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IMMERSED SPHERES IN SYMPLECTIC
4-MANIFOLDS

by Dusa MCDUFF(*)

1. Introduction.

In this paper we discuss conditions under which a symplectic 4-
manifold has a compatible Kahler structure. We will say that a symplectic
manifold (V,o/) is Kahlerian if V admits an integrable almost complex
structure J such that uj is the Kahler form associated to a Kahler metric
on (V, J). It is well known that every symplectic manifold may be given the
structure of an almost Kahler manifold, that is, that V may be given an
almost complex structure J which is compatible with a/ in the sense that

(j{x, Jx) > 0, and uj{Jx, Jy) = u}{x, y)

for all tangent vectors a;, y. (In fact, the set of such J is contractible.) The
formula gj(x,y) = uj{x,Jy) then defines a metric on V, and the triple
gj^J.uj satisfies exactly the same algebraic relations as in the integrable
case. Thus the question boils down to understanding the geometric conse-
quences of the non-integrability of J .

There certainly are non-Kahlerian symplectic 4-manifolds. The basic
example is due to Kodaira-Thurston, and is a T2-bundle over T2, which may
be obtained from the space T2 xS1 x [0,1] by identifying (a?i, x^ .2:3,0) with
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(.TI +3:2,^2,3:3, 1). See [TH], [FGG]. On the other hand, Gromov observed
in [GR] that many features of the behaviour of the J-holomorphic curves in
V do not depend on the integrability (or lack of integrability) of J . (Recall
that a map / from a Riemann surface (E, j) to the almost complex manifold
(V, J ) is said to be J-holomorphic ifdfoj = Jodf.) Further, Kahler surfaces
which contain holomorphic curves with sufficiently positive normal bundles
have very simple structure : they have Kodaira dimension equal to —oo and
so are blow ups of rational or ruled surfaces. Our aim is to see how much
of this theory remains true in the symplectic case.

A beginning on this project was made in [RR]. We will summarize
the results of this paper here : a further discussion may be found in the
survey article [KY]. All manifolds considered here are smooth, compact
and without boundary.

The first set of results concern exceptional spheres i.e. symplecti-
cally embedded 2-spheres of self-intersection —1. (Note that the first Chern
class c of (V, J) takes the value 1 on these spheres.) Recall from [BL] that
one can "blow down" an exceptional sphere (replacing it not by a point but
rather by a symplectic ball) to obtain a well-defined symplectic manifold.
Let us say that (V, uj) is minimal if it contains no exceptional spheres.
Then we showed in [RR] that any symplectic 4-manifold (V, a;) has a min-
imal reduction (V\c<J) which may be obtained by blowing down a disjoint
collection Ei, . . . , SA; of exceptional spheres. Further, this reduction (^,o7)
is determined up to symplectomorphism by the set of cohomology classes
of the Ef There is still an open question concerning the uniqueness of sym-
plectic blowing up. In particular, it is not clear whether the blow up of a
Kahlerian manifold is always Kahlerian. However, every such blow-up is
pseudo-isotopic to a Kahlerian blow-up, that is, it may be joined to a
Kahlerian form by a family of non-cohomologous symplectic forms : [BL],
[UB].

The second set of results concerns the structure of symplectic mani-
folds which contain a symplectically embedded 2-sphere S of non-negative
self-intersection. (Equivalently, one requires c(5) to be > 2.) We showed
that under these conditions the minimal reduction V of V is symplecto-
morphic either to CP2 with its standard Kahler form (the rational case) or
to the total space of a symplectic -S^-bundle over a Riemann surface (the
ruled case). In the latter case, one can prove that, for some of the possible
cohomology classes, all symplectic forms representing this class are sym-
plectomorphic and Kahlerian. In general, all one knows is that the form is
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pseudo-isotopic to a Kahlerian form^.

The above results concern the symplectic analogue of embedded
rational curves. In the complex case, there are other classical theorems
about holomorphic curves, which may be found in [BPV] III.2.3, III.4.6,
VI.6, for example.

THEOREM 1.1. — If a minimal complex surface Y contains a curve
C such that c(C) = -Ky - C > 0 then Y is rational or ruled. (Here Ky is
the canonical divisor.)

THEOREM 1.2. — If a complex surface Y has two different mini-
mal reductions then Y is a blow-up of a rational or ruled surface.

Here one is dealing with possibly singular curves of arbitrary genus.
(As we shall see, even though the second theorem looks as though it
concerns only embedded 2-spheres, one is quickly led to consider immersed
2-spheres.) The classical proofs of these theorems rely heavily on the
Riemann-Roch theorem, which gives numerical criteria for the existence
of holomorphic curves. No analogous result is known in the symplectic
context. However, Mori gave a more geometric proof in [U] which uses
properties of the space of deformations of the curve C. Some but not
all of his arguments transfer to the symplectic case. One of the main
stumbling blocks is that in the integrable case one uses the fact that the
moduli space of curves has a complex structure and that the evaluation
map is holomorphic. This is no longer true in the almost complex case :
cf. the discussion of the tangent space to the moduli space given in [EX],
Proposition 4.3. However, when one is dealing with spheres, one can get
around this and show that under appropriate circumstances the evaluation

(^ Unfortunately, Theorem 1.3 in [RR] about the structure of symplectic S^-bundles
needs an extra hypothesis. Francois Lalonde pointed out that the argument which proves
uniqueness works only for a restricted range ofcohomology classes. Further, the condition
(^(V) > (a(F))2 need not hold when M has genus > 0. The trouble is that in [RR]
Lemma 4.15, the integral of the form p over the section F is not zero in general, but
depends on the homology class of F. For example, in the case of the trivial bundle,
one can assume that F has class [M] + k[F], so that f p = k ( p . The rescaling in
Lemma 4.15 then works provided that f.,^ > A; f t * / . In fact, by slightly refining the
argument, one can show that all fibered symplectic forms on the product T2 x S2 are
symplectomorphic to a product form, but in all the other cases of bundles over a Riemann
surface of genus > 0 there are some cohomology classes which might perhaps support
several different fibered symplectic forms. Note also that the proof of [RR] Lemma 4.16,
is not quite right because the complex structure J[ has too many cusp-curves. However,
this is easy to rectify : one just has to replace J[ by a generic integrable J . All this is
discussed further in [RU].
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map has positive degree. Again using the fact that one is dealing with
spheres, one can get enough information from this evaluation map to prove
an analogue of Theorem 1.1 for symplectic spheres and hence establish a
symplectic version of Theorem 1.2.

In order to state our results precisely we need the following definition.

