ̂ (a^-z^),.)

(1.17) 4),(co,M,-) = $<-,(o)^ -z<(u),-) o ((),(G),M,-) for 5 ^ ^

$(-5(®',-^(^),-) = <t)s(o),M,-)o $((&', -z,(u),-) for s ^ ?.
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This result is very similar to the one obtained in the case without
boundary (cf. [2]).

Finally we introduce the Girsanov martingale

(1.18) <3?(M,x) == exp { f^(M,,(|),(co,M,x)) S^(u)
(.Jo

-l/2^&2(^,(t),((D,M,x))ri5l
Jo J

and P^ = G\P on F,.

Then the Pb law of (M^(|)^((O,M,X)) for u ^ 0, is the law solution
of (1.8).

The construction of the (^4,r)-diffusion is achieved.

Remark. — The construction of the flow ^ given here differs from
the ones given in [4] or [9], [10], [11]. It seems that this construction
is the most convenient to express the inverse flow.

Finally recall that the local time L( is the density of occupation
time at SD, that is

(1.19) PROPOSITION. — Let Yt be an (A,Y)-diffusion mth local time
Lf For £ > 0, and D^ = {0 < v(/(x) < £}, \ve have

liml/s [ t l^y,)a\y,)ds= f (V^)(y,)dL,
E^ 0 Jo Jo

both in L2 and almost surely, the convergence being uniform in t on [0,T]
for all T ^ 0.

2. SMOOTHNESS OF THE LAWS

In [9], [10], [11] we studied the problem of the existence of smooth
densities for the laws of the diffusions with a boundary condition. We
recall here the main results we obtained and complete them by showing
the regularity in the starting point. We begin with some definitions.
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(2.1) DEFINITION (cf. [13] 1.2). - For xeR^ let L'^x) be the set
of the vectors r,(x), 1 < i ^ m, and of the Lie brackets of length ^ N
of the vector fields V,, 0 ^ i ^ m, at x ; L^x) = L'^x) u VoOO.

Recall the Hormander's assumptions
- (H.G) is satisfied at x if there exist N(x) and c(x) > 0 such that

for all ze^ ^ <F,z>2 ^ c(x) ||z||2 i.e if Lie (V,(x);0 ̂  f ^ m)
YeL^(x)

spans W1 at x .
- (H.R) is the analogue of (H.G) just replacing L^ by L'^.
- (H.G unif) (resp. (H.R unif)) is satisfied on U cz ̂  if there exist

N(U) and c(U) > 0 mth N(U) ̂  N(x) and c(U) ^ c(x} for all x e U.

In particular if (H..) is satisfied at each point of a compact set K,
(H... unif) is satisfied on K.

(2.2) DEFINITION. - Let x e 8 D , Xo, X^ . . . , X^ are the vector
fields defined in (1.6) ii). Let L'^x) be the set of the vector fields

8
-.—» X^, . .., X^ and of the Lie brackets of length ^ N of the vector
dx^

fields —. Xo, X^, .. . , Xm \vhere at least one of the X,, 2 ^ i ^ m,ox-^
appears, at x . We say that

(H.F) is satisfied at x if there exist N(x) and c(x) > 0 such that for
all zeR^ ^ <y,z>2^c(x)||z||2

YeL'^(x)

(H.F unif) fs defined in the same \vay as (H.G unit).

(2.3) DEFINITION (cf. [I], [12] 1.5 and [14] 3.22). - Let xe8D and
(U,F) be a local chart at x . (U,F) is said to be a very good local chart
if it is a good local chart (see (1.7)) and if (H.F unit) is satisfied in U.

We shall say that SD is very good if for every x e 8 D , one can find
a very good local chart at x.

We can state

(2.4) THEOREM (cf. [12] 1.22). - Let P(t,y,dx) be the Py la^ of y , .
We assume that (H.R) holds (at y ) , that 8D is very good and that Vo
is normalized so that V^ = 1/2 a2 on 8D. Under one of the supplementary
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assumptions

(H.S)
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i) p i5 constant (eventually 0),
ii) Vf = 0, 1 ^ ^ ^ r, (oblique derivative condition), and

p(x) > 0/or aH x e 8 D ,

there exists p(t,y,x) defined on R* x D \vith values in ̂ + , \vhich satisfies

i) x-)-p(^,x) belongs to CCO(D),
.. 8" + -
ii) (t,x) -> •:r-^p(t,y,x) is continuous on (R* x D for all

multi index a,
(2.5) iii) For all t > 0

P(t,y,dx) = lD(x)p(t,y,x)dx + l^(x)p(x)^(^,^,x) ̂

w/^re rfp, fs ^ area measure on 8D associated to the
Leray form [i defined by : d^f A [JL = dx1 A • • • A dx'1.

The smoothness of p in the interior of the domain is shown by
using the local calculus of variations (cf. [10] 1.15), the C°° extension
up to the boundary is the aim of [11] in case (H.S) i). The existence
of a smooth density on 8D is shown in [10] §VI. Finally the C°°
extension up to 8D in case (H.S)ii) is proved in [12] 1.22. The
identification of the boundary density is an easy consequence of (1.19)
(cf. [12] 1.10).

Theorem (2.4) can be localized as follows :

(2.6) THEOREM. - Assume that (H.R unif) is satisfied on £ / c = Z ) ,
that U n 8D is very good, everything else being as in (2.4). Then for
every y e D and t > 0, (2.5) holds if \ve replace D and 8D by U and
U r ^ 8 D .

We are now interested in the regularity of p in both y and x .
According to what was done in [14] 3.35 and 4.37 we shall use the
stochastic calculus of variations on the inverse flow. We start by some
notation.

(2.7) ^ = C0^,^) equipped with the cylindrical a algebra and
(Qy)yeD^ so fhat P(s,y,dx) is the semi group associated to
the canonical process s -> y s .
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(2.8) On -W = C0^^) equipped with its canonical Wiener
structure, one builds the flow ^(w,y) solution of

dyi = Y,(y,) dt + y,(^) Av;; y, = y .

We can state the first result:

(2.9) THEOREM. - Let U and V two open sets of D. We assume
that (H.R unif) (see (2.1)) is satisfied both on U and V, that V c\ 8D is
very good and that (H.S) (see (2.5)) holds. Then for all t > 0,
(3^)^p(^,x)eC°°(^xr).

Assume furthermore that U n SD is very good and that p = 0. Then
^•^eC-^xr).

Proof. - In order to prove the first part of the theorem, it is
enough to prove that for any compact set K in U, any/e C^(U) with
support in K, any g e C ^ ( D ) with support in V and any multiindices
a and P, the following holds (see e.g. [13], [14])

i r
(2.10) 8-f(y)8^g(x)P(t^dx)dy ^ c(a,P,0 ||/|U|^||, .

I J
If 2s = d(K,8D) and 5' = inf {s ̂  0,d(y,,K) ̂  e}, we may apply the

Markov property at time T = 1/2 (M S). Therefore

(2.11) [8-f(y)ffig(x)P(t^dx)dy

= f^/W 8^g(x)P(T^dz)P(t- T , z , d x ) dy

= j^/M^r S8^g(x)P(t- TOO,W^)^)1 dy

where 5'GO = inf{s ^ 0,d(^(w,^),0 ^ e} and T(y) = 1/2 (M5'(^)).

Indeed starting from y e U and before to leave U, the Qy law of ^
and the law of i;.(w,y) are the same. On the other hand we can write
for all y e K and almost all w

00

1 — ISOQX^ + Z^ l t | ( n+ l )<S (y ) ^ t | n •
n=2

For simplicity we write

(2.12) ^ = mf{s^O,d(W^^y)),K)^G}.
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Therefore (2.11) becomes

(2.13) \8^f(y)9^g(x)P(t,y,dx)dy

== J[ J^^)^[l.-i<^)^[l^^.^..

j^(x)P((n^+l)-^,,^^(w',^,0,dx) 1^

4-J a aA^)^]l</2<5(.) f^(x)P(r/2,^(w^),rfx) d y .

For fixed (w,nQ (resp. w) we make the change of variable y -> ̂ +^(\v,y)
(resp. ^-^/2(w,j0).

Remember that if ^-(w,^) is the flow solution of

di- - Y^)dt- Y^)d^; ^ = y

and if

w? = w^+i - W(^+D_, , 0 ^ s ^ ^/n + 1
then

^/n+D-^H^^o^+lOv,-) = ^(w,-) for 0 ^ s ^ t/n + 1 a.s.

Moreover the Wiener measure on i^ is still unchanged if we change
w into w". As in [14] 3.35, we then deduce that the above (2.13) is
equal to

00 /*

(2.14) = ^ \Ea[9af^,(w,y))l^^§w}acobi^^n^,(w,y)]
n=2 J

£"'' Isw «/(„+,,2) 3^(x)P((nt/n+ l)-5(^)),^so,)(w',}'),^)1 ̂
f ~ ~+ E^f^^y)) 1^ < ̂  Jacobian ^^(w,)/) 3P^(x)

P(t/2,j;,rfx)]^
where S(y) = inf {5 ^ 0, d(^(w,^), ̂  > s}.

Remark that since ^o = id, Jacobian ^ > 0 for all s ^ 0.
It remains now to integrate by parts in w and in x , and to add in

n . To this end we remark first that since §(y) > 0, the integration in
y holds in K^ ={y,d(y,K) > e} which is compact. We apply the local
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calculus of variations in E^ (cf. [13]). Since supp./c K, we obtain for
n ̂  1

i) sup [^[^/(^^(^^l^/^ixs^Jacobian^^^w^)]!
y€Ke|2

(2.15)

^(a.e.O^+l)^011^2^

ii) sup \EW[8af(^in+l^,y^(ttn+l)<s(y) Jacobian E^i
yeK^-K^

^y)]\
/n+l f^ c ( a , s , 0 — — A -
\ ^ e

fc(|a|+d/2)

,exp - ^(n+^eVO

where k is a positive constant only depending on the vector fields. The
exponential control in ii) is a consequence of the following fact : if
d ( y , K ) ^ e/2, t/n + 1 must be greater than the first time the process
hits K, for ̂  not to vanish (cf. [13] 1.6).

We then apply the local techniques of [10], [11] to P( - , - ,dx) . Since
(nt/n-hl) - S(y) ^ t/2 on S(y) ^ ^/(n+n2) , we obtain

f^(x)P((nr/n+l)-.SOO,i) SUp \EW [ls(y)^tln+n^
V e ^e/2

^S(y)(^',y),dx)]\

1 ^ c(P,8,0||^|L sup P(S(y) ̂  t/n-^n2)
(2.16) { ^^/2

< c(P,8,0||^||,exp - (c^+n^/O.

ii) sup |^[1^)^/.^2 f^(x)P((^/n+l)-^),
^^e-^ J

^)(w\^),dx)]| ^c(P,e,0||^||^.

Hence we can make the summation in n, which proves (2.10) and
the first part of (2.9).

It remains to study the existence of a C00 extension up to
(Ur\8D) x V. Indeed y -> Qy is continuous (cf. [18]), hence such an
extension necessarily coincides with the a priori defined density
p(t,y,-) of P(t,y,dx) for y e U r\ 8D. To show the existence of such an
extension if suffices to work in a very good local chart (B,F) at
y e U r ^ S D , if such a chart exists, and to prove (2.10) with
/eCS°C8). Define

B^ = { z e B , d ( z , S B ) > s}.
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For £ small enough, B^ is a neighborhood of y and we can restrict
us to/eCS°(^). Let

5' = inf {s ^ 0, d(y,, B^) ̂  e} and T = 1/2 (t A S).

(|)<(o),M,x) is the flow builded in § 1, for the A7s given by (1.7).

We define naturally

(2.17) ^x) = ̂  {s ̂  0, (u,(u)^(^u,x)) t F{B,)} ;
T(M,X) = l/2(rA^(u,x)).

In order to prove the second part of the Theorem, it is enough to
prove (2.10) with supp/c (B^nD), for a very good relatively compact
local chart (B,F) at y e U n 8D.

(2.18) From now we assume that p = 0 and that l7n 8D is very
good.

We may write

(2.19) [^f(y)fflg(z)P(t^dz)dy

S"f(F~\u,x)) IJacobianF-^x)!
JlR4' xRd-1

^1 j ̂ (^)-P(^-^^)^-l(M^(.,.),(t)T(.,.)(G)^,x),rfz)^^^.

One extends every h e C0^^ x IR^"1) to JTeC^lR^) by

fi(u,x) = h(\u\,x) for M e [ R .

Since the P laws of

(^•(-^(KCO.-M.X),^-^)) and (M-(M),(H(O,M,X),(^-(M,X))

are the same, (2.19) is equal to

(2.20) = 1/2 | ^/((Fr^x)) Uacobian F-^u^
Jn+xRd-i

^[^^J^^^r-r^x),^)-1^^^
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after extending F~1 and Jacobian F~1 into elements of C^O^ x B^-1).
As in (2.12) we put

5,-n = inf^^O^M^co^z^+^M)),^^^^^^),^^,^^)))^^^)}

which allows to rewrite (2.20) into the form
+00 /• ___________

(2.21) = 1/2 ^ ^((F)-1^)) | Jacobian (FT^x) |
n=2 J

E^ls^^tln.^S^tIn^ [^(Z)

P((nt/n^l)-S^^F-\Us^^\z^,(u),
^s^^\Ztm+^^tin+i)),dz)]du dx

+ 1/2 S8\(F)-\u,x)) I Jacobian (F)-1^^)] ̂ [1^,,»^

[3^(z)P(^/2,(F)-l(^,(^)</2),^)] ̂  ^c.

We then make the two successive changes of variables

^ -> ^tin+i(^u,x) next M -> - z^+i(o),M)

and endly we change &tln+l (which appears because of the change on

x) in (D . The formula w? == sign (u + Bs) SB^ immediately shows that
Jo

this transformation on the probability space induces a change of Pb in
p-T>

Hence from (1.14), (1.17) and what precedes, (2.21) becomes

(2.22) = 1/2 'f [^-'^/((D-^-z^,,^), $^(u,x)))
n=2 J

^(u.xix/n+i Jacobian $(/n+i(u,x) | Jacobian F'^-Zt/^ i, $(/,+i) |

^[ls(.,,)^(/n+n2 l^(z)P((nt/n+ 1)

-^xMF)-1 ,̂.,,),̂ ,:.)),̂ )] ̂  ̂

+ 1/2 ̂ ^-^/((^-'(-z^^^))!^,,^^ Jacobian $„

I Jacobian F-\-z^^) \ Sslg(z)P(t/2,(F)-l(u,x),dz)'\ dx

where §(u,x) = inf{s^O,(u,(M),$,(cn,M,x))^F(fi,)}.
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(2.23) But (F)-1^) = F~\\u ,x) (idem for Jacobian F-1),
and the laws of (^•(^.(KM.X^G-^.X)) and
(^(-^(^(-^^.(^(-M.x)) are the same.

