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SOME EXAMPLES OF ESSENTIAL LAMINATIONS
IN 3-MANIFOLDS

by Alien HATCHER

Incompressible surfaces have long been a major tool in 3-dimensional
topology, and more recently foliations without Reeb components have also
begun to play an important role, particularly through the work of Gabai.
Laminations fill the spectrum between surfaces and foliations, and the
correct generalization of incompressibility for surfaces and the absence of
Reeb components for foliations seems to be the following : a lamination
L C M3 without Z52, 52, or RP2 leaves is essential if (1) the boundary
leaves of L are incompressible, 9-incompressible, and end-incompressible
in M — L, i.e. there are no properly embedded essential disks, half-disks,
of half-planes in M — L, or more precisely, in the completion of M — L
with respect to a path-metric; and (2) L contains no Reeb components ,
i.e. sublaminations of the usual Reeb foliation of a solid torus or solid half-
torus. See the foundations! paper [GO] for more details. The new condition
of end-lncompressibility amounts to requiring that non-compact leaves have
no "infinite folds". For the extreme cases of surfaces and foliations this
holds automatically - which may account for the relatively late discovery
(ca. 1986, by the author) of this rather natural condition.

The hope is that most irreducible 3-manifolds are laminated, i.e.
contain an essential lamination. The first piece of evidence supporting
this is the following simple construction which shows that in one sense
"almost all" closed 3-manifolds are laminated. Viewing closed 3-manifolds
as obtained by Dehn filling on surface bundles with a single boundary
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torus, the generic case is pseudo-Anosov monodromy. Then the suspension
of either the stable or unstable lamination of the monodromy is an essential
lamination in the surface bundle, disjoint from the boundary, and it is not
hard to see, using results in [GO], that this lamination stays essential after
all but a ZU{oo}, or in favorable cases all but one, of the QU{oo} possible
Dehn fillings.

Novikov's theorem implies that 3-manifolds with finite TTI are non-
laminated. This also follows from a result in [GO] that the universal cover
of a closed laminated 3-manifold is R3. Some of the infinite 71-1 Seifert-
fibered manifolds with base S2 and three exceptional fibers are also known
to be non-laminated [B], [JN]. No non-Seifert non-laminated irreducible
manifolds have yet been found, though we shall describe some strong
candidates at the end of this paper.

The main purpose of this paper is to give two fairly simple construc-
tions of essential laminations, constructions which are rather special but
nevertheless lend a little more support to the idea that most 3-manifolds are
laminated. Our first construction, which was strongly motivated by [FH1]
and turns out also to be related to Gabai's foliation constructions, yields
essential laminations La in an arbitrary 2-bridge knot exterior, with QLy
consisting of parallel curves of slope a in the torus boundary. The novel
feature is that by varying certain parameters in the construction of L^, the
boundary slope a can be made to range over an interval of real values. This
is in strong contrast to the situation for incompressible surfaces where the
set of boundary slopes is always finite [H]. For most 2-bridge knots a ranges
over all of R in fact. The laminations Ly with a rational remain essential
after Dehn surgery of slope (T, so we obtain in this way many laminated
non-Haken manifolds, since it was shown in [HT] that all but finitely many
Dehn surgeries on a 2-bridge knot yield non-Haken irreducible manifolds.

Combining these examples with a much more general and subtle
construction of Gabai [G], one can deduce that even in the exceptional
cases when the boundary slopes of the £</s do not range over all of R,
all but finitely many Dehn surgeries on a non-torus 2-bridge knot yield
laminated manifolds. Based on the example of 2-bridge knots, one might
then conjecture, loosely, that most surgeries on all knots and all surgeries
on most knots yield laminated manifolds, and similarly for links. This is
reminiscent of the situation for hyperbolic Dehn surgery.