DEFINITION 1.3. — We say that a closed 2-manifold S is pos-
itively symplectically immersed in (V^) iff it is symplectically im-
mersed (i.e. the restriction ofu; to S does not vanish) and its only singu-
larities are transverse double points of positive orientation.

We will see below that these submanifolds S may be parametrized
to be J-holomorphic for some ci;-tame J. (Recall that J is o;-tame if
uj(x,Jx) > 0 for all non-zero a?.) Of course, the singularities of a J-
holomorphic curve need not all be transverse double points. However, it
is proved in [LB] that any J-holomorphic curve can be perturbed so that
it is positively symplectically immersed in the above sense. Hence this is a
good definition to work with.

THEOREM 1.4. — ( i ) I fa compact symplectic ^-manifold (V,o;)
contains a positively symplectically immersed 2-sphere S with c(S) >, 2,
then (V,uj) is the blow up of a rational or ruled manifold.

(ii) If S is not embedded, then V is rational ̂ .

As an almost immediate corollary we obtain :

THEOREM 1.5. — If a compact symplectic ^-manifold (V,ci/) has
two non-symplectomorphic minimal reductions then (V,uj) is the blow-up
of a rational or ruled symplectic ^-manifold.

Note 1.6. — Just as in the case of embedded spheres, the class
of symplectic 4-manifolds considered in the above theorem is closed un-
der blowing up and down and under deformations of uj through non-
cohomologous forms^. Further, under blowing down, the Chern class and

^ To be consistent with the integrable case, we will call a symplectic manifold rational
if it may be obtained from CP2 by blowing up and down.
(3) Lalonde pointed out that the proof I gave of this in [RR] (5.4), is inadequate
because when I was considering blowing down I did not allow for the possibility that
the intersection number C ' S might be >. 2, so that the blow down of C is no longer
embedded. Of course, this case can be dealt with by the methods of the present paper.
However, it can also be treated in the framework of [RR], since all we have to do is
to reduce it to the corresponding result in the integrable case. The first step is to
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number of double points of an immersed sphere do not decrease. Therefore,
if one starts off with a sphere whose Chern class is too small, one can try
to increase it by blowing down.

Note 1.7. — The hypotheses of Theorem 1.4 exclude the case when
c(S) = 1. These spheres are rigid, i.e. they have no J-holomorphic
deformations, and so our methods give no information. Mori avoids them
by considering only "extremal curves", i.e. curves whose homology class
lies on the edge of the convex cone generated by the classes of the J-
holomorphic curves. An argument due to Grothendieck implies that rigid
immersed (but non-embedded) spheres represent classes in the interior of
this cone. However, Grothendieck's argument is based on the Riemann-
Roch theorem and so is unavailable to us.

We sketch the proofs of Theorems 1.4 and 1.5 in §2. Technical results
showing that the evaluation map has positive degree are proved in §3,
and results on the structure of the compactified moduli space are given
in §4. I wish to thank Simon Donaldson for prompting me to think about
these questions, and Claude LeBrun and Gang Tian for discussing MorFs
arguments with me. Special thanks are due to Francois Lalonde for reading
my paper [RR] so carefully and pointing out the various mistakes and
inaccuracies mentioned here. He also made useful comments on a first
version of this paper. Finally I wish to thank Michele Audin and I.R.M.A.
for their hospitality and support during part of the work on this paper.

2. Outline of Proofs.

Proof of Theorem 1.5. — Theorem 1.5 is proved by reducing it to
Theorem 1.4 as follows. As mentioned above, one may form a minimal re-
duction (V, SJ) of (V, a;) by blowing down a maximal collection {Ei , . . . , SA;}
of disjoint exceptional spheres. Now (V,Z*7) is determined up to symplec-
tomorphism by the homology classes £'1,..., Ek of these spheres. There-
fore, if V has two minimal reductions, it has two different maximal sets of
spheres corresponding to different sets of homology classes, say JE'i,. . . , Ek

deform uj until it is Kahlerian. Then it suffices to show that the homology class of
S may be represented by a J-holomorphic curve (rather than cusp-curve) for some
integrable J. For then, if we blow down this curve, we obtain a Kahlerian manifold
with q(X) = ?2(X) = 0, and this contains a suitable embedded sphere by [BPV] (2.3).
But V must be rational (since ruled surfaces do not contain non-embedded holomorphic
spheres), and it is easy to check that any integrable J which is good and generic in the
sense of [FM] Chap. Ill will do.
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and JE^, . . . , £^. Recall from [RR] that we associate to a symplectic man-
ifold (V, uj) the contractible family J of all o;-tame almost complex struc-
tures, where J = {J : a;(rc, Jx) > 0 for all non-zero x € TV}. This set
J is open in the space of all almost complex structures, and we will as-
sume, often without explicit mention, that our almost complex structures
J are in J . Every exceptional sphere may be parametrized so that it is J-
holomorphic, for suitable J e J . Indeed, it is proved in [RR] Lemma 3.1,
that there is a dense open subset U C J such that any homology class E
which may be represented by an exceptional sphere has a unique embedded
J-holomorphic representative for each J € U. It follows that we may as-
sume that all the classes £'1,..., Ek and JE^ , . . . , E^ mentioned above have
embedded J-holomorphic representatives {E i , . . . , E^} and {E'i,..., E^}.
Recall further from [RR] (2.5), that every intersection point of two J-
holomorphic curves C and C1 always contributes positively to the algebraic
intersection number C • C ' . Thus pij = E^ • Ej > 0 for all z,j and = 0 iff
the spheres are disjoint. Therefore, by maximality, p\j > 0 for some j, and,
by renumbering, we may suppose that p = pn > 0.

I f p = l the argument is quickly finished. By [RR] (2.5), the spheres
E'i and Ei intersect exactly once transversally. Therefore, when we blow
down Ei, the sphere E'i descends to a symplectically embedded sphere with
zero self-intersection. But the only symplectic 4-manifolds which contain
such a sphere are blow-ups of rational and ruled Kahler manifolds. Since
the class of these manifolds is closed under blowings-up and down by [RR]
Theorem 1.2, we are done.