Hence we do not change (2.22) if we replace 1/2 by 1, (F)~1

(resp. Jacobian) by F~1 (resp. Jacobian), - z^^u) by u^,(u) and
P^ (resp. P5) by P^ (resp. P^).

Because supp./cr D n ^e we can integrate by parts in E^^ by
using the calculus of variations near the boundary ([11]). We can also
integrate by parts in dz as before. Since (u,x) belongs to F(B^) in the
integral, we have estimates like (2.15), (2.16) (involving F(B^) and
F(B^) - F{B^) in place of K,^ and K,-K^\ The proof is
complete, n

(2.24) Remark. - If p ^ 0 one has to deal with (u^,^(u,x))
(see (1.6)). If p is not constant, we do not know wether (^ remains a
diffeomorphism of IR""1, which is required in view of the change of
variable x -^ ^(u,x). If p is a non zero constant T|^ only depends on
u and <))^ is a diffeomorphism whose inverse is given by (1.17). In
return we do not know whether the function u -> z^ (u) is a change of
variables.

At last as in [13] 1.12 and [14] 3.44, one can obtain for the densities
the following upper estimates.

(2.25) PROPOSITION. - Let U and V be t\vo open subsets of D,
d' = d/2, t > 0. Let U^ (resp. V^) be the set {xeD,d(x,U) < e} (resp.
mth V). Assume that U n 8D and V n SD are very good and compact,
and that (H.S) holds. Then

i) If (H.R unif) is satisfied in Fg for an s > 0, there exist n and c
positive, only depending on the data on V^ such that for all x e D

ll^^^^llA-^^c^AO-"^^
0

ii) If in addition (H.R unif) 15 also satisfied on U^, and p = 0, then

IIP^•,•)llc^x-v)^c(8AO-^+^
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n and c depending this time on the data on V^ and U^.
Moreover for any r\ > 0 and any multi index a, there exists
c' > 0 such that

sup
y e V,d(y,

y

^-a^-^)r \ \ ^^ l y 9 '•r/ t.eV,d(y,U)^T} \\0y \\C^(U)

sup
xe U,d(x,V)^r\

^P(^-)
C^(V)

^ c^ArlAO-"^'01 '^

exp - ^(riVrAri))

^ ^sArlAO-^1011^

exp - ^(riYtAri)).

Recall that if Lie (Ti(x), . . . , 5^(x)) spans B^ at x e 8D, we can
find a very good local chart at x (cf. [11] section 2). By virtue of (1.9),
Proposition (2.25) extends to domains U or V with a non compact
intersection with SD, provided they are uniformly very good i.e. when
the A7s defined by (1.7) in F(5(x,£)n5) are satisfying (H.F. unit). In
particular if we can find N and C > 0 such that

^ < V,z>2 ^ C||z||2 for all x e U n 3D and z e R^
Ve Vpf(x)

where ^y(x) is the set of the Lie brackets of length ^ N of the 7/s,
1 ^ f ^ m, at x, £7 n 9D is uniformly very good.

by

3. RESOLVANT OPERATORS AND KERNELS

For h e C?(25) and v e C^(SD) we consider the process 77^ defined

(3.1) H^ = exp - [ ^(^) rfs.exp - f i;(^) rfL,.
Jo Jo

The Gauge of H^ is the function J ( y ) defined by

(3.2) J(y) = ^^f+ro^•l;(A+^)^•

In the whole paragraph we assume the following

(0.11) supJ(y) < + oo (Gauge condition)
y e D
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so that for any /e C?(5) and g e C^(9D) one can define

(3.3) R^y) = E^ f^ / ( y ^ H ^ d t - ^ (+co g(y,)H^dL^

The aim of the paragraph is to show that if (0.11) and (H.G) (see
(0.1) or (2.1)) are fulfilled, the operator

nh,v . / f -,,\ . j)h,vR • u . g ) -> R/.g,
maps C?CD) x C^(SD) into C°°CD), and admits suitably regular
kernels, namely

(3.4) THEOREM. — Let U and V be t\vo open sets of D. We assume
that (H.G) is satisfied at any y e U and any x e V, and that (1.1) and
(0.11) hold. Then

1) Rh'v(C(S>(D)xC(S)(8D)) c: ^(U)
2) The operators

^&U:C?)(F)-^ /(£/) and R^ : C^(Vr^8D) -> S)\U)
_, J}h,v _ . D/I,U
"̂  ^/.O ^ ̂  ^0:^

have their kernels, respectively denoted by Ko and KQ^ , which are
C°° out of the diagonal.

(i.e supp-sing-^ c: diag(?7x V) and

supp-sing-^ c: diag(£/x (V(^SD)).

To this end we first introduce an auxiliary process easily related to
y . , which can be submitted to the techniques of §2. Here the situation
is a little more intricate than in [13] or [14], on the one hand because
of the apparition of the local time L^ on the other hand because of
the chart by chart construction of y i .

3.A. An auxiliary process and the reduction of the problem.

We start by settling the problem of the viscosity coefficient p .
Indeed if y°t with local time L? induces under P°y an (^4,r°)-diffusion,
setting

T L = ( ^ + fp(^w) ,
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we saw that y^ induces an (^,r)-diffusion, with local time L^. Hence

(3.5) R^(y) = ^[pf^H^^dt

+ f^fe^+P/^?))^-^^^?]

where ^ is the P°y expectation and H^ is associated to ^°. Then if
R° is the resolvant operator associated to y0^ P°y, L? one has

(3.6) ^-W,^/.

So we may and will assume that p == 0.

Let we consider m + r + 3 vector fields F,, 0 < i ^ m, iP^,
0 ^ ^ ^ r and Z defined on R^1 with values in IR^1, of C? class,
given by

Y (. n = M )̂ YcOO^ . .. _ (u(Q Y^y)\^oW^ i Q »;r,(j,y-i h i^i^m,

^ ^)-(^), O./.. Z^-(^),

,with u(!,) = (2 + sin 0/3^/2, ^eIR.

Define

(3.8)
^ = 1/2Z2 + 1/2 ^ Yf + Fo

i-l

r = 1/2 f; Fj + Po.
^=1

One can build on D x (R, an {A, r)-diffusion (Py^(y^,Q.

Let 7i be the canonical projection from d^ x [R onto W1, and

8(0 = f^2^)^, y(()=(6(r))-1.(3.9)
Jo

Then 7t(^«),^«)) induces the (^l,r)-diffusion starting from y , with local
time Ly^.

One immediately has

(3.10) R^y) = W^y^) for all i ; eR ,
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where

(̂ );:22•u ,̂0'fu-.S'

\ f w f (y<)"2^) exp - f (h(y,)u\^ ds +v(y^ dL,) dt\= Ey,^ /(W^exp- (hW(^)ds+v(y,)dL,)dt
-Jo Jo

+ E^ f + °° g(y,) exp - f (h(y,)u\^) ds + v(y,) dL,) d£<1 •
-Jo Jo J

All the interest of the introduction of the auxiliary process is explained
in the following proposition.

(3.11) PROPOSITION ([14] Thm 4.5 and lemma 5.18). - 1) Let U c= D.
Assume that A fulfills (H.G unif) (see (2.1)) on U, then A fulfills (H.R
unif) on U x R.

2) Let U cz SD. If A fulfills (H.G unif) on U, then U x R is very
good for A. Moreover one can find e > 0, only depending on the data
in U , such that for every x e U there exists a C°° dijfeomorphism Fj,
from (DnB(x,s)) x (R onto a subset V of ^+ x B^ satisfying

i) ((Z)n2?(x,£))x R,Fx) is a very good local chart at (x,^) for all
^ e R .

ii) All the derivatives of Fy and F y 1 are bounded on (2)n2?(x,8)) x (R
(resp. V) uniformly in (x,^).

3.B. Smoothness of the operator R^".

If (0.11) holds, the operator R^: (f,g) -> R^g, is well defined, and
maps C°°CD) x C°°(3D) into L°°(5). We now give the proof of
Theorem (3.4).

Proof. — As in the previous section we may and will assume that
p = 0. To prove (3.4.1) we shall show that for all (p e C^(Ur\D) and
every multiindex a the following holds :

!^(y)R^(y)dy ^ c(oc)||(p|L(3.12)

Indeed in this case R^gE C^nD) and extends C°° up to U n 8D.
This extension is equal to the a priori defined R^g^y), y e oD, because
of the continuity of y -> Qy and of (1.19).
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From (3.10) one has

(3.13) f^cpGOT^OO dy = (8\(y)W^ + W'^y^dy.

According to (3.11) the semigroup

(3.14) P(t,(y^ •) : C\D x R) -> R
F -> E^y^H^,

admits for all t > 0, a density m{t, • , •) e C^l/x R) x (FxR)).

Of course we are not exactly in the situation of § 2 because of the
apparition of the extra term H ^ " 2 ' " . But this is not relevant^ and all
the results of § 2 extend to that case except the upper estimates (2.25)
which have to be weighted in a natural way, using the well known
fact that E [exp L j < + 0 0 .

Now using again the Markov property, we can control the integration
after time 1 namely :

(3.15) faW^J ['fW^H^dt} dy
j LJi J

= faa(p(^)m(l,(^y,z)(^)^^(z) dz dy

= (-1)'"' f(p(^)^m(l,(};,y,z)(^^z)dz^
similarly "

(3.16) fa^G^J r00^^)^2'0^"! dy

= (-I)'"' f(p(^)^m(l,(^y,z)(^•u(z)riz^.

r - rr1 1We now have to integrate by parts in 8^^(y)Ey^ ... \dy.

This will be done in the same way as in (2.9).

Introduce (7g = [y e U,d(y,8D)>e] and a recovering of U x [R by
(7g/2 x IR and a family of very good local charts like in (3.11.2).
Introducing a partition of the unity if necessary, we may assume that
supp (p is included in the projection of a very good local chart or in
^s/2.
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Begin with the case supp (p c: U^^.

Set S(y) = inf{t>0,y^ [/^} and T(y) = 1 A S ( y ) .

We are following (2.11)-(2.14). So as not to exhaust the reader's
patience, we only give the details on S(y) > 1.

Define i^(w,z) as the flow solution of

d^i = - Y^dt - Y^d^\ - Z(^)d^r\ ^o(H^) == z .

Then

(3.17) J^cpM^Jf1/^)^^)^^!^^^"] dy

= ̂  | I ^a(p(^l(w,z))/(7^^(w,z))M2(7^^,(w,z))
LJDxRjo

Jacobian £; i (w, z) 1 §(z) > 1̂ 1 (w) H^ 1 (w) rf^ dz]

where

S(z) = inf{^0 ,^(w,z)^^4xR},
TC' is the projection of B^ x [R onto IR, and

n
H^) = exp - ^(^(w.z))^^^^^^)) rf5.

Jo

Indeed starting from a point in D and before to leave D, the local
time L is remained constant equal to 0.

We then only have to integrate by parts using the calculus of
variations on ^ just taking care of the fact that the derivatives of /
and h also appear.

The justification of the summation in n (1= ^ l i / n + i < r ^ i / ^ ) follows
\ N /

from estimates similar to (2.15) and (2.16) replacing A: by ^ 7 / 2 and s
by 8/2.

Still with suppcp c: U^2, we now have to integrate by parts in

faa(p(^Jfl...^1^.
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With the same notation as before we see that on S(y) > 1, the local
time did not increase so that this term is 0. Thus we give the details
on 1/2 < S(y) ^ 1.

(3.18) f^cpOO^Jl^^^i ̂ g^H^dL^dy

r - r - r/r^2 - - -\
= 8\(y)E^\ l^s^E,^ ^ 1 g^H^dLA

J L ' L\Jo /

U-i/2)^i/2 \dy

from the Markov property and because L( = 0 for t e [0,1 /2] on
S(y) > 1/2. Introducing the inverse flow, this is still equal to

= E^ 5a(p(7t^/2(w^))ls(^)>l/2 Jacobian ^1/2(^,7)
LjDxR

[ / ni2 _ _ \-| -|
E. ls(^i/2 g^H^dL, ]\dz\

\Jo /J J

and we again apply the calculus of variations on ^.

Now assume that supp (p c: B with (B^R,F) a very good local
chart as in (3.11.2).

Set B^ = {y e B,d(y,9B)>^/4} and S = inf{^0,^ i B}.

Since the B^s and £4/3 are still an open recovering of U we may
and will assume that supp (p c: 2?e n D (take care that SB is relative
to the induced topology on D, i.e is the intersection of the closures in
D of B and D\B).

Consider the vector fields

^ ^^ F - Z = °^'oy' ^'^i' l < i < O T ' ^vz,
F*^=(°) , ! < < f < r , F * V , = ( 1 } defined on (R^' with

\"'7 V"1'/
values in R"''1.

Let Z((M), M( , L? be as in (1.10) and (J)((CO,M,X) be the solution of

(3.18 bis) dx, = Xo(Ut,Xt) dt + JT,(M(,X() dw\ + Z(M(,X() dw^1

+ ^(xj dL? + S,(x,) dM^u); Xo = x e IR"
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$((G),U,X) is the reversed flow obtained by taking the opposites of the
fields, {^t Is the time reversed path defined in (1.13) (with the apparition
here of w7"4"1). As before we introduce S(u,x) resp. §(u,x)) the first
exit time of B ' = F(BxM) for (|).(resp $.) and we replace G^)l,<s
by F~\u^^\^s(u,x)'

Here again we give the details of the localization procedure only
on 5' > 1 (i.e S(u,x)>\)

(3.19) f^cpGO^J (lKy^u\W!u2'vls>.dt} dy

(^(p o 7i o F~ ̂ (u^x) I Jacobian F~ \u,x) \
J B '

^p[ls(^)>l ] (fonoF-^x^on'oF-1)^,)

I C 1
exp - (honoF-^x^on'oF-^u.^^ds
\ J o

exp - (v o K o F-1)^,) dH]dt\ du dx.
Jo / J

Following (2.19)-(2.21) we define

(?? = exp | fc(^,$,)8^ - 1/2 S'b^^ds
Jo Jo

^ = e x p - [(hoKoF-^x^onoF-^u.^^ds
Jo

+(l;o7loF- l)(0,$,)dL?]
so that (3.19) is still equal to

(3.20) = f'^rf^cpoTcF-1)^^,^^))

| Jacobian F~\u,^,)(u,x)) \
Is(u.x) > i(/o n o F ~ ̂ (u^ ^>t(u,x))(u2 o n' o F~ ̂ (u^, $<(u,x))

Jacobian (^^u^H^H^G^dudx] dt.