Our second construction gives essential laminations Fy in an arbitrary
punctured-torus bundle, again with boundary consisting of parallel curves
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of slope a ranging over intervals. The laminations Fy are in fact foliations,
which makes verifying their essentiality both before and after Dehn filling
considerably simpler. In the main case of pseudo-Anosov monodromy the
manifolds produced by the Dehn fillings for the rational boundary slopes of
the F'^s were already known to be laminated, by the suspension construc-
tion described earlier. Nevertheless, the construction of the Fo-'s, which is
quite different from the other constructions of essential laminations, gives
further evidence that essential laminations exist in great abundance. This
construction has subsequently been generalized by R. Roberts to bundles
with fiber a once-punctured compact orientable surface of arbitrary positive
genus.

1. 2-bridge knots.

A simple example, the figure-eight knot ^2/5, will suffice to give the
essential idea. The laminations here will be obtained by grafting together
two measured laminations. As in [HT] and [FH1], these measured lamina-
tions will be described as finite sequences of 1-dimensional laminations in
level 4-punctured spheres, each obtained from the previous one by passing
through saddles.

Figure 1 shows the first measured lamination. It starts with two bands
of parallel arcs of slope oo, of thickness a-h 1 and 1. Two batches of saddles
of thickness 7 and 1 — 7 change this configuration to two bands of parallel
arcs of slope 0 and one band of slope oo. Next, two batches of saddles of
thickness 6 and a — 6 yield two bands of slope 0 and one band of slope 1/2,
at least if 6 < 1 and a — 6 < 1. If these inequalities fail to hold, we can
use thinner batches of saddles to reduce the thickness of the slope oo band
to a — 1, creating a slope 1/2 band of thickness 1, (retaining the two slope
0 bands of thickness 1), then repeat this process until all of the slope oo
band is replaced by the slope 1/2 band. Finally, we reverse the first step,
with slope 1/2 now instead of slope oo (a Dehn twist about a slope 0 circle
achieves this), to produce two bands of slope 1/2, of thickness a+1, and 1.

The second measured lamination is simpler : take two bands of slope
1/2 and thickness 1, and change them to two bands of slope 2/5 and
thickness 1 by two batches of saddles of thickness rj and 1 — rj. This is
the same as the first step in the preceding construction, but with a = 0
and a linear change of coordinates in the 4-punctured sphere to change
slopes oo and 0 to 1/2 and 2/5.
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Figure 1

These two measured laminations are grafted together at their common
slope 1/2 configuration by identifying the two slope 1/2 bands in the
first lamination with the two slope 1/2 bands in the second lamination,
using identifications which preserve the transverse measure up to scalar
multiplication. The result is a lamination La in the exterior of K^/^. (The
values of the parameters 7,5, e, rf are not important, and could be fixed
in advance.) La meets the peripheral torus transversely in a lamination
9La transverse to meridians, consisting simply of parallel curves (circles or
lines) since it inherits a well-defined projective class of transverse measures
from the measures on the two pieces which make up La'

In the limiting case a = 0 the second picture in Figure 1 is skipped,
and the lamination LQ is measured; LQ is in fact just a thickening of
the incompressible Seifert surface for -K^/s- I11 the setting of [HT], LQ
corresponds to the edgepath with successive vertices 1/0, 0/1, 1/2, 2/5
in the strip of triangles shown in Figure 2.
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For a > 0 the edgepath for La does not pass through the vertex 0/1 but
takes the "shortcut" indicated by the dotted line.

The 3-slope of La can be computed by measuring the twisting of the
leaves around the four punctures as we go from one picture in Figure 1 to
the next, seeing what proportion of the total weight at each puncture passes
across a fixed reference direction, say the direction radiating outward from
the centerpoint of each picture. Clockwise rotation counts positive (right-
hand twisting), counterclockwise rotation negative. Reading around the
four punctures in clockwise order starting at the upper right puncture, we
find for the transition from the first picture to the second the twists 7 — 1,
1 - 7, (7 - 1)/(<^ + 1), and (I - ̂ )/(a + 1) for a net twist of 0. For the
second transition the twists are 6, a—6, (<5-a)/(a+l), and (a—6)/(a+l)
for a net twist of a. For the third transition we have e, 1 - e, e/(a + 1),
and (1 - e)/(a 4- 1) for a net twist of 1 + (a + 1)~1. The total is thus
1 4- a + (a 4-1)~1. When a = 0 this is 2, and as a increases it increases
to +00. The rest of the lamination, going from slope 1/2 to slope 2/5, is
the same as the thickened Seifert surface, Lo. Since Lo has 9-slope 0, the
9-slope of La ranges over the interval [0, oo) as a goes from 0 to oo.