If p > 1, matters are not quite so easy. We show in Lemma 3.2
below that may assume that the exceptional spheres E'̂  and Ei are
in general position and J-holomorphic for some J which is integrable
near Ei. Then we may blow down Ei by first constructing the almost
complex manifold (V.J') which is the obvious holomorphic blow-down
of Ei C (V,J) (obtained by collapsing Ei to a single point), and then
putting a suitable symplectic form on V : see [RR] Lemma 3.2^. Since
the blowing down map is holomorphic, E'i descends to a J'-holomorphic
sphere C which is immersed with one p-fold multiple point XQ. Finally,
perturb C to a positively symplectically immersed sphere S in V. Since
c(S) = c(C) = p + ^(E'l) = p + 1 >. 3, the result will now follow from
Theorem 1.4, as claimed. Note that if this case actually occurs, V is rational
by Theorem 1.4 (ii).

(4) Note that the symplectic form described there needs to be smoothed in the radial
directions.
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Proof of Theorem 1A (ii). — Suppose that the sphere S is not
embedded. By Lemma 3.3 we may suppose that S has a J-holomorphic
parametrization for some regular J, and then, as in Lemma 3.2, put it in
general position with respect to a maximal family of disjoint exceptional
spheres. It follows as above that the image S of S in the minimal reduction
V of V may be perturbed to be positively symplectically immersed, but not
embedded. If V is not rational, we saw in §4 of [RR] that every compatible
J on V defines a J-holomorphic map V —> B, where B is a Riemann surface
of genus > 0. Thus S projects to a point in B, and so must be one of the
fiber spheres. But this is impossible since these are embedded.

Proof of Theorem 1.4 (i) when c(A) > 3. — When proving Theorem
1.4 it turns out to be easiest to deal with families of spheres in a homology
class A with c(A) = 3. If we start with a sphere with c(S) > 3, we can
always reduce c(5') by blowing up points on 5. The case c(S) = 2 will
be dealt with later. We will assume that a maximal family of exceptional
spheres in V which are disjoint from S have been blown down, and that V
contains no symplectically embedded spheres with Chern class equal to 2
or 3, and will then derive a contradiction.

By Lemma 3.3 any positively symplectically immersed 2-sphere with
c(S) > 0 in (V, uj) has a J-holomorphic parametrization for some generic uj-
tame J. Thus we will suppose that our sphere S in class A is J-holomorphic
for some generic J. Since J is generic, the set M(J, A) of all parametrized J-
holomorphic spheres in class A is a manifold of dimension 2(c(A) 4-2) = 10.
Fix ZQ € S2 and let Go = {7 € G : 7(^0) = -^oL where G is the Mobius
group. Consider the evaluation map

eo : M(J, A) xco S2 -^ V : (/, z) ̂  /(zo).

By [RR] Lemma 5.2, the inverse image W° = eQl({xQ}) is a manifold
for generic choice of the point XQ € V. Notice that W° is an fi^-bundle
over a 2-manifold B° C M(J,A)/Go, and that there is an evaluation
map e : W° —>• V given by e(/,z) = f(z). Also, W° has a section
E° = {(/, z) e W° : z = zo} which is mapped by e to the point XQ.

By the Compactness Theorem, each end of B° corresponds to a
degeneration of the A-sphere into a cusp-curve, which is a connected union
of at least two J-holomorphic spheres. (More details are given in §4.)
Because the Fredholm index of (unparametized) spheres with c < 1 is
negative, such spheres are not present for generic J. Therefore, an A-sphere
with c(A) = 3 can decompose either into two components 5i U 52 in classes
Ai where c(A^) = i or into three components each with c = 1. As already



376 DUSA MCDUFF

mentioned, J-holomorphic spheres with c = 1 are rigid, i.e. for generic J,
they are isolated and there are only finitely many in each homology class.
Therefore, if we choose XQ so that it does not lie on any such sphere, the
second type of degeneration will not occur. For the same reason, even if A
is a multiple class, i.e. A = 3Ai for some integral class Ai, the A-spheres
through XQ will not degenerate to the union of a Ai-sphere together with a
double cover of the same (or a different) sphere. Nor will there be a triply
covered sphere in TV0. (This is important, because Fredholm theory does
not work at multiply-covered points : see [EX] §4.) Thus the only possible
cusp-curves have the form 5i US'2, where c(5i) = 1, c(S^) = 2 and XQ e 52.
Moreover, 5'2 is not a double cover of 5i and so meets 5i in a finite number
of points. By Lemma 4.1, we may suppose that 5i and 62 are in general
position. Then, it is possible to understand the degeneration at 5i U 5'2 by
considering it to be the image of a corresponding degeneration of embedded
curves. Thus we find :

PROPOSITION 2.1. — (i)The bundle p : W° ^ B° is trivial near
the ends ofB° and so may be completed to a compact S2-bundle p : W —»• B
by adding one copy of S2 over each end of B°.

(ii) The evaluation map e extends continuously over the manifold W*
obtained by blowing up one point in each of the added fibers. Thus, if B°
has k ends, the extended evaluation map takes the form

e : W^ == TV#fc(CP2) -^ V,

where e takes the blown-up points in W^ to the Ai- components of the
cusp-curves in V. Moreover, because none of the blown up points lie on the
section E°, we may extend E° to a section E of W^ which is mapped by
e to a single point.

(iii) The map e: W^ -^ V has positive degree N.

COROLLARY 2.2 (5). — The first Betti number /?i = rk Hi(V,l)
of V is zero.

Proof. — The inclusion E —»• W^ clearly induces an isomorphism on
71-1. Hence, by (ii), e induces the zero map on H\. But, by Poincare duality,
e, being a map of positive degree, induces an injection on H*(V\ Q). Hence
H1(V^)=0 as claimed.

(5) This was suggested by Lalonde.
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The rest of the proof of Theorem 1.4 (i) is a cohomological argument,
which shows that the map e cannot exist unless V contains a symplectically
embedded sphere with c == 2. But then V has the required form by [RR].

Cohomological argument.

Suppose that S has P double points. Then A • A = 2P +1, and, if 5i
has p double points and 52 has q double points, we have :

5i. 5i = 2p- 1, 52 • 52 = 2g, 5i . 52 == 7

where

P=p+g+7--l.

(There is one extra point of intersection of 5i with 52 coming from the
degeneration.) Note that 7 > 1 because the cusp-curve is connected. We
may suppose that P and q are strictly positive, since otherwise there is
nothing to prove, but p could in principle be 0.

Case (i) There are degenerations, which all correspond to the same
cohomological decomposition A = Ai + A2 where A2 7^ 2Ai.