We can add to (0.9) a supplementary equation

dff, = H^(h o K o F ~ l ) x ( u 2 o n f o F~ 1))(M„ $,) dt
+(I;o7lF- l)(0,$,)rfLn

^ 0 = 1 .
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This shows that we can use the calculus of variations of [11] to
integrate by parts in (3.20) for each fixed t.

Finally since L^' = L\ - L\., conditionally to z^(u) = u' (see (1.15))
we have

(3.21) j (^004 Ils>i [\(yt)H,dL^dy

= E^ ^(aa(po7lF-l)(Ml,$l(M,x))[JacobianF-l(Ml,$l)|Jacobian$l

ai \ -j
4(u,x)>i<?^i (goKoF-^O^^H^dL^ )dudx .

> / J
One more time one easily checks that we can use the calculus of

variations of [11] to integrate ^(p by parts. The proof of (3.4.1) is
achieved.

In order to show the regularity of the kernel K^ in (3.4.2) one has
to show the following :

For any compact subsets K and K' of U and V such that K n K' = 0
any / and (p respectively in C^{K') and C^(K) and any multiindices
a and P one has

(3.22) ^^(y^R^^dy ^ c((x,P)||(p|1,||/[|,.

Hence here we have to integrate both ^(p and S^f.

We write (3.15) in a slightly modified form

(3.23) J^cpOO EJ f^ S^W^H^ dt] dy

= f^<P(^)^(l/2,(^0,z)^r f^ S^y^u^H^ dt}dy d z .

We integrate by parts in E^ using the local calculus of variations
between the times t - 1/2 and t . The integrability in dt is ensured by
(0.11) and (2.25) (see [13] and [14] for analogous results). Then for
fixed z we integrate by parts in y .

Set 6 = d(K,K). Because supp fez K' one introduces

T(y) = inf{t^ Q,d(y,,K) > e/2}.
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We then have

(3.24) f^cpGO^J p S^y^u^H^dt} dy

= f^cp^^Jf1 fflfCy^W^dt^dy.
J LjT(y) J

One uses again the localization procedure writing

1 ~ LT(y)>l + ^ l l / n + l < T(y)^ l//i •
n ̂  1 |

If r(j)e[l/n+l,l/n] we reverse the time at time l/2(n+l). (3.24) splits
into two independant parts as in (2.14) and we use the calculus of
variations on y ^ to integrate S^f and on the reversed process to
integrate ^(p just as in the above proof of (3.4.1). This shows the
regularity of K^.

Finally to study A^, using a change of coordinates induced by a
very good local chart, we are reduced to the case D x R = ^+ x
ff^.

We must show that for any compact subset K of U, any compact
subset K' of V r ^ S D = Fn({0}x^-1) and any multiindices
a = (ai , . . . ,^), p = ( p 2 , . . . , p ^ , we have

(3.25) [8^{y)R^(y)dy ^ c(a,P)Wy^y} ^(a,p)ii(piiji^iioo.
We write again (omitting the diffeomorphism F for simplicity)

(3.26) f^cpGO^J F00 a^)^ ̂ 1 dy

= ^9^(y)mW2,(y^z)El ( + c o 8^(^)71^ dL^ dy

r ( ° ° ^r r^^^2 \ ~i
= pacp^)m(l/2,(^y,z) ^^pft ^(^((o,z)) ̂ ^^ dz^.

•/ \n=l LJn/2 / J

We are obliged to cut up the integration in dU because of the
possible problems due to the Girsanov transformation at infinity. With
co' fixed (see § 1 for the notation) we apply the partial calculus of
variations on w2 , . . . , w^ in order to integrate 9^g by parts.
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Indeed each term of (3.26) is written as

r pn+l/2 -|

(3.27) ^ Q^^^H^dL^
LJn/2 J

r r^^2 _ ~i
= E O I \ \ E^^g^^z^G^^H^] dLW) .

LJnl2 J

Finally to integrate

f^GO^J f1 Q^-y^H^ dL^ dy,

we do as for / ((3.24)) and then as before ((3.27)). D

(3.28) Remarks and complements. - 1) If (0.11) is fulfilled one can
choose T > 0 such that for all y e D

r r^ "11
^ g^H^dL^ ^ eUT ji

(since the support of g is compact).

From (1.19) one gets

l iml /e f (a^WV^y^g^H^l^ds^ [T g{yW dL,
e-0 Jo Jo

with g any Seeley's extension of g . The above limit takes place almost
surely and in L2. We deduce that for all x G V n 8D and y e U with
x ^ y one has

(3.29) K^(y,x) = (a\x)ll(V^)(x)) K^y,x).

2) One can introduce A< the right continuous inverse of the local
time Lt. Then for y e 8D,

{I^ gWH^dL,

= E\ lA,<+oo^A,)exp-(| v(y^)ds+h(y^)dA\dt\.
LJo \Jo / J
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The process t -> y^ is called the boundary process. The preceding study
supplies regularity results for the potentials associated to this particular
jump process. These results also can be obtained with the help of the
results of [4] and [19] on the laws of (A^y^), may be with some
difficulties due to the joint regularity and the necessary integration in
A^ We shall return later to the analytical signification of this result.

3) Let r ieC^IR^). One can mimic all what we have done in this
paragraph and prove that the operator

R^ : (/^) - E^ r00/^)^)^^ f^ g(y^t)H^dL^

also satisfies (3.4.1) and (3.4.2). The only thing we have to remark is
/ F t \

that the passage to p ^ 0 involves T| r+ p(ys)dLs ] .
\ Jo /

In particular if supp TI c= [e, + oo [ for an e > 0, the formulae (3.15),
(3.16), (3.23) and (3.26) and their developments show that ^U1T1 and
R^ are regularizing (i.e their kernels A^ and Kgo are of C°° class on
the whole considered spaces).

This result will be crucial in the next paragraph.

4) If we replace (H.G) by (H.G unif) (see (2.1)) on {d(y,U) < e}
and [d(y,V) < s} for an 8 > 0, then Rh•v(C(S>(D)x C^(8D)) c C^(U),
and we can find uniform upper estimates for the kernels KD and Kgo
on the set d((y,x), diagonal) ^ c > 0.

This is particularly relevant if (H.G unif) is satisfied on D.

5) It is easily seen that, if D is compact, t -> ^{H^} is uniformly
continuous on 1R, with modulus of continuity sup ^[H^s^t—s). Hence,

y e D

if (0.11) holds, lim E^H^} = 0.
t-> 00
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4. BOUNDARY VALUE PROBLEM

In this paragraph we shall study the boundary value problem

{(h-A)u=fin D
v / \(v-r)u = g on 8D

with heC^(D) and veC^(8D). We shall call (L.P) the Ventcel problem.

If the F/s, 1 < ^ ^ r , and p vanish identically, this is just the
oblique derivative problem. As explained in the introduction (L.P) is a
classical problem in p.d.e theory ([20]), but can fail to reach the classical
formalism of this theory. The Ventcel condition arises from the semigroup
theory. When A is uniformly elliptic, (L.P) was solved in [8] and [33]
(also see [28]). In this case it is proved that the solution u is equal to
R^ ([29] Prop. 5.2).

Here on the contrary we dispose of the Feller semigroup via the
stochastic process y , of § 1. We shall use its properties proved in the
previous paragraphs and the martingales methods due to Stroock and
Varadhan ([18], [31]) to solve (L.P) in the hypoelliptic framework.

As in [14] § 5 we begin with a result of a priori regularity for the
solutions. We then show that R^ is a solution before concluding to
uniqueness. A detailed comparison with existing results is done at the
end of the paragraph.

First of all let we say what we mean by a solution of (L.P). Recall
that 2 ' ( D ) is the dual space of CS°(jD) and can be identified with
^-(R^), the space of distributions with support in D, thanks to a
continuous operator of extension (cf. [15] I 9.3).

Let ue ^ ' ( D ) . We shall say that u admits sectional traces on 8D
up to order k (k e f^J) if for any local chart

+ v 0^"1F \ B c= D -> V c ^+ x

and any (peCo°(j&), the image of (pM by F is an application of C^
class in x1 with values in ^'(IR^1), for sufficiently small x1 > 0.

We define the traces as

7oU = u\8D' JjU = YoK^N, 0 ^ j ^ k
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where n is the unitary inward normal vector field.

VjU is then an element of Q)'(8D).

The boundary condition (v-T)u = g on 8D, reads as follows :
r

(4.1) (u+p/O.YoU-1/2^ ^(YoM)-Fo(Yo«)-(^)-YiM=^+P(Yo/)
(C=l

with Fo=Vo-(Vo(yv|/)).n.

We begin by stating the main results of this paragraph. The first
one is the analogue of Hormander's result for the boundary value
problem :

(4.2) THEOREM (of a priori regularity). - Assume that (1.1), (0.7)
and (H.G. unif) {see (2.1)) are fulfilled in D . Let U be an open subset
of D. Then any u e Q)'(D) solution of (L.P) with /eC°°(l7) and
g e C^^UnSD) belongs to C°°(<7).

In other words the boundary value problem (L.P) is hypoelliptic.

The next results are concerned with existence and uniqueness. First
recall the following definition:

(4.3) DEFINITION. - Let u e ^ ' ( D ) . One says that u belongs to
y ' ( D ) if, after the identification of ^(25) and ^(^d), u belongs to
y'^).

(4.4) THEOREM. - i) Assume that D is compact, that (1.1), (0.11)
and (H.G) are fulfilled in D. Then for feCCO(D), g e C ^ ^ S D ) the
boundary value problem (L.P) has a solution MeC°°(Z)) , unique in
2\D), given by u = R^g.

ii) In the situation of i), we do not assume that D is compact, but
we assume that f e C?(25), g e C^(SD) and that (H.G unif) is satisfied
in D. Then u = Rf}vgeC^(D), and is the unique solution of (L.P) in
y\D).

iii) In the situation of ii), let f e C°°(5) n y ' ( D ) and
g e C°°(aZ)) n y ' ( S D ) . Then u= ^^eC°°(5) n ^(5), and u is the
unique solution of (L.P) in ^ ' ( D ) .

We finally extend the above result to certain Sobolev spaces.
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(4.5) THEOREM. — We assume that D is compact, that (1.1), (0.11)
and (H.G) are fulfilled in D. Then for k e ̂ , f e H'^D) and g e H'^SD)
there exists u e H^^D) solution of (L.P). Furthermore u is unique in
^ ' ( D ) .

The proofs of the above theorems will use the following

(4.6) THEOREM OF TRACES. — Let u e ^ ' ( D ) such that (h—A)u = /
in D. We assume that 9D is non characteristic.

i) If f e C^D), u admits sectional traces on 8D of any order.
ii) If f e H^oc(D), u admits sectional traces on 9D up to order k for

0 ^ k ^ s + 3/2.

Furthermore if M is a subspace of ^ ' ( D ) equipped "with a topology such
that there exists a continuous operator of extension from M to ^'(IR^),
then the traces of u, as elements of ^\8D), depend continuously of

(u,f)eM x H^(D), for s > 1/2.

The proof of (4.6) can be found in [15] chapter 5, Theorem 2.9 and
remarks 2.10 and 2.11.

4.A. A priori regularity.

We want to show that under (H.G) any u e 2\D) solution of (L.P)
with data (f,g) e C°°(5) x C^^SD), is in C°°CD). To this end we
shall show that joU e ^(SD). Indeed recall the following theorem:

(4.7) THEOREM ([14] Theorem 5.3). — Let U be an open subset of
D such that U n 8D is non characteristic. Assume that (H.G) is satisfied
at each y e U (or briefly on U). Then if u e ^ ' ( D ) is a solution of

{(h-A)u = f in D
[ You = g on 9D

with f e C°°(£7) and g e C°°(£7nB7)), then u e C°°(^).

This holds of course for U = D .

As in the proof of the Hormander's theorem in [13] Thm2.2, or in
[14] Thm 5.3, we intend to approach joU by functions (p^eC00^!)) and
to use the kernels studied in § 3. The difficulty here is essentially the
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presence of y^u in F. The idea of the proof is to solve the Dirichlet
problem

\(h-A)u, = / in D
\ YoMn = (pn on 37)

and to show that Un depends continuously of (p^ in a suitable space.
We then deduce from (4.6) that y^ also depends continuously of (p^.

The reader must be aware that the machinery we shall develop is
really necessary. This is because we cannot simply approach u by
Un e C°°(Z)), and be sure that the sectional traces y^ converge to y,u,
as we can see immediately from the density of C^(D) in Q!'(D). In
other words the sectional traces are not continuous operators in general.

To carry out our program, we are lead to extend some of the
results on the Dirichlet problem we obtained in [14].

First we need to define the coercivity assumption

(0.7) sup^ Hf'°dt\ < + oo, where T= inf {^0,^ i D}.
y e i ) LJo J

(4.8) THEOREM ([14] Thms 4.37 and 5.14). - Let D be compact, we
assume that (1.1) iii), (0.7) and (H.G) are fulfilled on D. Then for all
g e CW(8D), the Dirichlet problem

(PP) [(h~A)u=o in D

[ You = g on 8D

has a unique solution Ug in ^ ' ( D ) . Ug e C°°(Z)) and is given by

Ug(y} = E^ l^+oo^O^exp- h(y!)dt 1 T<+oog(yT) exp-

K(y,x)g(x) d[i(x) (d[i the area measure)

where Ke C^^DX 8D-dmg(Dx 8D)) is the Poisson kernel (K(y,x) = 8^
if y e SD).

The smoothness of K in the final variable was obtained in [1]. We
shall extend (4.8) and prove
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(4.9) THEOREM. - Under the hypotheses of (4.8), for every g e ^ ' ( 8 D ) ,
the problem (P.P) has a unique solution U g ^ ^ ' ^ D ) . Furthermore the
harmonic operator

H : g - ^ U g
2'{SD) -> 2'(D)

(or Poisson operator) is continuous.

Theorems (4.8) and (4.9) say that the Poisson kernel is a very
regular kernel on D x 8D, in the sense of [34] p. 536. An interesting
problem would be to study the same property for the Green kernel of
[14] and for the new kernels Ko and Kg^. Since K is (at least formally)
a two sided fundamental kernel for (P.P), this could be seen as a
partial analogue to Corollary 1 p. 540 of [34], which says that an
operator A and its adjoint A* are hypoelliptic in an open domain U
if and only if every point of U has a neighborhood where A has a
two sided very regular fundamental kernel.

Proof of (4.9). - The operator H ' . C ^ ^ S D ) -> C^(D) having a
S^Ug

C°° kernel, is regularizing and then extends in a continuous operator
from ^ ' ( 8 D ) = Q)'(8D) into C^D), defining

^(}0=<^,.U>.