Now we generalize the construction to an arbitrary 2-bridge knot
K p / q , As in [HT], incompressible surfaces in the complement of Kp/q
correspond to minimal edgepaths from 1/0 to p / q in the strip of triangles
shown in Figure 5 of [HT], consisting of k "wedges", the Ith wedge
containing 0.1 triangles where the a^'s are the terms in the standard
continued fraction expansion of p / q . (Figure 2 above is the case k = 2,
a i = a 2 = 2.) Without loss of generality we may assume a^ > 1
(otherwise the last wedge can be combined with the next-to-last) and also
0 < p / q < 1/2, hence ai > 1. Consider a minimal edgepath which turns
across two triangles at some vertex pi/qi. At this vertex we can "shortcut"
the edgepath and construct a lamination La just as in the figure-eight
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example. This involves applying a homeomorphism y? e GL^(7i) of the
4-punctured sphere taking the slopes 1/0, 0/1, and 1/2 in Figure 1 to
the slopes of the endpoints of the two edges of the edgepath entering and
leaving pi/qi. If pi/qi lies on the lower edge of the strip of triangles, as in
our previous example, we can take ^ € SL^(Z), preserving orientations,
and then as a goes from 0 to +00, the 9-slope of La goes from its value
for the thickened incompressible surface LQ to +00. On the other hand if
pi/qi is on the upper edge of the strip, ip must reverse orientations, so the
9-slope of La goes from its value for LQ to -oo. For example, for £3/5 we
could use the same edgepath as before and shortcut at the vertex 1/2 to
produce laminations with 9-slopes ranging over (—oo,0).

More generally, if a minimal edgepath turns across an even number
of triangles at a vertex pi/qi, we can again construct a corresponding
lamination La by simply repeating the transition from the second to the
third picture in Figure 1, once for each pair of triangles crossed at pi/q^
The boundary behavior of this LQ is just as in the previous case, varying
to ±00.

PROPOSITION 1. — Each lamination La constructed in this way
is essential, as is its completion La in the manifold obtained by the Dehn
surgery associated to the 9-slope of La.

Proof. — We show such a lamination La is fully carried by a
branched surface E which is essential in the exterior of K p / q . Then by
[GO] La is essential. As in [HT] and [FH1], E is made by stacking up
pieces of branched surface, the piece shown in Figure 3 in [HT] for edges
not involved in the shortcut, and the pieces EA and E£) shown in Figure 3.1
in [FH1], EA for the two shortened edges and E^> for the shortcut itself. In
addition, if a is large enough to require several steps to get from the second
to the third picture in Figure 1 above, then we also use pieces obtained by
enlarging E£) by extending the slope 0 or slope 1/2 arc to go all the way
from the top to the bottom of the piece.

To see that E is essential there are several things to check. First, in
each complementary region of E the horizontal boundary is incompressible
and 9-incompressible. See Figures 21 in [HT] and 6.2 in [FH1] for the case
of complementary regions not involving enlarged E^/s. For the case of
enlarged E^s it is easy to see that the complementary region is again a
product D2 x 1 as in (b) and (c) of Figure 6.2 in [FH1].

Next we must see that E has no disks or half-disks of contact. The
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former cannot occur since the singular locus of E contains no circles. A half-
disk of contact would give a null-homotopy in S3 — Kp/q of a singular arc
of E. Such an arc has slope (in its level 4-punctured sphere) equal to that
of some intermediate vertex in the strip of triangles for Kp/q. This arc then
is an essential arc on an incompressible surface in S3 — Kp/q corresponding
to a minimal edgepath through that vertex (the top or bottom border of
the strip, for example). Hence the arc cannot be trivial in the complement
Of Kp/q.