Let a, ai and 02 be the Poincare duals of the homology classes A, Ai
and A2, and let c be the first Chern class of V. We write a etc for the
pull-backs of these classes by e. Because e has degree N > 0 the following
identities hold :

en U c(W*) = iN, di U ai(T^) = (2p - 1)N,

02 U a^W*) = 2qN, ai U a^W^) = 7 .̂

Now choose a basis /, s, ei for H2(Wif:, Z) which is dual to the basis
F,E,£'i, where F is the fiber, and the Ei are the blown-up points. Put
A = f^^W*). (Note that the value of A depends on the class of the section
E.) Then we have

Hence

e,(F) = A, e*(E) = 0, e^(Ei) = Ai, for all i.

ai = (2p - 1 + 7)/ + ̂ (2p - l)e,,
i

fi2=(2ff+7)/+]^7^
i

=3/+^e,c = °l + 2^e
i
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Thus we have :
W(W*) = (2p-l)N = (2p-l+ ̂ \-k(2p -I)2,
aiUc(W^) = AT = 3(2p-l+7)A-fc(2p-l) , and
(02)2(1^^) = 2qN = (2g+7)2A-A•72.

Since ^ > 0 the last equation implies that A > 0. Note also that
2p - 1 + 7 > 0. (Otherwise, p = 0 and 7 = 1, so that A • Ai =0. This
implies that the Ai-sphere is an embedded exceptional sphere which does
not meet A. But all such spheres were blown down.) Then, combining the
first two equations, we find that

(2p-l)N = (2p-l+7)2A-A;(2p-l)2 = (2p-l)(3(2p-l+7)A-fc(2p-l)),

which gives
2p-l+7=3(2p-l) .

Thus 7 = 2(2p - 1) == 2rr, say. Also,

N = 9x\ - kx.

Using the identity,

27V = 02 U c(W^) = 3(2q 4- 7)A - ̂ 7 = 97A - A;7,

we find q = 2x = 7. In particular, this means that the non-zero class
02 — 2oi vanishes on A and on Ai. Thus 02 - 2oi = e*(a^ — 2oi) = 0 which
contradicts the injectivity of e*.

Case (ii) The only J-holomorphic decomposition of A is A =
Ai+2Ai .

We first claim that the second Betti number /?2 of V is 1. For, if not,
the intersection form is indefinite (by the injectivity of e*), and so there is
a non-zero element B € H^(y',Q) such that B ' A\ = 0. But then, if b is
its Poincare dual, e*(&) = 0 which contradicts the injectivity of e*. Since
c(Ai) = 1, Ai must generate the free group H^(y\ 1) and c must generate
the dual group ff2(y;Z). Thus (?(V) = 1.

Now, recall that on any almost complex manifold, the class c is
related to the Euler characteristic \ and the signature a by the identity
c2^) = 2\ + 3a. But this is impossible, because \ = 3 by Corollary 2.2
and c r= l .

Case (iii) A has no degenerations.

In this case, k = 0 and ^2 = 1. If we assume that the original sphere
S is not embedded, so that P > 0 and A - A = 2 P + 1 > 1 , A cannot
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generate H^(V;J.). It follows as in case (ii) that c generates H^^V'.I), so
that (?(¥) = 1. The argument may now be completed as before.

Case (iv), A has degenerations of different cohomological types.

We will say that a class A, is J-representable if it can be represented
by a J-holomorphic sphere. Assume that J is generic. It follows easily from
the Compactness Theorem (see §4) that every J has a neighbourhood N ( J )
such that the set R of classes B, which have ^(B) < K = ̂ (A) and are
J'-representable for some Jf € N(J}, is finite. Therefore, we may assume
that J is regular for all these classes. Also, we will denote a class with c = i,
for i = 1,2, by A, or Bi. Pick a class As € R so that 2q = A^' As <: B ^ ' B^
where B^ ranges over all classes in R which have non-zero intersection with
some Bi € R. Then pick A\ so that A^' A\ < A^ • B\ where B\ ranges over
all classes in R which have non-zero intersection with Aa. By hypothesis,
there is some pair A^ A\ satisfying these conditions. We may assume that
q > 0, since otherwise the Aa-sphere is embedded. The following lemma is
proved in §4.

LEMMA 2.3. — If classes A\ and A^ with c(Ai + As) = 3 are
both realised by J-holomorphic spheres, and if A\ ' A^ > 0 there is a J-
holomorphic sphere in class A\ -4- A2.

It follows that there is a J-holomorphic sphere in class B = Ai 4- As.
Since c(B) = 3 there is an evaluation map

e : W* = W#k(CP2) -^ V
which, as before, has positive degree. Because e* is injective, the intersection
form is either indefinite or negative definite on any rank 2 subgroup of
H^(V). If the degeneration B = A\ +Aa is the only one, we are in case (i) or
(ii) above. So suppose that B also decomposes as B\ -{-B^. By construction,
^2 • ̂ 2 = 2q1 > 2q and 7 = B^ • A^. = (A2 + Ai - Bi) • A2 < A2 • A2 <, 2q.
Then the intersection matrix of A2 and B^ has the form :

(^ 7 ^
V 7 ^ )

which is positive semi-definite. Since A2 and .82 span a rank 2 subgroup
by construction, this is impossible.

Proof of Theorem 1.4 (i) when c(A) = 2.

Case (i) A is a simple class, i.e. it has no degenerations.

In this case the moduli space M(J, A)/G is compact, and the evalu-
ation map

e:lV==M(J,A) xcS2 -.V
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has positive degree. (To see this, one argues as in Proposition 3.4, using
S2 x S2 as the model instead of CP2.) Hence e* is injective, and /?2 = 1
or 2. As before, we suppose that our initial sphere S is not embedded, and
so has P double points where P > 0. We then derive a contradiction by a
homological argument.

Let a be the Poincare dual of A as before. Then, because a(F) —
Pc(F) = 0, the class (a - Pc)2 = 0, and so (a - Pc)2 == 0 also. It follows
that Pc2^) = 2. Hence c2^) = 1 or 2.

If /?2 = 2, we must have a = 0 and then the identity (?(y) = 2^ + 3a
implies that \ = 1. But this contradicts the fact that \ = 4 — 2/?i.

So suppose that /?2 = 1. In this case, a = 1 and \ = 3 - 2/3i, and it is
easy to check that /?i = 2. Because c is an element of H2(W) with positive
square, cupping with c induces an isomorphism ^(W^Q) —^ ^(l^Q).
Hence the same holds on V, i.e. if u and v generate ff^l^Q), cu and cu
generate .H^^Q). Poincare duality then implies that uv ^ 0. But then
uv is a non-zero multiple of c, since c generates ^(V^ Q). Thus (uv)2 -^ 0,
which is absurd.

Case (ii) There are degenerations.