Moreover (h—A)Ug = 0 in D.

We have to prove that U g ^ Q ' ^ D ) and that H is continuous for
the topology of 2 ' ( D ) . The properties of K are unsufficient to conclude
directly. We shall give another construction of Ug using the Fourier
transform. We then first have to localize in order to work in H^.

Since D is compact one can find s > 0 and Xi , . . . , x^, n points
of 8D such that the balls 2?(Xp£) form a recovering of 8D, and are
via a C°° diffeomorphism Fj, good local charts. One can find T| > 0
such that for all xe8D the ball 2?(x,ri) is included in one of the
B(XJ,G) = Uj. From the recovering (J 2?(x,r|), we extract a finite

xe9D
n

subrecovering (J B(x'j, T|) . One can find r\ > 0 such that Bo = {v|/(.)c) > r|7}
i

and the 2?(x},r|/2) form a recovering of D. Set r|o, r|i, . . . , r^, a
subordinate partition of unity.
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We have to prove that for 1 ̂  j ^ n ' , y-> (A^,-),^^) belongs
to Q ' ( D ) , and the preceding construction ensures that supp r^j c= U^^,
(^•),F^)) being a good local chart.

So as not to introduce unnecessary Jacobians, we replace the area
measure (related to the charts induced by \|/) by the area measure d[i'
induced by the (Uj,Fj)'s, but conserve the notation K for the Poisson
kernel after changing the variables. Consider for ^eIR0 ' "1

i) H^y) = ri/OO^x^'^X^dH'Oc)
J S D

(4.10)
ii)

iii) = Ey[^(yT)lT<+»ei<F^<yT)^ff^].
JR''-'

(n/ o F^)(0,x-)K(y, F-^x^e1^ dx

From (4.8) H( is the solution of

{(h-A)H^,')=Q in D
\^H^,-) = ̂ (•^(^•^eC^aD).

Then H, satisfies

(4.11)

i) (^^H^y^eC^^-^D)
ii) For all y e D , ^ -> H^y) e ^(IR^-1)

iii) y -> (^->H^,y)) is continuous from D into C°
and from D into ^(R^"1)

(4.11) ii) is an immediate consequence of (4.10)ii) since H{ is the
inverse Fourier transform of a function of C^R^"1). To prove (4.1 l)i)
it is enough to see that we can differentiate in i; under the expectation
in (4.10) iii) so that

(4.12) — H^y) = Ey[^AyT^T< ̂ P^F^y^e^^T^ H^}

where P^ is a complex polynomial, and then ^a^(^*) which is the

solution of (P.P) with ^ == ^e1^0^'^^ o F^), belongs to C^Z))
thanks to (4.8). ^(-,-) belongs to C°°(Z)x [R^-1) (differentiation under
the integral sign in (4.10)i)), and all its derivatives are bounded from
what precedes, then it belongs to C°°(Z)x IR^"1). (4.11) iii) follows from
(4.10)ii) and (4.12).
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On the other hand H( and Ug are related by

(4.13) <TI,(.)^,.),TI,(.)^> = (271)^ f ^)^(^)^
jRd-l

where g, is the Fourier transform of F^.)*(T|^), F .̂)* being the image
operator from 2'(8D) to ^'(W1-1) induced by the diffeomorphism
Fcro). Hence since r [ j g e ^ ' ( 8 D ) , ̂  e C00^"1) and is slowly increasing.

Of course for y e 8 D , H ^ ' . y ) ̂  ^(B^-1) and we cannot conclude
that (4.13) is continuous at y e S D (otherwise i^e C°(D)!!).

To obtain the existence of a sectional trace of order 0, we first
assume that y belongs to a good local chart 2?%,r|/2), so that we
shall work in the usual half space. If y e (R^ we put y = (y\y) e R x ^d-1.
Let ^ e C ( S ) ( R d ~ l ) , we study the following quantity

(4.14) <(Tl.oF^)(^.)<Ti,(.)7C(F^(^.),.),n,^>,Ti>,
1 ̂  k ^ n\

From (4.11)iii), for y1 > 0, one can apply Fubini's theorem so that
(4.14) is still equal to

(4.15) (27T)l-d f^) J(p(jQ(r|, o ̂ -A))^1,^)^^^))^1^) dy ̂

= (27^)l-d p,(y ff(p(^)(r|,oF^)(^\j;)(r|,oF^)(b,x)^<^

^(F^)^1^), ̂ aA(0,x)) dx dy ̂ .

If (7(0 ^ a(k), then ^(FawO^J), supp. r|^) > r| by construction,
and

(^lj) -̂  (T1. 0 F^))^1^)^ 0 ̂ -(^(O^)^^^^1,);),̂ ^^))

is C00 up to the boundary y1 = 0 so that

(4.16) y1 -> the quantity (4.14) belongs to C00^), and vanishes
on y1 = 0.

The only interesting case is then a(^)=a(fe) . In that case we
suppress this subscript and simply note F~1 . In the same way we write
r^ (resp. H ^ K ) instead of r\^ oF'^resp. H^,F~\y\y),
^(F-^.^F-^.))). We shall show
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(4.17) LEMMA. - For all n e ^ l

i rsup sup ( 1 + I ^ I T \\^(yWy\y)H^y\y)dy ^c(n) .
y ^ O ^ e R ^ " 1 |J.y1 > 0 ^eR^" 1

Assume that (4.17) holds. Then

i) W ^(y)r\,(y\y)H^y\y)dy

^ca^+^+iv^Ai+i^ i 2 )^^^(4.18)
if \g,(Q ^c(l+|^

ii) lim H^y\-y) - f^O,̂ ^ .

Since 7^(^,-) e Coo(5) we may apply a first time the bounded
convergence theorem to obtain

(4.19) lim \^{y}r\,{y\y)H^y\y)dy
y^oJ

= |(P(}OTI,(OJ)TI,(OJ,.)^<^>^

and then a second time (thanks to (4.18) i)) and obtain

(4.20) lim fi,(^) \^y)r\,(y\y)H^y\y)dyd^
y^oJ J

= |i^) |(p(JOri.(0,}Or|,(0^)^^>^^= <Tl^(p,^(r|,^)>.

Adding in fe , ^ one gets

(4.21) lim <(p,F*(Ti,i^1, • ) )> = <(p,F*(r|,^)>.
y^o

Hence yo^ exists and is equal to g , in particular UgE^\D).

It remains to prove (4.17). By definition one has

J^°'(4.22) ^},(p,x)K(y\y,x)ei<x^ dx
= E^^I^^^^WH^ .

We shall use the fact that (U,F) is a good local chart, by using
the same localization procedure as in § 2 and § 3. As the reader can
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see the notation is very heavy

/ I ) £»= inf{t>0,^65(^,r|)}
S, = mf{t^E,,y,iU}_
£'„+! = inf{t^5'n,j/(65(x;,r))}

2) <t)(((a,z) is the flow solution of
dz. = (F*Y,)^ dt + (F*y,)(z<) dw\, zo = z = (z'^eIR"

(4.23) < 3) s(z) = inf {s>0, <I),((D,Z) ^ F(E/)}
T(z) = inf{s5?0,(j),(co,z) e {0}x IR"-1}

4) Zn = F(y^); z^ = <t)s(^)(co,z,)

5) ̂  = H^°; H,(z) = exp - | /i(<)),((n,2)) rfs.
Jo

Since supp r|/ c B(X'(,Y\IT), for y1 > 0 we have

(4.24) E^^-^l^^^y^e^TWH^

= Z ^-l('l•')[l^>^^E'•[l^<^(}'̂ )e•<F<^)•^d]
ne ^

= E ^•^'^[i^^^d-i^^s-)
T^/(<t>^(.„)("),^))^•<'^<z">("•^n)•6>^„,(z„)]]

= Z E^^^H^-B^}
neN

with

A, = ^h,((t)T^)(^)expf<(|)^)(z,),^>^.(z,)]

and

B, = ^[lT^)>S(^^^)(^)^[r|.((|)T(^,)(G)^4))^T(^„)(4)

expf<(j)^^),^>]].

Because of the equality

/ d ^J \I ^ V < ^ > = ( - i y ( ^ ° L'<^>,
\A=1 ̂ i /

to control |^|2^^ and |^|2^ we are tempted to integrate by parts
under the expectations.
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Well for n ^ 1, z^ = F(^) and rf(^,supp-r|^) = r|/2 and for
n ^ 0, rfCF'^z^supp-Tv) > r|/2 that is the starting point and the
final point are far enough, and we can actually use the calculus of
variations near the boundary ([14]) to integrate by parts. The summation
in n can the treated by standard arguments, similar to (2.15) and (2.16).

The only remaining term to control is the one we get for n = 0 in
AQ, that is

(4.25) |̂  fcp^Ti.^^^^ri^ci)^^^^1,^)

expf<(t)^^(^\}0,^>^^\j7)l^^^J^

Because (U,F) is a good local chart, <^>s is of the form
^(z) = (z^), with

dz} = d^
m

dz, = Zo(zL^) ds + ^ Z^.z,) d^\
1 = 2

up to a Girsanov transformation. In particular one can build z- with
fixed z1 and w1, furthermore

nco.z^z) = w^)
z -^ (t^i^c^z^z) is a C°° diffeomorphism of IR^"1 for all © out of
a null set of {T^z^ +00}.

Hence (4.25) splits into two parts, just writting

(4.2/) l^<-)-oo == ly^i T- l i < y < - ) . o o .

On T > 1 we can again carry out the calculus of variations as before.

On T ^ 1, for fixed y1 and co, do the change of variable

(4.28) y = ^(z)

so that

(4.29) l^l^^ri.^^^^h.^.fco.y^);))^^r^i)v T(y1)^

^^^i^P^^^i)^1^)^)]^!

^^^(o.^^^h.^^^-^z))^^-^^)
Jacobian ^^(z)!.,.^,/^1,^-^^)]^!.r^1)^! r^^^
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But from the properties of ()), the above expectation is a C°° function
of z, which is bounded, and has all its derivatives (obtained by
derivation under the expectation) bounded uniformly in y1 for y1 ^ 0
belonging to the (compact) support of T|^. From classical properties of
the Fourier transform, (4.29) is then uniformly bounded in y1 and ^.
The proof of the lemma is finished.

Finally, to achieve the proof of theorem (4.9) it remains to prove
the continuity of H . But the proof of (4.17) is unchanged if we replace

e1^ by P,(z)^> =-5-^>.

/ r - - - - - -\
Hence yl^^^(y)^(y\y)H^y\y)dy1jey(Rd), is conti-

\ v // r - - - - - -\nuous and is equal to ( ̂  ^(^^(O^yn^O.y)^0'^^ on y1 = 0.
\ J /

The continuity of H follows from the continuity of the Fourier
transform, n

(4.30) Remark. - It is possible to go further in the preceding proof
by identifying ^-1 with the help of time reversal on the path co as in
§ 1. It is not difficult then to show that y ' -> (F^(r}jUg))(y\ •) is a C00

function with values in ^ ' ( W 1 ' 1 ) . This result also proceeds from (4.6).

We stress the fact that the test function (p plays a crucial role in
(4.29). It is because of the integration in y that we can get out e1^'^
of the expectation and then get a control in ^(H^"1) of the interesting
quantities.

Without any difficulty we can extend (4.9) to non compact domains.

(4.31) DEFINITION. - y{9D) is the space of functions of C^(SD)
which can be extended as functions of y^). y ' ( 8 D ) is then the dual
space of y(oD).

(4.32) THEOREM. - i) Assume that cD is compact, (H.G unif) is
fulfilled in D , everything else being as in (4.8). Then the conclusions of
(4.8) and (4.9) are still true with y ' { D ) in place of Q ) ' ( D ) .

ii) Assume that (1 .1) iii), (0.7) and (H.G unif) are fulfilled in D. Then
for any g e y'{SD), (P.P) has a unique solution Ug e y\D). Furthermore
the harmonic operator H\ g -> Ug, is continuous when y'(SD) and y'(D)
are equipped with the topologies induced by Q'(SD} and Q)'(D).
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Proof. - i) One part is proved in [14] Thm. 5.16, and in that case
K e y ( D x 8 D - diag.(Dx8D)), so that the proof of (4.9) is still
relevant.

ii) If 8D is no more compact, we proved in [14] lemma 5.18 that
provided (1.1) iii) is fulfilled, we can find E > 0 such that for every
x e 8 D , 2?(x,s)n25 induces a very good local chart for the auxiliary
process of § 3. Since Ke ^(D x 8D- diag (25 x 8D)) one can again apply
the proof of (4.9). D

We are now in position to prove Theorem (4.2).

Proof of (4.2). - From Hormander's theorem we know that
ue CCO(Dr\U), thus we only have to prove that u extends C°° up to
the boundary.

Let xe U r\ 8D and e > 0 such that ^(x,3e) n D c U. We shall
prove that ue C^^B^x^nD). We can extend the restriction to 5(x,2e)
of / into an application feC^(D). From [14] 5.14 and 5.16, the
Dirichlet problem

{(h-A)u = /in D
[ YoM = 0 on 8D[ YoM = U on oD

has a solution Uo(=y\D) n C^{D). Then u - UQ checks

{(h-A)(u-u,) =/- / in D, wi th / - /=() on ^(x,2e)

l(ph+i;-r°)(u-Mo) = ^ + P/+ (^)^°e C°°([/na.D).
OH

So we may and will assume that/= 0 on 2?(x,2e), and that p = 0.

From (4.7) we only have to prove that youe C°°(2?(x,8) r\SD). Let
XeCS°(<9Z)) with / = 1 on 5(x,2e). We have ^ . y o M G <^\8D), hence
from (4.32) ii) one can build u e y ' ( D ) satisfying

\(h-A)u = 0 in D
[ You = X - Y o ^ on 8D.

Furthermore

{(h-A)(u-u) = 0 in D n ^(x,2e)
[ yo(M-M) = 0 on 8D n 5(x,2c)

so that because of (4.7) again, u - ue C°°(5(x,2£)n5).

From (4.6), YiM exists, and so (v-F)u is well defined on 8D.
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Since u-ue C^^Bf^x^nD) on has

(v-V)u = g= g + (u-r)(M-M)eC°°(^(x,2E)naD).

Of course because joti == you on 9D n 2?(;x,2e) it is enough to show
that yoMeC^CffOc.EtnaZ)) .