To complete the verification that E is essential it remains to check
that E has no Reeb components. A Reeb component bounded by a torus
is impossible since E carries no closed surfaces. As for a Reeb component
bounded by an annulus, a small meridian of Kp/q would be a circle passing
through this annulus transversely, and also passing through each product
complementary component of E from one side to the other. This cannot
happen in a Reeb component.

Now let M be obtained by Dehn surgery on Kp/q with rational slope
equal to the 9-slope of some La. M is obtained from the exterior of Kp/q
by filling in a solid torus T, and we extend E to a branched surface E' C M
by filling in sheets in T as follows. E meets 9T in a train track which is
transverse to meridians and has all its complementary regions digons. As
we move into T through parallel copies of 9T we enlarge this train track
by taking a copy of one boundary arc of each digon and moving this new
arc across the digon, always staying transverse to meridians. At the same
time we extend La by having some sheets follow this new section of E7, so
the extended La is fully carried by the partially extended E'. After this
has been done for each digon in turn, we have returned to the original train
track in a parallel copy of 9T. Continuing to move through parallel copies
of 9T, we split this train track along arcs to eliminate all its branching
points, in such a way that the partially extended La is still fully carried.
This yields a train track consisting of disjoint circles, which we cap off with
disks in T to finish the construction of E', fully carrying the completion
L^ CM of La.

The complementary regions of E' contained in T are just D2 x Fs,
while the other complementary regions are obtained from complementary
regions of E in the exterior of Kp/q by pinching boundary digons. So all
complementary regions of E' in M have incompressible, 9-incompressible
horizontal boundary. By the same argument as before, using meridians of
Kp/q, E' has no Reeb components.
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Ruling out disks of contact for E' is a little more involved. Suppose
D is a disk of contact for E'. If QD lies in the boundary of a D2 x I
complementary component of E', then D together with one of the disks of
D2 x 91 gives a sphere carried by E'. This means E carries a genus zero
surface. This is a measured lamination, with the same measure at each
of the four punctures in Figure 1, so this surface is carried by a branched
subsurface of E obtained by setting a = 0. This is one of the incompressible
branched surfaces of [HT]. These carry genus zero surfaces only when Kp/q
is the torus knot K^/q and the genus zero surface is an annulus of positive
9-slope 2q. But for K\jq the L^s have negative 9-slope (see Proposition 2
below), and we have reached a contradiction.

Now suppose 9D lies in the boundary of a solid torus complementary
component S of E7, as in Figure 21 of [HT] (with the dashed lines now
replaced by solid lines, according to our construction of E'). There are two
subcases depending on whether there are one or two circles of cusp points
in 9S. If there is one circle, then the complementary annulus of this circle
in 9S together with two parallel copies of D gives a sphere carried by E',
which leads to a contradiction as before. If there are two cusp circles in
9S, they must both bound disks of contact since the group Za x Za of
180 degree rotations of the 4-punctured sphere acts on E and hence, we
may assume, on E', interchanging the two cusp circles. These two disks
of contact together with an annulus in 9S between their boundary circles
give a sphere carried by E'. This may only be immersed, with double curves
where the two disks of contact intersect each other, but the usual innermost
disk argument leads to an embedded sphere carried by E'. Again this yields
a contradiction.

Thus E', and hence I^, is essential in M.

PROPOSITION 2. — For the 2-bridge knot Kp/q the set of9-slopes
of the essential laminations La is all ofR except in the following cases :

(a) When k = 1 (so p == 1 and K^/q is a torus knot), it is (—00,0];

(b) When k = 2 and a\ and 02 have opposite parity, it is (—oo,0] U
[4n, oo), where 2n is the even a^.

(c) When k = 3 and all three di ^s are odd, it is (—00, —4—4n] U [0, oo),
where 2n 4-1 = min{ai,a3}.

Proof. — To obtain all 9-slopes it suffices to find a minimal edgepath
which turns across an even number of triangles at vertices on both the
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upper and lower borders of the strip of triangles. Figure 3 illustrates how
to do this when k > 4. Namely, start across the top of the first wedge, then
cut down between the second and third wedges. If 03 is odd, continue the
rest of the way across the bottom of the strip, while if 03 is even, come
immediately back to the top of the strip and continue the rest of the way
across the top.