As above, the only possible degenerations for generic J have the
form S\ U 5s where, this time, c(Si) = 1 for both i. Let Ai = [Si] for
i = 1,2. Then, because A • A = 2P > 0, and because the classes A, Ai are
simultaneously realised by J-holomorphic curves, A i ' A > 0 for some i.
Hence, by Lemma 2.3 there is a J-holomorphic curve in class A 4- A^, and
we are reduced to the previously considered case when c(A) = 3.

3. Immersed spheres.

In this section we prove the technical results about immersed J--
holomorphic spheres which were used earlier. We begin with some simple
linear algebra.

LEMMA 3.1. — Let TI-I and n^ be two transverse planes through
{0} in R4 which intersect with positive orientation and are symplectic with
respect to the standard linear symplectic form o;o. Then there is a linear
ujQ-tame J which preserves these planes.
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Proof. — Given a subspace TT of R4, let 7r-1- be its symplectic orthog-
onal, i.e.

7r1' = {v : o/(z;, w) = 0 for all w € 7r}.

If 7rj1- = 7T2 the result is obvious. So suppose not, and choose a basis 61,62
for TTI such that ^(61,62) = 1 and so that the subspaces TT^ H {e^}1- and
^2n{62}"1 are 1-dimensional. Choose v^ € ^F^i}-1- and ^4 € 7^2^{62}-L,
normalised so that

^(^3,^4) >0, |(^(62,V3) |==|a;(6l,t;4) |=0.

Then, with appropriate choice of signs,

63 = 1:3 ± 061, 64 == -C4 ± 062

span 7T]1-, and, because the intersection of TTI with TT^ is positive, we may
normalise further so that o;(63,64) = 1. Thus 61,..., 64 is a standard
symplectic basis and, for b = ±a,

63 = V3 + &6i, 64 = V4 ± fr62.

Now choose J so that J6i = 62 and Jv^ = ̂ 4. If 64 = v\ + ^62, </63 = 64
and so J is obviously o/o-tame. An easy calculation shows that J is C(;o-tame
in the other case too. D

Observe that we cannot deal with more than two planes here : this
is why a positively symplectically immersed sphere is only allowed to have
double points. Also, we cannot necessarily find a c^-compatible J.

Next, we prove the general position result needed for Theorem 1.5. We
will say that two J-holomorphic spheres are in general position if they are
immersed and if their only intersection points are transverse double points.
Similarly, two symplectically immersed spheres are in general position if
all intersection points are positively oriented transverse double points. In
particular, each sphere is positively symplectically immersed. (Note that
these definitions are compatible.)

LEMMA 3.2. — Given two exceptional spheres E and E' in V, we
may assume that they are in general position and are J-holomorphic for
some uj-tame J which is integrable near E.

Proof. — By definition, exceptional spheres are embedded. If they
are in general position, it is easy to find an c^-tame J such that they are
both J-holomorphic : the only possible difficulty occurs at points where
two branches cross, and this is dealt with by Lemma 3.1. Then, this J is
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integrable on the spheres, and it is not hard to see that one can change it
off the spheres to make it integrable near E.

In order to put the spheres in general position, we first make them
J-holomorphic so that they intersect positively. By choosing J in the dense
open subset U of J which was mentioned in §2, we may also suppose
that they are embedded. Therefore, we only have to worry about points
Xi where the spheres touch. At these points, one should first use the
results of [LB] to perturb small pieces of E' near the Xi so that they
remain J-holomorphic but intersect S transversally, and then patch these
J-holomorphic pieces to the rest of S' to get a symplectically embedded 2-
sphere which intersects E positively and in transverse double points, as
required. Note that the resulting sphere is J'-holomorphic for some Jf

arbitrarily close to J . Further, this technique works more generally, because
the methods of [LB] allow one to replace singular pieces of a J-holomorphic
curve by immersed J-holomorphic pieces : see Lemma 3.5 below. D

We now discuss the relevant Fredholm theory, using the notations of
[EL,RR]. Recall that, if F and J ' are suitable spaces of maps and o;-tame
almost complex structures, respectively, one can form a Hilbert manifold
MA consisting of all pairs (/, J ) € F x Jf such that f : S2 —^ Vis J-
holomorphic and represents A. (Here, as in [EL], in order to remain within
the space of C°° almost complex structures, we take J ' to be some subset of
the space J of C°° o;-tame structures which is closed under an appropriate
Hilbert norm.) Further, the projection map

PA : MA -^ J '
is Fredholm with index 2c(A) 4- 4. Thus the inverse image M(J,A) =
P^^J) is a manifold for generic J e J ' and hence for a dense set of
J € J . The words "curve" and "J-holomorphic sphere" will denote either
a parametrized curve / or its unparametrized image Im/. A curve is said
to be regular iff the corresponding point (/, J ) e M(J, A) is a regular
point of PA. Similarly, we say that an o^-tame J is regular if it is a regular
value of PA for some choice of space J ' and for all the classes A under
consideration. (The compactness theorem implies that only finitely many
classes are relevant in any situation : see Lemma 4.1 below.)

Since the Mobius group G = P5L(2, C) of reparametrizations is 6-
dimensional, an A-sphere can be regular only if c(A) > 1. It is easy to see
that, when J is integrable, this condition is also sufficient: see Lemma 2.8 of
[RRp6). One of the main differences between spheres and curves of higher

(6) The statement of this Lemma is not quite right. The necessary and sufficient condition
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genus is that in the case of spheres this result remains essentially true even
when J is not integrable.

LEMMA 3.3. — Any positively symplectically immersed 2-sphere
with c(S) > 0 has a J-holomorphic parametrization for some regular uj-
tame J .

Proof. — By assumption, there is an immersion LQ : S2 —^ S whose
only singularities are transverse double points. Write c(S) = 2 + fc, and let
E —^ S2 be the complex line bundle over S2 with Chern number k. Then, to
extends to an immersion i: N —> V of some neighbourhood N of the zero
section So in E. Because any almost complex structure on a 2-manifold is
integrable, we may take N so small that there is an i*(o;)-tame integrable
complex structure Jo on N such that S'o is Jo-holomorphic. Then, So has a
Jo-holomorphic parametrization /o- By the above remarks, it is Jo-regular,
because c(S) > 0.