Now consider g^e CS°(&D) which converges in ^\8D) to Y()M. Then
from (4.32) ii) and (4.7),

(4.33) Un = T^eC00^)?.^^) and u^ -> u in 2 ' { D ) .
n-^ oo

From (4.6) we also have

(4.34) Yi^ -^ yiM in 2 ' ( 8 D ) .
n -»oo

Therefore

(4.35) (i;-r)^=g+v|/,

with vl/^eC^^Dn^x^e)) and ^ ^ 0 in ^(32)).
71^ 00

Now we adapt the proofs of [13] Thm 2.3 or [14] Thm 5.3. Let
7eC(S°(^(x,2£)) such that 0 ^ ^ ^ 1, ^ = 1 on J5(x,38/2) and
rieC?^) such that T| = 1 on [0,1] and supp T| c= [0,2[.

We apply the Ito formula to the function (t,y) -> r\(t)^Un(y) and
to the process y ' , which gives

(4.36) x^(};)==^'l;'^^-^)X^,(^-^)x^)(};)-^'u'T17(X^^^)(};)

where r^' =8r{-. and JE?/l'u'T1 was defined at (3.28.3).
as

For (peC(S°C8(.x,5e/4)nM)) and 8" a C^ differential operator of
length | a | on 8D whose adjoint is called 3^, we apply (4.36) and the

fact that TI' is identically 0 out of [1,2[ in order to get

(4.37) ^^g^D- - <^,7<(P,^^(-1,-2)>^>^

- <^,X<<P,^^D(-1,-2)>^>D

+<(p,a^/l•^(0,^)>^

+ <aa(p,^•l;•11(0,xv|/n)>^

- <aa(p,^• l ;•T1(^.^x+^^x,^.^x+^^.^x)>^
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where 5^ acts on the first variable of K^' represented by • 1, this
variable only describing 9D.

Since V^ = 0 on ^(x,3e/2) n D (similarly V^ = 0 on 5(x,3e/2) n 8D)
and supp. (p c= ^(x,5e/4), the integration in the last term of (4.35)
holds out of the diagonal. So we can introduce the kernels IQ) and
A^. We also integrate by parts Y^' Y1^ (resp. V^' V^) using Stokes
theorem (resp. the integration by parts formula on QD). The last term
of (4.35) becomes :

(4.38) + <^,{^c+^X.div r}<(p,^^(. 1,-2)>^

+ <^,r,x.n<<p,^^(.i,.2)>^>^
+ <^,^x.^<(p,aa*^(•l,•2)>^>^
+ <^,{^+^X.div^}<(p,^^(.l,.2)>^>^

+ <^,^X.^2<cp,a^^(-l,-2)>^>^

m r

where A = 1/2 ^ Y2, - Y, and F == 1/2 ^ ^ - V,.
t = i < f = i

We desire now control the fourth term of (4.37), which can be written

(4.39) <av^^(o,xvk)>^

= [ ycpOO^jf ^(Wn^tWdL^d^y).
JSD LJo J

Taking a smaller s if necessary, we may assume that 5(x,4c) is included
in a good local chart. In order to simplify the notation we do not
make appear the corresponding diffeomorphism, so that ̂  = (u<, ())((G),O,JO)
up to the stopping time 5' defined by 5' = i n f { r ^ 0,^^ B(x,4s)}. (4.39)
becomes

(4.40) f 8^(y)E\ f 2 T l ( t ) l ,<s ̂ n^^^H^dL^ dy
J^-1 LJo J

r rr2 1+ ^(pOO^ ^l^s^nWH^dL, \d[i(y).
J8D LJo J
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The techniques of § 3 allow to show that the second term may be
written as

f ^(pOQ | t(x)^^x)q(y,x)d[i(x)d^y)
JQD JQD

with qe C^(8D^SD). Indeed the time 5' is big enough so that we
have time to make the calculus of variations in both time directions.

In the first term of (4.40), for ((O,Q fixed we do the change of
variable z = ())((o),0,})), and define

S == inf [s ̂  0, (M,, (|), o (|),-1) t B(x^)}
so that

(4.41) | ^(pOQ^r S\W^s^n^^Ay)H^dL^dy
J^-1 LJo J

- f t^^E^S2^)!^^^1^^)
jRri-l LJo

Jacobian ̂ ^^^H^dL^ dz

where H^ = exp - [h(u,^,o ̂ 1) ds+v^.o ̂ 1) dL°,].
Jo

Thanks to the properties of c^"1, z -^ E[" ' ] e CO O ( lR d~ l ) , hence

<^^[ '--]> - 0.
n -* oo

/ r \Similarly, (v|/,,x ^(p(^^(^, •) d^y) ) -^ 0.
\ JQD / 71-^00

So we can go in the limit when n -> oo in (4.37) and obtain an
integration by parts formula

(4.42) ^(p.^c.You)^ = <M(q>)>z) + <yo^,y((p)>BD

where 9 (resp. Q ' ) is a continuous linear operator from C^(8D) into
CS°(5) (resp. CS°(B2))) satisfying

lie((p)||c^-) ^ c(fe)||(p||,(resp. WWc^D) ̂  c'(k)M^

for any compact subset M of D (resp. AT of SD) and any fe e ^J . So
X.youeC0 0^^)). D
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4.B. Solution of the boundary value problem (L.P).

The first part of this section is very much inspired by [22]. As in
[32], [22], we introduce a stochastic version of (L.P), that is a martingale
problem, which solution is shown to be R^g. Then using the regularity
of R^, it is shown that this function is a classical solution of (L.P).
Uniqueness follows from (4.2). Extensions to some Sobolev spaces
((4.5)) are given at the end of the section.

(4.43) DEFINITION. - A measurable function u is called a stochastic
solution of (L.P) if for any y e D, the process t -> Mt(u) defined by

Mt(u) = u(y^ - u(y,) + (f-hu)(y,)ds+ (g-vu)(y,) dL,
Jo Jo

iv±t\^) ~ i*\yt) ^yyo

is a Py , L2 local martingale.

(4.44) PROPOSITION (see [22] Prop. 3.2). - Suppose that fe C°°(25),
g e C ^ ^ S D ) and that (1.1) holds. Then every ueC\D) which is a
stochastic solution of (L.P), is a classical solution of (L.P). The converse
is also true.

Proof. - That any smooth classical solution is a stochastic solution
follows from Ito formula.

Conversely, if u e C\D) is a stochastic solution of (L.P), straight-
forward computations show that

- Au(y) = (/ - hu)(y) for y e D.

It easily follows that one can find sequence of stopping times Sn going
to infinity almost surely and such that

r^n
(4.45) for all t ^ 0, - (Tu(y,) + (g-vu)(y,))dL, = 0.

Jo

But it is well known that if 8D is non characteristic, for y e S D , Py
a.s inf{t^O,Lt>0} = 0, so that from (4.45) proves that the boundary
condition is satisfied. D

We can now prove Theorem (4.4).
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Proof of (4.4). - i) We already know that T^eC00^). To simplify
we shall call it u in the rest of the proof.

We shall show that u is a stochastic solution of (L.P), and then a
classical one, thanks to (4.44).

Using (0.11) and the Markov property we get immediately

(4.46) u{y,) = (T^)-1^ [ w W/0^) ds^g(y^ dL^F^
I LJo J

- f^^u(/(^)^+^(^)^l.
Jo J

r r^ ~iPut M, = m H^ (/(^) ds+g(y,) dL,)/F, which is a continuous
LJo J

matingale thanks to (4.46). Integrating by parts we obtain:

(4.47) ^(H^r'SM,
Jo

= (H^Y^M, - Mo - f\^•u)-lM,(A(^)^+l;(^)^)
Jo

= u(yi) - u(y) - (H^)-1 ( t H's'^f^ds+g^dL,)
Jo

- fY«0'.)+fW)-1 r^^O'Jda+gO'J^a)!)
Jo \ L Jo J/

(/i(}Y)(fa+i^,)^)
and

| (^••r1! f ̂ •"(/(y,) ̂ +^») dLj1(A(^) ds+D(^) rfL,)
Jo LJo J

= [' f^'m^a+gG'j^aMWr1]
Jo Jo

= W)-1 f H^(f(y,)ds+g(y,)dL,) - [ ' ( f (y , ) ds+g(y,)dL,).
Jo Jo

Report this last equality in (4.47). We see that

(4.48) [wr^M^ M,(u).
Jo

Hence Mt(u) is a local martingale.
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It remains to show uniqueness. If u and u' are two solutions (in
^\D)) of (L.P), then u = u - u' solves (L.P) with / = 0 and g = 0.
From (4.2), ueC^^D). Indeed (0.7) is automatically fulfilled if (0.11)
holds. We may apply the Ito formula and get

(4.49) E^y^H^]- u(y) = 0.

From (0.11), lim ^ H^^y^dt} exists. Hence lim u(y) x T exists.
r-^00 LJo J T-^ao

So, u(y) = 0.

ii) is immediate in view of the proof of i).
iii) u e y ' ( D ) can be shown exactly as in [14] Thm 5.16, because

the kernels are rapidly decreasing ((2.25) ii). If ^eCS°(Z)) is equal to
1 on A, = 25 n { | x | ^n} , one immediately sees that R^f,^g is a
solution of (L.P) with data (Xn/,/^), hence from (4.6) and what
precedes R^g is a solution of (L.P) with data (f,g). According to (4.2)
(recall that (0.11) is stronger than (0.7)), if u e y ' ( D ) is a solution of
(L.P) with / =E 0 and g = 0, then u e C°°(5). Hence R^ exists, soa t \
lim E^u^y^H^ds) exists, but this is still equal to lim t x u(y),
t^W ) ) t^OO

it follows that u(y) = 0. D

To finish the section we extend, in the compact case, our study to
suitable Sobolev spaces by proving Theorem (4.5).

Proof of (4.5). - The proof is very similar to the one of theorem 5.19
in [14], so we only give an outline of it.

First we may assume that p = 0 thanks to section 3.A.
Then it can be shown as in [13] 2.22 that R^ extends as a

continuous operator from L\D) x ^(SD) into L2(D) (the difference
with [13] here is the necessity of the localization to apply the
diffeomorphism property of § 3).

Let (/,,^)eC°°CD) x C°°(3Z)) which converges to (/,^) in
T^CD) x H^^SD).

Then R}'^ converges to R^g in L2.

This proves: (h-A)Rhfvg = / in D.
From the continuity of the sectional traces (4.6), we conclude that

R^g is a solution of (L.P). Uniqueness was proved in the preceding
theorem.
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Now we have to prove that R^g belongs to H2k(D). The integration
by parts formula of §2 allows to show that Rhv is a continuous
operator from H^^D) x H^^SD) into 7^(25) (for each differentiation
in the normal coordinate, we have to differentiate twice in the tangential
coordinates, see [11] 1.17, and the formula at the beginning of §1.C).
From the hypoelliptic regularity theorem proved in [13] we also know
that R^g e H^D). So it is enough to study the behaviour of R^g
near the boundary. By localization, we just have to look at the case

D= OH, A = l /2^+b00^+ A

where A is a second order differential operator acting on the d-1 last
variables.

Put y == (y\y), F = R^g. For / ^ 0 one has

(4.50) 1/21^ + b(y)^ = (h-A)F - f = d(F).

For / and g of C°° class, the derivatives in y ^ , . . . , y^ of F are
computed by direct differentiation under the expectation, so that it is

c^F - -
easily shown as in [12] 2.22 that if [a| ^ 2fe,—^eL2(2)), if f e H^W
and g e H ^ ^ D ) . y

9F yp
For k = 1 , one knows that -—eL 2 , hence from (4.50) —^eL 2 .

8yi 8yi
Furthermore

9F ( P1

(4.51) ^-(^J0=(exp- | 2b(a,y)da( P1 \= exp - 2b(a,y)da)
\ Ji /

{9F r^ r5 1
^(1^)+ 2d(F)exp \ 2b^y)dads^
l̂ i Ji Ji J

For k = 2, we know that F e H 2 . We may differentiate in ^i in

( ^ r\

(4.50). A — ) can be computed by differentiation under the integral in
9 y }

93F
(4.51) and then belongs to L2, so that —^eL2. We may differentiate

9^F /92F\
another time in (4.50) to explain —» and again compute A(—-}

8yi \8yV
directly from (4.51).
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8'F
So ,—eL2 , and FeH\D). This procedure can be iterated for

all k. D

(4.52) Remark. - In the previous proof, L2 can be replaced by
C\D) and then H^ by 0^(5), thanks to the Feller property of the
semi group. In particular R^ is a continuous operator from
C^(5) x C^AD) (resp H2k(D) x H2k(8D)) into C2^) (resp 7^(5)).

The only difference is that the hypoelliptic regularity theorem of
[13], says that if /eC^CD), any solution u of (h-A)u = f belongs
to C^CD). Hence a priori R^e C^-^D).

But recall the proof of Theorem (3.4). In order to prove the
regularity in D of R}'^, it is enough to work with a (peC?(Z)) in
(3.12). Hence the integrations by parts it remains to do are (3.17) and
(3.18), with U ==> supp-cp.

In these two cases we have to use the usual calculus of variations
on an ordinary flow £;, before the exit time out of U^ for the function
cp with support in U. It is easily seen that this is the usual formulation
of the local calculus of variations, such that the integration by parts
(3.17) up to order 2fc involves the derivatives of / and h up to order
2k, while the integration by parts (3.18) does not make appear any
derivative of g .

So R^g belongs to C^(Z)) as soon as / belongs to 0^(5).

4.C. On the Gauge condition.

Conditions (0.11) and (0.7) are not really readable on the generator
A. Then it seems useful to give some explicit conditions ensuring that
(0.7) and (0.11) are satisfied. In [14] §4.C we showed

(4.53) PROPOSITION.

If one of the three following conditions is satisfied
i) inf h(x) > 0,

x e D

ii) D is compact, h ^ 0 and A is non totally degenerate {that is the
F/s, 1 < i ^ m, do not all vanish at a same point),
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iii) D is compact and for all y G D

h(y) > (l/4 ^ [V,(div F,)-(div y^-l^div Y\y)
\ 1=1 /

then (0.7) holds.

The first analogue of (4.53) i) is

(4.54) inf h(x) > 0 and i; ^ 0.
x e D

If u is not necessarily positive we may again choose a sufficiently
big h for (0.11) to hold.

Actually E^} ̂  ce^'2 for a constant v , so that

(4.55) if inf h(x) - 1/2 sup v\x) > 0, then (0.11) holds.
xe D xe9D

It is more difficult to give sufficient conditions for (0.11) to hold
when h may vanish. But we similarly have

(4.56) if inf v(x) > 0 and h ̂  0 then
xe8D

sup^ff 'H^dL^ = J^(y) < + oo.
y e D Uo J

It is easily checked that if (4.56) holds, and if for all y e D

lim PW] = 0,
<-> +00

then for /= 0, the conclusions of (4.4) and (4.52) remain true, without
assuming (0.11).