The cases k < 3 we leave for the reader. D

2. Punctured-torus bundles.

Let My —> S1 be a bundle with fiber T, a torus with an open disk
removed, and monodromy y? e SL^ (Z). We shall construct foliations F^
in My by specifying how they intersect the fibers, and to do this it is
convenient to look in the cover T which is R2 minus a neighborhood of Z2.
Here we start with the thickened train track shown in Figure 4.

We assign weights to the various sections of this track as shown by the
numbers located within the thickening. Outside the region pictured, assign
weights so that rightward translation by one unit multiplies weights by 2,
while upward translation by one unit multiplies weights by the parameter
IJL > 0. These weights determine a measured lamination L(/i, t) in T. (Ignore
the dotted line for now). £(/A, () can easily be chosen to be invariant under
deck transformations, with the measure multiplied by scalars. £(/LA, t) then
covers a lamination L(/^, t) in T. By collapsing the complement of L(/A, t)
in the usual way, we can convert L(p.,t) into a foliation F(p,,t), transverse
to 9T, with a single saddle singularity.

When t = 0, £(/i, 0) has a single closed leaf, a circle of slope 0, and all
other leaves form a band of parallel half-lines starting at 9T and spiralling
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in to the circle leaf from below. If we choose (/^,^) = (/^i,^i) satisfying
2 4- (1 — fi)t = fit (which can be solved either for /A or t) then the lamination
£(^i, ti) splits open along the translates of the dotted line in Figure 4 and
•H/^i^i) again has a single closed leaf, this time a circle of slope 1, with
all other leaves spiralling in to this circle from below. (One can check that
1 + (1 - /ii)^i > 0, so £(/ii,<i) is defined.)

Note that if we fix /AI and let t increase we are transferring sheets of
leaves of thickness t from one pair of opposite sides of the complementary
quadrilateral of £(/x, t) to the other pair of opposite sides, as indicated
in Figure 4. (We are thinking of 9T as a vertex when we regard the
complementary region as a quadrilateral.) This means we can construct
a measured lamination in T x I covering a lamination in T x I which meets
T x 0 in £(/AI , 0) and T x 1 in L(^i, t\) with a layer of saddles (critical points
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of index one for the projection onto the I factor of T x I ) achieving the
"surgery" ofL(^i,0) to L(/^i). The foliation version of this lamination
in T x I we call F^ {(1,0), (1,1)}, the vectors (1,0) and (1,1) corresponding
to the limit cycles of the boundary foliations F(^i, 0) in T x 0 and F(/AI, <i)
in T x 1, oriented by the direction of spiralling. This F^ {(1,0), (1,1)} meets
each slice T x s in a foliation transverse to 9T x 5, with a single saddle
singularity.

More generally, applying a suitable linear map in SL^CZ)to T, we have
foliations F^ {(p, g), (r, s)} in T x I meeting T x 0 and T x 1 in foliations
(each with a single saddle singularity) which spiral in from the right to
oriented limit cycles with slopes q / p and s / r , provided ps — qr = 1.

For the given monodromy y? € SL^{V) choose a sequence (p^ qi) e Z2,
i = 0,. . . ,n with p^+i -pi^qi = 1 and (pn.qn) = ^(po,9o). (There
are infinitely many such sequences; they correspond to edgepaths in the
diagram of SL^Z), Figure 4 in [HT], from qo/po to qn/pn which go around
the diagram an even number of times - to take care of the ambiguity that
(pn^Qn) and (-pn, -qn) both have slope qn/Pn') The corresponding blocks
^ti{(pi,Qi)^ (pi+i,gi+i)} can then be stacked end-to-end to form a foliation
Fff of My,. Fitting two adjacent blocks together is possible since they have
the same oriented limit cycle. The gluing is uniquely determined if we
require it to preserve the transverse measure at a fixed lift of 9T to f. (This
gluing operation may be clearer if one thinks of the associated laminations
obtained by splitting open the saddle singularities.) The foliation QFy of
the torus 9T then has a transverse measure, so consists of parallel lines or
circles.