As in the previous lemma, Jo can be adjusted near the inverse images
of the double points of LQ so that it is the pull-back of some integrable
complex structure J defined near S. Extend J so that it is o;-tame on V.
Because J has been constructed in a special way, it need not be regular.
However, there are regular almost complex structures on V arbitrarily close
by, and so, because So is regular, we may choose one, J' say, whose pull-
back JQ to N has the property that So is isotopic to a Jo-holomorphic
embedded sphere SQ. We may suppose that SQ is so C^-close to So that
its image S7 under L is isotopic to S by a small isotopy ^ of V. (We do
not assume that Qi preserves a;.) Then, S = g\S' is (pi^J'-holomorphic.
Further, if Qi is sufficiently C^-small, it is easy to see that J\ = (^i)*J' is
o/-tame and so regular. (Note that if J is regular, so is p*(J), provided that
it is tame.) D

Let us write MA^XQ) for the space {(/, J) e MA '' f(^o) = ^o}- The
proof of Lemma 5.2 in [RR] shows that this is a Hilbert manifold. Therefore
M(J, A, xo) = M(J, A)nMA(xo) is also a manifold for generic J. As in §2,
we define TVJ = M(J, A, a-o) x^o S2, where Go is the subgroup of G formed
by elements which fix ZQ. Thus, when c(A) = 3 and J is generic, the spaces
M(J, A, xo) and Wj are smooth oriented manifolds of dimension 6 and 4
respectively.

is that ^(E,^) = 0- When g > 1 the condition Ci/ > 2(g — 1) is sufficient but not
necessary : it is equivalent to the curve Im/ being regular for all choices of integrable J .
When g — 1 < Cy < 2(g — 1) it is regular for some integrable J, and not for others.
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Recall from Proposition 4.3 of [EX], that every moduli space M(J, A)
of curves has a natural orientation, which derives from a stable almost
complex structure which is defined over compact subsets of M(J,A). We
want to show :

PROPOSITION 3.4. — The evaluation map ej : WJ -^ V is
orientation preserving at each of its regular points.

This is easy to see in the integrable case, for then the moduli space
Wj has a complex structure which is compatible with its orientation, and
ej is holomorphic and hence orientation preserving. In the non-integrable
case we exploit the fact that our curves are spheres. The first ingredient is
the following lemma from [LB].

LEMMA 3.5. — Pairs (/, J ) , where f is an immersion whose only
singularities are transverse double points, are dense in MA{XQ}.

Note. — The procedure given in [LB] for perturbing a singular curve
to an immersed curve changes J, but only in small spherical shells around
the critical points and not at these points themselves. Therefore, we may
choose this perturbation to be so small that both J and its perturbation
J 1 are C1-close and lie in the same space J ' . The perturbed curve is also
constructed to be C^-close to the original one.

LEMMA 3 .6 .— Let c(A) = 3 and consider a pair (/, J ) e MA^XQ)
such that f is an immersion whose only singularities are transverse double
points which are disjoint from XQ.

(i) For any J, regular or not, (/, J ) is a manifold point ofM(A, J, a;o),
and so has a neighbourhood U{f, J ) C M(J, A, xo) which is bomeomorphic
to an open subset ofR6. IfJ is regular, this homeomorphism is compatible
with the smooth structure on (7(J,A).

(ii) When J is regular, the evaluation map ej : WJ —^ V is a local
orientation-preserving homeomorphism near all points (/, z), z -^ ZQ.

Proof of Proposition 3.4. — Let J be a regular value for the projec-
tion operator PA : MA(XO) -^ J ' and let {f,z) € W^j be a regular point
of ej. Then, by Lemma 3.5, arbitrarily close to J and (/, z) we can find a
regular value ] ' of PA, and a point (/', z ' ) e WJ/, which is regular for ey
and such that /' satisfies the hypotheses of Lemma 3.6. Then e'j preserves
orientation on U(f\ J ' ) by Lemma 3.6 (ii). Since the orientation on M(J, A)
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is defined by means of the linearization of PA, it depends continuously on
the first derivatives of / and J . Thus, because we can take /' and J' to
be arbitrarily close to / and J in the C^-norm, ej must also preserve
orientation. Q

Proof of Lemma 3.6.

(i) As in Lemma 3.3 above, let N be a neighbourhood of the zero-section
So of a complex line bundle with Chern number 1, and let i : N —^ V
extend the immersion /. Because c(A) = 3 we may identify N with a
neighbourhood of a complex projective line in CP2 in such a way that
i*(uj) extends to the standard Kahler form r on CP2. Further, we may
extend (^"^^(J) to a r-tame almost complex structure Jo on CP2. Then
every J-holomorphic A-curve in V which is sufficiently close to / may be
identified with a Jo-holomorphic L-curve on CP2 where L denotes [CP1],
and so it suffices to consider the case when / is an embedding onto a
complex line So in CP2, and J is any almost complex structure on CP2

which makes / J-holomorphic.

Consider the evaluation map

evj : M(J, L) XG (S2 x S2) -^ CP2 x CP2 : (/, z^z^) ̂  (/(^i), /(^)).
Because this has degree 1 when J is the standard integrable structure,
and because L-curves have no degenerations, it has degree 1 for all regular
J. Further, because L - L = 1, Positivity of Intersections (see [RR] (2.5))
implies that two distinct J-holomorphic Zr-curves intersect transversally at
a single point. It follows that, if XQ is any point of CP2 and J is regular,
evj induces an bijective smooth map :

ej : {(/, z) e M(J, L, xo) XGo S2 : z+ zo} ̂  CP2 - {xo}.

Even if J is not regular, this map is continuous and injective. To see that
it is surjective, suppose given x € CP2 and an arbitrary J . Choose a
sequence Jj of regular almost complex structures converging to </, and
choose fj e M(Jj,A,xo) so that fj{z\) = x for some z\ ^ ZQ. By the
Compactness Theorem (see next section), a subsequence of the fj must
converge, and the limit cannot be a cusp-curve since there are no L-cusp-
curves in CP2. Therefore, the limit is an element of M(J, £, xo) which maps
onto x. This proves (i).

Note. — In fact, by using the local blowing-up argument of Lemma
3.5 in [BL], one can show that ej is a local diffeomorphism. For, if it were
not, one could produce two distinct L-curves which are holomorphic for
some J and which intersect at XQ and at f(z). It follows that we may give
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the neighbourhoods U(f, J ) a smooth structure for all J . But we shall not
need that here.