A sufficient condition for lim ^{H^} to be equal to 0, when v > 0
t-> 00

and h ^ 0, is that for all y e D, lim L^ = + oo, Py a.s (indeed if it
<-» 00

holds we can apply the dominated convergence theorem).

Assume that (4.53) ii) holds. Then from [14] 5.21, sup ̂ [7] < + oo
yeD

(recall that T is the first time the process reaches the boundary).
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We define by induction, the sequence of stopping times

(4.57) T o = T ; ^=T,- i+l ; T,= m [ [ t ^ S ^ y t i D } .

From what precedes Py a.s for all n, T^ < + oo and because
Tn+i ~ T^ ^ 1, we have 7^ -> + co Py a.s.

n-f oo

On the other hand Ls^^ - Ls^ = ^r^+i - ̂  in law, hence for all
y e D

(4.58) P/L^-Z^ > e) ^ E^Py^L, > e)] > r( > 0.

We can conclude from the Markov property of the local time and
the Borel Cantelli lemma that Li -> + oo, Py a.s.

f-»00

So we can state the following theorem.

(4.59) THEOREM. — Assume that D is compact, that (1.1) and (H.G)
are fulfilled on D, that A is non totally degenerate, and that
inf v(x) > 0, h(x) ̂  Ofor all x e D. Then iffe C°°(5) (resp. ^-"(.D))

x e 9 D

and g e C^^oD) (resp. T^(c'Z))), (L.P) has a solution u e C00^) (resp.
7^(5)), unique in Qi'(D).

Proof. - According to Thm 5.12, 5.19 of [14] we may find
weC°°(5) (resp. H2^2^)) solution of

{(h-A)^ =f in D
[ YoW = 0 on S D .

From what precedes, there exists an unique u e 2 ' { D ) solution of

(460) [(h-A)u=OmD 3
^•°^ [(v-r)u = g + (Fovl/)— + p/ on 37)

(7M

_ _ 3w _
and MeC O O (7) ) (resp. 77^(2)) because —eH2^1^) admits a trace in

<7M

H2k+112(8D)). Of course M + w is a solution of (L.P). Uniqueness is
clear. D

In the same way, theorem (4.2) may be extended as in [13] 2.23, in
the following form.
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(4.61) PROPOSITION. - We assume that D is compact, and that (1.1),
(0.7), (H.G) are satisfied on D. Any u e ^ ' ( D ) solution of (L.P) mth
feH^\D) and geH^iSD), belongs to H'^D).

4.D. Remarks.

Theorem (4.2), and theorem (5.3) of [14] are the analogues of
Hormander's hypoellipticity theorem in [21]. But in the Sobolev spaces
context, the results we have just proved are less pleasant than the one's
one has in the uniformly elliptic case, but also than the one's we
proved for the Dirichlet problem in [14].

Even when the solutions are more regular than the data in the
uniformly elliptic case, as regular for the Dirichlet problem in the
hypoelliptic case, they become less regular in (4.59) and (4.61).

As we said at the beginning of the paragraph and in the introduction,
(L.P) was only solved in the uniformly elliptic case for a compact
domain D . In that case our results are contained in [29], [28] or [33],
except the uniqueness in ^ ' ( D ) (that is except the a priori regularity).
Uniqueness is proved in C°(D) in the three papers. On the other hand
the boundary condition is more general in [29] and in [33] as ours.
Actually [33] only assume weak transversality (Fo\ | /+p>0) and the
condition can be of Ventcel-Levy type in [29]. The stochastic representation
for the solution of (L.P) is given in [29] Prop. 5.2. In some recent
papers (see e.g [22], [27]) the Neumann problem for the Schrodinger
operator 1/2 A + q was discussed, for irregular potentials q or irregular
domains D. In particular the authors produce the relations between
uniqueness, the Gauge condition and the positivity of the first eigenvalue
of — (1/2 A + q). In [27], the case of an infinite Gauge is also discussed.
The next paragraph contains a similar discussion, in the hypoelliptic
context.
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5. COMPLEMENTS

In the whole paragraph, besides explicit mention of the contrary,
we assume that D is compact and that (1.1) holds.

5.A. A decomposition result.

As in [13] §2.C we start by studying some functional spaces related
to (h-A,v-r).

(5.1) DEFINITION. - For oo ^ k ^ 2, \ve define

M*(resp. A^) = {/e C\D) (resp. 7^CD)),(i;-r)/=0},

M^resp.TV^) is the closure of M°° in M^ (resp.A^).

The previous definition is meaningful. If feCk(D), (v-r)f is
defined in the usual sense, and if/e H2(D), Afe H°(D) admits sectional
traces on 8D up to order 1, when / admits sectional traces of order 0
and 1. If p = 0, one can also define N° and N1 since Af does not
appear in F/, in particular since C°(D) c: L^D) one can define M°
and M1 just taking the traces and differentiation in the sense of
distributions.

We collect the results we know on the previous spaces in the
following proposition.

(5.2) PROPOSITION.

1) For k ^ 2, M* is a closed subspace of 0^(25).

2) For k ^ 3, TV* 15 a closed subspace of Hk{D). If furthermore
p = 0, N2 is closed in H\D).

3) C?(Z>) is (sequentially) dense in M° and N°.

4) If p = 0, and V, = 0, 1 ̂  { ^ r , for k ̂  2, M^ = M" and
N^ = N ' .

Proof. — 1) is clear. To show 2) and since the sectional traces are
not continuous, we have to consider the usual trace operators on
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H\D). If k ^ 3, f-^ (Yo/,Yi/,yo(4/)) is continuous

from Hk(D) into H^^^SD) x H^^^SD) x H^^^SD).

If p = 0, Yo(^/) disappears in F and the result is true for k = 2. 3)
is clear since CS°(Z)) is dense in L2. Then we prove 4). Let feM"
(resp. A^). Since Fo^ > 0 on 8D, one has

(5.3) yi/= byo/-(^o-(^^)n)7o/1/^^ = ^(Yo/).

Let g^eCW(SD) converging to Yo/in C^SD) (resp. H^^^SD)),
hn- F(gJ.

Then h^EC^(SD) and converges to yj' in C^^SD) (resp.
^-^(^Z))).

The restriction operators

TT : C'(5) -. n CJ(az)). 0 ^ fc ^ + oo
0 <£ j ^ k

f^ (fjf)<: HW -^ n ^(^D)
O s ^ J ^ k - 1/2

are continuous surjections.

So there exists/^ e C°°(5) with yo/n = ^n and y^ = h^. Furthermore
according to the open mapping theorem f^ converges to / in CA(5)
(resp. H^D)) modulo ker 7i^(resp. ker^ = H^). Since C^(D) is dense
in ker ^(rcsp. H^), one can find (p^ e C^(D) such that/^ -> (p^ converges
to/ in Ck(D) (resp. Hk(D)). By construction (y-!')(/„+(pJ = 0. D

Remark. - If p ^ 0, or if one of the F/s does not vanish, the
convergence of h^ to Yi/only holds in C'^'^SD) (resp. Hk~^(SD)) and
we do not know if (5.2.4) is still true.

(5.4) DEFINITION. - Set Hh,v) = in f^eIR, for all ^>^o, (0.11)
is satisfied for (^1+^,1;)}. According to (4.55) 'k(h,v) < + oo. For
'k > \(h,v) \ve put G^f= Rf^.

If (H.G) is satisfied on D, G^ is then a continuous operator of
C°°(5) (resp. 7^(5), resp. C2' (D)) (see (4.52)).

(5.5) PROPOSITION. - If (H.G) is satisfied on D ,for all 0 ^ k < + oo ,
G^ is a compact operator of C2k(D).
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Proof. - As in [13] 2.27 we shall show th^t for |a| ^ 2fe, Q^G^f
is uniformly Holder continuous on \\f\\c^^ ^ 1. Without loss of
generality and taking

^ > msix(k(h,v),'k(h,v-}-ph))

if necessary, we may assume that p = 0.

Let r[ eC^R"^) such that supp. r| c: [0,8[ for a 8 < 1 which will
be chosen at the end of the proof, and rj = 1 - T| . Then for | a | ̂  1k,

(5.6) 1^(^/00 - yG^f(y')\ ̂  \8aR^h•v'^y) - S^R^'^y'^

+ l<^(^-)-y^(/,.),/>|

where K^ is the C°° kernel of the regularizing operator f-^ R^^'^
(see (3.28.3)).

From the estimates (2.25) one shows easily that there exists N > 0
such that for all a

(5.7) IIW(.,.)|L ^ c^b-^^'^d^dll).

So that

(5.8) KBTO^,.)-^/, •)),/>! ^(oOS-^i^1^-/!.

In order to estimate the first term of the right hand side of (5.6), one
can localize as in (4.4) iii). If supp /c Z)g = {v|/(x) > e} we obtain by
introducing the non reflected flow

(5.9) l^^o"'71^)-^^71-"'^/)! ^ c(a,e)8.

Then if supp/c good local chart, we transport the problem in (R^
with/e 0^(11^). The derivatives in the tangential coordinates y ^ , . . . , y^
of T^71'"'71 are computed by differentiation under the expectation, so
we have

(5.9 bis) y R^^y) - y- R^^y') ^ c^')6.
dy Sy^

But since GVe 0^(5) and R^'^ e C00^), R^'^ G C^^D) and if
we put F== R^'^^esp.F with n) , F checks the following equality

^2 T~' ^\ y-»

(5.10) l/2-^+b(y,,y)-^-=(h+K-A)F+(h+K-A)F=d(F).
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For k = 0, according to (5.8) and (5.9 bis), and taking 8 == \ y - y ' s

with 5 = 1/2^(1 + d ' ) one shows that G^f is (s A 1/2) Holder continuous.

For k = 1, one solves (5.10)

(5.11) ^(,^)

/ p1 V&F p1 r5 i= exp - lb(a,y)da\\—(Q,y)- 2d(F) exp 2fc(aj)rfarf5^
\ Jo / l6^! Jo Jo j

All the terms in (5.11) are controlled with the help of (5.7) and (5.9),
SF

unless —(0,^). But G^-f satisfies (L.P) and so

(5.12) ^(Oj) - - ̂ (O^) + (l/^oGQ)[^-r)(F+F)](0,}))° y i cy^

where F is a second order differential operator acting on SZ^R^"1)
(4.1). Therefore if U is a relatively compact open subset of W1 and
( y , y ' ) e U x £7, one obtains

(5.13) ^(0,30-1^(0^) ^c^S-^^^-/!
î cyi

+ sup(l/Fo(^)){| |y | |oo+c(r))5 + ( | |y| |oo+^(^))8-N<3 + d /) |y-/ |}.
ye U

On the other hand

(5.14) | F12d(F)(s,y) exp f5 2fc(a,y) ̂  ri5f^o
Jo

- f1'1 2ri(F)(sj') exp f
Jo Jo

I Jo Jo

Vi p
2rf(F)(sj')exp 2b(a,y)dads

o Jo

<c(£7,b)|y-/|{l+||A+5l||,c /(0)5+c(^)5+c(/^A,^)5-N(2+d/)}

+c'(£7,b){|y-/|+c(A,)l,I)5+c(^A^)5-N(3+dy)l^-/l}.

apBy choosing 8 = \ y - y ' \ s with s = 1/2 N ( 3 - ^ - d ' ) , we obtain that — is
8y,

s ' Holder continuous whith s' = min ( s, 1/2 ——— ) •
\ 3+d /
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S^FReturning to (5.10) it is immediately seen that —^ also is 5" Holder
° y i

continuous for a suitable 5". In the same way one shows that
B'F

-——•> 7 ^ 1 , is uniformly Holder continuous by differentiation in y,
Sy^Qyj
in (5.11) and (5.12).

For k ^ 2, one iterates the method as in (4.5), by a step by step
differentiation in (5.10), (5.11) and (5.12). D

The compactness of the resolvant operators is the key point in the
proof of Thm 2.30 in [13], which gives a decomposition of the spaces
L2 and C°° of a compact manifold (without boundary) into the sum
of Ker(h—A) and Im (h— A*). The first step of the proof consists in
the (classical) identification of ker (h — A) and Im (h — A) with
Ker (Id - ̂ ) and Im (Id - V^).

The present situation is more intricate because of the boundary.

We start by the identification result.

(5.15) PROPOSITION. — Assume that (H.G) is satisfied in D. Then for
\ > (k(h,v) V 'k(h,v+ph)) and 2 ^ k ^ + oo,

1) IffeC^D), G^fEMk and (h-A)G^f = (Id-W-)f.
2) IffeM\ G\h-A)f= (Id-^)f.
3) ker (fc - ̂ ) n M' = ker (Id - KG^),

and (h-A)^) n M^ == (Id-^G'^M^),
where Id and G^ are considered as operators on Ck(D).

4) I/furthermore (H.C) is satisfied for h,

ker(^-^)nM°° = ker (h-A) n M^.

Proof:. 1) is a consequence of (4.4) i) and (4.52), 2) is an immediate
application of the Ito formula, 4) is a consequence of (4.2). Now let
feM" such that (h-A)f= 0. Then 2) implies that fe ker (Id- ̂ G^).
Conversely if / — ^ G ^ / = 0 , then according to 1), fe Mk and
(h-A)f= (h-A)'kG^f= 0.

Finally if feC^D) satisfies f= (h-A)g for a geM^ then
(Id-XG^f+^g) = f according to 2). Conversely if f= (Id-^G^g
with geC\D) then (h-A)G^g = /and G^geM^ So we have proved
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a stronger result than 3) since we have

fad-^XC^)) = (h-A)W
v • / [(Id-KG^C^D)) n M" = (Id-^^M'). D

Now we are going to describe the adjoint system of (^,F). This
requires to make the good normalization for Vo'

(5.17) DEFINITION. — We shall call n the inner conormal relative to
m

A, that is the vector field defined by : n/= n. 1/2 ̂  (Y^)(Yif).
1=1

Multiplying v by 2(Vo\^)/a2 if necessary, we may assume that
m

(5.18) V^ = 1/2 a2 = 1/2 ̂  (W
1=1

so that Vo == h + PO , where Fo is tangential to 9D. Let ^ * be the
formal adjoint of A given by

m

(5.19) .4* = 1/2 ̂  y?- FO + (div Y,) . F-div (Vo - l/2(div Y,) Y1).
1=1

Recall the classical Green formula for /and ^eC°°(Z)).

(5.20) | (f.Ag-g.A^f)(x)dx
JD

= - J {/||-^+ (ro- i/2(div y,). y')4(2) ̂ (z).
If we define F? by

(5.21) r? = 1/2 ̂  ^2 - F, + (div F/). ̂
1''=!