The foliations Fy have no compact leaves, for in the block
F(i{(l,0),(l,l)} the only compact leaf of F(^i,0) in T x 0 is the limit
cycle, and this is immediately connected by saddles to non-compact leaves
in nearby fibers T x s. Since Fa has no compact leaves, it has no Reeb
components, hence is essential.

We remark that breaking Fa up into the blocks F^ {(pi, <^), (p^i, 9^-1)}
is somewhat artificial, and was done mainly for convenience of exposition.
If one looks at how Fy intersects the various fibers of My one sees folia-
tions on T whose associated laminations (obtained by splitting open the
saddle singularity) have leaves starting at 9T and limiting on a sublamina-
tion which is either a circle, of rational slope, or a standard irrational-slope
lamination in int(r). The slopes of these limit sublaminations vary con-
tinuously (and monotonically) from fiber to fiber, filling in the intervals
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between the values qi/pi. Each rational limit slope is taken on for a whole
interval of fibers, with the other leaves spiralling into the limit cycle from
both sides (not just from one side as in the fibers where one block is joined
to the next), in varying proportions as one moves across the interval of
fibers. By contrast, a given irrational limit slope is taken on only at an
isolated fiber. See [HO] for more on these laminations in T, which have
transverse affine structures.

Now we consider the question of which 9-slopes are realized by the
foliations Fy. There are several cases, depending on (p. Suppose first that
(p has distinct positive real eigenvalues. We may conjugate (p so that its
expanding eigenvectors are in the first and third quadrants, its contracting
eigenvectors in the second and fourth quadrants. This is equivalent to the
four entries of ^ being positive. Let (po, qo) = (1,0), so <^(po, qo) = (pn, qn)
is also in the first quadrant, and let the sequence (pz,^) lie in the first
quadrant and have monotonically increasing slopes. To speak of 9-slopes
for Fa requires specifying slopes 0 and oo in 9 My. It is natural to choose the
fibers to have slope oo, and in the present case we choose the curve in 9 My
determined by a first-quadrant eigenvector of (p for slope 0. The 9-slope of
Fa is a measure of how many leaves of 9F<y cross the slope 0 curve. For the
block F(i{(l,0),(l,l)} it is clear from Figure 4 that the total 9-twisting
is exactly ti. Similarly, ^{(pi,^, (pz+i,9z+i)} has 9-twisting <„ so the
9-slope of Fff is E^, an arbitrary positive number. Arbitrary negative 9-
slopes are realizable by a completely analogous construction, starting with
the reflection of Figure 4 across the a;-axis, choosing the (pi,^)^ again in
the first quadrant, starting with (0,1) and with monotonically decreasing
slope.

The next case is that y? has distinct negative real eigenvalues, i.e.
the negative of a <p in the previous case. Here the choice of "slope 0" in
9My is less natural, since a circle traced out in 9My by an eigendirection
intersects the fiber (slope oo) twice. If we choose slope 0 so that this circle
has slope 1/2, then it is not hard to see that the 9-slopes of the F^s range
over (-oo,0)U(l,oo).

In the remaining cases the reader can check that the foliations Fy
again have 9-slopes varying over the complement of a finite closed interval.

In the case that (p has distinct positive real eigenvalues, our construc-
tion does not produce a foliation with boundary slope 0. In some cases 0
is a boundary slope of an incompressible, 9-incompressible surface, and in
other cases 0 is not such a 9-slope; see [FH2]. In the cases that 0 is not
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a ^-slope it is natural to conjecture that the closed manifold obtained by
slope 0 Dehn filling is non-laminated, since the suspended stable and un-
stable laminations of (p in My become inessential after this filling. In most
cases these closed manifolds seem to have hyperbolic structures. Similarly,
in the case that (p has distinct negative eigenvalues one might conjecture
that the Dehn-filled manifolds for which the suspended stable and unstable
laminations become inessential are non-laminated.
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