(ii) We must show that, when J is regular, the evaluation map ej :
U(f, J ) XG?O S2 —> V preserves orientation at all points (/, z), z ^ ZQ. As in
Lemma 3.3, we may assume that J is regular both for A-curves through XQ
on V and for L-curves near F and through rro on CP2. Further, because
the natural orientation on the moduli space is induced by a stable almost
complex structure which is defined intrinsically at each point by the Fred-
holm operator PA, the identification of a neighbourhood of Im/ in M(J, A)
with a space of curves on CP2 preserves this orientation. Therefore, it suf-
fices to consider the case when / is an embedded curve in CP2. But then
U(f,J) Xco S2 sits inside the compact manifold M(J,L,a;o) XQo S2 and
ej extends to a smooth map ej : M(J,Z/,a*o) ^Go S2 —> CP2. Since de-
gree is a cobordism invariant, the degree of ej is independent of J, and so
is 1. Because ej is injective away from the points (/,^o) it is orientation
preserving at all points {(/, z) : z -^ zo}, as required. D

4. Degenerations.

Suppose that the moduli space M(J,A)/(3 of unparametrized J-
holomorphic A-spheres is not compact. The Compactness Theorem (see
[PW], [WO], [YE]) states that any sequence fj of A-curves which goes out
to infinity in the moduli space M(J, A) has a subsequence which converges
in the C^-topology on the complement of a finite subset Y C S2 to a
J-holomorphic map foo : S2 — Y —> V. By removal of singularities, /oo
extends smoothly over the whole of S2 and so is a J-holomorphic B-sphere
for some class B. Moreover, one or more "bubbles" form at the points of
y. These are J-holomorphic spheres obtained by rescaling fj conformally.
(The points of Y are precisely the points where the derivative dfj blows
up.) In general, the collection of these spheres forms a "bubble-tree" (see
[PW]), i.e. they can be joined together according to any tree, but in the
case at hand the structure of the limiting cusp-curve is very simple.

LEMMA 4.1. — When c(A) = 3 and we are considering the family
of spheres through a fixed point XQ, then for regular J a cusp-curve has
exactly two components Si and S^ which we may suppose labelled so that
c{Si) = z. There are only a finite number of possible cusp-curves, and we
may suppose that each is in general position, and that XQ € S'2.
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Proof. — The first statement was proved in §2. To prove the others,
observe first that it is an easy consequence of the Compactness Theorem
that, for any K > 0 and any J e J , there is a neighbourhood N ( J ) of J
such that only finitely many cohomology classes B with uf(B) < K may be
represented by J-holomorphic spheres for some J € N ( J ) . We may suppose
that J is regular for each of these classes. Then, for each decomposition
A = AI + As where A^ has such a representation, there are only finitely
many Ai-spheres. Let Z C V be the set of points lying on one of these
Ai-spheres. We claim that, if y € V — Z is generic, there are only finitely
many Aa-spheres through y. For if not there is a sequence fj say, of distinct
As-curves through y. By the Compactness Theorem, this has a subsequence
which converges either to a curve or to a cusp-curve. Since a cusp-curve in
class As must be the union of two rigid curves with c = 1, and since y by
hypothesis does not lie on such a curve, the limit must be a curve. Thus
the evaluation map

eA.'.M^A^XcS^V
is proper over V — Z. In particular, if y is a regular value of e^, the inverse
image e~^{y) is compact and hence finite. (Note that dim M(J^A^) =
2c(A2) +4=8 . ) Thus, since XQ (or equivalently J ) is generic, there are
only finitely many As-spheres through XQ. Hence, there are only finitely
many J-holomorphic A-cusp-curves through a?o. We may put each of them
in general position using the methods of Lemma 3.2. The perturbed cusp-
curves are J'-holomorphic for some J ' near J in J ' . Moreover, because J
is regular, we may choose 3 ' so close to J that these cusp-curves are the
only J'-holomorphic A-cusp-curves through XQ. D

We will suppose from now on that c(A) = 3, and will assume that all
our spheres go through the point XQ. Let us first look more closely at the
process of convergence. When a sequence fj of A-spheres converges to an
A-cusp-curve, the unparametrized curves Im/^ converge in the Hausdorff
topology of sets to the set <S'i U S^. Morever, the parametrized curves
themselves also converge away from the bubble points. In the case under
consideration, this can happen in one of three ways :

(1) /oo represents one of the spheres, and there is exactly one bubble,
which represents the other;

(ii) /oo is a constant map and there are two bubble points, each
representing one of the spheres;

(iii) /oo is a constant map and there is one bubble point, at which both
spheres bubble off.
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It is easy to check that, given a convergent sequence {fj} of any one of
these types, one can choose elements 7j € G such that the reparametrized
sequence fj o ̂ j has any other of these types. Thus, by reparametrizing we
can assume that the convergence is of type (i) In fact, since all our spheres
go through the point XQ, we can further fix the parametrization as follows.
Choose a pair of antipodal points ZQ^Z\ on 52, choose a J-holomorphic
isomorphism 0 : T^S2 —^ T^Y, and choose a little 2-disc D which meets
S\ transversally at some point x\ and is disjoint from 52. Then each fj has
a unique reparametrization f'j such that :

(1) /^o)=.ro; ^0)=^; f^eD.
With this parametrization, the bubble point must be z\. (To see this, note
that, if the bubble point is ^, the /' converge on S2 — {z} to a map whose
image is either 5i or S^. But the image has to be S^. For, z ^ ZQ since
df(zo) is bounded, and df(zo) = XQ € S2. Therefore, since f'j(z\} is close to
x\ € 5i, the bubble point is z\^ as claimed.)

Now consider the map /oo corresponding to this parametrization, and
let x = /oo(^i)- Then x € Si H S'2. Further, /oo is uniquely determined by
the choice of ZQ , 0, and x, i.e. it does not depend on the choice of sequence
{/?}• O11 tne otner hand, the parametrization of the "bubble" S\ cannot
be chosen independently of the sequence {/j}: if we reparametrize these to
f. as above and then rescale to maps whose derivative at z\ has norm 1, we
get a sequence which converges to a parametrization h of 52. Then because
z\ is antipodal to ZQ, h(z\) = x\ and h(zo) = x. However, there is no way
to fix dh(zi): it has norm 1 but there is an unknown phase factor A 6 S1

which depends on the initial sequence, i.e. on the way the cusp-curve is
being approached in B°.

For short, we will denote the elements of B° by /, even though they
are really equivalence classes of maps.

PROPOSITION 4.2. — There is an injective correspondence be-
tween the ends ofB° and pairs (<7, x), where C = S\ U52 is an A-cusp-curve
as above, and x € 5i n 52.