+ — - div (Fo- 1/2 (div F,). V) + [1/2 (div 7,) .Y'-Y^.an
r* = r? - p^*

then for p = 0, / and g e C°°(5), one gets the duality formula

(5.22) | (/. Ag-g . ̂ */)(x) dx = - S (/. Fg-g . r*Q(z) dn(z).
JD JQD

As in [29] we shall call (^*,F*) the adjoint system of (A,F).
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One checks without any difficulty that (^4*,r*) satisfies (1.1) and
also (H.G) if (A,F) satisfies (H.G).

Therefore all the results of the paper are still true if we consider
h - A * , v - r*,G*\ M*' etc... for ^ sufficiently large.

In the rest of the section we assume that p = 0 and that (H.G) is
satisfied in D. From (5.22) we obtain for 2 ^ k ^ + oo,

(5.23) If geM^feM^, \ f . A g d x = | g . A ^ f d x .
JD JD

Then (5.23) and (5.16.1) give

(5.24) For ?i large enough, / and geC^D),

f f.G^gdx= [ g.G^fdx.
JD Jo

For K large enough, we write G\ for the restriction of G^ to Ck(D).

Hence G\ is a continuous operator of Ck(D), and G^ is compact.
Let Q)'k be the dual space of the Banach space 0^(2)), DG\ be the
adjoint operator of G\, which is a continuous operator of ^. It is
clear that DG\ coincides with G^ on Ck(D). Since G^ and G^ are
compact operators on Banach spaces for k < + oo the following holds :

(5.25)

dim ker (Id - ?iG^) == dim ker (Id - ̂ DG^)
= codimIm(Id-^G'^) < + oo

dim ker (Id - ̂ G^) = dim ker (Id - ̂ DG^)
= codimIm(Id-^G'^) < + oo

Im (Id-?iG^)(resp. Im (Id-?iG^))
is a closed subspace of C2^.

But,

dim Ker (Id - U)G^) ^ (dim ker (Id - \G^) = dim ker (Id - U)G^)

^ (dim ker (Id- Ur^)-

Hence all the dimensions in (5.25) are equal. On the other hand it
arises from (5.24) that

(5.26) Im(Id-)i<^) c: (ker (Id-XG^))1 (1 in the L2 sense)
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and then for k < + oo

(5.27) 0^(5) == ker (Id - V^,) © Im (Id - W^)

- ker (Id - W^) © Im (Id - )iG^)
(only algebraic sum)

= (ker(/^-^)nM2A)®(^-^*)(M*2A)

= (ker^i-^nM*2')®^-^)^2').

Let we trace the situation on C°°(Z)).

Let df, = dim ker (Id-^G^). d^ is a decreasing sequence of integers.
But according to (5.25), ^ == dim ker (Id-U)G^), and is also an
increasing sequence. So for all k ^ 1, ^ is a constant. Hence

(5.28) Ker (Id-^,) = ker (ft-^) n M2^
= ker(/i-^)nM°° for all / ^ l .

Let/eC^). From (5.27) and (5.28) we get for all k ^ 1 ,

(5.29) /=/ker + (h-a*)gh, with /^r eker (h-A) n M00 and
g^M^.

Furthermore the decomposition (5.29) is unique, so that for k ^ 1,

(h-A^)(g,-g,) = 0, and g, - ^eM*2 .

Hence
gh - gieker(^-^*)nM*2 = ker (/i-^l*) n M*00,

i.e ^ -^eM* 0 0 .

So g.eM^ for all fe ^ 1, i.e ^eM*00 .

We have proved the following theorem.

(5.30) THEOREM OF DECOMPOSITION. - Assume that (H.G) is fulfilled
on D and that p = 0 . Then

C°°(5) = (ker^-^nM00)®^-^*)^*00)

= (ker^-^nM*^) © (/i-^)(M°°).

Furthermore (/i-^)(M°°)(resp. (h-A*)(M^)) is closed in C°°(5) and

dim(ker(h-^)nM0 0) = dim (ker (h-A*) nM00) < + oo .
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That (h-A^M^) is closed in C°°(5) is proved in the following
way: let^ ̂  = (h-A)f^ with /„ e M°°, and ^ converges to ^ with
^eC°°(7)). Then since (h-A^M^) is closed in C2^) (see (5.25)),
ge^-A^M^) for all k ^ 1 and we conclude as above.

Remark that in the previous proof, if fe C\D) is a solution of
(h-A)f=EO and (v-F)f= 0, then feCW(D) even if (0.7) is not
satisfied.

Finally replacing v by v + p^i, one has a biunivoque correspondance
between the kernels of (h -A) for p ^ 0 and p = 0 . Then

(5.31) COROLLARY. - Tf(H.G) is fulfilled in D , then for all k ^ 1

ker^-^nM* = ker (h-A) n M°°
anrf dim(ker(^-^)nM°°)= dim (ker (h-^nM*00).

5.B. Invariant and reversible measures.

In this section we furthermore assume that D is connected, h == 0
and v = 0. Let y • be the generic element of the canonical space
(^(R^Z)) equipped with the cylindrical a-field and the family (Qy)y^
of the laws solutions of the stochastic system (0.9).

(5.32) DEFINITION. - Let v be an element of the dual space ^ of

C°(D), that is a measure on D . We define Q^ = QyV(dy). We shall
J D

say that v is an invariant measure (for ( y ' , Q y ) ) if for all t ^0 ,

f T,f(y)v(dy) = f f(y)v(dy)
JD JD

mth TJ(y) = PVC^)], or equivalently that FJ = </,v>, \vhere

77/=W(^)L

and E" is the expectation relative to Q^.

Since D is compact, and T{ has the Feller property, for any
/I f< \

probability v, any weak limit of - T, d s ) when t -> oo is an
V J o Ae<

invariant probability, so that the set of invariant measures is non
empty.
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On the other hand since for /e C°(25), ^G^TJ con verges uniformly
on D to r^/€ C°(2)) when ^ goes to oo, one has, if v is a measure

(5.33) v invariant o For all /e C°(D)

and ?i > 0, [ (Id-^)fdv = 0

<^For all/eC00^)

and ^ > 0, (Id-^)/^v = 0
JD

^(Id-LDG^v = 0.

From the preceding section we can state

(5.34) PROPOSITION. — If(H.G) is fulfilled in D, the space of invariant
measures is finite dimensional, mth dimension d^ and

1 ^ rfy ^ dim (ker A n M00) == dim ker (Id- W^)

(remember that the results in 5.A are obtained for k ^ 1).

A generic example will prove that even if A is non totally degenerate,
dy may be any integer.

(5.35) Example.

5=[-U] x [-1,1],
71 -ix y^^y)^ ro=cos(^, v^^

Of course SD is not smooth, but one can remove the corners without
essential modification in what follows. It is clear that A is non totally
degenerate (Fi is constant), that Fi, Y^ and [Vo, ^2] span R2 at any
point of R2 so that (H.R) is fulfilled. Furthermore for f e e ^ * , 8D is
non characteristic. Some classical results on one dimensional diffusions
(cf. [23] p. 361-367) show that if y e [(2p-l)n/k,2pK/k] a ]-!,![, then
for all xe[-l,l], the process y - , starting from (x,y), lives in
[—1,1] x [(I?— l)7c/fe, 2pn/k], so that there exists an invariant probability
Vp with support included in this set. Of course if p + p ' and k big
enough, Vp and v?, are linearly independant.

Nonetheless if we slightly strength (H.G), we obtain

(5.36) THEOREM. - We assume that J^fie (Fi, . . . , Y^)(y) spans W1 at
each y e D. Then there exists a unique invariant probability VQ , and any
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invariant measure v belongs to Rvy. Under (5.18), Vo has the following
decomposition

dvo(y) = iDOOpoGO dy + W^Xp^GO^iGO
mth p o e ( k e r A * ) n M*°°, and po is strictly positive on D.

Finally any p e ^ ' ( D ) solution of A * p = Q , F*p = 0, belongs to
^Po.

Proof. - We first prove that ker^d-^G^) == R , which shows the
first part of the theorem. The proof is based on the following lemma.

(5.37) LEMMA. - Under the hypotheses of (5.36), if feC°(D),
f^ 0 and f^ 0, for all 'k > 0, G^f> 0.

Indeed if (5.37) holds, let / = \G^f and b = inf /. Since
D

(Id-XG^)fc = = 0 , one has /- b ^ 0 and /- b = 'kG^^f-b). I f / ^ & ,
(5.37) yields /- b > 0 which is impossible. So ker (Id-^G^) = R.

Remark. — Of course for (5.37) to hold a sufficient condition would
be for the support of the law of the process y - to be the full D. But
we do not know any readable condition for this to hold, except the
one in the statement of the theorem.

In order to prove (5.37) we shall actually prove that for all t > 0,
the density p(t,y,x) > 0 for all (y,x) G D x D. This will be done with
the help of elementary large deviations results. First we recall the
following lemma.

(5.38) LEMMA (see [7] Prop. 2.1 or [6] chap. 1). - Let
Z e J^fie (Yi, .. ., Y^) be a C°° vector field. Then every integral curve of
Z can be uniformly approximated by piecemse dijferentiable curves, each
differentiable path of these curves being an integral curve of one of the
y/s.

Let y and x e D. Following [6] we define

^ = {fEC°([Q,l],D),df(t)=Y,(f(t)W(t)dt
. with hGL2 and/(0)=^,/(l)=x,/(0e2)

(5.39) < for re]0, l [}
/ p M/2

d(y,x) = inf I \h(t)\2dt) , if f^y ^ 0, + oo otherwise.
feKX\Jo /
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In the terminology of [6] and [25] an / of Ky is called an horizontal
curve. Notice that we impose to an horizontal curve to stay in D
except for the starting and the terminal points. A simple deterministic
time reversal argument shows that there is a biunivoque correspondance
between Ky and K^ and that if for a z e D, Ky and K2, are non empty,
K^ is also non empty.

Let y o ( = D being fixed. Since D is C°° path connected, for each
x e D , there exists /e C°° ([0,1], D) with/(O) = x,/(I) == y o . According
to (5.38), / is uniformly approximate by an horizontal curve (because
f(t)eD for all t) joining x to an y neighboring on y o . According to
the proof of theorem 1.14 of [6] one can find a neighborhood ^ of
yo included in D such that any y e i^ can be joined to yo by an
horizontal curve. Therefore we have

(5.40) For all x and y e D , Ky ^ 0.

Let x e 9 D . Since 8D is non characteristic at x , one of the r;(x)'s
(1 ^ i < m) is non tangential to 8D, say Vi(x). So for sufficiently small
8 > 0, the path

(5.41) df(t)= F,(/(0)sign<y,(x),n(x)>A, /(O) = x, te[0^]

satisfies f(t) e D for re]0,£]. Let x, =/(e), one can join x to Xg(ejD)
by an horizontal curve and, from (5.40), Xg to yo by an horizontal
curve, hence

(5.42) For all x and y e D, Ky ^ 0 .

Moreover it can be shown as in [6] that (y,x) -> d(y,x) is continuous,
so that M = sup d(x,y) < + oo.

D x D

Let y e D and U an open subset of D.
We define Cy(U) = {/e C°([0,1],Z)), /(0)=^, /(I) e U} which is an

open subset of {/e C°([0,l], R^, /(0)==^}.
One deduces from what precedes that the Cramer functional V(Cy(U))

(see [39]) is finite. Let Py be the law of the ordinary diffusion with
generator A. It follows from [39] that

(5.43) - r(C,(C/)) ^ lime log Py{z^Cy(U))
i = lime log g^^eC^^/))

S-rO

where z\ = ̂  for 0 ^ t ^ 1, because P^ and (^ coincide on Cy(U).
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Therefore we obtain by classical arguments

(5.44) - M ̂  - d(y,U) = - inf d(y,z)
Z 6 U

< Urn t\og Qy(yt e U) ^ lim t log Qy(yt e U)
t-^O t-^0

because {y^ U} contains {z^.eCy^U)] up to a Qy null set.
From the Markov property one then obtains

(5.45) For all U open set of 5, all y e D and all t > 0,
Q y ( y , e U ) > 0 .

In particular if p = 0, the Qy law of ^ admits for t > 0, a C°° density
p ( t , y , ' ) (see §2) and p ( t , y , » ) is strictly positive on a dense open subset
of D .

Let y e D , V an open neighborhood of ^ (in D) and
r=inf{^0,^F}.

Then

(5.46) Qy(y, e V) = fi,(̂  e F, F ̂  Q + ̂  e ¥ , T > t ) .

Since r ->• 0^0^ e F) is lower semi continuous, there exists to > 0 such
that for t ^ t^ Qy(yt eV) ̂  1/2.

Since Qy(yt^ V,T ^ t) goes to 0 when t \ 0, for t small enough
one has Qy(tf e V, T > t) > 0.

By choosing a suitable V and since p = 0, one can introduce the
time reversed flow if y e D or the partial time reversed process of § 1
if y e SD. The generator of this process satisfies the same conditions
than A, so that if Qy denotes its law, for t small enough one has
Qy(Yt e F, T > 0 > 0. Hence

(5.47) f p(t^y) dz = Qy(y, e F, T > t) + o(t)
Jv

so that for t > 0 small enough, there exists z e V n D (depending on
t) with p(t,z,y) > 0. Therefore one can find V(t) a non empty open
subset of V r\ D with p(t,z,y) ^ c(r) > 0 for all ze ^(Q.

Then if y and x e D and r > 0, one can find s with 0 < £ < t / 3 , and
non empty open subsets ^i(s) and V^) of Z) with

(5.48) P(^y,z) ^ c,(s) > 0 for z G ^(s),
^(e.z^z) ^ €2(8) > 0 for z ' e ^(s).
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We then obtain (recall that p=0)

(5.49) p(t,y,x)= p^y^p^t-l^z^p^z'^dzdz
J.DXD

^ Ci(e)c2(£) p(t-l^z,z')dzdz
Jyi(e)x V^(s)

^Ci(s)c2(e)vol(^(e)) inf 6,(^-^e ^00) > 0,
ze Vi(e)

because from the continuity in z of p ( t , z , z ) , the application
z -* SzC^ ^) is continuous, and strictly positive according to (5.45).

Since (t,y,z) -> p(t,y,x) is continuous, we finally have

(5.50) For all t > 0, inf p(t,y,x) = c(Q ^ 0.
DXD

(5.37) is an immediate consequence of (5.50), if p == 0. If p ^ 0,
taking the notation of (3.6) one has R^ = G^f = R°/^ > 0 from
(5.50).

Endly, according to (5.31) dim (ker^* nM*00) = 1. From (5.15),
(5.24) and (5.33) if p = 0 and peker^* n M*°°, then dv(y) = p{y) dy
is an invariant measure.

Accordingly v = A-VQ, and dvo = p o d y , with po<= ker A* n M*00 and
Po ^ 0.

w

Remember that A* = 1/2 ̂  7? + F? + ^*, so that we can associate
t'=i

to (^*,F*) a reflected diffusion process y*, and G^ = (^*^*+^,^^
Since ^ and ^* have the same principal symbol, G^ satisfies (5.37).
But po ^ 0 is such that po = ^G^po, so that po > 0.

If p ^ 0, proposition (1.19) shows immediately that

dvo == poGOlz)00^ + ppo(y)^8D(y)d[i(y)
is an invariant measure.

To finish the proof of (5.36) if p e Q ' ( D ) checks A*p = 0, F*p = 0,
since p e ̂  for some fc e ^J , according to (5.25) and what precedes,
P = ^Po • D
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Remark. — One can compare this result with the one obtained in
[29]. The key point of the previous proof is the large deviations estimate
(5.43). One can of course, from the estimates of [25], deduce a minoration
for the density. This result is certainly far from the optimal one, one
can conjecture. The natural metric for the problem certainly involves
the local time of the deterministic reflexion problem, in the same way
that the natural covariance matrix of Malliavin involves the local time
Lf (see [19]). Some results of large deviations for reflected diffusions
were obtained in [17].

Among the invariant measures, the reversible measures are of
particular interest

(5.51) DEFINITION. - v is said to be reversible if g . T J d v =
J.

f ' T , g d v for all ̂  0;/, geC\D).
JD

In particular v invariant and for all t ^ 0, the Q^ laws of ( y s ) o ^ s ^ i
and ( y t - s ) o ^ s < ^ t are the same.

(5.52) THEOREM. - Assume that J^fie (Fi, ..., Y^){y) spans ^ at
each y e D and that (5.18) holds. Then the invariant probability Vo of
(5.36) is reversible if and only if

f Yo = 1/2 (div Y, + Y, log po) Y1

v / [V,= l /2(divF,+F,logpo)^+ l /2<r,,n>y1 .

Conversely if qoeC^^D), po = exp qo and Yo, Vo are as in (5.53),
then dvo{y) = ^OOpoOO dy + W}0(PPo)(j) ̂ 00 is reversible.

Proof. — See the theorem 2.5 of [12], and use the strict positivity
of po. D

Remark. — If £^ic(Y^, . . . , Yn)(y) is full at each y e D, the semigroup
Tt satisfies the Doeblin's condition and then is ergodic, that is

lim TJ(y) = \fdv^ uniformly in y e D and/eC°(5),
t^+oo J

the convergence being exponentially fast.
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5.C. Gauge, uniqueness and spectrum.
In this section we link the problem of uniqueness for (L.P), with

the finiteness of the Gauge, and the spectrum of ( / i—A) considered as
a generator. This section is strongly related to [22] section 5 and some
results of [27]. For simplicity we assume that D is connected and
p = = 0 . Remember that /ieC°°(5) and v e C ^ ^ S D ) , and that H^ is
defined by

(5.54) H^ == exp - P h(y,) ds - f v(y,) dL,.
Jo Jo

Actually we can associate two Gauge functions to (L.P) given by

r ^+w 1J,(y)= Ft H^dt\
LJo J

(5.55) and
r ^+w ~iJ^y)= m H^dL, .
LJo J

In § 5.C, we gave simple sufficient conditions under which Jo and J^
aare bounded on D. When A = 1/2 A, F = — and v == 0, it is shown8n

in [22] that if Jg^ is finite at one point y e D, it is bounded on D.
This result is strongly linked to the strict positivity of p(t,y,x). Then
it is not difficult to build a counter example from (5.35).

One can for instance take v = 0, h(x,y) = h(y) with:
* h > 0 on ](2p-3/2)n/k, (2p+ l / 4 ) n / k [ ,

and
* h < 0 on ](2p-3/4)7i/fc, (2p-}-5/2)n/k[.

One sees that Jo and JQD are
* bounded on [-1,1] x [(2p-l)n/k,2pn/k]
* infinite on [-1,1] x [(2p- l)n/k,(2p+2)n/k].

In return from the proof of (5.36) one get

(5.56) THEOREM. - Assume that £'ie(Y^ . . . , Y^)(y) spans (R^, at
each y e D. Then if J^y) or JQD^Y) is finite for an y e D, JD and Jg^
are bounded on D. Furthermore there exist positive constants c and (3
such that sup f^W] ^ ce~^.

y e D
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Proof. - We shall follow [22] (Thm 2.2 and 2.3). First of all since
the semigroup / -> E^H^f^^)} admits a C°° density, then for /> 0,

(5.57) sup Ey[Hf}'uf(y,)] ̂  c, !f(x) dx ^ + oo .
y e D J

Indeed (5.57) is clearly true for /e C°(25) and extends by increasing
limit. On the other hand using Schwarz inequality,

(£Wi)])2 ^ EWKy^WW^-^y,)].
Thus

a \2 rr 1
p(\^x)f(x)dx\ ^c\\ \f(x)dx\EWVf(y,)].

5 / LJ J

(5.58) Ey[Hh,uf(y,)] ̂  mmp(l,x,y)/c[) !f(x) dx = c, f/(x) dx
DXD J J

with €2 > 0, since minp(l,x,y) > 0.
DXD

Let choose c > Ci such that 1/c < c^. From the Markov property
one get

(5.59)

J^y) = ̂ E^H^^? H^ds\\
n=0 L LJo JJ

J^(y) = f ^["^-^"r f1 H^ ̂ 11.
n=0 L LJo JJ

Furthermore

(5.60) LEMMA. - Under the hypotheses of (5.56), there exists M^(t)
and M^(t) satisfying for all t > 0,

0 < Mi(r) ^ inf (^ '̂̂ s A ̂  I^AL,!)* 0 < Mi(r) ^ inf ^ H^ds A CT ^•u

^ 6 D \ LJo J LJoy e D \ LJo J LJo J/

M^Q ^ sup^] l^-^sl V Ey[ ( t H^dL,]}*M2(Q^sup ^ ^•u^ VP1 ^-'a^
j /eD \ LJo J LJo

and M^t) -^ 0 when t -> 0.
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Accept (5.60) for the moment. We deduce

617

•^00 A J^(y) ̂  M,(l) ^ EW] for all y e D .
n=0

Hence if one of Jo or J^ is finite at a point 3) e D, for Mo large enough
we have

EW^] < 1/2 c2.

But £W;,"] = ̂ W^^ ]̂] ̂  1/c f^[^_Jrfz.

So that ^EW^^dz^ 1/2 c.

But £y[^•'] < c [^[^-LJdz < 1/2, for all y e D .

In order to conclude, for t > 0, choose an integer n so that
n - 1 ̂  t / r l y < n. Then

^W^] ^ (sup sup .EWlXsup.BW])''-1^^-1"
y e 0 0 a s < ^ n ( | ygg

with A: = 2 sup sup £'>'[^•''], and p= log2 /no .
y e t ) "^ '^"o

It is easily seen now that
+00

JD(V) A Jso(y) > M^l) ̂  ^[^••'j < + oo, for all y e D .
n-O

It remains to show (5.60). The majoration is classical and does not
require any assumption on the generator.

r f r'' ~i- h(y,)ds- v(y,)dL,\
L Jo Jo J

(5.61) exp - h(y,)ds- v(y,)dL,

Thus

(5.62)

<exp(||/i||^(+||i;||^Z,,) for t ' ^ t .

£" ^^h,•vds^texp(m^t)El'[exp(M»L.)]

<c(exp{(||/i||^+c||i?||^)t}

^N H^dL^ ̂  exp(||ft||»t)^[L,exp(||i;||«L,)]

^ c^/t(e\p(\\h\\^t))(\\v\\^+ exp(c||i;||^t)).
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For the minoration we note that

(5.63) Hl,''^exp(-\\h\\^t-\\v\\^L.), for t ' ^ t ,

so that

^N H^ds'} ;?(exp(||/i||»t)27[exp(|h||^)]

(5.64) • > texp(-\\h\\^t-\\v\\^)P,[L^l] > 0,

^ j //?•" dzj ^ texp - (H^Lt)^^ explicit].

According to (1.19), L, = liml/2e Ifl^XaV^oW^) ds, a.s and in
L2. So e'0 Jo

r' r.] = i
Jo Ja.D

^[LJ= (flV^Xx)^,;^)^)^

>t/2mf(fl2/Fo^)(^ mf p(s,^,x)^(a£>)> c(t)t,
5D s e [ t l 2 , t ]

x,y e D

with c(t) > 0, because 3Z> is non characteristic.

Now
+00

^[L.exp-dHL^)] ^ ^ exp-n(||i;||^)^[L4^-i^^<J > 0.
n=l

D

Then we consider the spectrum of the generator (h -A).

(5.65) DEFINITION. - KeR is an eigenvalue of the generator (h-A)
if there exists f ^ 0 mth f e ker (h - \ - A) n M°. 7n particular f belongs
to ^om(h—A), considered as a non bounded operator of C°(D).

It is well known ([37]) that if ^ is an eigenvalue of the generator
(h-A) for all t > 0, e~^ is an eigenvalue of the operator T( denned
by

T,f(y)= ^[f^H^],

and conversely the eigenvalues of T< are of the form e~^ with 'k
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eigenvalue of the generator (h— A). As in [22] Theorem 5.4, we can
state the following result:

(5.66) THEOREM. — The three following assertions are equivalent.
1) lim T,\(y) = lim ^{H^} = 0, for all y e D .

t-*+co t-^+oo

2) The smallest eigenvalue ,̂1 of the generator (h—A) is strictly
positive.

3) JQ and, JQJ) are bounded on D.

Proof: 1) => 2). Let ^ be an eigenvalue and / an associated
eigenfunction. Then

Tff(y) = e-^f(y) ̂  ||/ILO\1)GO - 0 for all y e D .
t-r+ao

Since /^= 0, this implies e~^ -> 0, hence X > 0.
t->+ao

2) => 3) From the spectral radius formula ([37]) one has
e~^ = lim II'TJ1^ so that for n big enough, ||r^l|| ^ 2^ -^xl.

n—»oo

But from the maj oration of lemma (5.60) (which is always true)

+00

JD(Y) V Jso(y) ^ M,^ W)(y) < + oo.
n=0

3) => 1) since if J^ is bounded and D compact lim 7^ 1 (y) = 0. D
(--oo

As a first consequence one sees (at least if p = 0) that when A is
n.t.d, v>0 and h ^ 0, (0.11) is fulfilled (because lim T,l(^) = 0

<-»00

according to § 4.C), so that (4.59) can be included in tbe general frame
of § 4. More generally

(5.67) COROLLARY. - If (H.G) is satisfied on D, anrf ^i > 0, then
for f and g respectively in CCO(D) and C°°(aD), (L.P) has a solution
ueC0 0^) unique in Q ) ' ( D ) .

(5.68) PROPOSITION. — If (H.G) is fulfilled in D and if 0 is not an
eigenvalue of the generator (h-A), then for all /eC°°(D) there exists
MeC°°(5), unique in C\D) so that (h-A)u = / in D and (v-F)u = 0
on SD.
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Proof. - If 0 is not an eigenvalue of (h-A), dim-
ker(h-A) n M°° = 0, so that according to (5.30), dim
ker(/i-^*)nM*0 0 = OandC°°(5) = (h -^)(M°°). Uniqueness follows
from the vacuity of the kernel. D

On can give a probabilistic construction of the solution (cf. [27]).

5.D. Boundary operator and boundary process.

(5.69) PROPOSITION. - We assume that (H.G) is fulfilled in D and
that (0.7) is satisfied. Then for fe C°°(5) and g e C ^ ^ D ) there exists
a unique solution MeC°°(25) of (L.P) with data (f,g) if and only if there
exists a unique solution (p e C^^SD) for the equation

(B.P) ( v - r ) H ^ = g - (v-H)Gf

where H and G are respectively the harmonic and the Green operators.
Furthermore one has u = H^> + Gf.

Proof. — See the introduction. D

Let we consider the boundary operator ( v - r ) . H , which is written
as

(5.70) 0;-r).^(p=(i;+p/i)(p-l/2t V^-V^-(V^S-(M\^.
f=\ on

Actually we have proved that (v-T)H is an hypoelliptic operator. But
what kind of operator is it?

Since (p -> —(H^))\QD extends continuously to ^ ' ( S D ) and has a
on

C°° kernel out of the diagonal, we guess that it is a pseudo-differential
operator. When A is uniformly elliptic it is not hard to see that

—(H^)\QD (and hence (v-Y).H) is effectively a pseudo differential
On
operator, which principal symbol is | ^ |, where | | is linked to the
riemanian metric induced by the inverse of the principal part of A (see
[33]). If A only fulfills the hypotheses of (5.69) we did not succeed in
proving that (B.P) is still pseudo differential (in the usual sense of [15]).
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We shall only deal with a very degenerate (but rather homogeneous)
example namely

^2 -3

(5.71) D=R2^ ^ = 1 / 2 ^ + ^ - , h = l / 2 , (SD=={x=0}).

For a g e CS°(IR) and x > 0 one has

^(^}Q= [ oo^+0^=(xA3/2)e-</2^-x2/2^r
(5.72) J° \/27i

/•+oo / 2\ -j

g(y+-}———e-ul2e-x2l2udu.
Jo \ u/^/2nu

Then

(5.73) 8 H g ( x , y ) = [+w———e-^e-^g^y+^-g^^t^dt
8X Jo ^/2ro

'-Hg^y) = f^-^^-^P^^+O-^+O]^
ax Jo ^27U

= p^(0a(0^

a+°o ^ \

where ^e C00^) is given by a(Q = e^e-"2—— (2^-1).
^/2nt/

An easy computation gives

(5 74) a(Q = 2l!3 ~ 1 e^^^i2
^•/^ a^ (1+4^1/4^

so that a is a symbol of order 1/2, whose principal symbol is of the
form ^ | ^ | ~1/2 (here | | is the usual metric on (R).

Finally from what precedes, we see that the closure of the boundary
operator (v—r)H is the infinitesimal generator of the boundary
semigroup associated to the boundary process, i.e.

BJ(y) = F{lA^oo/(}^)exp - (\v(y^)ds +M^)^)1
L Jo J

where A{ is the right continuous inverse of the local time L^.
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We hope that this can be another interesting approach in the study
of (L.P).

As we said before, the existence of a smooth density for the joint
law of (A^y^ was proved in [4] and [19]. We hope that a direct
study of the law of y^^ is possible, including the case when only weak
transversality holds (a+p > 0).
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