Proof. — Let Bc,e be the set of all elements / of B° whose image
lies in an e-neighbourhood of C, By the Compactness Theorem, the union
of all such sets Bc,e covers a neighbourhood of infinity in jB°. Because there
are only finitely many choices for C7, one can choose e so small that each
end E of B° is covered by just one of the sets Bc,e- Further, it is clear
that each Bc,e breaks into a finite number of disjoint pieces Bc,e,x each
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corresponding to one of the points x e S\ H S^. Therefore, each end of B°
corresponds to some pair (C,x), and it remains to see that there is only
one end of B° which corresponds to a given pair (C,x). This will follow if
we prove :

LEMMA 4.3. — There is e > 0 and a neighbourhood N(x) ofx
such that, for all y € V — N(x) which are sufficiently close to C there is a
unique element fy € Bc,e,x which goes through y.

Note. — It will be clear from the proof of the lemma that this
element fy varies continuously with y , and hence they all belong to the
same end of B°.

Proof of Lemma 4.3. — Suppose first that the spheres Si are embed-
ded and have one intersection point x. Then, as in the proof of Lemma 3.6,
we may identify them with corresponding Jo-holomorphic spheres in the
manifold X = CP^CP where Jo is a complex structure obtained from
the standard structure on CP2 by blowing up a point. Let r be a Kahler
form on X in the cohomology class corresponding to uj, and let -B, L be
the homology classes of the exceptional sphere and of CP1, respectively.
Using the adjunction formula of [RR], one easily checks that the only ho-
mology classes which can be represented by Jo-holomorphic spheres are
L + k(L — E), k € Z. Since E is Jo-holomorphic, we must have k > —1.
Thus Jo belongs to the open dense set U C J consisting of all tame J
which admit no J-holomorphic sphere with c < 1. We showed in [BL] that
for each JQ 6 U there is a unique Jo-holomorphic JS-sphere E', and X is
fibered by Jo-holomorphic spheres. Further, there is a unique embedded Jo-
holomorphic L-sphere through every pair ^1,1/2 of points in X — E' which
do not lie on the same fiber of this fibration. (The arguments in [BL] can
be simplified by using the adjunction formula of [RR].) Thus the family of
spheres through XQ has the required property.

If the spheres <9i, 62 have double points or have several points of
intersection, we embed a lifting N of a, neighbourhood of C into X, as in
Lemma 3.3, choosing L : N —> nbhd(C) so that L takes the intersection
point of the cusp-curve Co = i'^C in N to x. The result then follows as
before. D

Proof of Proposition 2.2.
(i) The fact that the conditions (1) fix a unique parametrization implies

that the bundle p : W° -^ B° is trivial over each set Bc,e' But by the
above a neighbourhood of each end of B° is contained in some Bc,e- Thus
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(i) holds.

(ii) Consider the end E associated to the pair (C,x). Let D be a little
2-disc transverse to C as before, and for each y € D parametrize the unique
curve fy of Lemma 4.3 so that conditions (1) are satisfied. Then we may
identify the evaluation map CE '- p~l{E) —^ V with the map

p-^E =(D- {0}) x S2 -. V : (y, z) ̂  fy(z).
This map clearly factors through the map i : N — Co —> V — C. Since i
extends over Co it suffices to prove the claim for curves in N rather than V.
Thus, by embedding N in X, we are reduced to the model case when A = L
is the class of a complex line in X and we are looking at the behaviour of
the family of J-holomorphic lines through the point XQ as it approaches
the cusp-curve Co.

Observe that the moduli space W° is fibered by 2-spheres, while in
X = CP^CP the corresponding spheres all go through the fixed point
XQ. Therefore, to get a picture of the completion of W°, we blow up the
point XQ in X to obtain a family of disjoint spheres. It is not necessary
to be very careful since we are only trying to show that the extension e is
continuous.

Here are some more details. Even though J need not be integrable
near XQ one can use the complex structure in the tangent space T^X to
define a blow up X of X at a-oi m such a way that each embedded J-
holomorphic curve through XQ lifts to X in the usual way. In particular,
the cusp-curve Co lifts to a cusp-curve Co made from 2 exceptional curves
in X. Further, because A • A = 1, no two of our A-curves are tangent at
XQ (see [RR] (2.5)), and so they lift to a family F of disjoint curves in X.
In fact, if X is CP2 blown up at i/o, it is useful to think of X as being
formed by first blowing up XQ in CP2 to get a space fibered by the curves
in .F, and then blowing up yo to get the cusp-curve Co. With this picture
the claim (ii) becomes obvious. We may identify the end p~l(E) of W°
with a deleted neighbourhood of the cusp-curve Co and then think of the
evaluation map CE : p~l(E) —> X as the projection 0 : X —> X. Since 0
extends over Co, we are done. D

Proof of Lemma 2.3. — We must show that, if the classes A\ and
As with c(Ai 4- As) > 0 are both realised by J-holomorphic spheres and
if AI • As > 0, there is a J-holomorphic sphere in class A = Ai + As. The
first step is to put the spheres Si which realise the classes A^ into general
position, which can be done using the techniques of Lemma 3.2. Note that
this step changes J by an arbitrarily small amount to </'.
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Next, transfer the problem to X = CP^CP2 by considering a
neighbourhood N of the union of two embedded spheres which covers a
neighbourhood of 6'i U S^ in V, and then embedding N in X. (Here one
has to choose one of the intersection points of S\ with 52 to play the role
of the cuspidal point x.) The pull-back of J ' to N extends to an almost
complex structure Jo on X. Since there is a Jo-holomorphic exceptional
sphere by construction, Jo belongs to the subset U considered in Lemma 4.3.
Therefore, as in that lemma, there are plenty of embedded Jo-holomorphic
L-spheres in N^ and these map to immersed J'-holomorphic A-curves in
V.

Thus for J ' arbitrarily close to J, there are immersed J'-holomorphic
A spheres. This is all we actually need for the proof of Theorem 1.4.
However, the following argument proves the lemma as actually stated.
(In fact, it is not hard to show that there is a J-holomorphic A-sphere
for every regular J.) Choose a sequence J' converging to J such that for
each J there is an immersed J^'-holomorphic A-sphere C" as above. Since
these spheres are regular by Lemma 3.6, we may perturb the J' to make
them regular for A-spheres. Then, by Proposition 2.1 the evaluation maps
e(J'j) are essentially onto, i.e. there is a J^'-holomorphic A-sphere through
every point in V which does not lie on one of the finite number of J ' -
holomorphic A-cusp-curves. Therefore, we may suppose that the C" all go
through some point y which does not lie on a J-holomorphic A-cusp-curve.
By the Compactness Theorem, a subsequence of these C" converges, and
its limit must be an A-sphere rather than an A-cusp-curve since it goes
through y.

Note. — Obviously this technique works more generally, in situations
when c ̂  3.
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